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Abstract: Using tilting modules we equip certain semisimple categories with a
"reduced" tensor product structure. The fusion rules for this tensor product are
determined via known character formulas for the involved modules.

Introduction

In this paper the term "fusion rules" will cover the problem of describing the various
decomposition multiplicities of the tensor structure on a given rigid braided tensor
category.

Given a finite type Cartan datum one can associate at least 4 interesting categories
to this. Namely

(1) The category & of the corresponding semisimple Lie algebra g.
(2) The category of rational modules of the corresponding semisimple, simply
connected algebraic group G defined over a field of positive characteristic.
(3) The category of locally finite modules of the associated quantum algebra U
specialized at an /th root of unity.

(4) The category Sκ of fixed level representations of the affine Kac-Moody algebra
g associated to 0.

In each of the cases (1-3) we shall investigate a certain semisimple subcategory
equipped with a "reduced" tensor product and we shall prove some "fusion rules" in
each case; these will be given in terms of the characters of the involved modules.
Hence they will of course essentially be old character formulas in a new guise. Our
approach will be in the framework of tilting modules.

The last case is treated in the thesis by Finkelberg [F] where he uses the "level-

preserving" tensor product on the category & (see Kazhdan and Lusztig [KL2]) to

relate the Grothendieck ring of ,̂ with a quotient of 3% defined in 1.15. We state his
precise result in 1.24.

The paper is divided into 3 parts dealing with the three above mentioned situations
(1-3) respectively. Also in the first part we investigate the category @s and in the
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third part we show how to avoid any restrictions on /. For the latter we need a
modification due to Lusztig of the quantum Frobenius homomorphism (also due to
Lusztig).

Notation

Throughout this paper the following notations will be used:

• / a finite set.
• (cLij)ljjeI a (finite type) Cartan matrix and dτ G {1,2,3} chosen minimal such that
(d^j) is symmetric.
• g the semisimple Lie algebra corresponding to (α^ ).
• \] a Cartan subalgebra of 0.
• b a Borel subalgebra of 0 containing rj.
• R C f j* the corresponding root system and R+ the set of positive roots w.r.t. b.
• G a semisimple, simply connected algebraic group defined over an algebraically
closed field k of characteristic p > 0.
• h is the Coxeter number for the root system.
• B a Borel subgroup of G containing a maximal torus T such that the roots of B
are the negative ones.
• W the Weyl group associated to all these data. The longest element in W is called

1. The Categories @ and @s

1.1. Fix SCI. We shall identify elements in S with their corresponding simple
roots. Let Rs and Ws denote the root system and the Weyl group associated to 5.
The integral weights are X = {ζ G ί)* (C, ά) G Z}, X+ denotes the set of dominant
integral weights and we let ρ be half the sum of the positive roots. Let W act on f j*
by w.X = w(X -f ρ) — ρ. A weight λ G X will be called S'-dominant and we write
λ G X£ if {λ, ά) > 0 for all α G 5.

Let ̂  denote the category consisting of all finitely generated g-modules which
are ί)-semisimple and b-finite. If M G <^ and λ G ί)* the λ-weight space of M is

Mλ = {m G M I h.m = λ(ft)ra, ft € I)}

and λ is called a weight of M if Mλ ^ 0. We assume that all weights of the modules
we consider are integral.

The category &s is the full subcategory of & consisting of those M G @ for which
all composition factors have highest weights in X^. We see that the choice S = 0
gives us the 0 setup back and therefore we will drop the subscript 0 everywhere.
Note however that X£ = X and not X+.

Among the modules in & we have the Verma modules M(λ), λ G X. Each Verma
module M(λ) has a unique simple quotient L(λ) and these are up to isomorphism all
the simple modules in &. All modules in & have finite lengths.

Clearly the simple modules in @s are {I/(λ) | λ G Xg} On the other hand the
Verma modules does not belong to &s (not even those with highest weights in X$).
However the generalized Verma modules defined as follows will: Denote by $s e g
the parabolic subalgebra corresponding to S. For λ G Xg we denote by LS(X) the
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finite dimensional simple ps -module with highest weight λ. Then the generalized
Verma module is

Clearly M5(λ) has highest weight λ and I/(λ) is its unique simple quotient.

7.2. We denote by 3K the Grothendieck group of @. Clearly this is the free Abelian
group on {[L(λ)J | λ G X] when we denote the image of M G & in 3K by [M].
Similarly the Grothendieck group 3KS of &s is the free Abelian group with basis
{[L(λ)] I Λ G X£}. We have

where [M:L(λ)] denotes the composition factor multiplicity of L(λ) in M. In
particular we have

μ<λ

which has only finitely many non-zero terms. Using that for all λ € X,

[L(λ):M(λ)] = [M(λ):L(λ)] = l.

we can invert (*) and get

μ<λ

where [I/(λ) : M(μ)] G Z. In general the numbers [L(λ) : M(μ)] and [M(λ) : L(μ)] are
determined by the Kazhdan-Lusztig conjecture [KL1] (which has been a theorem for
13 years, see [BB] and [BK]).

We also note that {[M5(λ)J | λ G X$ } is a basis for 3KS. If we consider 3&s as
a subgroup of ,% we have the character formula

This is obtained from the identity [L5(λ)J = X) (-ly^t^Cps) ^c/(b) w χ] by

induction to g. This identity on the other hand can be found in [H, 24.2].
Recall that &s decomposes as

where ^(λ) is the full subcategory of @s consisting of those M G @s for which
\_M\L(v)\ is only non-zero when v G W.X.

If M G & we write px(M) G ̂ (Λ) for the largest submodules of M in ^(λ).
Furthermore recall that if λ G X+ then L(X) is finite dimensional and clearly
M (g) L(λ) G 0 for all λ G X+. For λ + ρ, μ + ^ G X+ we have the translation
functor
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given by Tj^(M) = pμ(M 0 L(w(μ — λ))), where w G W is chosen such that

w(μ - λ) G X+. Then T£ and T* are adjoint functors.
If λ and μ as above happen to be in X $ then the translation functors restrict to

adjoint functors (denoted the same way)

T£:&s(X)^&s(μ) and T^.^s(μ) -> ^5(λ) .

7.5. The behaviour of Verma modules under translation is easy to describe. First one
observes that for λ G X and μ G X+ the module M(λ) 0 L(μ) has a filtration by
Verma modules (a so-called Verma flag):

0 - F0 C Fl C . . . C Fr = M(λ) ® L(μ)

with Fi/Fi_l = M(λ-fz^), z = 1, . . . , r and ZΛ running through the weights of L(μ).
In the Grothendieck group 3K this means that we have (with obvious notation):

[M(λ) ® L(μ) : M(\ + z/)] - dim L^ (1)

for all z/. Simple weight considerations then give that whenever λ G X+ ,

T^M(w.X) = M(w.μ) for all μ + ρ G X+ , w G W (2)

and TμM(w.μ) has a Verma flag with

*;r,e^.λ
0 otherwise .

Here Wμ is the stabilizer in W of μ under the dot-action.
We are also interested in the effect of the translation functors on generalized Verma

modules. So suppose that λ G X+ and let w G W such that w.X G X^. Then

if ^-^ G Xs (3)
0 otherwise.

Suppose in addition that Wμ — {1,5} for some simple reflection s. For all w G W
with w.μ G Xj we have an exact sequence

0 -> Ms(w.X) -> T^Ms(w.μ) -* Ms(ws.λ) -^ 0 , (4)

if w.λ > ws.λ, resp.

0 -̂  M5(w;5.λ) -> T^Ms(w.μ) -+ Ms(w.X) -+ 0 , (47)

if t(;.λ < ws.X.

1.4. The effect of the translation functors on simple modules is more complicated to
describe. We shall only need the following case. Suppose λ + ρ, μ + Q G X+ with
Wx = 1. Then

( L(w.μ) if ws.X > w.X for all s eW
< Λ , μ

\ 0 otherwise.

For this as well as the results in 1.3 see [Jl].

1.5. On the category & we have the "contravariant dual" functor δ. It is given by
the following recipe. Let M G &. Then δM = 0 Homc(Mλ, C) as a vector space.
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Then 6M C M * and the g-module structure on 6M is inherited from the action of g
on M* given as

x f:m i— > /(τ(x)ra), for x G 0, / G M*, m £ M ,

where r is the antiautomorphism of 9 which fixes f) and takes the Chevalley basis
element ea into e_a, a 6 Λ"1". Clearly <52 = 1 and noting that the weights of <5M are
the same as the weights of M it follows that for λ E X,

(1)

This functor obviously also restricts to β?s.

Following Donkin [D] we make the

Definition. A module M E @ is called a (partial) tilting module if M and 6M both
have Verma flags.

A module M E &s is called a tilting module if M and <SM both have generalized
Verma flags (i.e. filtrations in which successive quotients are generalized Verma
modules).

Clearly it amounts to the same to say that M is a tilting module if and only if
M both has a (generalized) Verma flag and a dual (generalized) Verma flag (i.e. a
filtration with subquotients of the form <5M(λ) for some λ E X.)

Note that

(2) Direct sums, tensor products with finite dimensional modules, and direct sum-
mands of tilting modules are tilting modules.
(3) Translation functors send tilting modules to tilting modules. (This follows from
1.3.)
(4) M(λ) is a tilting module iff M(λ) = L(λ) iff w0(λ) + ρ E X+. (This follows
directly from the definition and (1).)
(5) MS(X) is a tilting module iff M5(λ) = L(λ) iff (λ+£, ά) < 0 for all a E R+\R^.

1.6. We record the following well-known

Lemma. For all λ, μ E X we have Ext^ (M(λ), 6M(μ)) = 0.

Proof. Suppose 0 — > δM(μ) — > E — » M(λ) — > 0 is an exact sequence in &. If μ ^ λ
then λ is a maximal weight in E and by the universal property of M(λ) this means
that there is a section M(λ) — > £λ On the other hand if μ > λ we apply δ to our
exact sequence and obtain the exact sequence 0 — » 6M(X) —> 6E -^ M(μ) — > 0. But
this splits by the argument we just used and hence so does the original sequence. D

Remark. In fact Ext^ (M, TV) = 0 for i > 0 whenever M has a Verma flag and N
has a dual Verma flag. Adding the subscript S all over this carries over to 0S.

1. 7. We have the following version of the general results of Ringel [R] and Donkin
[D] on tilting modules.

Proposition. Let λ E X. Then there exists an indecomposable tilting module D(X) G
@ such that

(1) every weight μ of D(X) satisfy μ < λ.
(2) dimjD(λ)λ = l.

Moreover D(X) is unique up to isomorphism.
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If λ G Xg then there exists a unique (up to isomorphism) indecomposable tilting
module DS(X) G &s such that

(3) every weight μ of DS(X) satisfy μ < X.
(4) dimDs(X)λ = 1.

Proof [CI]. We give the proof in the category d^-case. (Of course the proposition is
a special case of the general result on the existence of tilting modules [R].) Suppose
λ -h Q is dominant. Then D(w0.X) = M(wQ.X) has the required properties, see 1.5(4).
We shall proceed by descending induction on w G W to show that D(w.X) exists. So
suppose w ^ WQ and pick a simple reflection s such that ws > w (in the Che valley
order). If s may be chosen such that ws.X = w.X there is nothing to prove. Otherwise
we choose μ with μ + ρ G X+ and s G Wμ. Then D(w.μ) exists by the induction

hypothesis. Consider TμD(w.μ). This is a tilting module according to 1.5(3). Looking

at the Verma flag for TμD(w.μ) we see (in view of the results in 1.3) that w.X is
a maximal weight in this module and that it occurs with multiplicity 1. It follows
that there is a unique indecomposable summand D(w.X) of TμD(w.μ) such that
D(w.X)w x ^ 0. Clearly D(w.X) has the required properties.

To prove uniqueness suppose, for a given λ G X, that both D(X) and D'(X)
are indecomposable tilting modules in & with properties (1) and (2). Then we have
inclusions M(λ) c D(X) and M(λ) C D'(X) coming from the Verma flags for
D(X) and D'(X). Since D(X)/M(X) has a Verma flag and D'(\) has a dual Verma
flag we see by Lemma 1.6 that Ext^(D(λ)/M(λ),£>'(λ)) = 0. It follows that there
is a homomorphism φ:D(X) —> D'(X) which restricts to an inclusion on M(λ).
Likewise we obtain a homomorphism φ' :D(\) —> D'(X) with the similar property.
The composite φ' o φ is then an endomoφhism of D(X) which is an isomoφhism on
D(X)X. Since D(λ) is indecomposable of finite length we conclude that φ' o φ is an
isomorphism. The same argument applies to φ o φr and we are done. D

1.8 Proposition [CI]. If X + ρ G Jf+ then D(X) = T*ρM(-ρ) and this is the
projective cover in & of L(wQ.X).

Proof. Since M(—ρ) is projective and simple in & and since translation clearly
preserves projectivity we see from 1.5(4) that T*ρM(—ρ) is a projective tilting
module. It has highest weight λ. Moreover using 1.4 (with μ = —ρ) we see via
the adjointness properties of T*ρ and Tχ6 that T^ρM(—ρ) has simple socle (and
head) equal to L(w0.X). It is therefore indecomposable and we are done. D

7.9. Proposition 1.8 does not carry over unaltered to &s. One needs the notion of
socular elements in WS\W. Fix an anti-dominant weight λ G X~. Then w G WS\W
is called socular if L(wsw.X) appears as a summand in the socle of a Ms(wsz.X) for
some z G WS\W. Here ws is the longest element in Ws. Note that this definition
depends on λ. We refer to [I] for the proof of the following

Proposition. The projective tilting modules in &s are precisely those corresponding
to socular elements, or equivalently

Ps(wsw.X) is self-dual iff w is socular.

in the notation of [I]. D

1.10. If we combine Proposition 1.8 with 1.3(2) we get
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Corollary. If X G X+ then

if II ̂  W \ ^

otherwise

LI I. From Proposition 1.8 we see that {[DS(X)] \ X G Xg } is a basis for 3KS and
we have the decomposition

^%? S — «->£? Q Φ ^^g 5

where

,9&~ = spanz{[.D5(λ)] λ G X$ and (λ + ^>, a) < 0 for all α G R+\Rg} ,

5̂ = spanz{[D5(λ)] λ G X$ and (λ + ρ, a) > 0 for some a G JR
+\JRj} .

Note that in the category & case we can rewrite this as

I WQ.X G X+} ,

Note also that by 1.5(4-5) the basis elements of 3Kg are equal to [MS(X)].
In order to obtain another characterization of 3K' we need the following analogue

of [Al]

Proposition. Suppose X G X+ and μ + ρ G X+ with Wμ = {l,s}. Then we have,
for all w G W for which w < ws,

T*D(w.μ) = D(w.X).

Proof. It is clear that T^D(w.μ) = D(w.X) Θ D for some tilting module D.
We shall prove that D = 0 by showing that T^D = 0. Looking at the Verma
flag for D(w.X) we observe that w.μ is a highest weight of TχD(w.X). Also
T^T^D(w.μ) = D(w.X) 0 D(w.X). We are therefore done if we prove that w.μ

occurs with multiplicity two as a weight of T£D(w.X). For this we consider the
non-split extension from 1.3(4),

0 -> M(w.X) -+ T*M(w.μ) -^ M(ws.X) -> 0. (1)

We claim that the inclusion M(w.X) C D(w.X) extends to an inclusion T^M(w.μ) C

D(w.X) (this will do it, because then M(w.μ) = T^M(w.μ) = T^M(ws.X) will
occur twice in T^D(w.X).) The vanishing of Ext^,(M(ws.λ), D(w.X)) - Lemma 1.6
- shows that the inclusion M(w.X) C D(w.X) does indeed extend to a homomorphism
φ:TμM(w.μ) -^ D(w.X). Since (1) is non-split we see that kerφ does not have ws.X

as a weight (if it did we would get a section M(ws.X) —> ker φ c T^M(w.μ)). Hence
we have a non-zero homomorphism M(ws.X) —> D(w.X)/M(w.X). This must then
be the lowest part of a Verma flag for D(w.X)/M(w.X) and we are done. D

1.12. Corollary. Let X e X+ and w G W. Then [D(w.X):M(ys.X)] = [D(w.X):
M(y.X)]for all y G W and all simple reflections s with ws.X < w.X.

Proof. For a given simple reflection s choose μ + ρ G X+ such that Wμ = {1^}
Then we have for all y G W,

[D(w.X):M(y.X)] = [T^D(w.μ):M(y.X)] = [D(w.μ):M(y.μ)]

= [D(w.μ):M(ys.μ)] = [T^D(w.μ)'.M(ys.X)}

= [D(w.X):M(ys.X)]. Π
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1. 13. Of course both the proposition and its corollary have direct analogues in 0S.
Let us state the result corresponding to the corollary.

Corollary. Let X G X+ and suppose s is a simple reflection. For all y, w G W such
that y.X, w.X, ws.X G X$ with ws.X < w.X we have

lDs(W.X):Ms<y.X>] = . . . ) ] i f ys.X e
[0 otherwise .

1.14. The action of W on X induces a Z-linear action on ^& by

w - [Af (λ)] = [M(w.X)] , for λ G X, w G W .

(Recall that {[M(λ)J | λ G X} is a basis for 3Kϊ) We can now characterize the
summand 3K' of 3K.

Proposition. 3K' — spanz{/ G 3K \ sa - f = / for some a G R} .

Proof. Let Λ G X and suppose w0.X φ X+. If Wλ φ 1 then

/ -j

Hence the Proposition is true for such λ's.
So assume Wx — 1. Then Corollary 1.12 shows that if s is a reflection in one of

the walls of the chamber containing λ and s.X < λ, then

[D(X>] = [£>(λ) : M(y.λ)] ([M(y.λ)] + [M(ys.λ)]) .
y:y. \<ys.λ

Noting that

ysy-1 ([M(y.λ)] + [M(ys.λ)]) = [M(ys.λ)] + [M(y.λ)] ,

we are done. D

1.15. Let ̂  denote the category consisting of all finite dimensional representations of
9. The Grothendieck group of & is then the free Abelian group on {[I/(λ)J | λ G X+}
The tensor product on ̂  makes this into a commutative ring with unit which we shall
denote by JB. Recall that

, (1)

where 1\X\ denotes the group ring of X. As usual we write ex for the basis element
in Z[X] corresponding to λ G X. Then W acts linearly on Z[X] via weχ = ew(χ\
w G W, X G X and %,[X]W is the ring of invariants for this action. The isomorphism
in (1) is given by

ch L(λ) =

Recall the classical formula for the character of tensor products

ch(M®L(λ))= (-l)'(w>dimMw.I/_λchL(ι/). (2)
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Since both sides are additive in M it is enough to verify it for M = L(μ) with
μ G X+ and in this case we refer to [A2, Final remark]. If we write in &>

[L(μ)] . [L(λ)] = Σ αj;ϊλ[L(ι/)] , μ, λ G X+ ,

Ϊ/GX+

then (2) says that the structure constants α^ λ are given by

<,λ = Σ (-υ^dimLO/Wλ . (3)

1.16. As observed before the category (9 is stable under tensoring with a finite
dimensional module. This gives the Grothendieck group 3K the structure of a module
over ,̂ namely the structure induced by [L] - [M] = [L <g) M], L G £P, M G ̂
Note that in this language 1.3(1) says

[L(μ)] - [M(λ)] = ̂  dim L(μ\ [M(X + i/)] , λ G X, μ G X+ . (1)
ι/€X

Lemma. 77z£ action ofW on 3& (see 1.14) respects the ^-module structure.

Proof. By (1) we have for all w G W, μ G X+, λ G X,

). [M(w.(\ + i/))]

^ [M(w.X

where we have used that dimZ^μ)^ = dimL(μ)w< ^. D

1.17 Proposition. The additive subgroup 3K' of$ζ is an JB-submodule.

Proof. Using Lemma 1.16 this is clear from the characterization of 5&' in Proposi-
tion 1.14. D

This proposition gives us an ^-module structure on 3K~ = 3& J3K' .

1.18 Proposition. As ^-modules we have 3&~~ = JB.

Proof. We claim that the additive isomorphism Φ : 3&~ — > J% given by Φ[M(wQ.X)] =
[L(λ)], λ G X+ respects the ^-module structures. To see this we first note that since
[M(μ)] + [M(sα.μ)] G ̂ Γ' for all μ G A", α G R we have

[M(μ)] = (-l)/(w) [M(w.μ)] moά^' for all zy G X, w G F^ .

Using this we get via 1.16(1) the following equation in 3£~

Q.v)] . (1)

Comparing with 1.15(3) we conclude that Φ is indeed an ^-module homo-
morphism. D
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One could also have obtained this using results from [I]. Note that there is an
^-linear endomorphism Φ of 3K taking [M(λ)] to [M (w0.λ)] for all λ G X. Then
in fact Φ([P(λ)]) = [D(w0.\)] for all λ G X; to see this combine Proposition 5. 2.6
and Theorem 3.4.1 from [I]. Now it is easy to deduce the proposition above.

7.79. Consider the full subcategory &~ of @ consisting of all tilting modules whose
composition factors have antidominant highest weights, i.e. a module M belongs to
&~ if and only if

M = 0 M(wQ.X)aχ(M)

for some αλ(M) G N (zero for all but finitely many λ G X+). If TV" G & we define
the reduced tensor product

Note that the Grothendieck group of &~~ is 3K~ and the above ^-structure on 3&~
is given by

[N] - [M] = [AΓ0M] for TV E & , M G @~ .

The proposition above (cf. the formula (1)) says that the reduced tensor product of
a "dominant simple" with an "antidominant Verma" decomposes into antidominant
Vermas in exactly the same manner as the usual tensor product of the corresponding
two finite dimensional simple modules decomposes into simples. That such a result
should hold was suggested to us by Humphreys.

These "fusion rules" give &~ the structure of a module for the rigid symmetric
monoidal category .̂

7.20. We now want to prove a similar result for the category &s. We cannot proceed
by just "adding the subscript S" In the end however the result will be the same. We
start out with

Lemma. Jg^cW.

Proof. Let λ -f ρ G X+ and w G W such that w.λ G Xg. Suppose there exists
a. G R+\R^ with (w(\ + ρ),ά) > 0. We have to show that [Ds(w.X)] G 3&'.

We can write
[Ds(w.X)]= Σ aylMs(y W (1)

y.y.\eX+

for some ay G N. Inserting the expression 1.2(1) in this formula we obtain

[Ds(w.\)] = Σ aυ Σ (~ 1)/

If λ φ X+ then we have for each ?/, z in (2) a reflection Sβ with SβZy.X — z?/.λ, i.e.
in this case [M(zy.X)] G 3K', cf. Proposition 1.14.

If on the other hand Λ G X+ then there exists a simple reflection s such that
ws.X G 5̂ and ws.X < w.X. From Corollary 1.13 we get

n _. ys ifys.XeX+
"'-. — i -

otherwise.
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Hence we may rewrite (2) as

[Ds(w.\)] = Σ aυ Σ (-D/ω([M(^.λ)] + [M(zys.X)]) ,

where the first sum is now taken over those y G W for which y.X, ys.X G X$ and
y.X < ys.X. By Proposition 1.14 we see that [M(zy.X)] + [M(zys.\)] G 3K1 and we
are done. D

1.21 Proposition. 3K'S = JT Π 3KS.

Proof. By Lemma 1.20 the inclusion 3KS C 3K induces a homomorphism

Φ\3Ssl3K's -* 3KI3K'. If we identify 3KSI3K'S with ̂  and SSfSS1 with 3S~
then Φ is given by

φ((Ms(wsw0.λ)}) = (-lfws) \Ws\ [M(u;0.λ)] , λ e X+ .

To see this we just combine 1.2(1) with the fact that

for all μ G X, it; € W, cf. Proposition 1.14.
In particular we see that Φ is injective and we are done. D

7.22. Let &S be the category of integrable p^-modules. By restriction we may consider
^ to be a subcategory of Ws. Moreover the tensor product ®: ̂  x g^ — > Ws gives
the Grothendieck ring &s of g^ (with Z-basis {[Ls(v)] | ί/ G X^}) an J^-algebra
structure. The multiplication is given by

λ G X+, v G ,

where the multiplicity [L(λ) 0 Ls(v):Ls(μ)] of [L5(μ)] as a composition factor in
L(λ) 0 L5(z/) is given by the classical formula

.̂  (1)

Clearly the tensor product W x &s — » ̂ . induces an ̂ -module structure on
In this way 3&s is an ^-submodule of 3K and (1) gives us the formula

[L(λ) - [M5(ι/>] = Σ Σ (-D^dimLίλ^^.ΛtM^μ)] (2)

for all λ G X+, v G X£.

7.25. By Proposition 1.21 we see that 3K'S becomes an J^-submodule of 3&s.
Moreover the proof of this proposition shows that we have an ̂ -module isomorphism
Ψ'.Ή's = 3&~ given by Ψ([M(wswQ.X)]) = [M(w0.λ)], λ G X+ . Combining this
with Proposition 1.18 we get

Corollary. As ^-modules we have 3Kg = ̂ . The isomorphism takes [Ms(wswQ.X)]
into [L(X)]t XeX+. D
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Consider the full subcategory &$ of &s consisting of all tilting modules whose
indecomposable summands have highest weights in the Weyl chamber wsw0.X+, i.e.

M G ̂  if and only if M = 0 Ms(wsw0.X)a*(M}

for some αf (M) G N.
Then &g is a module for the semisimple category &. Moreover it has a reduced

tensor product given by

xex+

The corollary above says that the "fusion rules" in (̂ ~ , 0) are the same as in ( ,̂ ®).

1.24. Assume that Q is simple and fix K G N. The dual Coxeter number is called h.
Let &±κ be the category of integrable g-modules of finite length and with central

charge ±κ — h. Denote by K(&±κ) its Grothendieck ring. Let ̂  be the ideal of ̂
generated by the set {[I/(λ)] | (λ + £,α0) — K}, where α0 is the highest short root.

In [F, Theorems 4.1, 4.2] it is shown that for K > h + 6 then

2. Algebraic Groups

Recall that Γ c B c G is a maximal torus contained in a negative Borel subgroup
of a semisimple, simply connected algebraic group G defined over the algebraically
closed field k of char k = p > 0. Later we shall need that p > h.

2.1. Now we let W denote the category of all finite dimensional representations of G
and if M belongs to W then M = φ Mλ, where

xex

Mλ = {m e M I tm = λ(ί)m, Vί e T}

is the λ-weight space. Note that we have identified X with the character group X(T)
ofT.

The induced G-modules will play the role of the dual Verma modules. We recall
their definition (see e.g. [J2]). Any rational ^-module E gives rise to a rational
G-module which we denote H^(E). If E is finite dimensional then

H°(E) = {f:G^E\fis regular and f(gb) = b ~ l f ( g ) , g£G,beB}

with G-action given by

zf g ̂  f(χ~lg),χ,9 e GJ G H\E).

In particular if λ € X then λ is a 1-dimensional representation of B and we obtain the
induced G-modules H°(X). This module is only non-zero if λ G X+ and in this case it
contains a unique simple submodule which we denote L(X). The set {L(X) \ λ G X+}
is (up to isomorphisms) the full set of simple G-modules in W.
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The Grothendieck group of W is denoted 3%. It is the Z-module with basis
{[L(λ)] I λ G X+} Via the tensor product in W we have a ring structure on ̂ .
As in 1.15(1) we find

. (1)

Using similar notation as in the preceding section we may write

°(λ) : L(μ)] [L(μ)] , (2)
μ<λ

and

(3)
μ<λ

with [#°(λ):£(λ)] = [L(λ):ff°(λ)] = 1.
The Lusztig conjecture [LI] says that the numbers [ίf°(λ) : L(μ)] G N and

[L(μ):H°(X)] G Z are given in terms of the Kazhdan-Lusztig polynomials associated
with the affine Weyl group W corresponding to G.

2.2. If M G W then the linear dual M* of M with the contragradient action again
belongs to W. In analogy with 1.5 we shall consider a "contravariant" dual; namely
for M G W we set

δM = (M*)σ ,

where σ is the automoφhism of G considered in [J2, 8.17]. This construction has
the advantage of preserving weights, i.e., dim(<5M)λ = dimMλ for all λ G X. In
particular this means that

6L(X) ^ L(λ) for all λ G X+ .

We define the Weyl module with highest weight λ G X+ by

V(X) := <S#°(λ) .

Note that L(X) is the unique simple quotient of V(\).

Remark. An alternative construction of V(X) would be to start by choosing a maximal
weight vector v + in the finite dimensional simple g-module with highest weight λ.
Then V(λ) may be obtained by reduction modp (i.e. tensoring by fc) of Uzυ

+, where
Uz denotes the Kostant Z-form of the universal enveloping algebra of 0.

2.3. The linkage principle implies that W splits according to the orbits of the action
of the affine Weyl group Wp. We set

C = {λ G X+ (X + ρ, ά) < p for all α G #+}

and
C - {λ G X I 0 < (λ + ρ, α) < p for all α G R+} .

Note that C ^ 0 if and only if p is bigger than or equal to ft, the Coxeter number
of the root datum. Identifying Wp with the group generated by the reflections in the

walls of C we see that C is a fundamental domain for the action of Wp on X. For

λ G C we define the full subcategory W(\) of W by

- {M G W I [M :L(μ)] = 0 unless μ G Wp.X} .
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Just as in 1.2 we get translation functors

and the effect of these on Weyl modules are completely analogous to 1.3(2-4)
replacing "Vermas" with "Weyls" and W with Wp. Also the result in 1.4 carry over

as long as w.X G X+, see [J2].

2.4. The analogue of Definition 1.5 is now

Definition (Donkiri). A module M G ̂  is called a tilting module if M and δM both
have filtrations whose successive quotients are Weyl modules.

We get immediately the same statements as (2) and (3) in 1.5. Instead of 1.5(4)
we have

V(λ) is a tilting module if and only if V(X) = L(λ) . (1)

Remark. It is clear from the linkage principle that V(λ) = L(λ) for all λ G C Π X+.
However we have also for instance V((p — l ) ρ ) = L((p — l ) ρ ) which is called the
Steinberg module. It is possible (but rather complicated) to describe all λ G X+ for
which V(X) is simple, see [J2, II. 8.21] and compare 1.8.

2.5. The Ext-vanishing result in 1.6 (and its proof) carry over to W. So does
Proposition 1.7 which in this context is due to Donkin and Ringel ([D] and [R]):

Proposition. Let λ G X+. Then there exists an indecomposable tilting module
D(X) G & with the following properties:

(1) all weights μ of D(X) satisfy μ < λ,
(2) dim£>(λ)λ = l.

Moreover D(X) is unique up to isomorphism. D

2.6. Although we shall not need it here let us mention the analogue of Proposition 1.8.
Assume that p > 2(h — 1).

Proposition. Let λ G C. Then D(\ + (p - l ) ρ ) = T^~ρ

l)pV((p - l)ρ) and this is

the projective cover ofL(wQ.X -f (p — l ) ρ ) in the subcategory of W consisting of those
modules whose highest weights satisfy (μ + ρ, α) < 2p(h — 1), a G R+. Π

The point is that the Steinberg module (see Remark 2.4) is a tilting module and it
is projective in such a subcategory.

2.7. As in 1.11 we see that {[D(X)] | λ G X+} constitute a basis for ̂  and gives
rise to the decomposition

3B = 3B~ Θ 38

with
3%~ = spanz{[L>(λ)] I A G C} ,

& = spanz{[L>(λ)] λ G X+\C} .

Recall that Proposition 1.11 was modelled after the results in [Al] which deal with
quantum groups and algebraic groups. Let us here only state the consequence (cf.
Corollary 1.12)

(1) For λ G C, y, w G Wp and s G Wp a reflection in one of the walls of C such

that ws.X, w.X, y.X G X+ and ws.X < w.X we have

0 otherwise .
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2.8. For the rest of this section we assume that R is irreducible. In order to define an
action of W on & we need to introduce the following elements of JB:

n>0

where Hn is the n'th right derived function of H°. We recall that χ(λ) = [V(λ)] if
λ G X+ and that in general the elements satisfy the relations χ(λ) = (-l)ί(w^χ(w.X)
for any λ G X and w G W. Let s G W be a reflection corresponding to one of
the faces of C then s = sa = ^ for an i G I or 5 = s0 is the reflection in the

hyperplane {λ G X : ( X + £,ά0)
 = P}» where α0 is the highest short root. For such

an s i (i G / U {0}) we define for all λ G X+,

Note that we use the right-action of Wp on X. This makes the right-action (*) well-

defined as the left and right actions on any dominant λ commute: w.(\ y) = wy~l.λ =
(w.X) - y. We extend this to a Z-linear action of W on all of ^B.

Proposition. & — spanz{/ £ JB\ fs = f for some reflection s G Wp}.

Proof. Let λ G X+\C. If λ is p-singular we have [D(X)] = £ aμ[V(μ)] with aμ = 0
μ

unless μ is p-singular. But any such [V(μ)] is fixed by some reflection.
So suppose λ is p-regular. Then by 2.7(1) we may write [D(X)] — Σ aμ([V(μ)] +

μ,sμ

[V(μ s^)]) for some weights μ in the W^-orbit of λ and reflections sμ G Wp such
that μ and μ sμ both are dominant and lie in adjacent alcoves. Clearly sμ fixes
[V(μ)] + [V(μ sμ)] and we are done. D

2.9. For all p-regular weights λ G X and all y G Wp we have

(1)

Assume y = si for an i G / U {0} and that λ and λ y belong to adjacent alcoves.
In this case χ(λ) = — χ(λ y) when the two alcoves in question are in different Weyl
chambers. Otherwise χ(λ) + χ(λ y) G 3$ according to Proposition 2.8.

Lemma. For any f G 3%t λ G X+, and y G Wp we have

- (fy) =

Proof. It is enough to prove the lemma for / = [V(μ)], μ G X+, and y = sτ with
i G /U{0}. We have

χ(μ y + v)
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where we have used (1) and the VF-invariance of the weights of L(λ). Similarly we
can compute

[V(μ)})y = dimL(λ),X(μ + "

and the lemma follows. D

Corollary. & is an ideal of '

Proof. By the lemma we have for all / with fs = f that

([L(λ)] f ) s = [L(λ>] - fs = [L(\)] f . Ώ

This gives us a structure on 3%~ = &>!&! as a commutative ring.

2.70. The formula 1.15(2) says in this context that if M <E ^ and λ G X+, then

[M] - [F(λ)] - (-VlM&™MWM_x[V(v)} . (1)

wew

We can now write down the "fusion rules" in this setup.

Proposition. The structure constants for the multiplication on 3$~ are given by the
rule

[V(\)} [V(μ)] = Σ Σ (-l)'(t")dim^(λ)«,.v-μ[V(ι/)] .
^ec weWp

Proof. Combine (1) and Proposition 2.8. D

This of course gives rise to a reduced tensor product structure and a rigid symmetric
tensor category.

Remark. The fusion rule in this proposition was also proved by Georgiev and Mathieu
in their recent preprint [GM2], see also their announcement in [GM1].

3. Quantum Groups

In this section we must work a little harder to obtain our results. This is mainly due to
the choice we make of working with a general positive integer /. We can do so since
Lusztig in [L2] has succeeded in defining the quantum Frobenius homomorphism
for such Γs. However he needs to work over a modification of the (by now usual)
quantum algebra in which one has divided out the semisimple part and replaced it
by a set of orthogonal idempotents each corresponding to a weight. It is because of
the necessity of working with this modification that we shall be somewhat careful in
our appeal to results proven only for the (standard) quantum algebra (especially the
linkage principle).
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3.1. We start out by recapitulating some basic constructions from [L2] in order to fix
notation.

First we fix once and for all an integer I > 1. We let /' be / or 21 if / is odd and
21 if I is even. We set ,^ — Z[ϋ, υ~l] and let ̂ ' be the quotient ring of ̂  by the
ideal generated by the I'-th cyclotomic polynomial. Note that υ2 £ ./$ has order /.

We also set L = - — — for all i e /.
(/,d t)

We shall be using two "root data." They are defined like this:

• (/, ,Jf, Y) is the quadruple where for all i,j G / we have i j = c^α^ . Now
we identify X with Z[J] and following Lusztig we include / in X by i ^ i'. Set
Y := Homz(Jf, Z) and include / in Y by i ι-» i. The pairing (-, ) :Y x X -> Z is
defined by setting ( i , j ' ) = atj for all i,j G /.

• (/, o, J*Γ*, y*) is the quadruple where for all i,j £ I we have io j = Iτl3(i - j) =

( / , ) - 1 ( / , . ) ~ 1 / 2 ^ We set

and y* = Homz(X*,Z). We include / in X* resp. in F* by i ̂  i'* = IJ resp.
i\-^ix= i/l{. The pairing ( , -) :Y* x X* — > Z is then given by

With these choices there is a canonical monomorphism ψ:X — » X* sending i' to i'%.

3.2. We record the following connection between the two root data.

Lemma. Assume that the Cartan matrix (aτj\ 3^ι is indecomposable. Then if I is

prime to all aτj with i ^ j the matrices ((^j'OXje/ ana ((^*».7*)X,jei are equal. If
on the other hand άτ divides I for some ί £ / then the matrices are the transposed of
each other.

Proof. Case by case analysis of the definitions. D

In order to work this twist into our constructions we let - for later use -
£A — (εα^); jG/ be the Cartan matrix ((i*, jf

ή,))i j€/, where we no longer have
assumed that (aij)i ^ G/ is indecomposable. Note that if / is prime to all the non-
zero α^ 's then £A = (aτ \ je/. The "pre-superscript" ε should indicate that only a
negligible change has been made.

3.3. Now Lusztig defines a Hopf algebra associated to each such root datum. As usual
this is first done over the fraction field Q(υ) of ^4. Then one finds an ^-lattice in
there. The quantum algebra over Q(v) associated to (/, ,X,Y) is denoted U and its
^-form ^U C U. The one associated to (/, o, X*, y*) is denoted 17* with ^-form
^/7*. When dealing with a quantum algebra it is preferable to have a presentation

of it by generators and relations. Although this is not a priori the case for U one
can in fact find such a presentation, [L2, Corollary 33.1.5]. These algebras all have
canonical bases.

Tensorizing the ^-forms with a (commutative) ^-algebra k we denote the
resulting quantum algebras by kU resp. kU*.

3.4. We will be using the symbols E^(n) and F^ to denote the divided power
generators in all the quantum algebras. The "semisimple" part is generated by the
elements Kμ with μ £ Y.
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As for the coefficients in the various formulas we also adopt the notation in [L2];

e.g. vl — v1"1!2 — vdi G ,s& and υ* — vιm/2 = v/ = υ (l^2 G ̂ . Furthermore
we set

Γ Ί =πm, _£_„!»-«-! _„-<"-*+»>

and
m 1 * =π

ί=1 «)'-«)-*

For any other unexplained notation we safely refer the reader to [L2].

3.5. The modification of U is called {/. It no longer has units (and hence no
semisimple part). Consider the projections

πλ,v -» / ,
/ \ μ

for λ, λ' G X. Then we define

U:=

We see that lλ = πλ λ(l) G U satisfy l λ l λ / = 6\\fl\ hence they form a set of

orthogonal idempotents in {/. Moreover note that ττλ λ/(t/) = l λ C/l λ /. In fact it is

easy to see that in U we have relations like

and
+ m + {^, λ) (m_ί)

and one can realize f7 as an algebra (without 1) over a certain ring with relations like
these. In U there is an ^-form that comes from the ^-form of U. We shall omit the
details which can be found in [L2].

3.6. Let from now on A: be a commutative ^-algebra. The ^-subalgebra of /fU
generated by all K 9 μ G Y and all products

is called {̂7°. Here K±i is K±di. We make every λ G X into a character on

in the standard manner: \(Kμ) := υ<^'λ> and λ(ττ(ϊ,ί)) :=

Let M be a kU -module. The λ- weight space of M is the A -submodule

Mλ = {m G M I u m = \(u)m, for all u G ̂ .C/0} .
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The category of kU -modules which are direct sums of their weight spaces and on
which the E^n s and the F|n)'s locally act as zero for large enough n is called the
category of integrable ^-modules and is denoted kW .

The category of unital k [/-modules is the category of ^[/-modules on which the
operator ^ lc is well-defined and acts as the identity. A unital module M is said

to be integrable if for all m € M there is an n > 0 such that Y.E^l^m =

Σ^(n)lζm = 0. The category of integrable ^-modules is denoted kW . This tells

us how to think of the 1^'s, namely as projections onto "weight spaces" and apparently

X) lς is a "substitution" for a unit element.

We of course have similar notions attached to kU* and kU* (so that kW* and

kW* are defined.)

3.7. We quote from [L2] two results. The first is only stated implicitly in [L2,
31.1.6-7, 23.1.4]; it is the fact that:

The categories kW and kW are equivalent. (1)

The second result is the existence of a quantum Frobenius homomorphism. Assume
k is also an ̂  -algebra.

Theorem [L2, 35.1.9]. There is a unique k-algebra homomorphism Fr:fcί7 — » kU*
given by

£?ίn/Z<)lc ifne 1,1 and ζ G

0 otherwise

Fr(F(n)l ) = ί Fi
1 0

(n) F i n i 1 C *fne liZ and

otherwise

for alli£l,ζe X, and n e N. D

3.& From now we shall assume that k is an ,/&' -algebra which also is a field of
characteristic p > 0 with k as its algebraic closure.

In order to be able to use Theorem 3.7 we will relate the category fc^* to the
category of rational representations of the semisimple, simply connected algebraic
fc-group εG associated to ε A. Moreover we take εG to be defined and split over k.
Note that we may consider A: as a Έ\v , v~ ̂ -algebra by mapping υ to 1 and that this
algebra homomorphism factors through the Z-algebra structure on k (by mapping
Z onto the prime field of fc, of course). We denote by kQ the field k considered

a_s an ,^>- or Z-algebra in this way. We let g?loc be the category of locally finite
Uk -modules where Uk is the hyperalgebra over k of εG. Recall that f/z (g) Q is

generated by EJ9 Fi for i € / and that they together _with Hi — [E^ Fτ] satisfy the
relations [Ht,Ey] = εaτjE3, [ίt^F,] = -εaτjF^ [H^H^ = 0, [£t,F,] = δτjH^

aίand adE^Ej) = ad F aίj (F^ = 0. We shall prove

Proposition. There is an isomorphism of categories kW* — » ^loc.

This is not a suφrising result; in [L2] Lusztig refers to fc[7* as the quasi-classical

case (at least if char(A ) is zero). The category £?loc identifies with the category of
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rational εG-modules. For a note on the origins of this result see [J2, II. 1.20]. This
category is slightly bigger than the category W considered in 2.1 as rational modules
are direct limits of modules from W . This proposition of course allows us to carry

over several results from the representation theory of εG to fe^*.

Proof of proposition. Let j$ — > k be the ^'-algebra structure on k. First we
construct a A -algebra isomorphism

(*) koύ* - kϋ* .
Let R be the /'-th cyclotomic field and note that *.& is the ring of integers in this
number field. The inclusion Λ> C R is called r. By RQ we denote as above the Λ-
algebra structure on R given by υ ι-> 1. We can now apply [L2, Proposition 33.2.3]
and obtain an isomorphism of .R-algebras

In loc.cit. we also find the definition of /:

f(Etlζ) = τ(vf)a^'ζ} E^ and

and we compute

As τ(vf) — ±1 we see that / maps the subalgebra ^/f/* of R(U* isomorphically

onto ^/C/* C RU*. Clearly this is an ^'-algebra isomorphism and we obtain (*) by

tensoring with k. Of course this gives us an isomorphism kW* — > kQ&*

All we need to prove now is that there is a functor L : kQ W* — >• ^Ioc which is an

isomoφhism. From [L4, 6.7(c)] we get a surjective ring homomorphism from ZQ^*

to t/z with kernel generated by the elements Ki — I for i G / C Y. But as v is
specialized to 1 all the K 's act as the identity on integrable ιQU* -modules. Hence

we have an induced ring homomorphism k U* -» Uk . As E7Z is Z-free this obviously
induce the desired isomoφhism L when we use 3.7(1). D

3.9. We can use the result of Proposition 3.8 to produce induction functors on k&* .

Let LB be the analogous functor from kW# to ^oc, where ^oc is the category of

locally finite modules for the hyperalgebra of a Borel subgroup εB of εG and kW%

is the category of integrable (in the obvious sense) modules for the subalgebra kUB

of fcf7* generated by all ̂ (n)lc s.t. C € X*Λ e /, n > 0.
By abuse of notation we shall drop the pre-superscript ε from now on. Recall that

we have defined induction from B to G in 2.1.
The functor *£ΓJ? = Γ} o H° o LB \kW^ — > k&* is also called induction. Because

of Proposition 3.8 it carries all the well-known properties of H®. Let N be the number
\R+\. Define the dual of a module in the usual way using the antipode from the Hopf
algebra structure.

Theorem. We have in the obvious notation

(1) (Grothendieck Vanishing) *Hl

k(X) = Qfor ί > N and X G X*.

(2) (Serre Duality) *Hτ

k(X) ^ *H£-\-X - 2ρ)v for 0 < i < N and X G X*. D
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3.10. We now turn to our primary object, that is the quantum algebra kU. We will
define several subalgebras of this. Thinking of kU as corresponding to all of G, the
subalgebras kU that we define will correspond to closed subgroup schemes of G and
they will be indexed accordingly, i.e. the subalgebra generated by F^ and Kμ (for
i G /, n G N and μ £ Y) is denoted by kUB as it corresponds to the Borel subgroup
B. The one generated by E[n\ F^n\ and Kμ (for i e /, 0 < n < li and μ e Y)
is denoted kUG^τ, where Gl is the first Frobenius kernel of the ordinary Frobenius
homomorphism of G, see [L3, 8.3].

Whenever there is an inclusion of algebras, say kUH C kUP forT C H C. P C G
we have an induction functor defined as in [APW, 2.8]. It takes a k UH -module E
to F(HomkUH(kUP, E)), where F is the finiteness functor that picks out the sum of
those weight vectors on which the E/s and the F/s in kUP act locally nilpotent.
This functor is denoted by

where k WH and k WP are the categories of integrable modules.
Using the equivalence 3.7(1) we can transport these notions to kU. Typographically

this is done by putting a dot over everything.

3.11. We will examine

• ̂  Fr# . res#

where the functor Fr# is induced by the Frobenius homomorphism in the following
way:

Given an integrable k [7* -module M. Let a kU- action on M be given by letting

E^lς (resp. ff \) act as Fι<βf%(ς)) € ^* (resp. Fr(F<n)lψ(ζ))) for all n > 0,
i G /, and ζ € X. Recall that ψ was defined in 3.1; it is used to preserve the analogy
with the action of the classical Frobenius homomorphism.

We will denote Fr#(M) by M(1) G kW for any module M € fc^*. We call M(1)

a twisted module. Note that by restriction M(1) is in k^G , where the action of kUG

factors through the co-unit (remember that kU is a Hopf algebra). Hence M(1) is a
trivial module for this action.

On the other hand given such a module V G k W which is trivial when restricted
to kffGι then there is an M G k&* with V = M(1).

3.12. We have now reached a point in our presentation from where the arguments
closely follow the usual case treated in [PW, AW, and T]. Basically the only difference
is that we have to replace the I in the usual arguments by a proper l i f So we shall
omit most of the details and only state the key results pointing out as we go along
where the main differences are.

First we need the classification of the simple modules in k^GlB. Here we need
the following modified "restricted" region:

Note that Xl = X/X*. Recall from 3.1 the canonical map ψ:X -> X*. For any
λ G X we have a unique decomposition

A = λ° + ^(A1) , λ° G Xt, λ1 G X .

Then we find (as in [PW, 9.3.4-5] or [AW, 1.9])
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Theorem. For each X £ Xl the simple module I/(λ) G k W is also simple as an object

in kWG . Moreover for any λ G X the simple module I/(λ) G k^G{B with highest
weight A is given by

L(λ) =

(note that ^(λ1) is a 1 -dimensional module in k^GlB.) D

The key argument in the proof of this theorem is to see that if λ G Xl then Hk(X)
contains a unique kUB+ -stable line (B+ being the Borel subgroup corresponding to

the positive roots).

3.13. For any root α we introduce the integer la as follows. We choose ί e I and
w G W such that α = w(ai) and set la = l i m Note that /α is independent of the
choice of i and w.

Consider the induction functor Z = HQ(kUG{B/ kUB, — ). This is an exact functor
which satisfies

dimZ(M)= ( JJ / Λ d i m M

for all finite dimensional M G fe^, see [L3, 8.3]. If λ G X then the unique

minimal weight of Z(\) is λ - J^ (ία — l)α and the resulting homomoφhism

(la - I) a - \] is in fact an isomoφhism, see [PW, 9.6.5].
/

3.14. Set σz = | Σ (iα - l)α. Note that sQt(2σj) = 2σz - 2(1 % - l)αt because 5α.
αeβ+

stabilizes JR
+\{αi} and /α = /Sα.(α). This means that σz is the unique element of X

such that (z, σ^) = ^ - 1 for all z G /. By 3.13 we see that

and the standard arguments show that therefore Z(σt) is simple, i.e. Z(σ^
Moreover we get as in [AW, 2.2]

Proposition. Z(σt) = L(σt) is injective in k^GlB. Π

5.75. Exactly as in [AW, 2.4] we deduce then

Proposition. For any M G ̂ loc we get

H\kU/kUGiB, (^M)(1)) ̂  (Γ1H\G/B, M))(1) . D

3.16. Combining 3.12 and 3.15 we see that, for any λ G X, we have

* L(λ°) 0 (Γ1H\G/B, λ1))(1) .

Since Hk = Hl(kU/kUG B,Z(—)) we get from this the following vanishing result,
cf. [AW, 2.5].

Theorem. H%

k = Of or i > N. D
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3.17. Our modification of the linkage relation goes as follows: Write λ tα μ if
λ, μ G X are related by μ = sa.X+nlaa for a G R+ and n G N with nla < (ά, μ+ρ).
We say that λ is strongly linked to μ and write λ ft μ if there exists a sequence
λ = λ l 5 λ2, . . . , λr = μ with Λ s ]βs λs+1 for some /?s G R+.

Assume for a moment that our Cartan matrix (α^) is indecomposable. This
definition of the linkage relation together with Lemma 3.2 show that the right way
to define the affine Weyl group acting on the weights is as follows: Set Wl = Wl if
all la = I. Otherwise let Wl be the group generated by the reflections si for ί G /

together with the reflection Sβ t defined by s^ t.λ := λ + (lβ — (β,λ + ρ))β for all

λ G X, where β G R+ is the maximal (long) root of R. We observe that this is in
agreement with Lemma 3.2 as the coroot of the maximal root of R is the highest
short root of the dual root system Rv. In fact we see that in this case Wl acts on the

weights X in the same way as the affine Weyl group W^ corresponding to Rv acts on

X, where ϊ = ^ (β,Sfi l (—ρ) + ρ) = l-\-dβ(β,ρ — ρ). Here ρ is half the sum of the

positive coroots. In order to make sense out of this we must choose an embedding
of the root system R in a Euclidean vector space E of dimension |/| with an inner
product {,). We choose the normalization ofRcE such that (αί? aτ) = ί - i — 2
for alH G / corresponding to (simple) short roots. Then both X and Y are naturally
embedded in E and the Weyl group W acts on X.

Note also that there is an obvious generalization of this to non-irreducible root
systems and that the Weyl group W is a subgroup of Wl in all cases (with its usual
dot-action on X).

Having modified the linkage relation in this manner the statement and the proof
of the strong linkage principle takes the usual form, cf. [T].

Theorem. Let χ + ρ be dominant. Assume that L(X) is a composition factor of

HJ

k(w.χ), where w G W and j > 0. Then λ ft χ. D

3.18. Clearly the induced modules H®(X) play the same role as their rational G-

module counterparts. By Serre Duality H ^ ( X ) is a highest weight module with highest

weight u?0.λ; it has simple head L(wQ.X) and we call H^(X) the Weyl module and
denote it V(wQ.X). Note that V(X) ^ 0 iff λ G X+. A filtration of a module is called
a Weyl filtration if the successive quotients are Weyl modules. If the subquotients are
induced modules (i.e. isomorphic to H®(X) for various λ) the module is said to have
a good filtration.

Definition (Donkίri). A module in k W having both a Weyl filtration and a good
filtration is called a tilting module.

This definition parallels Definitions 1.5 and 2.4 completely.

3.19. Let W be the full subcategory of kW consisting of finite dimensional modules
and let.% be its Grothendieck ring.

The linkage principle 3.17 implies that ff decomposes in a direct sum indexed by
the Wl -orbits on X. So we may define translation functors in the standard manner and
obtain results completely analogous to 2.3, 2.4(1), Proposition 2.5 and 2.7 replacing
all occurrences of the prime p with the appropriate /α, Wp with W{, (p — l)ρ with

σl9 etc. That is the tilting modules D(X) exist in W. Especially we observe that, in

the case treated in 3.17 of an la ^ /, the fundamental domain for Wl is the closure
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Like in 2.8 we can define the elements χk(X) = £ (-l)n#£(λ) of 3% and use
n>0

these to define a Wl -action on ?̂. Furthermore Proposition 2.8 and Lemma 2.9 carry
over to this setup. Therefore we have

Corollary. &r = spanz{[£>(λ)] | λ G C] is a commutative ring with unit. D

3.20. As for the fusion rules we will content ourselves with a weak analogue of
Proposition 2. 10 which says that

Proposition. The structure constants a\ of &~ are given by

for z/, λ, μ G C.

Proof. We will show the formula

(-\fw}[M:V(w.v)}, (1)

where Af = φ D(ζ)at(M) is a tilting module and i/ e C.

By additivity it is clearly enough to show this for M = £>(χ) for some x G A"+.
If x is in C or if x does not belong to the W"Γorbit of z/, the formula immediately
follows from the linkage principle 3.17 and the quantum version of Proposition 2.5.
So suppose x G W{.v. By [Al, 5.6] which is reformulated in Proposition 1.11 we
may write D(χ) = T^D(w.ξ) for a semi-regular weight ξ G C and a w G Wl such
that w.ξ is in the lower closure of the alcove containing χ« Now we take a Weyl
filtration of D(w.ξ) and translate it. Using that T£ is exact we obtain a filtration of

D(χ) with subquotients of the form T^V(y.ξ) for certain y G Wt. The short exact
sequences (see 1.3(4) or [Al, 5.2])

0 -* V(y.χ) -+ T*V(y.ξ) -. V(ys.χ) -+ 0

for 5 G (Wi)^ such that τ/.χ < ys.χ, resp.

0 -. V(ys.χ) -> Γ ί ί / . O -* F(2/.χ) -> 0

for 5 G (WΊ)ξ such that j/.χ > ys.χ tell use that each T?.V(y.ξ) contribute by zero
to the formula (1) which then is verified.

The proposition follows by setting M = V(λ) 0 V(μ) and observing that as v G C
then α^(M) = α^ . Observe that this is really nothing but a repetition of the proof
of 2.7(1). D

3.21. Define ^~ to be the full subcategory of ^ all of whose objects have
composition factors with highest weights in the alcove C. Then Proposition 3.20
tells us how to make ^~ into a tensor category; namely by defining the (reduced)
tensor product by

V(X)®V(μ) = 0 V(v)a^ .
i/EC
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Clearly this will define a rigid monoidal category as soon as one realizes that the
duality on W~ takes V(X) to V(—wQX). The category W~ also appears in [Al] and
as remarked earlier we have relied heavily on the ideas in that paper.

Even though we have not used the main theorem in [Al] let us for the record
point out that the results in this section show that this theorem holds without any
restrictions on /:

Theorem. Let M £ W be a tilting module with no connected component of the form
V(X) with X £ C. Then for any endomorphism f ofM the quantum trace off vanishes.
In particular the quantum dimension of D(X) is zero for all λ £ X+\C. D

It is moreover well-known that W~ possesses a braiding c given in terms of the
famous ^-matrix. It is defined by setting cv^w = Pv^w o R, where Pvw: V 0 W —>
W (8) V is the usual flip, and R is viewed as an operator on V <S> W. This braiding is
highly non-symmetric and hence it is not "counter-productive for topology" - in the
words of Turaev - as the ones encountered in 1.19 and 2.10.

3.22. Comparing our results in this section with those in the previous one we see that
when / is a prime we have

(1) The quantized reduced tensor category W~ is equivalent to the analogous category
for the corresponding semisimple algebraic group over a field of characteristic /.

If we compare with Finkelberg's results from 1.24 we observe that the ideal in ̂
generated by the Weyl modules with highest weights on the upper wall of C (i.e.
analogous to the ideal $ in 1.24 if I > h + 6) is contained in the ideal &. At least
if we are working in type A, the two ideals coincide.

(2) Suppose that the ideals are in fact equal. Then the categories from (1) are
equivalent to the analogous "fusion" categories for the corresponding affine Kac-
Moody algebra.
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