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Abstract: We consider a weakly self-avoiding random walk on a hierarchical
lattice in d = 4 dimensions. We show that for choices of the killing rate a less than
the critical value ac the dominant walks fill space, which corresponds to a spontan-
eously broken supersymmetry phase. We identify the asymptotic density to which
walks fill space, p(a), to be a supersymmetric order parameter for this transition.
We prove that p(a) ~ (ac — a) ( — log(αc — α)) 1 / 2 as a S ac, which is mean-field
behavior with logarithmic corrections, as expected for a system in its upper critical
dimension.

1. Introduction and Results

The self-avoiding walk (SAW) has long been studied in the physics literature due to
its significance as a model for physical polymers [dG2, dCJ]. Recently it has
received attention from a rigorous perspective as well [MS, BI, IM]. Most of the
rigorous work has been directed towards establishing the properties of either
fixed-length walks in the presence of a strictly repulsive interaction or the Green's
function of such a process at or above the critical point. In this paper, however, we
study a SAW in the so-called dense phase, where the dominant paths fill space to
some nonzero mean density. We work in d = 4 dimensions, which is the borderline
between simple mean-field behavior (d > 4) and complex behavior (d < 4). A conse-
quence of this is that the critical behavior is modified slightly from mean-field, but
is still tractable. For a weakly self-avoiding walk on a hierarchical lattice we
rigorously calculate the critical behavior of the density, finding the leading power-
law behavior to be mean-field, but with logarithmic corrections.

The model we study is essentially the same as the one introduced in [BEI, BI],
so we will only briefly describe it here. By a hierarchical lattice ^ we mean the
direct sum of infinitely many copies of Z L s with L some positive integer. A point
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x e ^ can be written as a sequence(. . . ,x2,Xi,Xo\ with Xj e ZL4, and all but
finitely many X; being zero. The hierarchical norm we use is a ^-invariant ultra-
metric defined by

fθ i f x = ( . . . , 0 )

\ L N il x = ( . . . , 0 , x N - l 9 . . . 9 x o ) and X N - X * 0 .

Our SAW is a perturbation of a Levy process on ^ chosen so that the free Green's
function G(x — y) = \x — y\~2 for x φ y. Details on the process are given in Sect. 2.
We work in a finite volume A by killing the process when it first exists A. We denote
by Eo, A the expectation for this killed process.

We measure the amount of self-intersection inside A by

τ 2 ( A ) = $ { { ) { ) }

where ω(t) is a sample path for the process. We define the interacting Green's
function by

00

GKΛ(α,x,y) = j dTe-αTE0,Λ(e-λτ2(Λ> l ω ( T ) = y |ω(0) = x) .
0

This function was studied in [BI]. They found that, in the infinite-volume limit,
there exists a critical value αc = αc(λ) such that Gλ(αc, 0, x) = O(\x\~2) as x -> oo .
In other words, the model exhibits massless decay at α = αc. They also constructed
the Green's function at values α > αc, finding there the hierarchical version of
exponential decay. We think of our model as being comprised of an ensemble of
walks of all different lengths, with each walk weighted according to its length (the
e~αT term) and its self-interactions (the e~λχ2 term). When the killing rate α is larger
than critical value, only short walks contribute, hence the rapid decay of the
correlations. As α \ αc, walks of all lengths contribute, resulting in slow power-law
decay.

We are interested in studying the case of α < αc. Here it is crucial to work in
a finite volume with a self-avoiding interaction; with these two constraints, we
would heuristically expect walks to fill the volume, encouraged by the negative
killing rate, but then to stop at some finite density, discouraged by the interaction.
In fact this is what happens and, furthermore, after taking the infinite volume limit
we find a phase transition at α = αc between the massive phase studied in [BI] and
this dense phase. The density p(α) is an order parameter, being zero above the
transition and nonzero below. We make this more precise below.

In order to simplify the construction we condition on walks beginning and
ending at the origin (though we could also consider more general walks). We define
the expectation for such walks

GKA{μ, 0, 0)

where we have defined τ T = {τ j } x e y ί , and τ j is the local time the walk spends at
site x, defined as
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Since the local time is a measure of the density of the walk at a site our order
parameter will involve an expectation of the local time. Notice that
lim^ _> oc EatχiΛ(τx) φ 0 for any fixed x in either phase. However, from the analysis
in [BI] it is possible to show

lim lim Eaj^A(τx) = 0 for a ^ ac .
x-*oo A -* oo

So we choose this as our order parameter:

p(a)= lim lim Ea^Λ(τx) .
X->CQ A __> OC

Our main result is to find the behavior of p(ά) for a less than ac. We prove

Theorem 1.1. Let d = 4, and choose some L sufficiently large, then λ > 0 sufficiently
small. Then for each β > 0, sufficiently small,

p(ac{λ) -β)= Uβ( - Iogj3)1/2(1 + O(( - log/O" 1 ' 2 )),

U > 0 is a constant that may depend on L and λ.

Note that the leading term is mean-field behavior with logarithmic corrections,
as one would expect for a system in its upper critical dimension.

The dense phase for a SAW we first discussed by Parisi and Sourlas [PS]. Also
in that paper they introduced the idea of studying a SAW as a supersymmetric field
theory, independently proposed by McKane [M], which is the method we
use. Dense polymers in two dimensions, both linear and branched, have been
extensively studied by Duplantier and Saleur; see [DS] and references therein. The
phase diagram of φ% theories in the presence of a field h, for φ an n-vector with
n < 1, and its relation to polymer theory have also been studied [GS, WSPP].

An important question is whether our techniques could be extended to the case
of a non-hierarchical walk. As we will see, the bosonic part of the model resembles
a σ-model. This fact, especially the presence of Goldstone modes, would consider-
ably complicate the analysis in the non-hierarchical case. While considerable
progress on such issues has been made by Balaban [B] in the context of bosonic
models at low temperature, the critical region still presents problems.

In three dimensions, self-interacting walks with two-body attractive and three-
body repulsive interactions are used to model physical polymers in poor solvents
[dCJ]. Near the θ compensation point the theory is believed to exhibit tricritical
behavior. Also near this point fixed-length polymers undergo a collapse transition
[dGl, OPB]. We believe the techniques developed in this paper, suitably extended,
could shed some light on these problems.

We will now outline the proof of Theorem 1.1. The principle tool is the
renormalization group applied to the supersymmetric field theory representation
of the SAW model. We begin in Sect. 2 by describing the Levy process on the
hierarchical lattice, and show how to compute SAW expectations by evaluating
certain Berezin integrals, which, in the language of physics, are correlation func-
tions of a λΦ4 hierarchical lattice field theory, where the killing rate a plays the role
of the (mass)2. Here the fields are superfields Φ = (φ, φ, φ, ij/), with the first two
components comprising a bosonic (commuting) complex scalar field and the least
two being fermionic (anticommuting, or Grassmann) fields. Because the action
is a function only of the square Φ2 = φφ + φψ, the theory is invariant under
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transformations of the fields leaving Φ2 invariant. This is the supersymmetry, which
we will comment on further below.

In Sect. 3 we set up the renormalization group framework we will be using to
compute the Berezin integrals. Our treatment in these two sections is brief since
extended explanations already exist in [BEI, BI]. In Sect. 4 we prove some
analytical lemmas useful for keeping track of remainders during the induction.

The main body of the paper begins with Sect. 5, where we consider the action of
the renormalization group map on the self-avoidance interaction. This consists of
following the evolution of the effective potential v(Φ) as we apply the mapping
repeatedly. The initial form of the potential is

v(Φ) = λΦ* + (ac- β)Φ2

with ac = — O(λ). Because we are interested in the behavior near the critical point,
we start with β small, and hence the initial υ has the form of a shallow "Mexican
hat." While β is small, it essentially grows by a factor of L 2 under each step of the
RG map. This simply reflects the fact that the mass is a relevant parameter,
according to the renormalization group, and so is driven away from the fixed-point
value. So the Mexican hat becomes deeper the longer we flow under the RG. While
we are still near the critical trajectory, the techniques of [BEI, BI] apply with little
modification, but once we get significantly into the deep Mexican hat region we
must develop new methods that take the new shape of υ into account. Here the
model starts to look like a σ-model, and in fact we have used ideas developed to
study the hierarchical version of that model [GK].

In Sect. 6 we apply the RG map to those blocks containing observables. In Sect.
7 we assemble the results of the previous sections into an expression for EayιΛ(τz)
which is a ratio of two one-dimensional integrals, the results of applying the RG
sufficiently many times so the volume has been reduced to a single point. These
integrals are easily evaluated, and then the limits Λ, z -> oo may be taken, yielding
the result of Theorem 1.1.

Finally, we comment on the nature of the phase transition and of the order
parameter p. In the spin system representation, we noted that the model exhibits
a supersymmetry, and that the killing rate becomes the (mass)2. Because we have
set a smaller than the critical value, we see we are in the low-temperature phase of
the spin system. We thus expect to see consequences of a broken symmetry (in this
case, a broken supersymmetry). The usual order parameter for such a transition is
the magnetization, or expectation of a single field component <Φ>. However, this
would not be relevant for the SAW model, because only the square of a field Φ2 has
significance (local time) in the SAW representation. But measuring <Φ2>, where
< ) is a spin-system expectation, would always give the result zero, by supersym-
metry (cf. [BEI] Theorem 4.2). By contrast, in an rc-vector (bosonic) magnetic
system where n > 0. <((/>•(/>) is always non-zero, being the expectation of a non-
negative quantity. Our model parameter p avoids both of these extremes because,
in the spin system representation, it includes the square of a superfield (local time,
but also two individual components of the field, corresponding to the beginning
and endpoint of the walk: (φ0φ0Φ

2}. In the limit z -• oo, p(a) = 0 for a ^ ac,
which is a consequence of the unbroken supersymmetry: i.e.

(φoΦoΦz) > <<PoΦo> <Φz> in a massive theory. When α < αc, p(α) φ 0, and we
are seeing a consequence of the broken supersymmetry: p is a way of measuring an
expectation of Φ2 that does not trivially vanish.
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2. The Process

We will first construct the free (noninteracting) process, and then explain how to
add self-avoidance. It is a similar process to that used in [BEI] but differs in two
ways. First, the boundary conditions are different; we work in finite volume Λ, with
walks that are killed on first exit from Λ. This is also done in [BI]. Second, we use
a slightly different probability density q(x) for the steps of the walk. This is done for
technical reasons, which we discuss later, and which are related to working in the
broken phase. The difference between this process and that used in [BI] is minor;
the short distance behavior of q(x) is modified slightly, but it is the same in the limit
of large x.

We now recall some notation from [BEI] and construct our Levy process. We
denote by ^ the hierarchical lattice, so ^ = 0 £ ° = o Z n , n = L4. We define the
subgroups

{0} = ^ 0 C ^ C C <g ,

&k = {xe&:xi = 0, i ^ k} .

We use the hierarchical norm on ^, defined to be

Γθ i f x = 0

\Lp,p = inf{k:xe9k} if x φ 0 .

Let Jtif be the dual to the group f, so J f = xΓ=o^« Also define J^k to be the
annihilator of &k, so

(f(P P Λ - ^ — o i f 7<rArl> i f k *> 0

We define a norm on Jf to be

'0 if ί = 0

-p,p = sup{k:ξejek} if ξ Φ 0 .

We define the free (noninteracting) process ω (t) in infinite volume (i.e. on 9) to
be one that has probability r dt of making a jump in time [ί, t + di\ and, given
a jump, probability q(x — y) of jumping from x to y. We choose

oo r — 4-k

q(x) = l<$0— X —-^ r ^ τ ( l ^ — i - " 4 l ^ f c + 1 ) , (2.1)

with

It is not hard to see that q(x) is positive semi-definite, satisfies §%q(x)dx = 1, and
q(0) = 0. Also, \q(x)\ - | x | " 6 as x -• oo.

Before introducing the details of the finite-volume process we will briefly
indicate the motivation for this choice of q(x). We define the Green's function

where P(x, t) is the probability of finding the walk at site x at time t.
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Lemma 2.1. A Levy process on & which jumps according to (2.1), with jumping rate
r = 1, satisfies

1 if x = 0

Proof. Fourier analysis on ^, exactly as in [BEI], Proposition 2.3. •

Recall that a simple random walk on a Euclidean lattice has a Green's function
that decays like |x|f~d. Because our process on the hierarchical lattice has
a Green's function with the same decay (measured with a hierarchical norm), we
interpret our walk as the hierarchical version of the simple random walk.

We can rewrite G as

G(x)= Σ L~2kΓ(x/Lk),

i.e., G(x — y) is a sum of rescaled copies of a matrix Γ(x — y). Recall that, in the
renormalization group scheme used in [BEI] and here the functions Γ become the
covariance matrices of the fluctuation convolutions (see Sect. 3). With this choice of
q(x), the matrix Γ(x — y) is proportional to the identity matrix; in particular, it is
nonsingular. This was not the case in [BEI]; they had a singular Γ that annihilated
functions with zero mean on a block. The nonsingularity of our Γ is important for
reasons that will become clear later; roughly, it means that our radial mass will flow
to some fixed point under the renormalization group, rather than off to infinity,
and it happens that our method requires this feature. We chose this particular
nonsingular matrix (the identity) because it is the most convenient to handle
technically (it is the same choice used in [GK]). We note that, with an appropriate
choice of renormalization group transformation (RGT), one can always obtain
a nonsingular Γ for a non-hierarchical model. In the hierarchical case, the defini-
tion of the RGT is tied up with the definition of the model. This is why we need to
change the model slightly in order to perturb Γ.

In this paper we will be using a different process ωN(t), which is the same as the
one we have described killed on first exit from some volume A. We assume A to be
a ball ^ N , for some N ^ 0. Let E0,N denote the expectation for this process.

Lemma 2.2 (Levy Hincin formula).

with ξeJf and

oo T 6k

ΨN = ^ I 1 - ^ ) L i r - 2 ( * + l )

= κ j dxq{x)
\x\>LN
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Proof. Because the metric on the hierarchical lattice is an ultra-metric, the process
is killed the first time it jumps a distance greater than \Λ\ = LN. We rewrite the
expectation, conditioning on the number of steps n, which is a Poisson distributed
random variable with mean rt. Xt are the steps, which are iid random variables
distributed according to q(x). So

oo (rtγ I n

\n = o n\ \ ί = 1

-expί r ί J dxq{x)(ξ,x) - rt

= e~tψ{ξ) .

The calculation of φ(ξ) is an application of the fourier inversion formula

ϊ ^ = L 4 f c l ^ , (2.2)

which is [BEI], Lemma 2.1. We insert the definition fo q(x) and find

ί x l =

N-l L~6k

~6k

— 6k

which immediately yields the result. •

Next we calculate the Green's function for the killed process and find a de-
composition similar to (2.2).

Lemma 2.3. For any x, y e Λ,

GN{x,y)= Σ L~2kΓ(x/Lk) + FN, (2.3)
Λ = 0

where

FN = L - 2 ( Λ ί + 1 ) ( l - L~2N)

When N = 0, omit the sum in (2.3).

Proof.

Then invert the Fourier transform using (2.2).
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We now describe how to write the expectations for self-avoiding walks in terms
of Berezin integrals. Given a path ω(t), 0 ^ t ^ T, for the process, the local time
spent at a site x up to time T is

T

τ j = Jdslr ω { s ) = = x } .
o

Since our walks are killed on first exit from the volume A = &N, we have that

τ(Λ) = \dxτT

x=T . (2.4)
A

A measure of self-interactions at a point x for a walk living for time T is

2 ( T ^ ) 2 = ί ^ 5 1 ^ 5 2 l{ω(S l) = ω{s2) = x} >
0 ^ 5! ^ s2 ^ T

and so to measure the self-interactions of the entire walk define

We are conditioning on walks beginning and ending at the origin, and hence define
the expectation

1 00

= - J Λ £ 0 . N (e ~ aχ2^] - λχ2V">F(r) l{om = 0 } I ω(0) = 0), (2.5)
i V 0

where τ* = (τ[,. . . , τι

n\ N' is defined so that EaλN{\) = 1, and we have used (2.4).

Lemma 2.4.

where

υ(Φ) = aΦ2 + λΦ4 ,

Proof. Apply [BEI], Theorem 3.3, to (2.5).

3. Renormalization Group

We will now define the renormalization group map, which will be used to calculate
the functions S( ) appearing in Lemma 2.4. Techniques for handling Gaussian
integrals with combined Fermionic-Bosonic measures can be found in [BEI] and
references therein. Also in [BEI], Sect. 4, is a discussion of the renormalization
group framework we use, though the details here are slightly different. For this
reason we will briefly sketch the construction of the RG map.
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The functions S(-) are of the form j dμGNfΛ, with fΛ = Y\zeΛ fz(Φz)- Suppose
ah ί = 0,. . . , N are in IR; we will define what values they take below. When we
write GN + αt as a covariance matrix C we mean Cxy = GN(x — y) + at. Define

G'{x) = L~2GN-I(x/L) + δFN + aN ,

where δFN = FN — L " 2 F N - i Then, referring to Lemma 2.3, we have that

J dμGN + βN(Φ) / Λ ( Φ ) = f dμG,(Φ')dμΓ(ζ)fΛ(Φ' + f) .

The covariance G' is constant on blocks x + ^ , which means that in the integrand
Φ'x = Φ'y almost surely dμG> if x — y s Ήγ. This allows us to eliminate all but one
field per block in the integrand; we call these block fields ΦLz, z e Λ/L. We next
rescale, while involves the change of variables ΦLz -• L~ι Φx, and results in

ίdμGN+ari(Φ)fΛ(Φ) = μμGN_ι+aN_ι(Φ)(Tf)Λ'L(Φ) ,

where aN-γ = L2δFN + L2aN, and we define the reormalization group trans-
formation (RGT) by

for z E Λ/L. The rescaling operator & is an algebra homomorphism defined by its
action on the generators and the coefficient ring C^IR 2 ^):

) Ξ L " V , , VZ E LX

We can now read off how we should define all of the a x for our application. We
have aN = 0 and, for j = 1,. . . , N,

j
2 ίaN-j= X L2ίδFN-j+ι .

j = O(L~Aι\ we see that a0 = O(L~2), which will be an important fact in the
sequel. We will also sometimes want to index G by the induction step instead of the
size of the volume, so we define

= uN-n, a = aN-n .

4. Analyticity and Norms

We use the same framework for analyticity as that used in [BEI]. We recall the
definitions and main lemmas here, though we refer to that paper for proofs.

Let φ = (φu . . . , φp) e <CP. For g(φ) a complex C00 function, define

p

s\xp\g(φ)\ Π
Ψ i = l

u\y.\
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Here w is a positive weight function and g{a) is the α th derivative of g with respect to
φ and φ. α is a multi-index.

Next suppose g belongs to a Grassmann alebra (G, so

β

This is the situation we are concerned with in this paper, so we define the following
norm on such functions.

Definition 4.1.

nβ ft
α

where β, oc are multi-indexes with components of β = 0 or 1.

We will need the following facts, true for all weight functions:

Lemma 4.1 (Properties of | \Wfh) [BEI]. Suppose μc is a combined Fermionic and
Bosonic integral, and g e <G. Then

(ί) \g\w,h ^ \g\w\h', if hf ^ ft, w ̂  w'.

(ii) \μc*g\W',h ^^P(Σijn~1\Cίj\n~1)\gL,h^ where w' satisfies μ c *w ^ w'.

δ
(iii) Sot\(h'-hy«\g\w,h,,ifh'>h

w,h

We now specialize to the two different forms of w(φ) we will be using. Let X be
a finite subset of the infinite lattice ^, let <GX be the Grassmann algebra generated
by the fields Φx,xe X, and let gx denote an element in (Gx. In the low mass region
(Sects. 5.1 and 6.1), we will take

/
-a j dx\φx

x

and we write \gX\a,h to denote the norm with this weight function. We have the
following properties for this norm:

Lemma 4.2. (Properties of | \a,h) [BEI]. Suppose ft ̂  0, gx e (Gx. Then

(i) IfXe9l9 then \0tgx\ath = \gx\L*ah .
|x | 'L

(ϋ)

(iii) \μc*gχ\a,hύexplSdxdy\C(x9y)\h-2']\gx\Sth9 a = a{\ - a\\ C\\)~\ where
|| CII is the norm of the covriance C(x, y) regarded as an opertor on L2(X, dz)
and a ̂  0.

(iv) i/xnY= 0

(v) \gχgγ\a+b,hS\gχ\a,h\gγ\b,h-

In the higher mass region (Sects. 5.2-5.4 and 6.2-6.4), we will take

w(X, φ) = exp Γ j dx(K - ag2(\φx\ - A)2)λ , (4.1)
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and we write \gχ\κ,<xg2,A,h- Let ri be the step at which we begin applying this form of
the norm. We will have g{

2

n} ~ y/λ and, in the ensuing steps, g{

2

n) will increase by
a factor by approximately L 2 each step until it reaches one (see Sects. 5.3-5.4 for
details on the flow), at which point its increase slows down as it approaches the
fixed point of O(L2). For technical reasons we need to keep track of some of the
decay properties of the remainder, which we measure by ccg2, but we also have to
give up a litle decay at each step while we are still in the regime g2 < 1 (there are
O( — logLλ) such steps). We accomplish this by changing α at each step; i.e. we use
α ( 0 ) for the first such step, then α ( 1 ) , . . . , and we define

(χ{n)=h+^2e~δn (4 2)

with some δ > 0. Using the fact that there are O ( — logL λ) steps before g2 reaches
unity, we see that in this regime α(M) - α(" + 1 ) ^ 0(δ)λδ/logL.

Some properties of this norm are contained in

Lemma 4.3 (Properties of | \κ,a,A,h)

(i) IfXcz&l9 then \^gx\κ,a,A,h = \gχ\j_ ^ ^ .
\X\ *\X\ ' L - L

(ii) \gx(w )\κ,a,A,h = \9x( )\ * ,forweJ& + .

Kj ^ϊ , Aw,hw

(iϋ) \gχ\κ,a,A,h S \gχ\κ,a',A,h' ίf W ̂  «' ^ «•
(iv) // \A- A\^δ for some δ > 0, then \gx\κ,a,A,h ύ O(l)\gx\κ^,Λ^ where

a = a + O(a2δ2).
(v)

7ij\h-1)\gχ\κ,a<>\A.k, (4 .3 )

where we have set t e [0,1], ΓW(x9 y) = (yw)δXty9 yw = 0(1), c = 0(1),

MY

92 -

and

(X ;> (χ ;>

< α' <

(vi) // Xn 0, \gxgy\κ,a,A,h ύ \9x\κ,a,A,h\Qγ\κ,a,A,h-
K,a + b,A,h S \gx\j,a,A,h\βγ\κ,b,A,h-

The proof is contained in Appendix A. This lemma will be used in Sects 5.3, 5.4,
6.3, and 6.4. The freedom in the choices of a and a! is not needed until Sect. 6.
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It is not very convenient to compute these norms from the definitions. We can
frequently take advantage of facts we know about the analytic structure of the
functions we norm. We write

φt = φ\1} + iφ?\ φ, = φ?> - iφ™ ,

and allow the φ\J) to be complex. We set

Dh(φ) = {{φ't, φ[, u[, ύ[) e C 4 : Vi = 1,. . . , p ,

Sh= U Dh{φ).
φiJ)eΆ

If we have a function F analytic on Dh(φ), define

\F\h(φ)= sup \F(φ')\,
φ' eDh(φ)

and let F(Φ)_denote an element of the Grassmann algebra obtained by substituting
u = ψ, ΰ — φ in the power series

F(φ, φ9 ύ9 ύ) = Σ^(dπ,lF)(Φ, <P, 0, 0 )δ«V ,

with any convention for the order of φ's in the product (α! = α'! = 1).

Lemma 4.4 (Comparison of Norms) [BEI]. Suppose F is analytic in Sch and
g = F(Φ), then for c > 1,

where

| | F | L , A = sup \F\h{φ)w'ι(φ)-
φ eSh

We will also use a corollary of this lemma that is specific to functions in tfj that
are of the form g = G(Φ2\ where G is a function of a single variable. In order to
apply the above lemma, we need to bound G(φ'φr + u'ϋ^wiφ)'1 for φ e C,
(φf, φ\ u\ ΰ') e Dch(φ). To make matters simpler, we could just bound G(v)w(φ)~ι

for φ e <C, v e D(

c^(φ), where

for some (φ\ φ\u\u')e Dch(φ)}

or, simpler still, we define Cch(φ) to be a disc around \φ\2 of radius rch(φ) chosen so
that D™(φ) c Cch(φ). We set

Γ8/z2 if\φ\<,h

\$h\φ\ if \φ\ > h
and also define

Rh= U Ch(φ).

We now have the following
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Corollary 4.5. // G is a function of a single complex variable, analytic in Rch,

g = G(Φ2\ then

sup

leCch{φ)

At times we will want pointwise bounds on a function given bounds on its
norm. For this we have

Lemma 4.6. Suppose F is a function of a single variable z, and G(Φ) = Φ2nF(Φ2)
satisfies \G\wΛ < oo. Set z = φ'φ' + /', with φ\ φ' complex conjugates, Γ e C with

<max - j ,-\φ\ j . Then

w , -, , n | < fO(l)h2(" + *\ G\w,hw(0) if \φ'\ ύ

(φφ " = \0(l)(h\φ'\Γ<\φr2n\G\w,hw(φ') if \φ'\ > 3/z/4

Proof Letf(φ\ ψ') = (φ' φ')nF(φ' φ'). Clearly |/ |W > Λ S | G | w > A j and so/ i s analytic
in φ\φ' with radius of convergence h. We use this fact in two different ways
depending on the size of \φ'\.

(i) If \φ'\ rg 3/z/4, then \φ'φ' H- Γ\ < 15/z2/16. So we choose some w,w not
necessarily complex conjugates such that ww = φ'φ' + Γ with \w\, |w| < ft. Then
we expand

φ = φ = 0

Now,
da

F(α)(vw) = w-a—l(wwΓnf(w, w)] , (4.4)

which tells us that

F<«)(ww)=Σ(j8-n) ( j 8 - n - α + :
Aff J8!J8! < V φ = φ = 0

(4.5)

Now, because/(φ', φ') is a function of φ' φ' alone, and analytic at the origin, we
have that d^',dφff\φ = φ = o = O unless β = β. Note that F is regular at the
origin, for otherwise \G\Wih would be infinity due to the F' term in
F(Φ2) = F ( φ φ ) + ψ\j/F'(φφi H e n c e dι

φd\,f\φ = Φ = 0 for z = 0 , . . . , n - 1. A l s o , w e
can use Lemma 4.1 to show that

^ ^ 0(/> φ = φ = Q

Inserting this in (4.5), we find that
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(ii) If | φ ' | > 3/z/4, we have F(φ'φf + /') = (ww)~"/(w, w) with w = φ' + /'/φ'
and w = φ'. We will apply (4.4) again, this time expanding / around φ' and φ'. For
any m,

V φ = φ

Next use Lemma 4.1 to get the bounds

φ = φ
φ = φ'

Inserting this in (4.6)_and noting that with this choice of w, w the only contribution
from the sum over β is the β = 0 term, we find

δw'
i /(w, w)

Finally notice that, again for any m,

dm

(4.7)

(4.8)

Inserting (4.8) and (4.7) into (4.4) completes the proof. •

Corollary 4.7. // the weight function w is of the form (4.1), with g2 = 4λΛ2 ^

f 2), and F, G, φ\ φ\ Γ are as in Lemma 4.6, thenL~2yfλ, h = mm(λ~1/4, g

\F<a)(φ'φ' + /'

The hypotheses of Corollary 4.7 are such that it will be applicable in Sects.
5.2-5.4 and 6.2-6.4.

5. Renormalization of the Interaction

In order to compute the expectation of the density at site z, we must compute the
functional integrals S(IΛ) and S(Φ2IΛ), where the interaction IΛ is defined to be

IA ^ f]
XGΛ

υ(Φ) = λΦ4 + aΦ2 .

We begin by computing the RGT in those blocks that do not contain 0 or z, so the
RGT applies to the function g*1, where

θχ = Π #(φ*)

This proceeds by three different methods depending on the size of the mass.
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5.1. Small Mass Flow. The existence of a critical point follows from Proposition 5.1,
below. We wish to study our model at masses below the critical one, and follow the
approach to the critical point carefully. For masses very close to the critical one,
a slight perturbation of the methods of [BEI] apply. These were developed in [BI],
and for completeness we present them briefly here. After zero or more RGT's, the
function Tng can be represented as

Inductive Assumption 1 (β, λ, M). The function g(Φ) can be represented as

e^g{Φ) = eβφ\e-v(l +η:Φ6 :Gίi+att) + r(Φ)) ,

v(Φ) = λ:Φ4 :GM+UM + μ2 : Φ2 \GM+ttM .

Here μ2 = ac(λ) + iλG^φ), the parameter η satisfies η < c0λ
2, and r(Φ) = R(Φ2)

satisfies

= 0, 0 S j <
ί = O

Proposition 5.1 ([BEI] Theorem 7.2). Choose some integer L sufficiently large, and
then some λ0 sufficiently small. Then there exists ac(λ0) = — 2/l0Goo(0) +
such that if

then Tng satisfies 7/11(0, λ, oo) with λn = {λ;1 + β2n + O(logn))~ι for all n. Here
O( ) may depend on L.

Proof Our model is slightly different than that used in [BEI], but this is irrelevant
since they did not take advantage of the special feature of theirs that the fluctuation
covariance was singular. This is borne out by the analysis below: take β = 0 in our
Proposition 5.2, and substitute this for [BEI] Proposition 7.1 in the proof of [BEI]
Proposition 7.2. •

We are interested in the case of β > 0 small, so we choose 0 < β < λ1/2. Before
the first step, our starting g satisfies IA1 (β, λ, N) with r = η = 0.

At the end of the induction we will see that our covariance GN is not quite
massless; it has a mass that vanishes exponentially as the volume tends to oo.
Because the ac(λ) we are using in IΛ1 is defined by the infinite-volume process, we
must correct for this by adding a small negative mass to β; i.e. to calculate the
expectation of the density in finite volume with negative killing rate β, we must
start with the interaction function exp((β + βΛ) Φ2)g(Φ2). For simplicity of nota-
tion, we will set β' = β + β^ and then drop the prime.

We apply the RGT:

If there were no interactions, we could do the convolution exactly via a translation
of the superfield. We do this translation even in the presence of the interaction
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and then

or, inserting the forms for Γ, W we have for our model,

0μΓW*g*ι(WΦ)

with y = 1 — L~2. So, keeping in mind that β -• L2β/(l — /fy), we can study the
recursion for g(Φ) exactly as was done in [BEI], with the changes of replacing
Γ -+ Γ W in the convolution and evaluating at W Φ. Since the differences are
minor, we will only briefly sketch the argument here, replacing one part of it with
a more elegant method due to [BI].

Proposition 5.2. Let L be large enough, and c0 = co(L% cγ = cί(L) in IAl(β, λ, M)
be large enough. Let 0 < λ < λ0, with λ0 = λo(L) small enough. Then eβφ g(Φ)
satisfies IΛί(β, γ, M) implies T(eβφ2g(Φ)) satisfies I Al(β', λ\ M - 1), where

and β2 = l6

Proof. We will assume .9λ ^ λ' ^ λ, which will be justified in the course of the
proof. We say a term satisfies r bounds if

for |α| < 8 .

f will be used to denote terms that satisfy f bounds, and its value may change from
line to line or even within the same line.
The g^1 splits into three sets of terms: those with ^ 2 remainders r, which we
denote S ^ 2, those with one remainder S x, and those with no remainders So. Both
terms with remainders are handled exactly as in [BEI]; they are f. We omit the
detailed arguments, but the heuristics are as follows: the S^2 terms are O(λ2) in
norm due to the two remainders, and the derivative condition follows when we use
the fact that r(Φ) starts at O(Φ8). This same fact gives us the derivative conditon for
the Si terms, and to get the norm conditon we observe that under rescaling r scales
down by L~8, which compensates for the fact that there are L 4 such terms.

The remaining term is handled by a new method due to [BI]. Define

u(t) = μtΓW* \ dx{v(Φx)-η:Φ*:
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and we define e on Wick-ordered polynomials to be the ordinary exponential, but
terms of order : Φ 6 : are expanded out to first order, and terms of order : Φ 8 : and
higher are expanded to zero th order (i.e. 1). Hence it is easy to see that

which is exactly the quantity we wish to calculate, and that

So, by the fundamental theorem of calculus, we have that

sμιι-,)Γw.u}(s) + ~ m

It remains to do the calculation. The leading behavior is in the u{\) term. In
order to calculate this, we first state the identity

{tyiirw*- Φn r α. )(WΦ) = ( — I eBΛ Φn ' r α. ί5 1)

where

B = 2L2βyU-y--^\ + (GM_! + flAf-1 - l)(2]8y - β2y2) .

In particular,

(^μΓ F F * : Φ 4 : G M + « M ) ( ^ ^ ) = ( ~ ) : φ 4 :GM-I+«M-I + 2 B ( ~ ) φ 2 •

The identity follows from the definitions of GM, aM, W, and Γ, along with proper-
ties of Wick ordering, which are summarized in [BEI] Lemma 5.1. Note that
GM-ι -f aM-1 — 1 = O(L~2M\ and M can be as large as we like since since we are
interested in the infinite-volume limit and we only apply this proposition in the
small-mass regime.

We can now find the leading behavior of λ' and β' from

T(eβφ2g) = e~ϊ=Vyφ2 \_3t ( e " w ( 1 ) + ίo ds^-*)rw*»Us))(w φ) + f'] .

The μ} and η terms in u(\) do not contribute to λ' or β' at leading or next to leading
order (the largest contributions are O(βλ2)). So the only important terms in u(\) are

@u(l)(WΦ) = λ : Φ 4 G^+βM-i + 4L2βy(l -Ί- \λΦ2 + • .

Combining this with the L2βΦ2/(l — βy) in front, we find

λ1 = λ + O(βλ,λ2),

Hence we have found that yβ = 4y (1 — §), as stated. To see that β2 = 16y (1 — f)
requires examining the u% correction. The calculation is straightfoward, but since it
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is done in [BI] we will not repeat it here. We note that the ratio yβ/β2 = 1/4 is the
same here as it was in [Bl], as would be expected.

The final step is to absord the r terms into a shift in β, λ, and η, which occurs
exactly as in [BEI] and incurs only O(λ3) shifts in β', X, and η'. •

5.2. Switch of Representations. After applying the small-mass recursion up to the
point where one more RGT would result in | /? | ^ sfλ/4, we must stop using the [BI]
method and use a new approach for a while before switching methods again and
using the large-mass techniques. Both of the other techniques act on a different
representation for the function g, to which we must switch. This new representation is

Inductive Assumption 2 (βΛ, K, λ, A, α).

vncw(Φ) = - K + λ(Φ2 - A2)2 ,

\rnev/\κ,ag2,A,h = C2 \Jλ ,

r(r!L\φ2 = A2 = 0 for Ϊ < 3 ,

where oc is described above (4.2), h = mm(λ~1/4, g^1/2), gi =4λΛ2 is the radial
curvature of iVwdφl2) at the minimum, and, in the last line, we are considering
r = r(Φ2) to be a function of one variable, differentiating with respect to it i times, and
evaluating at A2.

Up until now we kept most of the mass outside of the interaction (we left the
critical piece ac inside v). At this point the mass is large enough that we must take
the Mexican hat shape of the potential into account. This is reflected in IA2. So we
move most of the mass back into the interaction, but we still leave the vol-
ume-dependent piece βΛ outside. We will find that βΛ is very small throughout most
of the induction, so it will not cause us any problems.

Proposition 5.3. # n e w satisfies lA2(β',K',λ', A',(χ) with the choice of c2 = c2(L)
large enough, and

(0) + α<">μ - μ2)2/4λ

A2 = (β-βΛ + 2(Gw(0) + a^)λ - μ2)/2λ + 0(1) ,

λ' = λ + O(λ3/2)9

α - 1/16 .

Also,
2 2

We will assume \A'2 — A2\ ^ 0(1), to be justified in the course of the proof. We
begin by defining

K = (β-βΛ + 2(G{n)(0) + α(w)) λ - μ2)2/4λ

= 0(1),

A2 = (β-βΛ + 2(G(w)(0) + ain))λ - μ2)/2λ

1 / 2 ) , (5.2)
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so that

e

βφ2g = e

β Λ φ 2 e κ ~λ(φ2 " A 2 ) 2 ( 1 + η : Φ 6 : r { Φ 2 ) e { β " β Λ ) φ 2 e ~ κ + λ{φ2 " A')

283

) ? (53)

where the last line defines /. We Taylor-expand / to second order around some
point B, chosen below:

= /o - B) +f2 (Φ2 - B)
2 B)2

so we can write

where

C(Φ2 - B) + — (Φ - B)2 ) (1 + D(Φ2 - B)2) +fr I ,

C - - ^ -

D = h
1 +/o 2 '

= r i r ~ CD (φ2 - B ) 3 -
1 +

which allows us to write

Φ> - B)

where
_ ί (1 - t ) ' " 1

 tx t

(5.5)

(5.6)

We expand the above equation into five terms, the first of which becomes the
leading term in # n e w , the rest becoming rn e w. We get the desired form of the leading
term by making the choice B = A'2 and shifting K, A, λ to eliminate the linear term:

A2 =A2 + C/2λ ,

λ' = λ - D .

In order to show the norm condition for the remainder, we need bounds on the/),
which we obtain with the help of the identity r{ι)(Φ2) = φ~n dι

φr(Φ2) used as
follows:

<P dφ Φ2 = A'2
_ _

dφ

w(A')
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This, along with (5.2), allows us to show

l/ol S 0{λ1'2)

The derivative conditions for rn e w are obvious. To see the norm condition, we need
the following

Lemma 5.4.

|exp[ - b, (Φ2 - b2(Φ2 - B2)-]{Φ2 - ύ c{m)λ~ml2 ,

where bx=λ + O(λ3/2\ b2 = O(λ), \Bt - Λ 2 \ ̂  O(l),g'2 = Aλ'A'2, and ft' = g'2
1/2.

Proof. Let F(Φ2) denote the function inside the norm in the statement. Using
Corollary 4.5, we need to bound \F(z)w(φ)~1\, with z = \φ\2 + I, le C2h(ψ\ φ e C
This is easiest to see if we pick some number A = 0(1) (chosen large enough) and
consider two regions separately:

(i) I M 2 - At2\ < Aλ'1/2. Here we have that |/| ^ 0(/l" 1 / 2 ), so using the condi-
tions in the statement on the bh B> as well as the definitions of g2 and w(φ) we see
that both \F(z)\ and w(φ)" 1 are bounded by 0(1).
(ii) | | φ | - A'2\ ^Aλ~1/2. In this region, if \φ\ < ft, then

All

lϊ\φ\ ZK then

\φ\2-A /2

O(h)\φ\

\φ\2-A'2

The function \φ\/(\φ\2 — A'2), with \φ\ in the large-field region, achieves its
maximum at \φ\2 = A'2 + Aλ~112. So

+ Aλ~1/2)1/2

\φ\2-Ά2

and we can write

\F(z)\ £ e x p [ - blKl(\φ\2 -

Aλ~112

κ?(\φ\2 - A'2)™

where κt = 1 + 0(A~1/2). At this point we can use half the decay to cancel the
weight function and half to kill the monomial, leaving us with the bound in the
statement. •

Lemma 5.4 applies directly to the terms in (5.5) containing an e2 or e3. To see
that the term containing/,, is also small enough in norm we apply Lemma 5.4 to the
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last two terms in (5.4) and then write

f*3=f-fo -fΛΦ2 ~ A'2) -f2(Φ2 - A'2)2 .

Lemma 5.4 applies to all of the terms but the one containing / ; for this one, we
need to norm the quantity

eκ - λ(Φ2 - A'2)2

 η . φβ . +e(β- β
eκ - λ(Φ2 - A'2)2

 η . φβ . +e(β- βΛ)Φ2

 r m

To handle the first term we expand the Wick monomial and then write
Φ2 = (φ 2 — A'2) + A'2, applying Lemma 5.4 to each of the resultant terms. For the
term containing the remainder we use

S 0(λ) .

We have used Lemma 4.1, part (i), in the second line and the last line is true because

we have assumed β < y/λ/4.
As long as c2 = c2 (L) is chosen large enough, we have shown that the sum of the

various terms we have claimed comprise rn e w satisfies the norm condition, and the
proof of Proposition 5.3 is complete.

5.3. Intermediate Mass Flow. We now have a new representation # n e w ,
and we drop the labels "new." It takes into consideration the fact that the
minimum of the potential has moved far away from zero, which is reflected in the
norm we use to measure the remainder; essentially we are expanding around
Φ2 = A2 rather than Φ2 = 0. Eventually we will want to use this in our
renormalization procedure, but in a narrow intermediate regime we must use
essentially the old procedure of expanding μc* as 1 + Ac + though there are
a few differences.

We call the radial curvature of the potential at the minmum (the "radial mass")
g2, and note that g2 = 4λA2. So far we have been keeping track of the parameters
β,λ,η along with the function r(μ2 is not a parameter since by definition it
is just the mass along the critical trajectory). When we begin to do RGTs after
the mass is well away from the critical point, we no longer need to keep track
of η, since its role was to allow us to track the evolution of λ carefully, which
we only need to do very near the critical point. In the new representation, we
keep track of the parameters K,λ,A along with the function rn e w. Theere
is also a relation between these parameters and rn e w given by ^n e w(0) = 1,
due to [BEI] Theorem 4.2, which accounts for the fact that we are dispensing
with η and therefore losing a degree of freedom. It happens that it is more
convenient to just track the evolution of K, λ, A independently and not make
use of the relation. We can also use g2 = 4λA2 to parameterize our recursion
by K,g2,A instead, and we will use both parameterizations at various points
in the sequel.



286 S.E. Golowich, J.Z. Imbrie

Proposition 5.5. Let g2 e [L~2λ1/2/5, /l1 / 4 + v < 5], and suppose eβΛ<p2g satisfies
IΛ2(βΛ9 K, λ, A, α(π)). Then T(e^φ2g) satisfies A2(β'Λ9 K\ λ\ A\ α(π + 1 )), with

K' = L*K

L2βΛ

Here vδ e (0,1/4), n is the number of times this Proposition has been applied since the
switch of reresentations, and α(n) was defined in (4.2).

Initially we do not know what K\ λ', A' are. We will prove estimates under the
assumption that

K' = L4K

(5.7)

for some ε > 0. This will be justified in the course of the proof. We also set α = α(M),

As in the low-mass region, we define a quantity f that will be used to absorb
harmless remainder terms during the renormalization process. Here we take

\r{«)\φ2 = A>2 S O(l)eκ'λ2v>+^ , (5.8)

where in the second line we are considering f to be a function of a single variable
and differentiating a times with respect to it. Note that we do not yet know that A'
is, only the assumption (5.7).

Again as in the low-mass region, we write

where So is the term with no remainders, etc. We can use Lemma 4.3 to handle most
of this in the same manner as in the low-mass region: e.g. for the S ^ 2 term,

,a, ^

\X\Z2
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where g0 is g with r set to 0, and c = 0(1). We have used Lemma 4.3 in all but the
last line, and Lemma 5.4 in the last line. Since c(L) can be bounded by λ\ this yields
the first of the r estimates. The second follows by applying Corollary 4.7 to S > 2

We next claim that $μrwΛ * S1 is f. We first write

By arguments similar to those above, we can show the second term is f. The first
term will require a new argument. We write it as

v(z) = -K + λ(z- A2)2 .

We start by showing the second of the f conditions. It is helpful to write

r(z) = \ ] dt(ί - t)2r'"(t{z - A2) + A2)(z - A2)3 , (5.9)
1 o

where we have used the inductive assumption on the vanishing of the derivatives of
r. In bounding this and its first two derivatives we use our assumptions (5.7) along
with Corollary 4.7, which tells us that

The derivatives can also act on the exponential, which brings down a power of λ for
α = 1 or 2. Hence we have that

dΦ2
Φ2 = A'2

which gives us the second f estimate.
We still need to show the first r estimate, the norm condition, for which we

prove the following.

Lemma 5.6. Suppose X(Φ) = Y(Φ2) satisfies \X\κ,ag2,A,h < °°» and Y is a function
of a single variable satisfying Yia)\A2 = Ofor α < m, some m ̂  0. Let

for xe@i. Then

Proof We first observe that MZ is analytic in a sufficiently large region to apply
Corollary 4.5, since

-)\K',«'9,,A',h>S O(1)\Z\K ag2χ^h,

<, 0(l)\Z\K,*g>,A,h

^ c(L)\X\κ,ag2,A,h
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where the second line is true for any c < L/WΛ, since ft' ^ h. So we can certainly
choose c large so &Z(WΛz) is analytic for z e R2h

f. To apply Corollary 4.5 we must
bound F(z)wf(φ)~ί, where

We handle the bound in slightly different ways depending on the value of | φ | 2 .
Recall that |/;| ^ max(32/z'2, I6h'\φ\). We call the region of

with A > 1, chosen large enough, to be the large-field region. In this region, if
\φ\^ 16ft', then

WΛ

1/2). (5.10)

We obtained the last line by noting that if Aλ~1/2 > L2 A2/w2

A, then we can use
ft' ^ ft ^ / Γ 1 / 4 to get the bound of O(zl~1 / 2), where as if Aλ~1'2 < L2A2/w2

Λ, then
we are in the regime where h! = O(h/L) and we can use the fact that hA = λ~ 1 / 2 /2
to get the bound O(Δ " x ) S O(Δ ~1/2). Finally, if | φ | < 16ft', we see directly that the
estimate O(A~γ) applies, so (5.10) applies for the entire large-field region. This
allows us to write

^ j I I L J J 1 / 2 ) ) . (5.11)
We also have

l^W = J 7̂ -7W- Y(m)(t(z - A2) + A2)(z - A2T .

Using Corollary 4.7 to bound the derivatives of Y, and inserting (5.11), we obtain

\φy1 S exp Γ(L4 - \<P\2 ~

with K = 1 + O(zl~1 / 2). We used half of the exponential to kill the weight function
and half to kill the polynomial in z.
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In the small-field region, / is comparable in magnitude to wl\φ\2/L2 — A2, so
we can no longer get any decay from the e~v, but nor do we need it. From

wΛ

we see
1-1/2

Since W(φ) * ̂  0(1) in this region, we have the same bound as before.

We are left with the SO term. We relegate most of it to r by writing

&μrwΛ * QV = 1 + A + j dt{\ - t)μtΓWΛ * Δ

and claiming the last term is r. The proof is an application of Lemma 4.3; i.e. to get
the norm condition we write

where the last line is true since we have chosen v̂  > 0., To get the derivative
condition we use F(n)(Φ2) = φ~nd"F(Φ2\ and again Lemmas 4.1 and 4.3 show

and so

This is the second of the r conditions. So we are left with

= exp 1
wΛ

Φ2-A2

^ Φl - A'

~2λ\\T) φo~A2)-2λA2

The cubic term is r, as long as we take c2 large enough, as is easily seen from
Lemma 5.4. We denote by P< 3 the terms in P that are at most quadratic. We write

L*K-λw'Λ(φ2-^42Y

T2Λ2\2

_ L 4X I λwU Φ2
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where r is the sum of r terms we have accumulated up until now. We now can
proceed in a manner similar to what we did following (5.3) by setting f = f(1) + / ( 2 ) .
It is important to notice t h a t / ^ = 0, so the/^ 3 contribution to/r comes only from
/ ( 2 ) . This fact, along with the assumption (5.8), allows us to see that β is small
enough in norm. We can then read off

*λ _ 4λ2Λ2yw5

Λ + O(λi+2vή ,

Also, noting that g2 = 4λ' A'2, we have

L2w2g2 (

The proof of Proposition 5.5 is complete.

5.4. Large Mass Flow. At this point it becomes more useful to parameterize our
recursion in terms of g2 rather than λ, since here the main behavior comes from the
first term in

λ(\φ\2 - A2)2 = g2(\φ\ - A)2 +^(\φ\ - Af + ~ (|φ| - Af

while the others are small corrections because A > 1. We retain the same definition
of the representation g because exp(— g2{\ψ\ — A)2) by itself does not have very
nice analyticity properties, a fact that would have to be compensated for by the
remainder, which would be undesirable as we would like the remainder by itself to
have nice analyticity properties

Proposition 5.7. Let g2 > i 1 / 4 + Vj, and suppose exp(βΛΦ
2)g satisfies

IA2{βΛ, K, λ, A, a{n)). Then T(eβΛ<p2g) satisfies lA2{β'Λ, K\ λ\ α ( M + 1 ) ), with

K' = L 4 K - - L 4 l o g ( l + g2ywΛ) + 0(L4),

A'2 = ί i f ) A2 + °w>

1 +g2ywΛ

Here n is the number of times this Proposition or Proposition 5.5 have been applied
since the switch of representations, and oc(n) was defined in (4.2).

Initially we do not know what K', λ\ and A' are. We will prove estimates under
the assumption that they take on the values (5.12), which will be justified in the
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course of the proof. We also set a = oc(n\ α' = α(M + 1), and notice that g2 approaches
a fixed point value of order L2, since

As before, we accumulate error terms in f, now defined by

(5.13)

We begin by writing Q§X — So + Si + S ̂  2 ? and S2 goes mainly as before:

where we have used that h stays bounded from below by O(L~γ\ since g2 ap-
proaches a fixed point value. This gives us the first f estimate, and the second
follows exactly as before. So we have that

To handle the other two terms, our basic strategy will be to write

&μrwΛ*(S0 + Si) = e * - 2 ( * 2 - * ) 2 + £ (5.14)

and to show that R satisfies r estimates for some choice of K, λ, A.
Set F(Φ) = (MμΓwΛ * 9*1){WΛΦ). We apply Lemma 4.3 to find \F\κ^g.2tAiCh' <

oo if c ^ L/2wΛ, say. Now, by Theorem 4.2 of [BEI], we know that F is a function
of Φ2 alone, so we can project down to the degree-zero component of <B and
consider the function f(φ, φ) = F(φφ). Clearly the purely bosonic norm
\f\κ\oL'g'2,A',ch' is bounded above by the combined fermionic-bosonic norm
\F\κ',oi'g2,A',ch'> a n ( i hence/ is analytic in φ, φ with a radius of convergence of at
least ch! everywhere, which implies that f(z) is analytic in the interior of
Uφec^ί/f (φ) ^ ^2ΛS if c (and L) is large enough. The same argument applies to
&μrwΛ * S ̂  2? S O w e conclude that JR(z) is analytic in R2h'> and hence we can apply
Corollry 4.5 to it; we need only bound R(\φ\2 + I) for φe(£, leC2h'(φ). In
particular, note that we have projected onto the degree-zero component of (G; i.e.
when we evaluate R(Φ2) we can set φ = ψ = 0, which simplifies our calculations.
Also, at this point we further simplify by specializing to our specific form of Γ(x, y\
namely yδ(x, y).

We begin by defining φf = φ -\- y, φ' = φ + y, where y, y e (C are such that
φ'φr = φφ + I and \y\, \y\/2wΛ. We use this to write

K-λ wAφ'

WΛΨ , g

L ς



292 S.E. Golowich, J.Z. Imbrie

where ζ is the fluctuation superfield, with bosonic and fermionic components
((β> ζF), and by \u\2 we mean uύ even when u, ΰ are not complex conjugates, as is the
case here with φ', φ'.

Hence,

' LdPL'-ιQ + f.

We further subdivide by expanding in power series in ζFζF, which have only two
terms in this case:

-A2

κ-λ
WΛψ

-A'

x(-2λ) wΛφ YB _A2\ζFζF

wΛφ
ζFξF

We will choose K, X, A to be of the form (5.12); the precise values of the O( )
corrections will be determined below. We will deal with two regions of φ space in
different ways; the large-field region, when φ is far away from its minmum, has very
little weight, which we can use to bound its contribution, while the small-field
region is amenable to perturbative expansions.

Large-field analysis. We define the large-field region to be

wΛ\φ\
-A >hAε.

Lemma 5.8. // \u\, \u\ e C not necessarily complex conjugates, then for all z e (C,

for some (1/4) — ε <b < 1/4.

Proof Pick some A > 0 large enough. Then, if | \z\ — A\ ^ Ah, the left-hand side of
(5.15) is bounded above by 0(1), while the right-hand side is bounded below by
0(1). If I \z\ - A\> Ah, we bound the left-hand side of (5.15) by

e~(l-O(A~i))λ(\z\2-A2) < e-bg2(\z\-A)2

for b = (1 -

We apply this to Po by setting

(5.16)
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and, choosing b near to 1/4, find

293

K-λ -A-

κf(ywΛ)-1\φ\/L + bg2A

where to obtain the last line, we have shifted ζB ζB wΛφ/L. Now we use the
fact that b — α Ξϊ 0(1). Choose b = a + (b — α)/2, and use part of the exponential
to kill the powers in front, valid for φ in the large-field region. We conclude

( 5

The PF term goes almost as the P o term; the only differences are a
factor of ywΛ from the fermionic fluctuation integral and the extra factor of
— 2λ(\z + wΛy/L\2 — A2) inside the integral. The latter can be dominated by the

exponential at a cost of a fraction of the decay, which we can easily afford, and
a factor of λ~112. We are left with

for φ in the large-field region.
We only need very crude bounds on the remaining terms Qo and QF, as we can

get all of the decay we need from the P's. So we just apply Corollary 4.7 to
r( \z + wΛy/L\2\ retaining the definitions (5.16), and find

which is true for all values of φ.
The next observation we need to make in the large-field region is that, from

Lemma 5.8, we have

\eK-λ(\ψ'\2-A2)2\ < QM\eK-bg2(\φ\-A)2

< ek-bg2(\φ\-Λ)2-O(A2η (5.19)

for φ in the large-field region. Again, we have lots of decay to spare, of which we
have used part to produce a factor exponentially small in A and part to produce
a term that will kill the weight function.

The final step to complete the bound in the large field region is to combine the
estimates (5.18)—(5.19): due to our choice of b we see that we have plenty of room in
the decay to shift LA/wΛ -• A' and that the L 4 — 1 factors of P have enough decay
to compensate for the fact that we have not kept track of any from the Q terms. We
find

\R{φφ + 0 | ^ e-0(A><) + κ>-*'gMφ\-A')2



294 S.E. Golowich, J.Z. Imbrie

for φ in the large-field region, which, along with analogous bounds in the small-
field region, will be enough to obtain the r norm condition from Corollary 4.5.

The second of the r estimates, the derivative conditions, involves evaluating
R at a point which is well outside the large field region, so we do not need to deal
with it yet.

Small-Field Analysis. Next we attack the small-field region, when \wΛ\φ\/L — A\ rg
hAε. Here it will be convenient to define

L

wΛφ0

= (σ + A)φ ,

A)φ, (5.20)

so φoφo = φφ + I. We see that |σ| ^ O(hAε) when φ is in the small-field region. We
also write the bosonic fluctuation field in a new basis:

ζB = σφ + iπφ; XB = σφ — iπφ . (5.21)

Putting these definitions together, we have

wΛφ0
2

= {A + σ + σ)2 + π2 .
L

We use this in considering the integral

where the two cases we are interested in are F = 1, for P o , and

F(σ + <x,π) = 2λγwΛ((A + σ + σ)2 + π2 - A2),

for PF. At this point we are in a situation similar to that in [ G K ] , and we perform
similar manipulations. Actually the analysis here is easier because we are not
concerned with a delicate approach to the fixed point, as they were. Some differ-
ences arise because the framework we use to keep track of the analytic properties of
the remainder is not the same as theirs.

First, write

/ = — Jdσdπexp{ - ( y w ^ ) " 1 ^ 2 + π 2 ) — g2(σ + σ)2

- lλ((A + σ + σ) 2 + π 2 - Λ 2 ) 2 - g2(σ + σ) 2]} F(σ + σ,π)

and then shift

92
σ -» σ —
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to find

- A((yl + σ)2 + π2 - ,42)2 - v(£σ, σ, π)} F(2σ + σ, π) ,

v(ίϊσ,ar,π) = (fiσ) ^ σ 2 + ̂ π 2 + 4§σ(σ2 + π2)
|_ 4 4 A J

where we have set

Now define
fl if | σ | , | π | ^ ^ ε '

y(σ,π) = < , (5.23)λK ' (0 otherwise v ;

with ε' > ε, and insert 1 = χ + χc inside the integral. We name the resulting terms

L +π + + ^ 2 σ σ + π J

and estimate the Pc terms first. We use

|v(£c

along with

g2-^σ(σ2 + ft2) ̂  λOihA*-1)^ + σ)2 + π2 - A2)2 + g2σ
20(hAε~1)

to get

+ σ)2 + π2 - ^ 2 ) 2 + v(£σ,σ,π)]

A + σ)2 + π2 - ,42)2 - O(g2h
3A3ε'ί)

ιAε-1)-π20(g2hAε-1),
where we have used the fact that hAί~γ <ξ 1 for e small enough. Hence

\IC\ ^e-^R^^dddnfexp\ --(γw^-'iσ2 + π2)

\ σ)2 + π2- A2)2 - 0{g2hA3ε-ι)\\F(2σ + σ,π)\ .
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Now, for Po we have F = 1, and for PF we have the estimate

\F(2σ + σ,π)| ̂

so in both cases we obtain the bound
< e-O(A2*')

The final observation for the Pc terms is that

which is dominated by the exp( — O(A2ε)). So we have shown that

{\Pco(φΦ + 01

l < κ922R^-oίA^ ( 5 2 4 )

+ 0 I J = l ' ;

for φ in the small-field region.
We look at the Q terms next. First, we examine

βo = $dμγWΛ(ζB)r((A + σ + σf + π2) (5.25)

which we write as

Q0=-jdσdπe~iyWΛrH"2 + e)-^iσ + ά)2e^σ+d)2r{{A + σ + σ)2 + ft2) ,

where the choice of ά will be made below. Next perform a shift

which result in

(5.26)

where δ = (1 + 7wylαgf2)~ 1 ^ n analogous expression holds for QF. We then insert
1 = χ + χc into this expression. We investigate the Qχ terms below, and just get
crude bounds on the Qc terms now. For this it is convenient to shift back again and
observe that we still have at least one of \σ\, \π\ > O(Aε) since the shift is smaller
than O(Aε) for all small-field values of φ and values that g2 can take on, and we
have chosen ε' > ε. So we can use the bounds on r from Corollary 4.7 again, and
find

\Qcol\Qc

F\ύeκ-°^'K (5.27)

We now consider the P z , Qχ terms where σ/A, σ/A, and π/A are small. First
handle P o , defining

~tw{2σ,σ,π)
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and performing a perturbation expansion:

i = 01' Z 0

1 + (fiσ)fl! + (£σ) 2 α 2 + a3(σ)) . (5.29)

Here aγ = O(g2/A) and a2 = O(g2/A2) are constants, and α3(σ) is a function

satisfying a{

3

n) \σ = 0 = 0 for 0 rg π < 3, analytic for σ in the region |σ| < 2hAε, and in

this region satisfying |α3(<τ)| < 0(A4ε~2). Also, we have set

e x p(σ) Ξ — K + # 2 £σ H (fiσ) H ^(^σ) .

We do a similar calculation for Pp, finding

+ (£σ)2/c2 + /c3(σ)) , (5.30)

where k0 — O(^2M
2)? fci — O(g2/A), k2 = O(g2/A2) are constants, and k3(σ) is

a function satisfying /c(3ί)|σ = 0 = 0 for 0 ^ π < 3, analytic for σ in the region
\σ\ < 2hA\ and in this region satisfying |fe3(σ)| < O(A3ε~3/h).

We next focus on the Q terms. We need only a very crude bound for Q£, which
we obtain from Corollary 4.7. We must first verify that the definition of σ and the
complex shift of σ has not taken us out of the region of validity of the Corollary.
Recall from (5.26) that in Qχ

F we are evaluating r' at (A + £σ + σ)2 + π 2 = | φ \2 + Γ,
where we have defined

\φ\2 = (A + Re£σ + σ)2 + π 2 ,

Γ Ξ 2i(Imδσ)(^ + Refiσ + σ) - (Imfiσ)2 .

It is not hard to see that, for φ in the small-field region, \T\ ^ 20wΛh'\φ\/L, and
since h' ^ h we can safely apply Corollary 4.7 to find

if α < α/2. From this we immediately have

| β ^ | ^ O(A)e-^^R e i T 2 . (5.31)

In order to deal with Qχ

0 we define

u = \φ\ Q=\φ\+T/\φ\,

\u\ =(uΰ)1/2 . (5.32)

Lemma 5.9.

\H(\u\2\^0(l) (5.33)

for u, ΰ as in (5.32) and φ in the small-field region.
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Proof. We use two estimates of r(\u\2). The first follows from (5.9) by bounding r"'
with Corollary 4.7 and using \(\u\2 - A2)\ ^ O(y4)|(|w| - A)\ to find

| r ( M 2 ) | S O(h-3)eκ\r\κ,ag2,A,h \(\u\ - Λf\ , (5.34)

where O( ) does not depend on L. Also, a direct application of Corollary 4.7 reveals

|r(M2)| S 0{\)\r\κ^AMeκ~i^σ + d)2 . (5.35)

These two facts together yield

| r ( M 2 ) | ^ O ( ^ 3 ) | r | x , α ^ , Λ ^ - ^ R e ^ + ^ | ( | u | - ^ ) 3 | (5.36)

since, for |Re£σ + σ\ S h the right-hand side of (5.36) is larger than that of (5.34),
while for |Re£σ + σ\ > h it is larger than that of (5.35). The result (5.33) follows
immediately. •

We can now write

Ql = A? .

(5.37)

Now, it is not hard to see that

(|z| - Af = (2σ + σ)3 + 0{h5A5ε'-2),

and so

βo = O>a\r\κ.ai2,Aj,eκ-a"i

3

i = 0

(5.38)

with

-

and the bt are functions of σ satisfying

i - 3

\be(σ)\^O(h2A5ε'-2)

with O( ) not depending on L. The bt and be are analytic in σ for |Im σ\ < fi~x ft/4,
|Reσ| < 2hAε. Since we are interested in σ satisfying | Imσ | < 12wΛh'/L, we can use
Cauchy's estimate to bound derivatives of the fc's:

dj

ι +αg2)
t - 3

(5.39)

We can now assemble the expressions (5.24), (5.27), (5.29), (5.30), (5.31), and
(5.38), for the P and Q terms with φ in the low-mass region, into a form that allows
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us to find K, X, and A and to complete the proof that R satisfies r estimates. We first
recall our current status:

MμrwΛ*(S0 + Si) = PLd + L'P^-'Q + r

Ξ ek-l(Φ2-Ά2)2

 + £

P = Pc

0 + P£ + Pχ

0 + Pi ,

β = βo + βF + Ql + Qϊ (5.40)

We are applying Corollary 4.5 to R, and we have already shown the necessary
analyticity as well as the upper bounds in the large-φ region. So all that remains is
to show upper bounds in the small-φ region and to check the derivative conditions
(where we evaluate derivatives at | φ | = A'). From the work we have done it is clear
that, if we expand the powers of P in (5.40), most of the terms already satisfy the
requisite bounds: namely, any term containing at least one Pc or Qc term, any term
containing more than one P£. The delicate choice of X, X, A is then made to
compensate for the remaining terms, which are

+ (£σ)αx + (2σ)2a2 + α3(σ))L 4

ιPχ

F + L*ep-^ <l>o ' Qϊ\

i.e. the difference of these with exp(X — X(|φ| 2 — A2)2) will satisfy r' estimates,
where any term r' that satisfies

\r'\ ̂ L-2

is said to satisfy ? estimates, or to be an r' term. We Taylor expand

(1 + (&σ)a1 + (£σ)2α2 + α3(σ))L4 = 1 + άxσ + ά2σ
2 + α3(σ) ,

m3(σ) = L V - ' ^ O o ^ ί = M0 + Mγσ + M2σ
2 + M3(σ) ,

n3(σ) = LV-<l>o 'Ql = N0 + Nxσ + N2σ
2 + N3(σ) ,

where

M3(σ)=U(l-t)2rn'i'(tσ)σ3 ,
* 0

N3(σ)=\\(l-t)2n'i'(tσ)σ\

and we will argue that e~L 4 P e x p ( σ )<l>£ 4[α 3(σ) + M 3(σ) + iV3(σ)] satisfies f
estimates.

We use

Lemma 5.10.

for K = 0(1), |Imσ| < 12wΛh'/L, |Reσ| < 2hAε.
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Note that the exponential in the Lemma is the leading behavior of e~
L4p^σ\ This

tells us essentially that, in estimating the Taylor remainders, each σ gives us a factor
of O(L~22~1/2)h Also, from (5.39) we see that each d/dσ acting on a bt yields
a factor of 0(2//z). Using these facts it is not hard to see that, for g2 ^ 1,

while for g2 near the fixed point value of 0(L 2 ),

)*4ΛΓ3(σ)| ύ

(for intermediate values of g2 the bound interpolates between these two). We have
used half the decay from eL*Pexp(σ) in applying Lemma 5.10, and the half that is left is
more than enough to cancel the weight function. Now, < 1 > Q / < 1 > 0 = 0(1), so we
see we have the first of the F estimates if we make the choice

The second F condition is obvious, using \A — LA/wΛ\ ^O(A *). Similar analyses
of the M 3 , ά3 terms show that they are also F. We have hence reduced to

+ (ai + MΊ + A/Ί)σ + (ά2 + M 2 + N2)σ2) + ¥ + f .

We can easily see that the \Nt\ <,O(λll2h~3), that \M0\, \M2\g>O(λ), | M J
^ O(g2/A), and lα j ^ O(g2/A), \ά2\ ^ O(g2/A2), where O( ) can depend on L.

We write O,- = 5/ + ΛTf + M f, and

/ C 2 \
1 + O 0 + 0 1 σ + 0 2 σ 2 = ( 1 + O0)ί 1 + Cσ + — σ 2 1(1 + Dσ2) + Or

with

D= °* l

1+O 0 2Vl+Oo7 '

Or= - (1 + O
2

| C | S O(g2/A), \D\ S O{gl/A\ so clearly Or is F. We can then write

O0)(eCσ - e%σ)(eDσ2 - eψ1) + F + r

and, expanding the product, easily see that any term containing an et is F (et was
defined in (5.6)). So we have further reduced to

F + r
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We next write

and choose K, X, and A so that the σ°, σ1, and σ2 terms in the exponential inside the
brackets cancel, and when we subtract 1 we are left with a σ3 term that we show is
r'. A calculation shows

c jy

C D^-1

g2

K = L*K + L 4 ln<l> 0 + ln(l + O0)

We are left with

^ _ eK-λ(\φ\2 + l-Ά2)2reEλσ* + E4σ
4 _ j n

with

£ 4 = 11 — I - L4fi4A

Because 1 — fim = O(g2) for g2 small, we can apply Lemma 5.10 to conclude that

SO(L-2)λ112.

The derivative conditions are easily checked, so we have shown that if we choose c2

large enough then

with the choices (5.41) of X, X, A. All that remains is to absorb the r into a true r via
shifts in X, X, 4̂ -> X', Λ/, ^4', which we accomplish by writing

and proceeding as we did following (5.3). The proof of Proposition 5.7 is complete.
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6. Green's Functions

In order to calculate the expectation of the density, we must compute some Green's
functions of the λΦ4 theory, namely < φoφo ) a n d < ΨoΦoΦz >• As long as 0 and z are
in different blocks, the RGT's of the two blocks do not see each other. When
|z — 0| = L there will be a single RGT that must incorporate both φoφo a n d Φ2>
and from then on the only distinguished point will be 0.

Since we are interested only in the limit as A, z -» oo, we choose A and z large
enough (depending on β0) so that the induction will have reached the large-mass
region before 0 and z merge. So in the small and intermediate mass regimes we need
only consider the recursion relations for the functions that, before the first RGT,
look like φφgo(Φ2) and Φ2g0(Φ2).

Actually the situation is even simpler than this due to the fact that we have
chosen our walks to begin and end at the origin. To see why, we have

Lemma 6.1. IfF is a function of a single variable with exponential decay at GO , then

(i)
μc*(φφF(Φ2)) = F,{Φ2) + φφF2(Φ2) ,

μc*(ψφF(Φ2)) = -F1(Φ2)

where the functions Fl9 F2 cire the same functions in the three equations.

(ϋ)

where Φ* = φ, φ, ψ, or ψ, and F3 is independent of # .

Proof Both parts follow almost immediately from the proof of [BEI]
Theorem 4.2. •

Part (i) of this lemma tells us that we do not need to consider the φφ and Φ 2

blocks separately, but that we can do them both at once since the convolution
will produce the same function F2 multiplying the φφ or Φ 2 in the two cases.
It will be more convenient for us to handle the Φ 2 case to get control of
F2. Meanwhile, there will be contributions to F± in the φφ case that do not
occur in the Φ 2 case. We will not need to keep any control of these until after 0
and z merge, because in the single RGT when this occurs the Fx term will
be multiplied by a function of the form Φ2G(Φ2\ and hence will remain of the
form Φ2G(Φ2) under all subsequent RGTs. We will see in Sect. 7 that the
contribution of such a function in the calculation of the density vanishes identi-
cally. After the RGT in which 0 and z merge there will be new contributions to Ft

that we will need to keep some control of, but we postpone discussion of this point
until Sect. 6.4.

6.1. Low Mass Flow. The upshot of the above discussion is that, for the
small-mass region, we need only keep track of functions that can be represented
as
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Inductive Assumption 3 (eβΛφ2 gid2,d4.,M). The function j =j(Φ) of afield at a single
site satisfies

ΨΨ) t2(Φ)

eβφ j(Φ)g(Φ) = eβφ < or }(d2 + d4(Φ2 - 2G(0)))g(Φ) + tx(Φ) + < or
Φ2) 0

d\"

i, I '•<«•' - 0 for 0 ^ α < 6 ,
r = 0

d4 ^ c3λd2 ,

t2 = F(Φ2) and has exponential decay at oo.

Here G = GM + aM.

We are expanding out to fourth order in Φ so as to keep careful track of the
evolution of d2, which will be important for determining the power of the logarith-
mic corrections to scaling. The reason for the factor Φ2 — 2G(0) multiplying d4 is
that we have chosen to keep track of the non-remainder part in terms of Wick-
ordered monomials and: φφΦ2: = φφ(Φ2 — 2G(0)) up to a function of Φ2, which is
in t2, while: Φ4:= Φ2(Φ2 - 2G(0)).

We write the RGT acting on j as S(j), defined by

S(j)T(eβφ2g) = e

Proposition 6.2. Choose L large enough and λ small enough, and suppose eβφ2g(Φ)
satisfies IAl(β,λ,M) and j(Φ) satisfies IA3(eβφ2g,d2,d4,M). Then S(h) satisfies
IA3(T(eβ*φ2g), d'2, d'^ M - 1) with

where yd = 4y(l - ί) .

Proof We will work with the Φ2 case only, since in light of Lemma 6.1 the only
additional result we need for the φφ case is the exponential decay of the t2 term,
which is obvious. The method established in [BEI] works here as well, so we will
not give details but just indicate the origin of the leading contributions. The only
differences between our situation and that of [BEI] are that, as mentioned before,
our fluctuation covariance ΓW is nonsingular and that, due to the presence of W,
Wick-ordered monomials are no longer exact eigenfunctions of the operator
MμΓW*. The second one causes some change in the recursion relations which are
minor since we stop using this method before β becomes large. A calculation of the
type (5.1), when applied to the d4 term, gives rise to part of the O(λβd2) corrections
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to d2. The rest of the O(λβd2) corrections to d2 come from a contraction of d2Φ\
with the A: Φ 4 : in the exponent. This term also gives rise to the leading correction to
d4, which is O(d2λ). The leading contribution to the remainder comes from d2Φ\
contracting with two copies of λ: Φ4: with two internal legs, yielding a term that is
O(d2λ

2)Φ6, which is O(J~λd2) in norm.

We next briefly indicate the origin of the O(λd2) corrections to d2. We do this
by setting up the tools developed in [BEI], and isolating those terms that contri-
bute to the leading correction to d2. The terms we will ignore here contribute to
either the corrections to d4 or the remainder; we do not go into details involving
these last two because the arguments proceed exactly as in [BEI].

We will denote by Sj any term that does not contribute to the coefficient of | φ \2

out to O(d2λ). Begin by writing

where

E = 1 + ΔΓW -\—i

γlME

h j\ p
E

9

Here = denotes equality mod (sixth-order d/dΦ derivatives), and the subscripts
p and g indicate on which terms the two derivatives in the Laplacians are acting;
either p = d2 \φ\l or gSχ, respectively. Notice that Epp = p + 5/ since the constant
term is Sj. So we must consider the effects of the three terms involving Δpg raised to
the powers 0, 1, and 2, and evaluate the results at WΦ. The leading term is

L2β 2 /WV

e1~βy y#(pEgQrι)(WΦ) = d2 I — I \(po\ T(ep g) + Sj .

The Δpg term yields

= d2\φ0\
2( - 4λγw)[ j 2G(0) - - (G(0) -

with G = GM + aM. The Δpg term yields

(WΦ) = - 2d2λy2'i-2\Ψo\
2 T(e"φ2g)

Summing these terms gives the result in the statement of the proposition. In
particular, we find

We have used the fact that G(0) = 1 + O(L~2M\ and M can be taken as large as we
like since we are interested in the infinite-volume limit and we apply this proposi-
tion in the small-mass region. •
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6.2. Switch of Representations. The new representation in the intermediate and
large mass regions is

Inductive Assumption 4 (eβΛ<p2g,d2).

^*Vnew(Φ)0new(Φ) = ̂  \ d2 I OX > 0 n e w ( Φ ) + ί f W ( Φ ) + < OΓ

wzf/i

ίϊ e w (Φ) = < or WJΓ(Φ 2 ) ,
U2J

ί5e w(φ) = F(Φ2) ,

I ί5 e w IΦ = o ^ ^2 eκ ~ O{A2) after z -> 0 only

and has exponential decay at oo.

Proposition 6.3. There exists a number d^ = ̂ ( 1 + O(y/λ)) and functions ί ϊ e w ,
ί5 e w 5wc/z that if eβΛ<p2gnev, satisfies IA2{βΛ,K,λ,A,a) then j n e w = dfw{φφ or
Φ2}#new + ί ϊ e w + ίn

2

ew satisfies IAA{e^φ2gn^df-).

Proof First, write tfw = e{β~βΛ)φ2t2. We do not bound ί2ew(0) because by assump-
tion 0, z are still distinct points at the time of the switch (see comments below
Lemma 6.1).

We will prove the Φ2 case first. Then the φφ case follows immediately. Let
d2 = d2 - 2G(0)d4. Then

eβφ2j(Φ)g(Φ) = eβ*φ2h2Φ
2gnJl + | φ 2 + _ L _ ^ - ^ 2 ί 1 ^ n e i l + ί"2

ew J .

Define f(Φ) by calling the term in the brackets 1 + / Write f = f(A) + / ^ l f Then

We claim the second term is i?ew- By its definition it vanishes at Φ = A. That its
norm is small enough is easily seen by noting that |/(A) | ^ O(-s/λ\ and by
applying \-\κag2Ahύ 0(1) | | rλ to the various terms one finds in

For example,
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for c = c(L) chosen large enough. We have used the fact that A = 0(λ~ί/4) at the
time of the switch.

We read off dn

2™ = <J2(1 +f(A))9 and we are done. •

6.3. Intermediate Mass Flow. From now on we will drop the sub/superscript
"new." Within the new representation, we renormalize using the hybrid method of
Sect. 5.3 until the radial mass g2 becomes larger than λ1/4' + Vδ. The RGT for the new
representation is

) . (6.1)

Proposition 6.4. Let g2 e [L~2/l1 / 2/5,21 / 4 + ^ ] , e^φlg satisfying IA2{βΛ,K,λ, A, a{n))
andj satisfying IA4(eβΛφ2g,d2). Then S(j) satisfies IA4(T(eβΛφ2g),d'2) with

Here n is the number of times this Proposition has been applied since the switch of
representations, and α(n) was defined in (4.2).

Proof Again we prove the Φ2 case first, the φφ case following immediately. We
define an approximate remainder term ΐί for this representation by ϊγ = ΦQF(Φ2)
satisfying

\h\κ',a'9'2,A',h' ύ /

Later we will show that, with a small shift in d2, ΐ± returns to the inductive form of

We begin by writing μΓW* = 1 + A + jdί( l — t)μtΓWΛ* A2, and show that the
Taylor remainder term satisfies fx bounds:

- t2)\K' a'g'2 wΛA' wΛh'

lg\KAllM,h + \h\κ,ag>,A,h)\g\κ,a9],A,h

S 0(h~4)(d2\Φo\θ,(i-«)g2,Λ,h\g\κ,lχg2,A,h) + \tl\κ,αg1,A

12λ'2^ , (6.2)

where we have defined

- f (α — α') if g2 < 1

if a2 ^ 1 '
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We use part of the λ2Vδ to dominate the c(L\ and we have the norm condition for
ΐι. The second fΊ condition follows immediately by bounding the function by its
norm.

We have reduced to

S(j)T(eβ^g) = e^tyφ2\_@{\ + ΔΓW)(d2Φ
2g^ + Ug^){WΦ) + h+ ί2] .

We claim the term containing t1 is fΊ. When the Δ acts on it, the extra h~2 it yields
in the norm estimates give us the necessary bounds exactly as above. For the
3HtιQs^ term, we appeal to Lemma 5.6 to get the norm condition. The second
condition follows by writing

tx(Φ) = ]dt Σ jLtΛt(Φ -A) + A)(Φ - A)

and using Lemma 4.1 to bound | 3 Φ ί i | , along with the fact \A' — LA/wΛ\ ^ O(A ~ 1 ) .
To handle the leading term, we write

1 + Δ={\+2Δpg)EpEg,

where = denotes equality up to fourth-order derivatives in Φ (which are fΊ terms),
and the subscripts p, g indicate whether the derivatives in the Laplacian act on ΦQ
or gs\ respectively. Now, we can replace EPΦ% by ΦQ, and Egg

Sχ by μΓwΛ*9^1 up to
fA terms. So the leading term (without the Δpg) yields

For the other term (with the Δpg) we calculate

The derivatives in Eg can both act on the polynomial, or both on g^\ or one on
each. In the last case, we get an extra power of λ from the exponent, and the result is
a fi term. When they both act on the polynomial, we get Φ(Φ2 — A2) + Φ, and the
last term (Φ) is fΊ. When they both act on g®1 we get μ * g®\ So the result of the Δpg

term is

Finally, using \A'2 — L2A2lw2

Λ\ ^ 0(1), we can put most of this term in tγ at the
cost of an O(λ) shift in d'2. We have found

l + O(λ))Φ2

0T(e^φ2g) + eΆ*2[ϊλ + ί 2 ] .

The final step is to change the fΊ into a true remainder t± via a small shift in d2.
To accomplish this we add and subtract on the RHS the term

g)ϊγ{Φ2 = A'2)Af-2e~κ' , (6.3)
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and claim that the difference of fx and this term becomes the new remainder tγ. It
vanishes at the minimum of the potential by its definition. That its norm is small
enough is easy to see, since the norm of (6.3) is smaller than c(L)A2λd2, and, due to
the L~2 contraction we required to be in f1? we have plenty of room to add this

small correction. The shift in d2 is O(λ2~+2Vόd2). •

6.4. Large Mass Flow. To handle the induction in the large-mass region, we will
need more precise measure of the function F2 in Lemma 6.1. This is contained in

Lemma 6.5.

μc*(Φ2F(Φ2)) = Φ2μc*(F + 2CF) + C2μc*{Φ2F") + 2ΦC2μc*{ΦF") .

Proof. This follows from standard manipulations of Gaussian integrals; see e.g.
[BEI] for a review of Gaussian integrals involving Grassman variables. We have
used part (ii) of Lemma 6.1 to obtain the last term on the right-hand side. •

Proposition 6.6. Let #2 > ^ 1 / 4 + v% and suppose exp(βΛΦ
2)g satisfies

lA2{βΛ,K,λ,Ayn)\ and j satisfies IAA{eβ^ιg9d2). Then S(J) satisfies
IA4(T(eβ*φ2g),d'2)wίth

Proof. As before, the φφ case follows from the Φ2 case, with an additional
argument to control the ί2(0) condition after z -• 0. We will comment on this after
we have established the Proposition for the Φ2 case.

In light of Lemma 6.5, the single integral involving fields at the origin becomes

tR)(wΛΦ) = - 4 ^ - Λ μ ^ * H(wΛΦ)

-£φ@μyWΛ* Φ(d2g" + t"R){wΛΦ) ,

H(Φ) EE d2{\ - 4ywΛλX)eκ-λχ2 + d2(r + 2(yw>') + tR + 2(γwΛ)t'R ,

where we have written X = Φ2 — A2.
Our strategy will be to find d2 such that

g) = d2Φ
2

0T(e^2g) + eΆφ\ϊγ + t'2), (6.4)

where we define the approximate remainders by lx = Φ2F(Φ2) satisfying

?! will eventually be absorbed into a small shift in d2 plus a true remainder term by
the same procedure as before.
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Our first observation is that if we expand the product (g0 + rfλ{0\ the terms
with more than one r are Γ1? as is easily shown using arguments like (6.2). It is
convenient to put most of these terms in ϊx now so that the factor multiplying (6.4)
has good decay properties (we only know that r by itself decays as fast as the norm,
while g0 decays a good deal faster, a fact that will prove useful in the sequel). So we
define

g= Σ **9tλX- (6-5)

We next argue that the terms containing g" or t'R are fx. That they are of the form
Φ2F(Φ2) follows from Lemma 6.1, and we establish the norm condition, which will
imply the second condition, as follows. For e.g. the second (and more complicated)
term, we set F = d2g + tR, and apply Lemma 4.3:

L4'L2w2' L ' L

K,ag2,A,

We have taken x e @i to be a point where g does not contain a remainder, and
defined

+ i ί α - α ' ) if g2 £ 1

In the last line we bounded F" using Corollary 4.7 and estimated the norm using
Corollary 4.5. Now combine (6.4), (6.4), and (6.5); we see that we must show that
there is a d2 such that

{MμΓWA*g)(WΛΦ)\ -qΦU^μywΛ*Hr)(WΛΦ) \ (6.6)

satisfies ΐί bounds, where

= H - L2d2g/w2

Λ

+ tR +

=d2-±
w

= — 4γw

ΆWΛVR ,

2

A

Aλd2 .

f (d2
-—d2)r-\ - 2d2(ywAy
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We now show that, for an appropriate choice of d2, (6.6) is ϊx. We assume, to be
justified later, that \d2 — L2d2/w2

1\ ύ O{d2g2/A). We will now proceed as we did in
Sect. 5.4, that is, we appeal to general arguments (as was done under (5.14)) to show
that (6.6) is analytic in R2h>, and so our problem is reduced to bounding (6.6) when
evaluated at φφ = \φ'\2 + /, for φ e C and le C2h>(φf). We again split into two
regions of | φ ' | 2 , the large- and small-field regions, and remark that the large-field
estimates go largely as in Sect. 5.4, so we do not repeat those arguments here. In the
small-field region, we use the same definitions (5.20), (5.21), and again split into the
small- and large-CB regions with (5.23). The large-ζβ region goes as before, so we will
concentrate on the small-field, small-£β region.

Using Corollary 4.5 along with Corollary 4.7 we can relegate most of (6.6) to ϊλ.
For example, for the term containing t'R, we get a factor of •sfλA~2\ti\κ,ag2,A,he

κ

from Corollary 4.7 and a factor of O(A2) from the Φ2 in front, with more than
enough decay coming from the at least (L 4 — 2) factors of g0 in g. Hence we find

K',a'g'2,A',h'

Similar arguments can be applied to the terms containing rf and (d2 — L2d2/
)r, so we are left with

up to fi terms.
Since we know that (6.6) satisfies the analyticity conditions that Corollary 4.5

require, we can split it into a sum of pieces that individually need not satisfy these
conditions and just bound each piece separately. We will call a term ϊΊ if it can be
written as fx = Φ2F(Φ2) and satisfies

l)F(\φ' Άf2d2

for φ ' e <C and/, ΐeC2W(φ')

\h\φ=A'ύO{λ')A'2d2e
κ' .

We next argue that the tR term is ϊ\. We accomplish this by doing the
Fermionic integral and observing that the tR term is clearly t\. We name the
remaining term

WΛΨ , .

We follow the same procedure as below (5.25) and find the only term not manifestly
fί is

rji χ K l \K,ag2,A,h K-ag22σ1

0 " A^h

x-^dσdπχe-^'1*^*2-^'1*1 J(\u\2){\u\ - A) ,

where we have retained the definition (5.32) of u, ΰ, and defined

(6.7)
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I J\ ^ 0(1) by an argument exactly analogous to Lemma 5.9. Notice that (6.7) is
analogous to (5.37), and we proceed in same manner:

σ2 <l>Q(s 0(σ) + S l (σ)(2σ) + 5e(σ)) ,

Here si9 se are analytic for σ in the region | Imσ| < ft^δ)"1, |Reσ| < 2L4ε. The
term containing the se is clearly ΐ\. We also write so(σ) + Si(σ) = so(0) + sr(σ),
and an application of Lemma 5.10 shows that sr is also t\. So the only piece not
shown to be fi is the constant term which satisfies the bound

f ) (6 8)

We next consider the contribution to (6.6) from the term containing q0 +
We integrated out the fermions in the fluctuation convolution and obtain

eγ = — 4ywΛλd2 + 2λywΛ(d2 — L2w^2d2) ,

where on the RHS we have set Y = \φ/L + ζB\2 — A2. We deal with this as we did
in Sect. 5.4, by performing a perturbation expansion. Here we only need carry it out
to zeroth order, the first correction being ϊ\ already. So, recalling the definition
(5.28), we write

C = e0 + ei((A + 2σ + σ)2 + ft - A2) .

Of the term containing C, the pieces containing σ and σ2 are clearly t[, assuming
we choose c 4 large enough. Also, since <σ>0 = O(g2/A), all terms containing an e1

are t[ as well. So we are left with

(6.6) =

(6.9)

We now make the choice

d2-—2d2= -soM^A-^hk^j, (6.10)

and then (6.9) becomes t[, as is easy to see by expanding the difference in
exponentials in a Taylor series to zeroth order and applying Lemma 5.10 to the
remainder.
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Since we know that the sum of the ϊ\ terms satisfy the necessary analyticity
conditions to apply Corollary 4.5, we see that their sum is actually f̂ . All that
remains is to change the ϊγ into a true remainder tγ via small shift in d2. This is
accomplished by the procedure described at the end of Sect. 6.3, and incurs a shift
of O(λ)d2, which is smaller than the leading term from (6.10) and (6.8).

The only part of Proposition 6.6 we have not yet proven is the statement
involving the t2 terms, which occur in the φφ case. t'2 has contributions from the
image of t2 under the RG map and also from contractions of φ with φ. Since we are
only interested in t'2 evaluated at zero, we can write

ί'2(0) = @μrwΛ*(d2φoΨog + h + ί 2)(0)

because, referring to Lemma 6.1, the F2 terms are multiplied by zero. From [BEI]
Theorem 4.2 we see that

We then apply Corollary 4.7 to t1, and, using estimates similar to (5.17), we see the
corrections to t2(0) are smaller than d2oxp(K — O(A2)). Finally, notice that
Kn — O(A2), where n is the induction step, is roughly exponentially increasing in n.
Hence, if | ί 2 (0) | ^ d2exp(K - O(A2)) at any given step, it will satisfy the same
bound for all remaining steps, which is the fact we need to satisfy IA4. In fact,
immediately after 0 and z merge, t2(0) = 0, so this estimate will hold. •

At some point there will be a unique step in which 0, z are in the same block. We
have assumed that z is large enough (depending on the initial β) that this occurs
while we are in the large-mass regime. This one step requires special treatment, but
since the proof is so similar to that of Proposition 6.6 we will state without proof.

Proposition 6.7. Suppose 0, z are distinct points in ^ Ί . Let g2 > A1/4 + v% and suppose
Qxp(βΛΦ

2)g satisfies IA2(βΛ,K,λ,A,ocin)), andjojz satisfy IAA{e^gJ2\ with the
choice ofφ0φ0 inj0 and Φ2 injz. Then S(jojz) satisfies IA4(T(eβΛ<p g),d'2) with the
choice of φoφo, and

*2(0) = 0 .

7. Calculation of Critical Exponents

In this section we piece together the recursion relations we have determined
for the various mass regimes into a calculation of Eλ>N(τz). We take the infinite
volume limit, followed by the limit of z -> oo, and find the critical exponent for the
density.

We choose some β > 0. We will do RGTs using the different methods to keep
track of the integrands as β grows and the volume shrinks. For convenience assume
β < O(λ2); this ensures that we start by using the version of the RGT correspond-
ing to very small mass (we can clearly construct the model for other β but we are
interested just in the asymptotic behavior as β -• 0). Next choose some A and
z large enough (depending on β) to ensure that we can do enough RGTs to get to
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the large-mass region before the points 0 and z collapse to the same point. Again
this restriction is not necessary but it simplifies the arguments and there is no
reason to handle a more general situation since we are only interested in the limit as
A and z tend to oo .

Recall that we are calculating

S(Φ2

ze-^dxviΦ^)
pa,λ = hm hm Ea^N(τz) = hm hm _f dxυ(φ) ,

2^00 N-+ 00 Z-+OOJV^OO S(e Vv )

where

The integrands at every point other than 0 and z can be represented in the form
of IΛl while those at the points 0 and z can be represented in the form of I A3, with
d2 = 1, </4 = 0.

Throughout this section we will denote by U a constant independent of
induction step, though it may depend on L and λ0. By Cn we denote a constant that
may depend on the induction step as well as L and λ0, but is bounded by some U,
uniformly in n. Either of these symbols can take on different values from formula to
formula, or even when they appear twice in the same formula.

At the end of the induction we will see that the final βΛ will be chosen close to
one. Since βΛ increases exponentially throughout the induction, this means that
wΛ is always close to one. If we choose the volume large enough we see that, in all
but the final stage of the induction (after 0, z merge), the corrections due to wΛ are
smaller than the error terms we already have. At this point the corrections to the
leading terms in the numerator and denominator are the same, so they will cancel.
Hence we can ignore the factors of wΛ here as well.

We proceed in several stages, switching methods as β, and later g2, grow. Let
n be the iteration step. The first stage involves applying Propositions 5.2 and 6.2
repeatedly, stopping at the step nί before βn becomes larger than λ2. We find, for

βn = ( pΣ
\ i = 0

/ Xf λf)dψ = dg»L-2"exp( - y/Σ λXfl (1 + Ctλf)
i = 0

where we obtain the second form of the expressions for βn and dψ by inserting the
result of the flow of λn.

The second stage involves λ2 ^ βn < y/λ~n/4, for n1 <n^n2. Again we apply
Proposition 5.2 and 6.2, but now, because the O(βnλn) terms start interfering with
the O(λ2) terms, we do not keep as close track of the subleading terms. Because the
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βn are basically increasing exponentially in this regime, the last O(βnλn) term gives
the dominant correction:

To estimate the evolution of βn and d2

n) we use

because, due to the exponential rate of increase of βn and the fact that λn is changing
very slowly, n2 — n1 = O(\ogλHi). So

Cn
2

where we have used that λni = O(nϊx).
We now switch representations by applying Propositions 5.3 and 6.3, resulting

in (primes indicate the new representation)

λ'n2 = λn2(i

μ2

n2 - 2(G^(0) + a^)λj + 0(1)

( C
in2y _ j -2n2J(0)ττ-γd/β2 1 , ^"2

Now drop the primes. At this point we start to use g2 to parametrize the recursion.
We apply Propositions 5.5 and 6.4 up through the last step n3 before g2

n) becomes
greater than λll4' + Vδ. Again this involves O(logλnJ steps. So

+ c l o g n Λ

r
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At this point we start applying Propositions 5.7 and 6.6, which will apply until the
volume shrinks to a point in the denominator, and until the points 0 and z are
about to merge in the numerator. Denote the former step by π 5 , and the later by n4.
We see that g2

n) approaches a fixed point of O(L2) exponentially quickly, and that

+ • % ) (7.2)

For the denominator, replace nA by n5. The term g^ jAn in the first expression for
d2 first rises exponentially until g2 = 0(L2) and then drops exponentially there-
after. Hence the error term can be estimated by 1 -f Oig^/A^), where * is the step
at which g2 first approaches close to the fixed point. Because the fixed point is
0{L2\ we see that this error is much smaller than nϊ112, which explains the last
equality.

All that remains to do for the denominator is to calculate the final one-
dimensional integral. We will do this below after we have finished the induction for
the numerator. At this point in the numerator we have 0 and z in the same block
^ i . We apply Proposition 6.7 to find

Now en evolves according to Proposition 6.6 again, with the result

en5 = L-^{dψ)2β0υn\-^ + 2^lΛ+^λ. (7.3)

A2

5 is given by (7.1) with rc4 replaced by n5.
We have reduced the calculation of Eλ^(τz) to the ratio of one-dimensional

integrals

=
λ ΛXz) μμGo + aa(Φo)eβSΦHd"ϊφoΦog(Φo) + t[d^(Φ0) + tf^(Φ0))

(7.4)

Now, since

dμGιi + aιι(Φo) = dΦoe-«° + <">r'φ°,

we see that the expedient choice of β("s) is

This substantiates our claim that wΛ stays close to one throughout the induction.
We next apply the following
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Lemma 7.1. If F(x) GC°°(1R + ) and has exponential decay at oo, then

00

\dΦφφF{Φ2) = \dxF(x) .

Write F(Φ2) = F(φφ) + F'(φφ)^ and trace through the definitions of
Grassman integration, e.g. Eq. (3.1) in [BEI]. •

Applying this to the ί2 terms shows us that these do not contribute in the
infinite-volume limit. We apply this to the other remainder term, writing
tχ(Φ2) = φφtR(Φ2), and apply Corollary 4.7 to bound tR, obtaining

\tR(\φ\2)\ ύ ^

Also, clearly

A simple calculation shows that the contributions to the numerator from the r and

t(e,n5) t e r m s a r e both o(-s/λn^An$)en5. The contribution from the leading term

eWsexp( — λn$(x — A2)2) is {y/π/2)ensλ~s

112. Replace en$ by dns for the denominator
in both of these results. Since λn shrinks by a factor of approximately L~2 in every
step after g2 approaches near to the fixed point, while An increases only by a factor
of L, we see that the r and ίx terms also do not contribute in the infinite volume
limit. So, for A large enough, these remainders are smaller than the ones we already
have, and, by inserting (7.3) and (7.2) into (7.4), we see

We now take the limits as N, and then z, tend to oo, which clearly exist. In order to
get the expression in the final form given in Theorem 1.1, we must relate nγ to β0.
We do this by noting that, by definition, βnι = O(λ2J = O(nϊ2). Hence
«! = — Ulogβo + 0(loglog/?o)> and inserting this into (7.5) yields the desired
result.

A. Appendix

Proof of Lemma 4.3. The only part that does not follow immediately from what we
have already done is part (v). For simplicity we handle only the most delicate case
of t = 1. Write g2 = g2

n\ g'2 = g{

2"
 + 1\ and let σ = \φ\ - A. Define

/

(this is a purely Bosonic integral). From Lemma 4.1, part (ii), we see that if we show

that

-g^(l+cA)σ2 Uθ(l), (A.2)
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then (4.3) will follow. We consider first the case of g2 ^ λ1/4. A calculation shows
that (shift ζ-*ζ-φ)

0 ( 1 ) Λ y w ) - 1 \φ\ + ag2A\ ( - ag2 2

= N [ί(yWr1+ocg2r
i2ΓXP\ί+ag2yW

σ

Insert this in (A.2) and consider the coefficient of σ 2

1 + ocg2yw L w

_ g2(a — ocr + ocg2yw(l - a') + cλ(ccf + cca'g2yw))

(1 +ag2yw){\ + g2yw)

+ {a'IL2w2)O{g2/A){\+cλ).

We note that the cλ and O(g2/A) terms will always be dominated by the first two,
and that in the region of small g2 (which we are now considering), we have
α — α' > αg2yw(l — α'). We consider the two regions of small and large σ2 separ-
ately.

In the region σ2 > A2ε/(g2(oc — α')), with some ε > 0 chosen small enough
below, the exp( — g2(oc — α')σ2) dominates the powers in front and we have the
desired bound.

Now consider the small-field region of σ2 ^ A2ε/(g2(oc — a')). We define σ, π by
ζ = σφ + πiφ, and

( f l if \σ\, \π\<Aε'

\ 0 otherwise

with ε' > ε. Insert χ + χc inside the integral (A.I), writing / = Iχ + Ic. We can
estimate Γ simply by bounding the exponential inside by 1 and using §dμγwχ

c g
exp( - 0{A2ε')). Also,

/ a'/7Λ \

P Y 1 Λ _L^2L(\ I r7\rr2 \ < (±vrs( 7 ~ O(δ/logL) λ2ε\

\L2w )

so by choosing L large enough we can get the requisite bound.
We are left with the F term. For this we define

(\φ -f ζ\ - A)2
 Ξ E(σ + σ,π) + (σ + σ)2

or, in a more convenient form,

E(σ + σ,π) = {IA + σ + σ) 2 + π 2 ] 1 / 2 - 4̂ + σ + σ)

x ([A + σ + σ) 2 + π 2 ] 1 / 2 - A - σ - σ)

= £ i ( σ + σ,π)E2(σ + σ,π) .

We now perform a shift σ -> σ — α^27w£σ, with £ = (1 -f 0Lg2ywyl. Then

_ α ^ σ 2 1

~ e 2 ϊv'
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Now, it is not hard to see that

IfiiCfiσ + σ,π)\ £ 0(Aεlg2(oc - α ' ) Γ 1 / 2 ) ,

where to get the bound on E2 it is helpful to note that A + 2σ

A + σ + O(g2)σ = \φ\ + O(g2)σ, and | φ | ^ 0. Putting these together,

σ + σ,π)| ^

where we have chosen ε, ε' small enough, and L large enough. Finally,

which completes the proof for g2 ^ λ1/4.

Next consider the region A1/4 < g2 S λδ/logL. We keep the same definition of the

large-field region of σ2. The same arguments imply smallness of the large-σ2 region

as well as the Γ term. For Iχ we use a new argument, namely we expand

E(2σ + σ,π) in a power series in (fiσ + σ)/A, π/A. In this region, we find

Ά:

for some ε" > 0, with ε, ε' small enough and L large enough. This, as before, gives us

the bound.

Finally let g2 > λδ/lnL. Here we redefine the large/small-σ2 boundary to be at

A2ε/g2, since now the decay comes from the (xg2yw(l — α') term. Simple arguments

like the ones above now yield the desired bounds.
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