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Abstract. We construct and study compact quantum groups from free products
of C*-algebras. In this connection, we discover two mysterious classes of natural
compact quantum groups, Au(m) and A0(m). The Au(mYs (respectively A0(mYs)
are non-isomorphic to each other for different m's, and are not obtainable by the
ordinary quantization method. We also clarify some basic concepts in the theory of
compact quantum groups.

1. Introduction

In this paper, we give general constructions of quantum groups from free products
of C*-algebras. Surprisingly, two mysterious classes of compact matrix quantum
groups, Au(m) and A0(m), naturally arise in this connection. The quantum groups
constructed in this paper are of very different nature from the ones constructed by
Woronowicz [50, 52], and the ones studied in [41, 38, 35, 18, 19] and [16] based
respectively on the construction of Drinfeld and Jimbo [5, 6, 10] and the construction
of Manin [22, 21] - the quantum groups in this paper are not obtainable by the
quantization method.

The origin of quantum groups goes back at least to the early sixties. They were
called ring groups by Kac when he used them to generalize the Pontryagin duality
to locally compact groups [11]. The ring groups are also called Kac algebras. These
are certain Hopf von Neumann algebras with a very beautiful theory (see [14, 7,
8]). But there are very few non-trivial known examples of Kac algebras that are
not groups (see [12, 13, 20]), their constructions are highly technical. The first
nontrivial example of these were constructed about thirty years ago by quantization
of the Heisenberg Lie group [12]. This example was studied more recently at the
C*-algebra level independently by Rieffel [30] and Van Daele [42].

Recently, motivated by the work of the Faddeev school on the quantum inverse
scattering method (QISM), Drinfeld and Jimbo [5, 6, 10] constructed a remarkable
class of Hopf algebras from the universal enveloping algebras of semisimple Lie
algebras using the method of quantization, thus realizing the ideas proposed by Kac
and Palyutkin [12]. These examples have since been intensively studied and have
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surprising applications in low dimension topology and physics. The approach of
Drinfeld and Jimbo can be termed the approach of quantum infinitesimal groups.
This was soon followed by the approach of Faddeev and Reshetikhin and Takhtajan
[9], in which the authors introduced the Hopf algebras of "algebraic functions on
simple quantum Lie groups" by using the main RTT algebraic relations in QISM.
Manin developed an approach to quantum groups based on the general study of
quadratic algebras [22, 21], in which the quantum groups are described as symmetry
objects of quantum spaces. The two latter approaches are dual to that of Drinfeld
and Jimbo in a certain sense, and may be termed as the approach of quantum
algebraic (Lie) groups. A defect with these three purely algebraic approaches is
that there is no axiomatic definition of a quantum group.

On the other hand, motivated by the theory of non-commutative differential geo-
metry of Connes [4], Woronowicz at the same time (in fact, he started the program
in 1979 [49]) independently constructed the first examples of non-commutative dif-
ferential geometric groups [50] and laid down the foundation for compact matrix
quantum groups [51] via an axiomatic approach, using the C*-algebra language,
which is more appropriate than the von Neumann algebra language used in Kac
algebras. The quantum groups constructed by Woronowicz are known to be es-
sentially the same as those constructed by Drinfeld and Jimbo [34, 35, 41]. The
representation theory of compact quantum groups gives satisfactory inteφretation of
the long mystery of the ^-analogues of certain special functions [41, 17, 23]. But
there are also a few defects with Woronowicz's approach as developed in [51]. One
of these is that it was not clear how to define moφhisms from one compact matrix
quantum group to another ([51] p. 617) so that the compact matrix quantum groups
would form a category such that the category of compact matrix groups sits therein
as a full subcategory. Another defect with [51] is that there was no definition of
compact quantum groups such that the compact groups, in addition to the compact
matrix quantum groups, are examples of them. (But see [54].)

More recently, generalizing the Kac-Takesaki unitary operators for locally com-
pact groups, Baaj and Skandalis [2, 37] axiomatized the notion of multiplicative uni-
tary operators and developed a very beautiful and deep theory for them: the points
of view of Kac and Woronowicz are unified in their approach. They introduced
the so-called Woronowicz C*-algebras and proved that Woronowicz C*-algebras
are essentially the same as the compact-type multiplicative unitaries. As pointed
out in the introduction of their paper, a multiplicative unitary should be viewed
as a quantum group. But the moφhisms between multiplicative unitaries are not
defined in [2, 37], and so the multiplicative unitaries are not made into a category
either. Therefore Theorem 2.2 of their paper [2] does not give a true Gelfand-
Naimark type duality, due to this defect and the multiplicity occurring in the
theorem.

The puφoses of this paper are to clarify some of the basic concepts in the theory
of compact quantum groups mentioned above and to give general constructions of
compact quantum groups of a different nature from ones constructed so far. We
now summarize the main results of this paper.

Section 2 of this paper is devoted to clarification of the following concepts in
the theory of compact quantum groups: compact quantum groups as opposed to
compact matrix quantum groups [51] (see also [54] for this), moφhisms between
compact quantum groups, quantum subgroups, normal quantum subgroups and quo-
tient quantum groups. The main justifications for our definitions of these concepts
are that they coincide with the corresponding ones in group theory when they are
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applied to compact groups, and that there is a nontrivial beautiful theory for the
more general case of quantum groups.

The main result in Sect. 3 is that the free product of compact quantum groups
(i.e. Woronowicz C*-algebras) is again a compact quantum group. This construction
of compact quantum groups is the fundamental one for the other constructions
considered in this paper and elsewhere (see [45, 46]). It is stated more precisely as
follows (see Theorems 3.4, 3.8, 3.10).

1.1. Theorem. Let A and B be Woronowicz C*-algebras. Then there is a unique
structure of a Woronowicz C*-algebra on the free product A * B such that A and
B sit therein as Woronowicz C*-subalgebras, where the free product C* -algebra
A * B is amalgamated over the complex numbers.

Let hA and hβ be the normalised Haar measures on the quantum groups of
A and B respectively. Denote by {u7} and {ί/} the complete sets of irreducible
representations of the quantum groups of A and B respectively. Then the Haar
measure for the quantum group of A * B is the free product h^ * hβ, and a
complete set of mutually inequivalent irreducible representations of the quantum
group of A * B is given by the set consisting of the trivial representation together
with the collection of interior tensor product representations of the form

Wn 0 ι n W'2 ®ιn ®//7 Wy" ,

where wy> is a nontrivial representation belonging to either {uy} or {v^}, and wyι

and w7ι+ι are in different sets.

The universal noncommutative unitary algebras Unc(m) of Brown [3] are defined
in connection with the study of free products of C*-algebras. There is a natural
coproduct on them. However, this coproduct does not define the structure of a
compact quantum group (see Sect. 4.1). Surprisingly, we obtain two infinite classes
of nontrivial compact matrix quantum groups from these algebras if we impose the
appropriate additional commutation relations (see Sect. 4.2 and 4.5):

1.2. Theorem. Let m be a natural number greater than one. Let Au(m) be the
universal C*-algebra generated by m2 elements aυ subject to the relations

m m

Σ aik^jk = δu > Σ atiakj = δtJ ,
k=\ k=\

m m

Σaki4j = δij > Σa*kaik = δij
k=\ k=\

for ij = l,...,m. Then Au(m) is a compact matrix quantum group. For m ή= n,
Au(m) and Au(n) are non-isomorphic to each other as C*-algebras, and therefore
non-isomorphic to each other as quantum groups.

Similarly, let A0(m) be the universal C*-algebra generated by m2 elements aυ

subject to the relations

k=\ k=\

for ij — l,...,m. Then A0{m) is a compact matrix quantum group. For m φ n,
A0(m) and A0(n) are non-isomorphic to each other as O -algebras, and therefore
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non-isomorphic to each other as quantum groups. Furthermore, the quantum group
A0(m) is a quantum subgroup of Au(m).

The proof of the above theorem uses the free products of C*-algebras. The
quantum groups Λu{m) and A0(m) are the universal analogues of the unitary and
orthogonal groups respectively, and seem to be the first infinite quantum groups not
obtainable by the ordinary quantization method.

Further applications of the free product construction of quantum groups are
considered in our paper [46], in which we study compact quantum groups from the
maximal and minimal tensor products and crossed products of C*-algebras.

We remark that the obvious purely algebraic versions of Theorems 1.1. and
1.2 are still valid, which to the best of our knowledge have not appeared in the
algebra literature.

This paper is culled from the first chapter and Sect. 2 of the second chapter
of the author's thesis [45] submitted to the University of California at Berkeley in
partial fulfillment for the Ph.D. degree. It is a pleasure of the author to record here
his thanks to E. Effros, for catching a blunder of the author concerning Brown's
universal non-commutative unitary algebras in an early version of this paper that
lead the author to a more careful investigation of the related matters; N.C Phillips,
for some fruitful conversations and communications; S. L. Woronowicz, for commu-
nicating to him a unitary matrix that is used in this paper to prove the non-existence
of Woronowicz C*-algebra structure on the universal non-commutative unitary al-
gebras, whose fundamental papers on the theory of quantum groups have inspired
the author tremendously. Most of all, the author would like to express his deep
gratitude to his supervisor Professor Marc Rieffel, for suggesting that he work on
the subject of quantum groups, and for constant mathematical and moral support
throughout the preparation of this work.

The author thanks the referee for pointing out references [19, 39].

2. The Category of Compact Quantum Groups

This section serves to clarify some basic concepts in the theory of compact quan-
tum groups and to fix some notation. The reader is cautioned that some of the
corresponding concepts defined in the purely algebraic context (e.g. [25]) are in-
appropriate for compact quantum groups. We omit detailed proofs of the results in
this section (except Theorem 2.11), for which the reader is referred to the author's
dissertation [45].

For every natural number d, and any *-algebra A, Md(A) denotes the *-algebra
Md ®A of d x d matrices with entries in A. We use spatial a C*-tensor product
for all C*-algebras considered in this paper unless otherwise specified.

2.1. Definition, cf. [51, 2]) A Woronowicz C*-algebra is a unital C*-algebra A
together with a dense *-subalgebra s$ generated by ufj (where αGiV and i,j 6
{l,...,rfα}, and N is an index set), a C*-homomorphism Φ : A —> A ®A, and a
linear algebra-antihomomorphism K : stf —> J / , such that,

(1) The matrix ua — (M? ) is a unitary element of Mda §§ A, for all α £ N\

(2) For aeN, and i,j e {1,.. .,<*«}, Φ(«*) = £*=i u% Θ uf) = £ * = i u% Θ ufy,

(3) For a £ s^,κ(κ(a*)*) = a, and for a € N,(id ® κ)(ua) = (ua)~\
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We denote the above Woronowicz C*-algebra by (A,.stf, Φ, K) or (A,Φ), or sim-
ply A. A Woronowicz C*-algebra A is called commutative if its underlying C*-
algebra is commutative; it is called cocommutative if σΦ = Φ, where σ is the flip
map on A 0 A sending x 0 y to y & x for x, y £ A.

Modifying the definition in [53], we have the following equivalent Definition 2.1'.

2.17. Definition. A Woronowicz C*-algebra is a unital C*-algebra A together with
a dense *-subalgebra s$ generated by ua

}] (where <x e N and ij e {\,...,dy}, and
N is an index set), a C*-homomorphism Φ : A — > A ® A, such that,

(V) The matrix uJ — (uJ

X]) is a unitary element of M^y ®A, for all α (Ξ N;

(2') For xeN, and ij e {\,...,dy},Φ(ufj) = ΣtU Wιk ® u*ki;

(3') For α G N, the transpose (w α ) r is inυertible.

Recently, we received a preprint of Woronowicz [54], in which it is shown that
Definition 2.1 is also equivalent to the following Definition 2.1 / /.

2.1". Definition. A Woronowicz C*-algebra is a unital C*-algebra A together with
a C* -homomorphism Φ : A —> A® A, such that,

(lf/) The map Φ is coassodative, namely, {id 0 Φ)Φ = (Φ 0 id)Φ;
{!") The linear subsets

and

are both dense in A®A.

2.2. Remarks.(I) The terminology "Woronowicz C*-algebra" is introduced in [2]
to honor Woronowicz for his fundamental contributions to the theory of compact
quantum groups [50-52]. For a Woronowicz C*-algebra A defined above, it can be
proved that the canonical dense *-subalgebra j / is a Hopf *-algebra, that there is a
unique Haar state (or measure) [54, 43], and that Woronowicz's Peter-Weyl theory
(see Sect. 4 and 5 of [51]) is still valid, as in the case of a compact matrix quantum
group [51]. We will use these results in the present paper without explanation.

(2) Note that Woronowicz [54] assumes the C*-algebra A in Definition 2.1" to
be separable. The separability condition is removed in an ingenious recent paper of
Van Daele [43].

(3) If we change the requirement that (uf ) be unitary matrices to the requirement
that (uy

l}) be invertible matrices in Definition 2.1, we obtain an equivalent definition.
(One may see this from [51].)

2.3. Definition. A morphism from a Woronowicz C*-algebra A\ to another A2 is
a unital Cλ-morphism π : A\ —> A2 such that

(π 0 π)Φ\ = Φ2π .

The Woronowicz C*-algebras form a category under these morphisms.
The category of compact quantum groups is defined to be the dual category of

the category of Woronowicz C*-algebras. For each Woronowicz C*-algebra. A, the
corresponding compact quantum group will be called the compact quantum group
of A, and will be denoted by GA (we will also call A a compact quantum group,
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referring to the object GΛ). Conversely, if G is a compact quantum group, the
corresponding Woronowicz C* -algebra will be called the Woronowicz C*-algebra
of G, and will be denoted by AQ.

A compact matrix quantum group [51] is defined to be the dual object
of a Woronowicz C*-algebra (A,s/,Φ,κ) such that the set TV (see Definition
2.1) is a singleton. A compact quantum group will also be denoted (A,u), as
in [51]. The morphisms between compact matrix quantum groups are defined
to be the morphisms coming from the underlying Woronowicz C*-algebras. It
is clear that compact matrix quantum groups form a category under these
morphisms.

A compact quantum group GA is said to be connected if the center of the C*-
algebra A has no projections other than zero and the identity; it is called extremely
connected if the C*-algebra A is noncommutative and has no projections other than
zero and the identity; it is called finite if A is finite dimensional. Note that a finite
quantum group GA whose algebra A is commutative is precisely a finite group. (Use
Theorem 2.6 to see these!)

2.4. Definition Let A be a Woronowicz C*-algebra, H a Hίlbert space (not nec-
essarily finite-dimensional) and Jf — Jf(H) the C*-algebra of compact operators
on H. An invertible element u of the multiplier C*-algebra Af(JΓ <g) A) is called a
representation of GA (or a corepresentation of A) if

(id 0 Φ)υ = ϋi2«i3 ,

where Ό\2 and υ^ are the leg numbering notation of [27] (see p.385 there). A
representation v is called unitary if υ is an unitary element of Λf(Jf (g) A). One
may also define the notions of subrepresentatίons, direct sum of representations,
interior tensor product representations, and irreducible representations.

Part (2) of the following proposition means that C*-algebra morphisms be-
tween Woronowicz C* -algebras preserving the coproducts automatically preserve
the counits and antipodes (coinverses), which is not true for general Hopf algebras.
Geometrically, it says that homomorphisms of (compact) quantum groups preserve
the identities and inverses.

2.5. Proposition. Let π : A —• B be a morphism of Woronowicz C*-algebras.
Then we have

(1) For every unitary representation (u,H) of GA,(id 0 π)u is a unitary rep-
resentation of GB

(2) π preserves the Hopf * -algebra structures. Namely, we have

C $, KKA

where for instance, eA means the counit on $0.

The next theorem is the analogue of Gelfand-Naimark duality for commutative
Woronowicz C*-algebras.

2.6. Theorem. Let G be a compact group. Let A = C(G) be the algebra of contin-
uous functions on G, and let s$ — stf(G) be the algebra of representative functions
on G generated by the coefficients of a complete set G = {(w^)} of irreducible
unitary representations. Define Φ by

Φ(a)(s,t) = a(st)
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for all a G C{G). This defines a Woronowicz C* -algebra structure on A, denoted
by W{G).

Conversely, let A be a commutative Woronowicz C*-algebra endowed with a
coproduct Φ. Denoted by H{A) the Gelfand spectrum of A with the following
product structure:

xxf = (χ®χ')Φ,x>x' eH{A).

Then H(A) is a compact group.
Furthermore, W and H defined above are duality functors inverse to each

other.
The following is the quantum analogue of the solution of the Hubert 5 problem

for compact Lie groups [24].

2.7. Theorem. Let G = GA be a compact quantum group. Then the following are
equivalent:

(1) The quantum group G is isomorphίc to a compact matrix quantum group;
(2) The algebra s$ is finitely generated',
(3) The quantum group G has a faithful finite dimensional representation.

Therefore, the category of compact matrix quantum groups is antiequivalent to
the category of finitely generated Woronowicz C*-algebras.

In view of Theorems 2.6 and 2.7, we have the following result.

2.8. Theorem. The category of compact Lie groups is antiequivalent to the cat-
egory of finitely generated commutative Woronowicz C* -algebras. Therefore the
category of compact matrix quantum groups includes the category of compact Lie
groups as a full subcategory.

2.9. Definition. A Woronowicz C*-ideal of a Woronowicz C*-algebra A is a C*-
ideal J of A such that Φ{J) C ker(π 0 π), where π is the quotient map from A to

A/J.

Note that for any closed ideal J of a C*-algebra A, We have

J &A+A&J C ker(π 0 π) .
A Woronowicz C*-subalgebra of (A,J?/,Φ,K) is defined to be a Woronow-

icz Hopf C*-algebra (B,$,Φ',κ!) together with an injective morphism B —> A
of Woronowicz C* -algebras. Note that A and the scalars are both Woronowicz
C*-subalgebras of A, which will be called the trivial Woronowicz C*-subalgebras
of A.

2.10. Remarks. Recall that a Hopf algebra ideal / of a Hopf algebra (A,m,A, /, ε, S)
is an ideal of the underlying algebra A that satisfies the additional conditions

4 ( / ) C / 0 Λ + Λ [ 0 / , S(I)CI, ε(/) = 0.

However as a bonus of the axioms of Woronowicz C*-algebras, we have automati-
cally κ(J) C J and e(J) = 0 for a Woronowicz C*-ideal J of any finite dimensional
Woronowicz C*-algebra A, where e and K are respectively the counit and antipode
of the Woronowicz C*-algebra A.

2.11. Theorem. {The Fundamental Isomorphism Theorem)
(1) The quotient of a Woronowicz C*-algebra by a Woronowicz C*-ideal

has a unique Woronowicz C* -algebra structure such that the quotient map is a
morphism of Woronowicz C*-algebras.
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(2) For every morphism θ : A —> B of Woronowicz C*-algebras, the kernel
of θ is a Woronowicz C*-ideal The image of θ is a Woronowicz C*-algebra
isomorphic to the quotient Woronowicz C*-algebra A/ker(θ) as defined in (1).
Furthermore, this image is a Woronowicz C* -sub algebra of B.

(3) Let θ be the morphism in (2) above. If J C ker(θ), then there is a unique
morphism of Woronowicz C*-algebras θ : A/J —> B such that θπ = θ, where π is
the quotient map from A to A/J.

Proof (1) Let A be the quotient A/J. Define Φ^ by

ΦA(ά) = (π<S> π)Φ(a) ,

where a = π(a) for a G A. It can be checked that Φχ is well-defined. Let u1 be
as in Definition 2.V. Put w? = π(ι/*) One may check the conditions (l /)-(3 /) of
Definition 2.1' for A. Thus A is a Woronowicz C*-algebra. The fact that π is
a morphism of Woronowicz C*-algebras is immediate from the definition of the
Woronowicz C*-algebra structure on A.

The uniqueness part is clear.

(2) Let J = ker(θ). Define an isomorphism of C*-algebras p from A/J to Θ(A)
by

p(ά) = θ(a)

for a G A. This is the same thing as pπ = θ. Under this isomorphism, the quotient
map π : A —> A is identified with the map θ : A —> Θ(A). At this point we still do
not know yet whether J is a Woronowicz C*-ideal or not. But the identification p
helps us to see this. Since θ is a morphism of Woronowicz C*-algebras, we have

(θ ® θ)ΦA(a) = ΦBθ(a) .

Thus we have
(π <g> π)ΦA(a) = (p~ι 0 p~ι)ΦBθ(a) .

In particular, if cGJ, then ΦA(C) G ker(π ® π). From these, together with (1),
we see that the first two statements of (2) are true and the isomorphism p is an
isomorphism of Woronowicz C*-algebras from A onto Θ(A). The above also shows
that the coproduct on A is given by Φ^ = (p~ι 0 ρ~ι)ΦBp.

We show the last statement of (2). The above shows that the image Θ(A) is a
Woronowicz C*-algebra if we restrict the coproduct ΦB to it. Let i be the natural
injection from Θ(A) to B. Then we see that Θ(A) is indeed a Woronowicz C*-
subalgebra of B.

(3) Straightforward. Q.E.D.

The following result is immediate from 2.11 and 2.6.

2.12. Proposition. Let G be a compact group. Then we have the following natural
one to one correspondences:

(1) The closed subgroups of G correspond to the quotients of W(G) by its
Woronowicz C*-ideals;

(2) The quotient groups of G by its closed normal subgroups correspond to
the Woronowicz C*-subalgebras of W{G).

The following definition is natural in view of the theorem above.

2.13. Definition. A compact quantum G' is called a quantum subgroup of another
compact quantum group GA if there is a Woronowicz C*-ideal J of A such that



Free Products of Compact Quantum Groups 679

G' is the quantum group ofA/J. If there is a surjective morphism of Woronowicz
C* -algebras A —>• B, then we say Gβ is an embedded quantum subgroup of GA.

An embedded quantum subgroup of a quantum group G is isomorphic to a
quantum subgroup of G. We use the terminology quantum subgroup to mean that it
is a "subset" of the (quantum) space G. If no confusions arise, we do not distinguish
these two concepts.

Recently Podles [26] also formulates a notion of quantum subgroups of compact
matrix quantum groups (see his Definition 1.3). It is easy to see that his definition
coincides with our notion of embedded quantum subgroups if we specialize to
compact matrix quantum groups, even though he imposes condition on the "sizes"
of the compact matrix quantum groups in the definition.

Let N be a quantum subgroup of some compact quantum group G = GA, with
θ : A —> AN the quotient map. We say that N is a normal quantum subgroup
of G if for every irreducible representation v of G, the multiplicity of the trivial
representation of N in the representation (id ® θ)v is either zero or the dimension
of υ. Let N be normal in GA. Let N\G be the right quotient space [26] defined via
the C*-subalgebra

C(N\G) = {xeA:(θ® id)ΦA(x) = / <g> *} .

Then by 2.17 and the remarks preceding Theorem 1.7 in [26] we see that N\G is
also a compact quantum group (namely, C(N\G) is a Woronowicz C*-subalgebra
of A), which will be called the right quotient (or factor) quantum group of G by N.
Using Podles' left quotient spaces, we can also define the notion of left quotient
quantum group. In general, a right quotient quantum group is different from the
corresponding left quotient quantum group.

Note that for every compact quantum group G = GA, the group G is a normal
quantum subgroup of G, and the one element group is also one such if (and only
if) the counit of A is continuous. They will be called the trivial normal quantum
subgroups. A compact quantum group is called simple if it has no non-trivial normal
quantum subgroups.

2.14. Theorem and Definition. Let A be a Woronowicz C* -algebra such that the
space X(A) of nonzero *-homomorphisms from A to the algebra C of complex
numbers is nonempty. Then X(A) is a compact subgroup of the quantum group
GA with the property that every compact subgroup H of GA is a subgroup of
X(A). If the Woronowicz C* -algebra A is finited generated, then this subgroup
is a compact Lie group. The group X(A) will be called the maximal compact
subgroup of GA

For the computation of the maximal compact subgroups of SUq(2% see Po-
dles [26]; for the computations of maximal compact subgroups of other nontrivial
compact quantum groups, see Sect. 4 below.

3. The Free Products

In this section, we shall make use of the results on compact matrix quantum groups
in [51] as modified(!) to the more general case of compact quantum groups without
further explanation (see the remarks in 2.2.(1)).
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We first construct the Woronowicz C* -algebra structure on the free product of
two Woronowicz C*-algebras.

General Constructions

For later use, we prove a few simple results on the inductive limits of Woronowicz
C*-algebras. For generalities on inductive limits (also called direct limits) of C*-
algebras, see the books of Kadison and Ringrose [15] and Sakai [36].

3.1. Proposition. Let Aχ be an inductive family of Woronowicz C*-algebras, where
the connecting morphίsms πχ/χfrom Aχ to Aλ/(λ < λ') are injectίve morphίsms of
Woronowicz C*-algebras and the set of the λ's is countable. Then the inductive
limit A = l i m ; ^ has a unique Woronowicz C*-algebra structure with the following
property: For every Woronowicz C* -algebra C and any family of morphisms

φχ : Aλ —> C

of Woronowicz C*-algebras such that φχ/nχ/χ = φχ, the uniquely defined morphism
limχφχ in the category of unital C*-algebras is a morphism in the category of
Woronowicz C* -algebras.

Proof Let πχ be the canonical injection from Aχ into A such that πχ = π /π;/;, for
λ < λ'. Define

Φ:πλ(Aλ)—>A®A

by Φ = (πχ <g) πχ)ΦχπJι. Using the coherences of πχ and πλ/χ, it is straightforward
to check that Φ is a well-defined bounded *-morphism from the dense *-subalgebra
Uπχ(Aχ) (where the union is taken over the set of the indices A's) of A to A ®
A. Therefore Φ extends to a bounded C*-morphism from A to A (&A. It is also
straightforward to check the axioms of Definition 2.V'.

For the uniqueness part of the theorem, it suffices to observe that (Aχ,πχ) is a
Woronowicz C*-subalgebra of the Woronowicz C*-algebra lim;L Aχ defined above.
This completes the proof. Q.E.D.

Recall that the underlying C*-algebras of finite dimensional Woronowicz C*-
algebras (i.e. finite quantum groups) are direct sums of matrix algebras. We call the
Woronowicz C*-algebras obtained by taking inductive limits of finite dimensional
ones Woronowicz AF-algebras. By taking the trivial inductive systems, we see that
Woronowicz AF-algebras contains all finite dimensional Woronowicz C* -algebras
and therefore the function algebras and the group C*-algebras of all finite groups.
The AF-algebras are completely classified by their K-theory. But this is no longer
true for the Woronowicz AF-algebras. Thus the classification of the Woronowicz
AF-algebras is not only a C*-algebra theoretic problem, but also a (quantum) group
theoretic problem.

We now determine the Haar state on the inductive limit of Aχ. For this we
need a lemma. Recall that for continuous functionals φ and ψ o n a Woronowicz
C* -algebra A with coproduct Φ (or functionals φ and φ on the dense subalgebra
J / of A), the convolution φ * φ is defined by

φ * ψ = (φ (g> ψ)φ .

see formula (1.50) of [51].

3.2. Lemma. Let i: A —> B be an injective morphism of Woronowicz C*-algebras.
Then the Haar state on A is the Restriction of that B to A.

Proof Use Theorem 4.2.2 of [51] and the Hahn-Banach Theorem. Q.E.D.
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Note that the above lemma contains the following well-known result: Let π
be a surjective homomorphism from a compact group G to another G'. Then the
normalized Haar measure on G' is equal to the push-forward of the Haar measure
on G under π*.

We go back to the question of the Haar state on A considered in 3.1. Let hA

be the Haar state on Aχ. Since π;/;, is injective for each pair λ < λ', by the above
lemma we have h>jπλιλ = hχ. Thus the inductive limit lim hχ exists (see Sakai [36]).

3.3. Proposition. Under the hypotheses of 3.1, the Haar state on A is equal to
the inductive limit Ximχhχ.

Proof. Apply 3.2 and the uniqueness of inductive limit of states Q.E.D.

Now we turn to the free products. For generalities on free products see A vitzour
[1], Brown [3] and Voiculescu [44]. For unital C*-algebras A and B, the notation
A * B will mean the C* -algebra free product of A and B amalgamated over the
scalars, and A*DB will mean the C*-algebra free product of A and B amalgamated
over D if D is a C*-subalgebra of both A and B.

3.4. Theorem. Let A and B be Woronowicz C*-algebras. Let D be a Woronowicz
C*-subalgebra of both A and B with embeddings j A and j B respectively. Then the
free product C*-algebra A *$ B has a unique Woronowicz C*-algebra structure
with the following properties: The canonical injections

iA : A —> A *£> B and iB : B —> A *$ B

are morphisms of Woronowicz C*-algebras; and for every Woronowicz C* -algebra
C and any morphisms

KA : A —> C and πB : B —> C

of Woronowicz C*-algebras such that πAjΆ — KBJB, the uniquely defined morphism
KΛ *£> KB in the category of unital C*-algebras is a morphism in the category of
Woronowicz C* -algebras.

Proof. The main difficulty is to define the coproduct on A *# B. Note that we cannot
naively take it to be ΦA *r> ΦB because the target of ΦA *D ΦB is (A 0 A) *D®D (B <S>
B) instead of the desired algebra (A *# B) (g) (A */> B). To fix this, let

IA : A — > A *D B and iβ : B —> A *$ B

be the canonical injections. Then iAjA = iBjB from the definition of A * D B.
Put

PA = (IA 0 IA)ΦA and pB = (iB 0 ΪB)ΦB ,

where
iA ®iA :A®A — > (A *D B) 0 (A *D B)

and
iβ^iβ .B^B —> {A *D B) 0 (A * D B)

are defined as in Proposition IV 4.22 of Takesaki [40]. Then we have pAjA = pBjB

according to the assumption that j A and j B are morphisms of Woronowicz C*-
algebras. Thus by the universal property of A *£> B, there is a well-defined map

Φ : A *D B -> (A *D B) 0 (A * D B)

such that ΦiA = pA and ΦiB = pB.
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Put E = A*DB. Assume that {w*.} are the generators of stf and {v^} are the

generators of ^ . Then the *-subalgebra of E generated by the Z'Λ(W?)'S and I#(DJ^)'S

is clearly dense in E. The conditions (1')—(3') of Definition 2.1' are also easily

checked. Thus £ together with the above Φ is a Woronowicz C*-algebra, and the

canonical injections iAJβ are morphisms of Woronowicz C*-algebras.
Let C be any other Woronowicz C* -algebra, and

πA : v4 —• C and πB : B -* C

be morphisms of Woronowicz C*-algebras such that 7^/4 = π#/£. Then the uniquely
defined morphism πA *D π# in the category of unital C*-algebras is a morphism
in the category of Woronowicz C*-algebras when restricted to ΪA(A) and iβ(B).
Since iA(A) and iβ(B) generate A *D B as a C*-algebra, πA *z) πB is a morphism of
Woronowicz C*-algebra.

To show the uniqueness part of the theorem, let (E,Φf) be another Woronowicz
C*-algebra structure on E with the property specified in the theorem, where E
denotes the algebra A*r>B. Consider the canonical embeddings iA and iB of A
and B into (E,Φ). Since they are morphisms of Woronowicz C*-algebras, the
uniquely defined C*-algebra morphism iA *# iβ from E to E is a morphism from
the Woronowicz C*-algebra (E,Φf) to the Woronowicz C*-algebra (E,Φ). But
it is clear that iA * D iB is the identity map at the C*-algebra level. Therefore
Φ' = Φ. Q.E.D.

3.5. Corollary. Assume the conditions in 3.4. Let (D) be the closed ideal of A*B
generated by i'AJA{d) — i'BjB(d) with d in D, where i'A and iB are the canonical injec-
tions from A and B into A*B respectively. Then (D) is a Woronowicz C*-ideal,
and the Woronowicz C*-algebra (A * B)/{D) is isomorphic to the Woronowicz
C*-algebra A *# B.

Proof Let C = A*r>B. Consider the canonical injections

iA\A — v C and iB : B — > C .

From the definition of the Woronowicz C*-algebra structure on A*QB, both iA

and iβ are morphisms of Woronowicz C*-algebras. Then by Theorem 3.4, the
uniquely defined morphism iA * iβ from A * B to C is a morphism of Woronowicz
C*-algebras. It is clear from the definition of the free product of C*-algebras that
the kernel of this map is equal to (D). Now the corollary follows from Theorem
2.11. Q.E.D.

One can also prove the above corollary directly using the method employed in
the maximal tensor product and the crossed product (compare with sections 2 and
3 of [46]). We omit the details.

The following theorem provides an interesting method of constructing nontrivial
examples of compact matrix quantum groups.

3.6. Corollary. Let G = (A,u) and G' = (A',uf) be two compact matrix quantum
groups. Then the compact quantum group of A * A' has a structure of compact
matrix quantum group of the form {A *Af,u(& uf), where

'u 0
0 u'

and the coproduct of {A *A',u®u') is defined as in Theorem 3.4.

I M = 1 0
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Proof. It is clear that both υ and υτ are invertible, where Ό = u® u'. In view of
Definition 2.1' we only need to observe that the coefficients of the matrix υ = w Θ w'
generate si * si' as a *-algebra. Q.E.D.

3.7. Corollary. The free product of an arbitrary sequence of Woronowicz C*-
algebras has a natural Woronowicz C*-algebra structure.

Proof Apply 3.4 and 3.1. Q.E.D.

Haar Measure and Irreducible Representations

3.8. Theorem. Let A,B be Woronowicz C*-algebras. Then the Haar state on the
free product Woronowicz C* -algebra C — A * B is given by the free product h —
hA * hB.

More generally, if Aχ is an arbitrary family of Woronowicz C* -algebras
with Haar states hχ respectively, then the Haar state of *χAχ is given by
h = *λhλ.

Proof Let us first recall the definition of free product of states (see Avitzour
[1] or Voiculescu [44]). Let φ,φ be states on arbitrary C*-algebras A,B
respectively.

The free product state φ * φ on A * B is defined to be the unique state with the
property that it restricts to the states φ and φ and that

(φ*φ)(c{ - cn)= £ (φ * ψ)(ci)(φ * ψ)(cι • cr - cn)

- Σ (φ*φ)(ci)(φ*φ)(Cj)(φ*φ)(cl---Ci---Cj •••€„)

where the adjacent c/'s are elements of different algebras taken from A and B. In
particular,

(φ * φ)(cιc2) = (φ* φ)(c{)(φ * φ)(c2) .

The reader should be careful about the difference between the meaning of the
product φ * φ and that of the "convolution" in (1.50) of [51] (see also the end of
3.1)! Although we use the same symbol * for these two operations, it should not
cause confusion if we keep the context in mind.

To see that h = hA*hB is indeed the Haar state for C, we only need to check
c*h = h*c = h(c)I for all c £ ^ (see Theorem 4.2 of [51]). Since ^ is generated
by si and J>, and every element of si (resp. of £%) is a linear combination of a
finite number of elements ufj (resp. ukl\ we only need to check these equalities
for the products of elements w? and υkl. To simplify computation, let us use wj- to

denote w? or υkl, and agree that the adjacent elements of the product wj^ w]^jn

are taken from different algebras A,B. Without loss of generality, we can assume
that none of the wj^'s is the identity. Then using

ιkJk
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which follows from Theorem 5.7.4 of [51], we obtain

= 0.

Thus we have

= Y h(wn w7n W 1 w7"
Z_> n \ w ι ι r ι

 Winrn^
vvrιjι

 Wrnjn

r\ rn

= 0.

So we have shown that
v 1\J\ injn ' v l\J\ lnjnj

Exactly the same method gives

This proves the case of the free product of two Woronowicz C*-algebras.
Now the general case follows from this special case and Proposition 3.3. Q.E.D.

The next example shows the relation between the free product of discrete groups
and that of Woronowicz C*-algebras.

3.9. Example. (1) Let Γ be a discrete abelian group. Then the natural isomorphism

C*(Γ) = C(Γ) is an isomorphism of Woronowicz C*-algebras.
(2) Let Γi be discrete groups (i = 1,2). Then the natural isomorphism

is an isomorphism of Woronowicz C*-algebras.

Proof. Routine. Q.E.D.

This example serves to find the irreducible representations of the quantum group
of A *BΊ For general Woronowicz C*-algebras A and B, we can still do the fol-
lowing heuristic computation: Let Aι — C{Gι) be the Woronowicz C*-algebra of a
compact quantum group Gz(/ = 1,2) and G\ the complete set of irreducible repre-
sentations of G{. Then we have the "formula":

Ai*A2 = C(Gi) * C(G2) = C*(Gλ)* C*(G2) = C\GX * G2)

as Woronowicz C*-algebras, which is strictly correct for compact abelian groups by
the above example. For a general Woronowicz C*-algebra A = C(G) of a compact
quantum group G, the formula C(G) = C*(G) is part of the Tannaka-Krein duality
theorem for compact quantum groups (see [47] and [52]). The following theorem
answers the question of how we make sense out of the above "formula." If w\
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and W2 are representations of a compact quantum group, we will use w\ 0m W2 to
denote the interior tensor product representation of w\ by w2 (see p.632 of [51] as
well as [45, 46]).

3.10. Theorem. Let A and B be Woronowicz C*-algebras and {u*} and {ι/} the
complete sets of irreducible representations for the corresponding quantum groups
respectively. Then a complete set of mutually irreducible representations of the
quantum group for A * B consists of the trivial representation together with the
collection of representations of the form

W71 (g)m W'2 ®ιn <S>m W7" ,

where w7' is a nontrivial representation belonging to either {ua} or {[/} and w7'
and w7ι+ι are in different sets.

Proof First we note that as a consequence of the definition of the Woronowicz C* -
algebra A * B, each of wα and t/ can be viewed as a representation of the quantum
group of A * B. Thus each

w7] ® w w72 ®, Λ Θ/,7 w
7"

is a representation of this quantum group. Let w denote this representation. To show
that it is irreducible, we make use of Theorem 5.8 of [51].

Let h be the Haar state on A * B, and let χz be the character of the representation
w7t of the quantum group of A * B. Then the character of w is γjχ2 • χn (see [51]).

We assert that

KX\X2 lnXn+\y*n+a*n ' ' ' UX\) = KlMl ' ' ' XnXn ' ' ' XlX\)

for all n ^ 1. Since h(γΛγ\) = 1, this will imply

for all w ^ 1 and therefore w is irreducible by Theorem 5.8 of [51]. Without loss
of generality, we can assume that χι φ 1 for all ί. Since h(χι) = h(χf) = 0 by the
Peter-Weyl orthogonality relations (see Theorem 5.7.4 of [51]), the truthfulness of
the equality

KX\X2 • * XnXn+lXζ+iXn ' ' ' XlX\) = KX\Xl ' ' ' XnXn " ' ' XlX\)

is immediately seen from the definition of h given at the beginning of the proof of
Theorem 3.8.

Next we show that

w71 (g)//7 w
72 0 ί π 0 / π w7n and w'Ί 0 i n w7^ 0 / π <£);„ ivv

are inequivalent if (y\,j2, ? 7«)Φ(yp72' ' ' ' ') ;l/) ^ e t ^ ^ e t n e ^ e a s t n u m b e r no
greater than either of n and n' and such that yn-k^yf

n>_k Denoting by χ[ the

characters of w7', then again by the Peter-Weyl orthogonality relations and the
definition of h given at the beginning of the proof of Theorem 3.8 we have

KX[X2 X'n'Xn XΪXΪ) = KX[X2 ' ' ' Xn'-kXΪ-k ' ' ' XlXl) •

If w'n'-k and w7n~k are representations of different quantum groups, then we have
that

' * Xn-kXn-k ' ' ' XlX\) = KX\U ' iXn'-kXl-k)' ' ' XlXl) = °



686 S. Wang

by the same reasons; if w'n'-k and wΊn~k are representations of the same quantum
group, then we also have

= KXn>-kXn-k)h(x[X2 * * * Xn'-k-lXΪ-k-l ' ' ' XlX\) = °

Thus the above two representations are inequivalent by Theorem 5.8 of [51]. It is
also clear that the trivial representation is inequivalent to the representation

wyι ®in wn ®ιn ®in wy" .

Since the linear span of the coefficients of these representations is dense in
A*B, we conclude that they form a complete set of irreducible representations of
the quantum group of A * B by virtue of Theorem 5.7.4 of [51]. Q.E.D.

4. The compact Matrix Quantum Groups Au(m) and A0(m)

Comparing the notion of a compact matrix quantum group [51] with the construction
of Brown's universal non-commutative unitary algebras Unc(m) [3], one might think
the later are compact matrix quantum groups. But they are not:

4.1. Non-example. Let Unc(m) be Brown's [3] universal noncommutative C*-
algebra generated by the Ui/s subject to the relations that make (w,y) into an m x m
unitary matrix, where m is some positive integer ^ 1. Then it has a natural co-
product Φ defined by

because the element CΣ™=1 uιk ® ukj) of Mm(Unc(rn) (g) Unc(m)) is unitary. We show
that this Φ however does not define a Woronowicz C*-algebra structure on Unc(m).
If this defined a Woronowicz C*-algebra structure on Unc(m), in other words Unc(m)
were a compact matrix quantum group, then u = (UΪJ) would be a unitary represen-
tation of the quantum group, and so uτ would be invertible by 2.1' and Theorem
4.5 of [51]. We show that this is not the case.

Let u — (u'ij) be Woronowicz's unitary m x m matrix (with entries in the 2 x 2
scalar matrix algebra M2) defined by

where l2m-4 is the (2m - 4) x (2m - 4) unit scalar matrix and

o o j b = [ ι o j c = { o o j d = { o l
(The author is grateful to Professor Woronowicz for communicating to him the
2 x 2 matrix

c d

in answer to a question of the author on the second definition of compact matrix
quantum groups given in [53].) By the universal property of the algebra Unc(m),
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there exists a unital C*-algebra morphism π from Unc(m) into M2 that sends Uy to

u\y If Ό = (D^) is the inverse of uτ, then a direct computation shows that (π(uzy))

is the inverse of (V)Γ B u t a direct computation shows that (u')τ is not invertible.

Q.E.D.

Thus the C/ΠC(m)'s are compact quantum semigroups but not quantum groups,
and they are the universal ones in the sense that every compact matrix quantum
group is a quantum subsemigroup of one them (see the equivalent definition of a
compact matrix quantum group given in [53], see also Definition 2.1'). However,
we obtain two mysterious infinite classes of compact matrix quantum groups if we
impose correct additional commutation relations (see 4.2 and 4.5 below).

4.2. Example. Let m b e a natural number greater than 1. Let Au{m) be the universal
C*-algebra generated by m2 elements aυ subject to the relations

m m

Σaιka*k = διj9 Σ
k=\ k=\

j
k=\ k=\

for i,j = 1,... ,m. Then Au(m) is a non-commutative non-cocommutative Woronow-
icz C*-algebra, and so it is a compact matrix quantum group. For mφn,Au(m)
and Au(n) are non-isomorphic to each other as C*-algebras, and therefore non-
isomorphic to each other as Woronowicz C* -algebras.

Proof. First we remark that representations of the above relations are bounded by
1. Thus the C*-algebra Au(m) is well-defined.

By the universal property of Au(m)9 there exists a uniquely determined C*-
algebra homomorphism Φ from Au(m) to Au(m) <8>Au(m) such that

k=\

for i,j = l,...,m. From the commutation relations, it is straightforward to check
that both matrices (a^) and (atj)

τ are invertible. As a matter of fact, the inverse
of (atj) is (aυy, where the * denotes the involution of the C*-algebra Mm(Au(m))9

and the inverse of the transpose (a,y)r is ((α / y)
Γ)*. Therefore by Definition 2Λ',

Au{m) is a Woronwicz C*-algebra.
We determine the coinverse K of Au(m). Let c\j = α*, and let Au(m)° denote

the opposite C*-algebra of Au(m). Denote the product on Au{m)° by o. Then we
have

m m

Σcik ° c*k = δυ> Σct ° % = δφ
k=\ k=\

Σ 4j ϋ Σl j υ
k=l k=\

for i,j — l,...,m. Thus by the universal property of Au(m), there exists a uniquely
determined unital C*-algebra homomorphism K from Au(m) to Au(m)° such
that

κ{atj) = cυ =a*t

for ί,j = 1, , m. We note that the coidentity is also an everywhere defined character.
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We show that the Woronowicz C*-algebra Au(m) is non-commutative and non-
cocommutative. Since the entries of the m x m matrix ur := diag(z\,- ,zm) also
satisfy the communication relations for the ^/s , where T is the ordinary 1 x 1 uni-
tary group and zz is the generator of the C*-algebra Aι := C(T)9 there is a natural
surjective moφhism from Au(m) to the free product A\ * * Am by the universal
property of Au(m). Thus Au(m) is non-commutative. The noncocommutativity of
Au{m) follows immediately from the following lemma because C{U{m)) is nonco-
commutative, whose proof is straightforward and is omitted.

4.3. Lemma. The image of a cocommutative Woronowicz C*-algebra under a
morphism of Woronowicz C* -algebras is cocommutatίve.

Finally, we show that Au(m) and Au(n) are non-isomorphic to each other as
C*-algebras for mή=n.

We determine the space X(Au(m)) of nonzero *-homomorphisms from the al-
gebra Au(m) to the algebra C of complex numbers, which is the maximal compact
Lie subgroup of GA*(m) (see 2.14). For every u = (u^) e U(m), by the universal
property of the C*-algebra Au(m), there exists a unique C*-algebra morphism χu

from Au{m) onto the algebra C of complex numbers such that χu(aij) = Uij. Con-
versely for every χ in X(Au(m)), let u = {χ(aΊJ))\ then u G U(m) and it is easy to
see that χ = χu, where χu is defined as above. This shows that the space X(Au(m))
of nonzero homomorphisms from Au(m) to C is equal to U(m). It is easy to see that
under the weak*-topology of the Banach dual A*,X(Au(m)) and U(m) are home-
omorphic. The manifolds U(m) and U(n) are not homeomorphic to each other if
mφn because they have different dimensions. Hence the C*-algebras Au(m) and
Au(n) are not isomorphic if m + n. This completes the proof of the statements in
4.2. Q.E.D.

Note that we can also show directly that the derived C*-algebras Au(m)/J is
isomorphic to C(U(m)) (see [45]), where J is the closed ideal of Au(m) generated
by the commutators ab — ba for all α, b G Au(m). From this we also see that Au(m)
and Au(n) are non-isomorphic as C*-algebras for nή=m.

4.4. Remarks. There are many quantum subgroups of the quantum group GAU(WI)-
For instance, fixing any n such that n ^ m, it is easy to see that the following quan-
tum groups are all quantum subgroups of GAu(m)' t r i e compact group U(ή) and its
subgroups; the quantum group GAιι(n); the quantum groups of the Woronowicz
C*-algebra C(Γ) * C(£/(«)) and its Woronowicz C*-subalgebra C*(ZUJJ), where
i,j = 1, ,Λ, and the ut/s are the coordinate functions of the unitary group U(n);
and the quantum groups of C*(Fn) and C*{Fn\ where Fn is the free group on n
generators.

It is also routine to check that the quantum groups U±\(m) studied by Manin
[21] and Koelink [16] and therefore the quantum groups SU±\(m) of Woronowicz
[50, 52] (SUq(m) were studied independently in [39]) are quantum subgroups of

Now consider g φ ± 1. Then Uq(m) and SUq(m) are not quantum sub-groups
of GAU{Π) for a n y n To see this, first note that the conjugate of the matrix

oe —qγ*

y α

(see page of [50]) is not unitary, where by "conjugate" of a matrix (cυ) with
entries in a *-algebra we mean the matrix (c*). Since the conjugate of the matrices
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(aijXj=\ f°r Au{n) are unitary, from this we see that SUq(2) is not a quantum
subgroup of GAU(Π) for any n. On the other hand, SUq(2) is a quantum subgroup of
the quantum groups Uq(m) and SUq(m). These also show that the quantum groups
GAu(m) constructed here are different from the quantum groups Uq(m) and SUq{m)

We note further that the algebras Au(m) are non-nuclear because the non-
nuclear C*-algebras C*(Fm) are quotients of them, while for any q the C*-algebras
C(Uq(m)) [16], C(SUq(m)) [52] and the C*-algebras of continuous functions on
the more general ^-deformations of compact Lie groups studied in [35, 38] are type
I and so nuclear. From this we also see that the quantum groups Au(m) are different
from these ^-deformations of compact Lie groups. In [18, 19], compact quantum
groups with non-type I function algebras are introduced. These algebras are nuclear
in view of [32]; hence our quantum groups are also different from these quantum
groups.

It is interesting to note that the elements ctJ of the C*-algebra Au{m) (instead of
viewing them as in Au(m)°\) also satisfy the same relations as for the α^'s, where
Cij = a*r Thus there exists a unital C*-algebra homomorphism α from Au(m) into
itself satisfying

α(α I < 7 ) = Cij =a*t

for ij = 1, m. It is easy to see that α is an automorphism of period two of the
C*-algebra Au(m) but not an automorphism of the Woronowicz C*-algebra Au(m).
For more on the automorphisms of the Woronowicz C*-algebra Au(m), see Sect.
4 of [46]. These automorphisms motivated interesting results (see our paper [48])
concerning strict deformation quantizations of compact quantum groups in the sense
of Rieffel [28, 29, 31, 33].

It would be interesting to solve the following problem.

Work out the representation theory of the quantum groups Au(m\ and find
the Haar state on Au(m) and the multiplicative unitary associated with Au(m).

The quantum groups in the following example are the analogues of the orthog-
onal groups. They are quantum subgroups of the quantum groups GAu{my

4.5. Example. Let m be a natural number greater than 1. Let A0(m) be the universal
C*-algebra generated by m2 elements by subject to the relations

m m

Σbikbjk = δij, Σbkibkj = δtj,
k=\ k=\

for i,j = 1, ,ra. Then A0(m) is a non-commutative non-cocommutative Woronow-
icz C*-algebra, and so it is a compact matrix quantum group. For mή=n, A0(m)
and A0(n) are non-isomorphic to each other as C*-algebras, and therefore non-
isomorphic to each other as Woronowicz C*-algebras. Furthermore, the quantum
groups of the A0(mys are quantum subgroups of those of the ^4w(m)'s.

Proof. The proof that AQ(m) is a Woronowicz C*-algebra is the same as the proof
for Au(m) (see the beginning of the proof of 4.2).

There are a surjection from A0{m) to C*(Z/2Z) * * C*(Z/2Z) (there are m
copies of C*(Z/2Z) in this free product) and C(O(m)) respectively, where Z/2Z is
the two-element group and O(m) is the ordinary group of real m x m orthogonal
matrices. So A0(m) is non-commutative and non-cocommutative. Similarly, A0(m)
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and A0(n) are non-isomorphic to each other as C*-algebras for mφn, because of
the fact that the space X(A0(m)) (i.e. the maximal compact Lie subgroup of the
quantum group G ô(m)) is homemorphic to O(m) and that the spaces O(m) and
O(n) are non-homeomorphic to each other.

Let J be the closed two sided ideal of the C*-algebra Au(m) generated by
ay - a*j, where i,j = 1, , m. Then it is easy to see that the C*-algebra A0(m) is
isomorphic to the quotient C*-algebra Au(m)/J. It is also routine to check that the
ideal J is a Woronowicz C*-ideal of Au(m). This proves the last statement of 4.5.
Q.E.D.

Similar to 4.2, we can also show directly that the derived C*-algebra A0(m)/J is
isomorphic to C(O(m)) (see [45]), where J is the closed ideal of A0{m) generated
by the commutators ab — ba for all a,b G A0(m). From this we also see that A0(m)
and Ao(n) are non-isomorphic as C*-algebras for

4.6. Remarks. Fixing any n such that n ^ m, it is easy to see that the following
quantum groups are all quantum subgroups of GAo(m)' m e compact group O(n) and
its subgroups; the quantum group GAO{Π)\ a n d the quantum groups of C*(Z/2Z *
• * Z/2Z) and Q(Z/2Z * * Z/2Z).

We conclude this paper with the following important problem, whose solution
should constitute a major contribution to the theory of quantum groups.

How does one construct the analogues of the classical compact Lie groups
SU(m), SO(m) and Sp(m) from Au(m) and develop the corresponding theory for
them? (These would be called the universal classical compact quantum Lie groups.)
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Communicated by M. Jimbo.

Note added in proof. The compact matrix quantum groups Au(m) and A0(m) constructed in this
paper are now put in more general context in my joint paper with Alfons Van Daele: Universal
quantum groups (to appear in Lett. Math. Phys.), in which two compact matrix quantum groups
AU(Q) and AO(Q) are constructed for each invertible compext scalar matrix Q, and the Au(QYs
are shown to be universal in the sense that every compact matrix quantum group is a quantum
subgroup of some AU(Q). The quantum groups Au{m) and A0(m) are precisely AU{Q) and AO{Q)
respectively by taking Q to be the m x m identity matrix.




