
Common. Math. Phys. 167, 635-670 (1995) Communications IΠ

Mathematical
Physics

© Springer-Verlag 1995

Classification of Bicovariant Differential Calculi
on Quantum Groups of Type A, B, C and D

Konrad Schmϋdgen, Axel Schuler

Fachbereich Mathematik/Informatik, Universitat Leipzig, Augustusplatz 10, D-04109 Leipzig,
Germany; E-mail: schmuedgen@mathematik.uni-leipzig.d400.de

Received: 5 January 1994

Abstract: Under the assumptions that q is not a root of unity and that the
differentials du) of the matrix entries span the left module of first order forms, we
classify bicovariant differential calculi on quantum groups An-uBn,Cn and Dn. We
prove that apart one dimensional differential calculi and from finitely many values
of q, there are precisely In such calculi on the quantum group An-ι = SLq(n) for
n Ξ> 3. All these calculi have the dimension n2. For the quantum groups Bn, Cn and
Dn we show that except for finitely many q there exist precisely two iV2-dimensional
bicovariant calculi for N ^ 3, where N = In + 1 for Bn and N = 2n for Cn,Dn. The
structure of these calculi is explicitly described and the corresponding ad-invariant
right ideals of ker ε are determined. In the limit q-*l two of the 2n calculi for
An-\ and one of the two calculi for Bn, Cn and Dn contain the ordinary classical
differential calculus on the corresponding Lie group as a quotient.

0. Introduction

Non-commutative differential calculus is a basic tool for further applications of
quantum groups and for studying non-commutative geometry on quantum spaces.
A general framework for bicovariant differential calculi on quantum groups (Hopf
algebras) is developed by S.L. Woronowicz [Wo2]. Following general ideas of A.
Connes [C], differential forms are the basic objects of this theory. Examples of
covariant differential calculi are constructed and studied (for instance) in [Wol,
Wo2, WZ, R2, CSWW, J, SWZ, Su and BM]. In general there are many non-
isomorphic bicovariant differential calculi on a given quantum group, and no
functorial method is known to construct a "natural" differential calculus as in
classical differential geometry on Lie groups. The aim of this paper is to classify all
bicovariant calculi under "reasonable" assumptions and to select one or a few
distinguished calculi in this way. Despite the rather extensive literature about
differential calculi on quantum groups, the classification problem has been treated
only in the special case N = 2, cf. [St, MH].

The aim of this paper is to classify (under certain assumptions) all bicovariant
differential calculi on the quantum groups corresponding to the four series of



636 K. Schmϋdgen, A. Schϋler

classical simple Lie groups An-U Bn, Cn and Dn as defined in [FRT]. Let
u = (ulj)i ,j = i,...}jv denote the corresponding fundamental matrix. The crucial
assumptions for our classification are that the deformation parameter q is not
a root of unity and that the differentials du), ij = 1,. . . , JV, generate the
left module of first order forms. Further we assume throughout that N ^ 3. We
briefly discuss the main results of this paper. The first main result states that except
for finitely many values of q (see Remark 2 in Sect. 2) there exist precisely 2iV
bicovariant calculi of dimension greater than one on SLq(N). They are paramet-
rized by one of the signs + , — (which correspond to the numbers q and q'1) and
by an JV-th root qk of q2. The corresponding calculi are denoted by (Γ( ± ,k),d).
Note that the quantum group SLq(2) has, in contrast to the preceding, only
two such bicovariant calculi. The second main result is that apart from finitely
many q (see Remark 2 in Sect. 6) there are precisely two iV2-dimensional
bicovariant calculi on Oq(N) and Spq(N). They are denoted by (Γ±,d). It turns
out that all calculi occurring in our classification are inner (i.e. da = ηa — aη for
some right- and left-invariant form η) and that all of them can be constructed by
a method of B. Jurco [J]. Bicovariant differential calculi on SUq(N) and on
Oq(N) have been already introduced and studied in [CSWW]. The calculi therein
correspond to our (Γ( + , fc), d) for SUq(N) (the iVth root of q2 is implicit in the
choice of the β-matrix in [CSWW]) and to our (Γ+,d) for Oq{N). Further,
each calculus in our list admits a limit as q -> 1 (in an appropriate sense), which is
bicovariant differential calculus on the corresponding classical Lie group. For the
two calculi (Γ( + , k\ d) and (Γ( — , fe), d) on SLq(N) with qk belonging to the first
branch of iVth root, and for the calculus (Γ+,d) on Oq(N) and Spq(N), these
limits contain the usual standard differential calculi on the Lie groups as a quo-
tient, cf. Sects. 5 and 9. That is, if we require the latter behaviour of the classical
limits q -> 1, we have two distinguished bicovariant differential calculi on SLq(N)
and one distinguished bicovariant calculus on Oq(N) and Spq(N). This outcome of
our classification seems to be very promising for further applications of these
calculi and for their use in the study of non-commutative geometry on quantum
groups.

Our main results on classification of bicovariant differential calculi (Theorems
2.2 and 6.2) are obtained by means of a classification of the associated ad-invariant
right ideals of kers (Theorems 2.1 and 6.1). For this the explicit decompositions of
parts of the adjoint representations into irreducible components are needed. Here
the assumption that q is not a root of unity is essential and is used in order to have
similar results as the classical case. The proofs of Theorems 2.1 and 6.1 require
a number of rather long computations. In order to limit the size of the paper,
not all computations are carried out. Sometimes a sample is given or only the
result of a computation is stated. But in these cases all necessary facts are
mentioned.

This paper is organized as follows. In Sect. 2 we collect some basic definitions
and preliminary facts needed later. The classification of bicovariant differential
calculi and their ad-invariant right ideals is carried out in Part I (Sects. 2-5) for the
quantum group SLq(N) and in Part II (Sects. 6-9) for the quantum groups Oq(N)
and Spq(N). In both cases the main results are two theorems stated in Sect. 2, resp.
6. Their proofs are given in Sects. 4 and 8. These proofs essentially depend on some
properties of certain interwiners which are built from the matrix R and their
spectral projections. The necessary technical tools are provided in Sects. 3 and 7.
The limits of our calculi for q -> 1 are investigated in Sects. 5 and 9.
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The main result of this paper for Bn, Cn, Dn (Theorem 6.2) is announced in [SS],
see also Remark 1 in Sect. 6 for a correction.

1. Preliminaries

In this paper s$ denotes one of the Hopf algebras for the quantum groups of
type A, B, C or D as defined in [FRT], Subsects. 1.3 and 1.4. Throughout
we assume that TV ̂  3 and with the exception of Sects. 5 and 9 that the (non-zero)
deformation parameter q is not a root of unity. (A closer look at the proofs shows
that it suffices to assume that g " Φ 1 for all n e N, n ^ c(N), where c(N) is some
constant depending only on N. Of course, some considerations are also valid
without restrictions on q.)

Unless it is explicitly stated otherwise, we use the Einstein convention to sum
over repeated indices. However, sometimes we write the sum if ambiguities are
possible. In any case, the meaning will be clear from the context.

We denote by Δ the comultiplication, ε the counit, K the antipode and H the unit
element of j / . By definition [FRT], the algebra sd is generated by 1 and the N2

entries wj, i,j = 1,. . . , JV, of the fundamental matrix u = (wj). For ίceN, let stfk be
the linear span of products u][...ufk. We set x:=x — ε(x)t for x e i and
J h = {x: x e ^} for a subset 0k of stf. The linear span of a set {αt : i e I} is denoted
by <αt : ί e / > and the flip operator of the tensor product by P, i.e. Pι

n

J

m = δimδjn. If
A is a linear mapping or a matrix, Ax denotes the transpose of A and lower indices
of A always refer to the components of a tensor product where A acts. Let θ denote
the Heaviside symbol, i.e. θ(m) = 1 if m > 0 and 0(m) = 0 if m ̂  0.

By a representation of s/ we mean a representation of the coalgebra <$/, i.e.
a right comodule for the coalgebra s/. Often we identify representations and the
corresponding matrices by fixing some basis of the underlying vector space.
Throughout, u denotes the fundamental representation of <z0'. As usual, vc is the
contragredient representation of v and Mor(z;, w) is the space of intertwiners of
representations v and w. We write Mor(ι ) for Mor(z;,ι;). Since we assume that q is
not a root of unity, the representation theory of the quantum group s/ is
completely similar to the classical case ([L, R2]; cf. also [PW], chapter 8).
All finite dimensional representations of $0 are ^-deformations of representations
of the corresponding classical matrix group, so they can be labelled by Young
tableaus similar to the classical case (see, for instance, [BR or H]). We freely use
these facts in the proofs of Theorems 2.1 and 6.1. Concerning the classical repres-
entation theory, we follow the standard notation, cf. [H]. The trivial one dimen-
sional representation is denoted by [0]. The following simple lemma is needed in
the sequel.

Lemma 1.1. If 01 is a right ideal o/kers such that kers = M + ̂  and if Ml2 :=
+ srfγ + sύ2\ ^en we have 01 = M12 stf.

Proof Let s/k:= ^0 + -1- j / f c , k e N. Obviously, ffl12'^ ^ -^ We prove the
converse by induction on k. Suppose that 0lc\s$k CΞ 0tl2'^- Let a e0tns$fk + ί.
We write a as a = b(u) + b0 with b{, bp e srfk. Since stf — 0ί + J / 1 by the assump-
tion kerε = 0ί + jtfl9 we have b — a- + c{ and b0 = a0 + c 0 with a{, aoe3# and
c{,coe<2tfι. By induction hypothesis, ax:= a\u) + a0 is in 0tχ2'^- Since
a — ax = cju) H- c 0 eMr\s^2 = 0ί\2 % we conclude that ae 0t12 £#. •
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Bicovariant Bimodules

Definition 1.1. A bicovariant bimodule over si is a triple (Γ, ΔL, ΔR) of a bimodule
Γ over si and of linear mappings ΔL: Γ -> ̂  ® Γ and zl#: Γ -+ Γ ® si such that:

1. (Γ, z1L) is a left comodule over J / , i.e. (id ® ΔL)ΔL — (Δ ® \ά)ΛL and
id)zlL = id.

2. (Γ, zJΛ) is a right comodule over si, i.e. (ΔR ®iά)ΔR = (id ® Δ)ΔR and

3. ΔL(aωb) = zl(α)zlL(ω)zl(fc) and zlκ(αω6) = zJ(a)zJκ(ω)zl(&) for a, be si and
ωeΓ.

4. (id®Λ*)zlL = (z

Let (Γ, zlL, ΔR) be a bicovariant bimodule over si. An element ω e Γ is called
left-invariant if zlL(ω) = t ® ω and right-invariant if ΔR(ω) = ω ® 1. The vector
space of left-invariant elements is denoted by Γ inv. The canonical projection
P i n v : Γ -> Γinv is denned by P inv(ω) = £ . κ:(αf)ωf if ΔL{ω) = ^ . αt ® ω t .

The structure of bicovariant bimodules is completely characterized by The-
orems 2.3 and 2.4 in [Wo2]. We recall the corresponding result:

Let (Γ, ΔL, ΔR) be a bicovariant bimodule over sf and let (coj)iej be a basis of the
vector space Γ inv. Then there exist matrices v = (uj)f> j e / a n d / = (fj)ijei of elements
υ) e si and of functionals// e si' such that for a, be si and 1,7 e /:

(i) ωta = (// *a)ωr and ^ K ( ^ J ) = ω r ® ι;[.
(ii) v = (v() is a representation of the coalgebra si, i.e. Λ(ι j) = ^ ® v] and

(iii) f=(fj) is a representation of the algebra si, i.e. fjl(ab) =fk(a)fj (b) and

//W = δij
(iv) υΐ(a*fjl) = (fj*a)vj

n. (1.1)

The set (cOj)ie/ is a free left module basis of Γ. As usual, we have set
a * / : = (/® id)zl(α) a n d / * α := (id ®/) J(α).

Conversely, if {ωi)ieI is a basis of a certain vector space Γo and if v = (vlj)ijei and
/ = (fj)ijei a r e matrices with υ) e si and/;' e si' satisfying (ii), (iii) and (iv), then
there exists a unique bicovariant bimodule Γ such that Γo = Γinv and (i) holds. In
the situation just described we simply write (υ,f) for the corresponding bicovariant
bimodule Γ.

Lemma 1.2. Let j~ί = (v,f) and Γ2 — (w, g) be bicovariant bimodules and define
f* 0'-— {f® θ)Δ. Then the pair (v ® w,/* g) is also bicovariant bimodule which will be
denoted by Γλ® Γ2.

Proof Clearly, it suffices to check that v ® w and/* g satisfy again the compatibil-
ity condition (1,1), i.e. (υ® v*)™{a*(f*g)™) = ^(wf (q*fr")*g?) = vΐ{gl*
{a *fr

n)O = vΐ((gJ

m * a) *fr

n)ws

m =fn

ι * (gJ

m * α))<wi - ((/* g)ι

n

J

m * α)(ϋ ® w)r

n

s

m. •

Lemma 1.3. Lei v) e si andf e si', i,j e I, be such that the matrices v = (v]) and
f= (fjl) satisfy (ii) and (iii), respectively. Set T'$ := f } (u^). Then the compatibility
condition (1.1) is fulfilled if and only if T = (T^) e Mor(t; ®u,u® v).
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Proof. Using (iii) it is easily seen that (1.1) is satisfied for a b provided that it is
valid for a and for b. Since //(I) = δij9 (1.1) is true for α = 1. Thus it is sufficient to
check (1.1) for the elements ur

s. From

Vi(ur

s *//) = T£υΐu? and (fj* uζ)vJ

n = ur

mvJ

nT™ ,

we conclude that (1.1) is equivalent to T e Mor(y ® a, U ® v).

Bicovariant Differential Calculi

Definition 1.2. k first order differential calculus (or briefly, a differential calculus)
over J / is a pair (Γ, d) of a bimodule Γ over J / and a linear mapping d: si -• Γ
such that d(αb) = da-b + a-db for a, b e sJ and Γ = (a db: a,b e si}.

Definition 1.3. A first order differential calculus (Γ, d) over j / is called bicovariant if
there exist mappings ΔL: Γ -> J / ® Γ and J κ : Γ -* Γ ® si such that:

1. (Γ, zlL, zl#) is a bicovariant bimodule.
2. ΔL(dd) = (id ® d)d(α) and ΔR{da) = (d® id)zl(α) for ae si.

Note that the mappings ΛL and ΔR (if they exist) are uniquely determined by Γ and
d. By Propositions 1.2-1.4 in [Wo2], the preceding definition of bicovariance is
equivalent to the one given in [Wo2].

A bicovariant differential calculus (Γ, d) is called inner if there exists an element
ω e Γ which is left- and right- invariant such that da = ωa — aω for all a e stf. We
shall say that two differential calculi (Γγ,dγ) and (Γ2, d2) over si are isomorphic if
there is a bimodule isomorphism Ψ of Γλ onto Γ2 such that Ψodλ = d2-

Adjoint Representation

For aεstf, we set ad(α):= £ . fct ® K;(at-)Cj, where the elements ai9 bh ct e J / are
defined by (id ® A)A(a) = ]Γ\ α (x) b{ ® cf. The map ad: s$ -> j / ® j ^ is a repres-
entation of the coalgebra j / called the adjoint representation oϊstf. In particular, we
have

ad(i£ . . . t^) = < . . . < ® (iθ£ . . . (w ;̂;1 up ...uf; (1.2)

for i i , . . . , ik E {1,. . . , N} and fe e N. Let Ik denote the linear mapping of (C^) ® 2k

into «s4 defined by lk(ellk... I I i l l I i _ m J := u ^ . . . u f̂c, where {βΓi... rJ is the standard
basis of (d:N)®2k. By (1.2), lk e Moτ((uc)®\ adf s/k).

Lemma 1.4. (i) // 1^ is an ad-invariant linear subspace of si, then Ψ" is also
ad-invariant and the map a^> a belongs to Mor(ad[ i^, adf Ψ').
(ii) For /ceN, a d f j ^ ^ a d f ^ if and only if kφn ΊN for An-γ resp. kφ2N for

Proof (i) follows easily from the Hopf algebra axioms for the counit and the
antipode. Obviously, the map a -> a of sik onto sik is injective if and only if 11 φ sik.
The latter is equivalent to k φ n N for the quantum group An _ x and to k φ 2 N for
the quantum groups Bn, Cn,Dn. This yields (ii). •

In particular, kerε is ad-invariant. According to Theorems 1.5 and 1.8 in [Wo2],
there is a one-to-one correspondence between bicovariant differential calculi (Γ, d)
over si and ad-invariant right ideals ^ of ker ε given by ^ = [a e ker ε: P mv(da) =
0}, see formula (5.14) in [ Wo2]. Further, since Γinv and (ker ε/$)' form a dual pair of
vector spaces ([Wo2], p. 161), dimΓ i n v = codim^. We call the latter the dimension
of the bicovariant differential calculus (Γ, d).
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Lemma 1.5. Let M be the ad-invariant right ideal of kerε associated with the
bicovariant calculus (Γ, d) over stf. The following statements are equivalent:

(i) Γ = (a duj: α e i , i,j = 1,. . . , JV>,
(ii) Γinv = <P i n v(diιj):U = l , . . . ,JV>,

(iii) kerε = 01 + , < .

Proo/. By definition, we have ωί<7 := Pinv(dwj) = κ(uι

k)duj. (i)->(ii) is trivial, since
Pinv(adu}) = ε(a)ωij. (ii)->(i) follows at once from Theorem 2.1.1 in [Wo2].
(ii) -• (iii): If a e ker £ and Piay(da) = α j ω j with αtJ e (C, then <2 — α̂ -wj e 0i. (iii) -» (ii):
Let ω = Pinyiaidbi) e Γ inv. Then α:= ^{a^bi e kerε and ω = Pinv(ί/α). By (iii),
α = r + oiijUj for some r e l and αfj e (C. Hence ω = ocί; ω ί 7 . •

Part I: Classification of Bicovariant Differential Calculi on SLq(N)

2. Definitions and Main Results

In this section we state our main results, and collect some notations and facts which
will be used throughout the following four sections. Let si denote the Hopf algebra
of the quantum group SLq(N) as defined in [FRT], Definition 3. We set
6•'— Q ~ Q x a n d 6+ .'= q + q~ι. The corresponding matrix R for SLq(N) is given
by

RjΓm:= ^ ^ ( l +(q- ί)δin) + Qδuδnmθ(n - i) (2.1)

for i,j, n,m = I,. . . , N. The matrix R can be written as R = qP+ — q~ι P_, where

P+ : = Q + ι ( R + q-ιl) a n d P _ :=Q+1(-A + ql) (2.2)

are projections. We have (cf. [FRT], Theorem 4)

q-2iκ(ui

n)u? = q-2nδnm Άnάq2ίuί

nκ(uT) = q2nδnm. (2.3)

The Ad-Invariant Right Ideals M{±,k)

We shall use the abbreviations

s:= i ^ s . ^ + s + ^ - ^ ^ - ί - 2 - ^ ,

t + : = 1 + 5 , t _ : = δ - ^ " 2 ^ , δ V : = 6 - ^ ~ 2 4- 1,$'-:= s - q~2N + q~2N~2

and

( ϋ ± )j:= (P ± ) ί i tf- 2 k w k V, i,7 = 1,. . . , N .

We denote by 1/ and F ± the ^f-traces of the matrices (wj) and ((ι;± )j), respectively,
i.e. we set

C / : = Σ ί " 2 < « / and F ± := Σ « ~ 2 i ( » ± )/

If <F is an A/^2-dimensional vector space with some distinguished basis, we define
a projection P o : #" -^ J^ by the matrix (P0)jm := s~ 1q~2iδinδjm. Further, we define
linear mappings S + : stf2 -+ ̂ 2 by

^ ~ — (P± (ϋ± )2P± )jm + ^ ~ (P± ) j ^ ± (2-4)
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(Here, as usual, lower indices refer to the corresponding places of the tensor
product; for instance, (P±(v±)2P±)j!n stands for (P±)iΊ(v±)ι

r(P±)jm. It is easily
seen that S+ and S- are well-defined. In the proof of Lemma 4.1 we show that
S+ and S- are projections, i.e. S2

± = S± . Note that the numbers s, s+, s_, t+ and
t_ are non-zero, since we assume that q is not a root of unity.)

We denote the N complex roots of q2 by qu . . . , qN. Let 1± be the set of all
g e (C, g Φ 0, for which (s'+ )N = q±2sN. For each qe£l± there is a unique r e
{1,. . . , JV} such that q?ι$'+ = s. We denote this index r by r( + , g). For nota-
tional simplicity we set r( + , q) = 0 if q φ 1±.

Let fee {1,. . . ,JV}. We define

if fe φ r( + , q)9 and

^-,fe = ^ + 6 ΐ 1 ^ ~ 1 ^ / c ? A l t Λ : = *-Q+1qqk9

ί_(i

5 — Q~2N + Q

qQ+(qk

o-q~2N + 2 H

S'_ - 5)

2\

- tH

- •i_5

if fc Φ r( - , <?).
Suppose that τ e j + , - }, fe e {1,. . . , N} and fe φ r(τ, ̂ ). Let ^ ( τ , fe) be the

linear subspace of J ^ © J<^ generated by the following groups of elements:

(1) S±(iιJMi),i,j,n,m = l , . . . , N .

(2) (ϋ+ )j - ^wj - V 1 ^ ~ &U), ij = 1,. . . , N.
(3) F ± - μ τ ^ U .

(From Lemmas 4.1 and 4.2 below it follows that these elements span indeed six
ad-invariant linear subspaces of ker ε.)

The right ideals ^2(τ, fc):= ̂ ( τ , fe) j / of the algebra kerε are crucial for our
classification of bicovariant differential calculi on the quantum group SLq(N).
They are characterized by the following

Theorem 2.1. For each right ideal 0t of the algebra kerε the following statements are
equivalent.

(i) 0t is ad-invariant, kerε = PA + ^ and codim ^ ^ 2.
(ii) ^ = ^(τ,fe)/or some τ e { + , - } , fe e {1,. . . , JV}, fc φ r(τ, g).

Furthermore, we have ker ε = ^ ( τ , fe) φ ^ and ί/ze π'gf/iί ideals M(τ, fe) ar^ mutually
different.

The Bicovariant Differential Calculi (Γ'( + , fe), d)

Suppose that fe e {1,. . . , N}. We introduce linear mappings T ( ± , f e ) e
L(C ] V®C i V(χ)(C j V)by

i2^23^( + ^ ) i 2 iffeφr( + ,^) and

T( -,k):= qkX( ~ , k)^RϊiR^X{ ~ , fc)i2 if k Φ r( - , q) ,
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where R, R~9K9X(±9k)e L{<£N <g> € N ) are defined by

R^:=RL («-)£:= ( ί r 1 ^ andX:=sP0,

X( + ,fc):=/ + (l -qk)qQ-γK and X{ - , fc):= / + (g^1 - l)g2 i V + 1ρ-1X .

(Note that X( ± , k) is invertible and Z( ± , k)~* = / + (1 - ^ τ ι)
(qk

+ V ± - s ) " 1 * , since k * r( ± , g).)
Let p be an Nth root of g and let Lp

± = (p /]) be the N x N matrix of linear
functional f I) on stf as defined in [FRT], Sect. 2, by taking the matrix p~γFR as
R. By definition (cf. [FRT], (2.1)), we have

1)™. (2.5)

for i,j,n,m = 1,. . . , N. F r o m this it follows that

Φ ^ ^ and κ(-li)(ul) = p ' 1 ^ . (2.6)

Formula (2.4) in [FRT] implies that the matrices L* and L~ define representations
of the algebra jtf on (CN. Let L p

± c be the contragredient representation of L^ . As
pointed out by B. Jurco [J], there are four important bicovariant bimodules of the
Hopf algebra s#\

pr, = (u, Lpc\ pr2 = (u, L ; ' C ) , PΓ[ = (uc, L ; ) , PΓ
C

2 = (uc, L P

+ ) .

(In order to prove that these are indeed bicovariant bimodules, it only remains to
check the compatibility condition (1.1). For this we apply Lemma 1.3. For PΓX and

PΓ2 the corresponding mapping T from Lemma 1.3 is p~1R, resp. pR~ * by (2.5), so
T e Mor(u (g) u). In case of PΓ[ and PΓ

C

2 we conclude from (2.6) that T is p ~ ι R, resp.
p,R~, hence T belongs to Mor(wc ®u,u® uc) by Lemma 3.3.)

Suppose now that p and p' are Nth roots of f̂ such that qk = pp'. By Lemma 1.2,
Γ( + , k) := PΓ2 ® P ' Γ2 and Γ( — ,k):= PΓ[ ®p> Γλ are bicovariant bimodules of JS/.
Their structures are given as follows. The subspace Γ(±, k)inw of left-invariant
elements has a basis {77̂ -: f,j = 1,. . . , N} such that the right and left module
operations of Γ( ± , k) satisfy the equations

ηija = (P

tlι

nκ(pl]ι)*a)ηnm, α e i . (2.7)

In both cases the set {η^: z, j = 1,. . . , m} is a free basis for the corresponding left
and right modules and the right action is given by ΔR(ηij) = ηnm (x) (uc)iuf. From
this and (2.3) it follows that the left-invariant element η'.= Σiq~2iηn is also
right-invariant. For a e jtf, we define

da = ηa — aη . (2.8)

Our main results on classification of bicovariant differential calculi on SLq(N) are
summarized in the following

Theorem 2.2. Let (Γ, d) be a first order differential calculus on SLq(N). The following
two assertions are equivalent:

(i) (Γ, d) is bicovariant, d i m Γ i n v ^ 2 and Γ = (a du): aestf, ij = 1,. . . , JV>.
(ii) (Γ, d) is isomorphic to (Γ(τ,k),d) for some fce{l, ...,JV}, τ e { + , — },
fc * r(τ, ήf).
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Moreover, (Γ(τ, k), d) is the canonical calculus associated with the ad-invariant right
ideal ^ ( τ , k) o/ker ε. Two calculi (Γ(τ, k), d) and {Γ{τ\k'\d) are ίsomorphic only ij
{τ,k) = (τ',k').

The structure of(Γ(τ, k\ d) can be also described as follows: The forms ωίi7 :=
Piny{dulj) = κ(uι

n)du], ij = 1,. . . , N, are a basis of the vector space Γ(τ, k) i n v oj
left-invariant forms. In terms of this basis the bimodule structure of Γ(τ, k) and the
differentiation d of(Γ(τ, fc), d) are given by

Wi-fi = (ifZ * a)ωnm and da = &χnm * a)ωnm, α e i , (2.9)

where Ifnm and IXnm a r e linear functionals on s$ such that

hnmi^j) = δinδmj and lχnm(uX) = \f^{ur

s) = T (τ, k ) ^ (2.10)

Moreover, we have zlR(ω ί ; ) = ωnm ® (wc)?MΓ and da = 9τΛ(ωa — aω\ α e i , where

Σ 2i 1 1 1

The proof of Theorems 2.1 and 2.2 will be given in Sect. 4. Here we continue
with some remarks which are related to these results.

1. From the above formulas we compute that (U — #Λ

+ V+ )(I — P0)x e$(±,k)
for xes/x and (17 - q£ V ± )ϋ e M( ± , k\ k =f= r( + , ̂ ). The fact that in both
expressions the same coefficient q^ V ± appears is crucial from a technical point of
view, because it implies (by tracing back the proofs in Sect. 4) that the bicovariant
differential calculi associated with 0t{ ± , k) are inner.

2. We briefly discuss the "critical values" of q in J + u J~. Obviously, q e J + if and
only if q~ι el". Apart from roots of unity, for N = 3 and N = 4 the set J + u i " 1

consists of 16, resp. 32 numbers, none of them is real. For these values of q, there are
5, resp. 7 bicovariant calculi in Theorem 2.2, (ii).

Suppose that qe J τ for τe { + , - } and k = r(τ, q). Then (Γ(τ, fc), d) is still an
ΛΓ2-dimensional bicovariant differential calculus over jtf9 but Γ(τ, fe) φ <α dwj: α e
j / , z, j = 1,. . . , iV>. To verify the latter, it suffices to note that the one form
ω:= q~2ικ(ulj)duj is zero in Γ(τ, k) as computed easily, hence Γ Φ <α dwj). How-
ever, Γ(τ, k) = (a-du^b-diu^u?): a,be^, ij = 1,. . . , JV> if n φ m.

3. If p and p' are N111 roots of q and if r = 1, 2, then the bicovariant bimodules

pΓr ®pΓy and pΓ r

c ® p Γ r and hence the corresponding inner bicovariant differen-
tial calculi over $0 are isomorphic. If {ζmn} is the standard basis of (p>Γr ® p Γ r

c ) i n v .
then the map (R~)ψζmn -> η^ for r = 1, resp. R™nζmn -> ηu for r = 2 extends to
an isomorphism of p>Γr®pΓϊ on pΓϊ®p>Γr. In proving the latter, one uses
that R,R~ eMov(uc®u,u(g)uc) by Lemma 3.3 and that R* e
Mor(Lp-'c * L ; , L ; * L ; c ) , resp. (IT) ' e Mor(L^ c * L~ 9 L~ * L ^ c ) .

4. In this remark we show that up to isomorphism there are precisely N — 1 one
dimensional bicovariant differential calculi on SLq(N). Suppose that ζ is an Nth

root of unity and ζ φ 1. Let/ζ be the multiplicative linear functional on j / defined
by/ζ(«j) = ζδij. Clearly, Γζ = (H,/ζ) is a bicovariant bimodule. That is, Γζ has a free
left module basis consisting of a single left- and right-invariant element ω 0 and
ωQa = (fζ*a)ω0, ae sf. Defining da:= (ζ — l ) " 1 ^ ^ — aωQ) for ae s/, (Γζ, d) is
obviously a one dimensional bicovariant differential calculus on SLq(N). Converse-
ly, each one dimensional bicovariant differential calculus (Γ,d) on SLq(N) is
isomorphic to some calculus (Γζ, d).



644 K. Schmudgen, A. Schiiler

We prove the latter assertion. Let dί be the ad-invariant right ideal of ker ε
associated with (Γ, d). Let ω e Γinv, ω Φ 0, and l e t / a n d χ be the corresponding
linear functionals on s$ such that ωa = (f*a)ω and da = (χ*a)ω for a e stf. First
note that (/ - P 0 ) ^ i < ^ Φ {0}, since otherwise c o d i m ^ = dimΓ i n v ^ N2 - 1.
Since M and (/ — Po)^/1 are ad-invariant and ad|~ (/ — P 0 ) ^ i is irreducible (see
Lemma 4.1, (i), below), we conclude that (/ — P 0 ) ^ i ^ ^ Hence UφM, since
otherwise J ^ = <t/> + (/ — P 0 ) ^ i ^ ^ and so ^ = kerε. Since χ annihilates 01,
c := χ((7) φ 0 (otherwise χ = 0 and so d = 0) and χ(u") - δ Λ j s"* χ(£7) = δnjcz~ \ so
that dulj = (χ*ulj)ω — c%~ιu)ω and q~2jκ{ulj)du) = cs~1ω. But the form
q~2jκ(uj)duj is right-invariant by the bicovariance of the calculus (Γ, d). Hence ω is
right-invariant and the compatibility condition (1.1) yields f{uι

n)u] =
Huj */) = (/* uj)^ = unf{u"\ so f(ulj) = ζδij for some ζe<E. From ωwj = ζu)ω and
detgW = 11 it follows that ζN = 1. If £ = 1, then ωα = αω for α e i ' and
^(M^ . . . u(*N) = cs~1Nuι

1

ι . . . w^ω by the Leibniz rule, so that dt
= d(άQiqu) = cB~1Nω Φ 0 which is a contradiction. Thus { φ 1. Setting

ω0 := C6^1ω, we have ωowj — Mjωo = c s " 1 ^ — \)u)ω = (ζ — \)du). Therefore, by
the Leibniz rule, da = (ζ — 1)" {ωoa — aω0) for all αe^Z, i.e. (Γ, d) is isomorphic
to(Γ ζ,d).

3. Morphisms of Tensor Products

In this section v and w denote representations of the quantum group s/ = SLq(N),
and (Vm), resp. (wr

s) are the corresponding matrices.

Lemma 3.1. (i) Suppose T e Mor(w ®υ,u®w) and S e Mor(t; ® u, w ® u). We
define(tr{ T)n

m = q~2iT'£ and (tτl S)J = g 2 / Si . T/ze?2 we have trj T e M o φ ,fi
trfSeMoφ, w).
(ii) For TeMor(uc®u®v,u®uc®v), define (tr12 T)rT = q~2iTus

m. Then
t r 1 2 Γ e Mor(wc(x) ί;).

f/. (i): From T e Mor(u (x) ϋ, u ® w), T ^ w j ^ = uf ws

r τ £ , so that
Ί^q~^κ{u{)u)υl = q-^κ(u{)uWsΊ%. Hence, by (2.3), (trj T)^« = wj(tri T)°n

which means that tr{ T e Mor(υ, w).
(ii): Since T e Mor(wc ®u®υ,u®uc®υ\ we have Tiik

nκ(urι)u™v? =
u\κ{u™)υ*Tϊ™n for i, j , fc, r, s, ί e {1,. . . , N}. Multiplying this equation by q~2r,
summing over r = s by using (2.3) and finally multiplying from the left by κ(uf\ we
get ( t r 1 2 T ) / * f φ f K = φ f K f c ( t r 1 2 T ) p 7 , so t r 1 2 T e Mov{uc ® υ). •

Lemma 3.2. (i) tτ{R = q~ιI, t r}(IT 1 ) - q'2N~ιL
(ii) trfΛ = ^ 2 N + 1 / , t r ^ - 1 ) = ^/.

Proo/ F r o m ^ e Mor(w ® u) and Lemma 3.1, trjit e Mor(w). Since Mor(w) = C J
by Schur's lemma, there exists α e C such that (trjR)f = α δ w . By definition (2.1),
( t r ί^) ί = ^ ~ 2 ^ ί ί = q~\ Hence α = f̂"1. Similarly, (trfjR)* = βδkl and

f j y N ^ 1, so that j? =

Lemma 3.3. (i) Define Ψx{T)\i:= Tι

n] and Ψ2{T)j

n

r

i := q2i~2jτ£. The mappings
Ψ1: M o φ ® u, u ® w) -> Mor(wc ® t;, w ® wc) απJ ^ 2 : Mor(tί ® v, w (x) w) -•

(y (x) wc, wc ® w) are isomorphisms of the corresponding intertwining spaces.
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(ii) For T e M o φ ® u\ define {f )£:= τL(f)t'= qlm'2iT^ and{f)%'.= T™j.
The mappings T -> f, T ->T, T -• f are isomorphisms of Mor(u ® u) onto
Mov(uc ® u, u ® uc\ Mor(tί ® u\ uc®u\ resp. Mor(uc ®uc). Mov(uc®uc) is
spanned by the two projections P+ and P_.
(iii) The mapping T->T-R is an isomorphism of Mor(u ® uc, uc ® u) onto
Mor(t/C ® u). Mor(wc ® u) is spanned by I and K.

Proof (i): The proof is given by straightforward computations. In case of Ψ2 we
use (2.3).
(ii): The assertions follow at once from (i), since f = ϊ /

1 ( T ) , f = Ψ2(T)
and f = Ψ^Ψ^T)). In the latter case the first Ψx refers to v = w = u and the
second one to v = w = uc. From Mor(w ® u) — </, JR> = < P + , ? . ) we get

(
(iii): Recall that {e^} is the standard basis of C N ® <EN. Since Ket7 = ejh i Φ j , and
Reu = q'1 eu H- β ^ > z βjj by (2.1), .R is invertible, so that T -• T i^ is an isomor-
phism and hence dim Mor(wc ® u) = 2. By (2.3), X e Mor(wc ® u), so

In case T = R'1 we write R~ for f and R~ for t .

Lemma 3.4. (i) RR~ =R~R = L

(ii) (p+ p + ) r = ̂ 2 s ~ 2 ί ( P + )ji(P+ )i
s - e ; 2 ^ ^ +

(iii) tr 1 2(P 1 2 JR 2 3) = Qq~ιI + ^ 1

(iv) t r 1 2 T( + ,^) = fe-15/

+ -
fes'_ -5)/ + Kz//cφr(- ,^) .
(v) trί(T( + ,^)P 1 2 ) = fe-1(^ + ̂ - 3 ) ~ ^ - 1 ) / + ̂ K and trί(T(

fete"1 + ^ " 2 N " 1 ) - 9"1)/ + ξ-K/or 5omβξ± e C.

Proo/ (i): By Lemma 3.3, (ii), R e Mor(w ® u\ uc ® u) and so R~ R e Mor(wc ® u).
Hence R~R = al + βK with α J e C . If i φ j , then Kel7 = eβ and JR"^ = ei} by
(2.1), since P " 1 = R — βi . Therefore, α = 1. From P̂ iVN = ^ ^ N and
R'eNN = ̂ " ^ ^ again by (2.1), j8 = 0. Thus P"K = /.
(ii): Since β + P+ = JR H- q'1! = R'1 + ql and β+P_ = - R + ql = K" 1 +
f̂"1/ by (2.2), (ii) follows at once from (i) and Lemma 3.2, (i).

(iii) is obtained from Lemma 3.2, (i).
(iv): Let β e C be such that 1 + βδ Φ 0. Then X := / + )?iC is invertible in
L(<CN®([:N) and X~1=I + yK, where 7:- - j8(l + jSs)"1. In particular, if
k φ r( ± , q),_ then X( + , k) is invertible and X( ± , fc)~x = / +

We carry out the proof for Γ( + , fc). Set β:= qQ~x{l- qk) and X : = X( φ , k).
Using that RR~ = / by (i), and Lemma 3.2, (i), it follows that

( tr 1 2 Γ( + , k)Γ = qΰ\χ-ι)™R[i

κR
x

y

J

sX
l;pq~2p

= ft1^-1)^^-1)? + β ^ ^ s)(l + βs)q~2lδly

= qΰ'il + β^Qq-'I + (/ Φ 7s

Inserting the values of jβ and 7, we get t r 1 2 Γ ( -f , fe) = (qζ1^ — s)/ 4- K.
(v) can be derived by similar computations. •



646 K. Schmϋdgen, A. Schuler

The mappings T(±,k) belong to the six dimensional vector space
Mor(wc(x) u® u, u®uc®u\ The sets {#12^23, ^23^12, ^12^23, ̂ 23^12?
Rί2, J 1 2 } and {Rί2R23\ K23Rϊ2, ί12R23, K2J12, R12, J 1 2 } both form a basis of
this space, see Fig. 1 below. The mappings T ( + , k\ k Φ r( + , q), can be written as
follows:

where

T( + , k) = qϊHR

+ (l

T{ - , k) = qΛRliRis φ-,kK23ί12

and

(3.1)

(3.2)

- s )

We close this section by giving the graphical representations of some important
intertwiners, operations and formulas occurring in Part I of this paper. Using these
graphical interpretations most of the above formulas and some of the proofs will be
more transparent. In order to distinguish the places for the representations u and uc

we use arrows in the graphs. A vertex stands for u, resp. uc if the corresponding edge
is downward directed, resp. upward directed. Vertices of undirected edges denote
general representations.

#12 #23 =

Fig. 1. The graphical representations of some intertwiners for si = SLJN)

tr{(Γ)= tri2(Γ) =

Fig. 2. The graphical representations of some operations with intertwiners for jrf = SLq(N)
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Lemma 3.2, (i):

Lemma 3.5, (i): / \ =

Lemma 4.6, (ii):

_ a

n-2N-l

— α2Λf+l

Fig. 3. The graphical representations of some identities of intertwiners for s/ = SLq(N)

4. Proofs of Theorems 2.1 and 2.2

Proof of Theorem 2.1, (i) —• (ii)

The proof will be divided into several steps as lemmas. We assume that N ^ 4. At
the end of this section we discuss the necessary modifications for the case N = 3.
First we determine the explicit decompositions of adf s$γ and adf j / 2

 m ^ o irredu-
cible subrepresentations.

Lemma 4.1. (i) adf ^ i = uc ® u ^ [0] θ [2, 1N~2].
T/ze subspace of 's/x for the trivial representation [0] is generated by U and Po is the
projection of s$γ onto <(7>. The subspace for the Young pattern [2, 1N~2] is
(/ - P o M = <uj - δtjZ-'U: ij = 1,. . . , ΛΓ>.
(ii) T/iβn? are injective mappings A + e Mor(ad[ j ^ l 9 adf J / 2 ) 5 W C ^ ^ f l ί -̂  ± (wj) =

( ϋ + ) j , i , j = l , . . . , i V .
(iii) adf ^ 2 ^ 2[0] © 2[2, 1N~2] θ [4, 2 N " 2 ] ® [2, 2 , 1 " - 4 ] .
T/ie corresponding subspaces of stf2 are (V+} and(V- }for the trivial representation

[0] and <(/ - Po )(" + )]> ^ d <(/ - P o )(*>-)]>/or ^ representation [2, l ^ " 2 ] . Tfe
projections corresponding to the Young patterns [4, 2N~ 2] αnJ [2, 2, 1N~4] are the
mappings S+ and S-, respectively, defined by (2.4).

Proof (i): Since the contragredient representation uc corresponds to the Young
tableau [ l ^ " 1 ] consisting of N — 1 boxes in one column, we have uc ® u ^ [0] ®
[ 2 , 1 N " 2 ] , cf. e.g. [BR], ch. 8, or [ H ] , ch. 10. Clearly, the intertwiner P o e
Mor(wc ® u) is the projection on the subspace for the trivial representation [0].
Since the N2 elements u) are a basis of sί\, Ii e Mor(t/C ® u, adf s/x) is an isomor-
phism and the assertion for adf stfx follows,
(ii): Using that P ± e Mov(uc ® uc) by Lemma 3.3 and (2.3), we obtain

= q'2kq2k(P± yi'u

( p ± )Γ^2w;ί < 2

(P± C 2 « 2
5,5l q
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Hence, by (1.2), Λ± : wj->(u + )j defines inter twiners A+ and A- of ad|~ s$χ and
ad I" stf2. Since obviously dim<(t;± )j> > 1, ,4 + and A- are injective.
(iii): By the rules for decomposing tensor product representations [BR], we
have

( « c ® i ι c ) ® ( « ® « ) = ( [ 2 i V - 1 ] Θ [ l i V " 2 ] ) ( 8 ) ( [ 2 ] Θ [ l 2 ] ) . (4.1)

The projections corresponding to the Young patterns [2 i V~ 1] and [ l ^ " 2 ] in the
first tensor factor are P+, resp. P_, cf. Lemma 3.3. The two projections for
the representations [2] and [1 2 ] in the second tensor factor are P+ and P_, respec-
tively. Using that P+ e Mor(w ® u) and P+ P_ = 0, we get

I 2 ((P + ® P-)em) = l2({P+)7(p-)kienmrs)

L uZ = uU(P+ )r7 (P_ )£? = 0

for i,j,k,l= 1,. . . , JV, i.e. im(P+ ® P_) <= ker l 2 . A similar reasoning yields
im(P_®P+) c ker l 2 . From d i m i m P ± = d i m i m P ± =jN(N± 1), we obtain
dimim(P+ ® P_ + P_ ® P+) = 2|iV2(iV2 - 1). Since also codimkerl 2 =
dim rf2 = i(JV4 - JV2), it follows that P+ ® P+ + P_ ® P_ = P+ ® P+ Θ
P- ® P- and im(P+ ®P-@P-®P+) = ker l 2 , i.e. \2\ Ψ"v& an isomorphism of
i T : = im(P+ (S)P+@P-®P-) onto j ^ 2 . Combined with (4.1), the latter yields

adf s/2 ^ [2 ] y - 1 ] ® [2] ® [ 1 N - 2 ] ® [ I 2 ] (4.2)

^ ([4, 2^~2] © [2,1 N ~ 2 ] ® [0]) ® ([2, 2, I * - 4 ] θ [2,1 N ~ 2 ] ® [0]) .

(4.3)

Let E+ and E- denote the two projections corresponding to [2^"^] ® [2] and
[ 1 N ~ 2 ] ® [ 1 2 ] in (4.2). By the preceding, we have E+ =
I 2 ( P ± ® P± )(I 2 | " iry1 and E±{ujuϊ) = ( P ± )^u7

mwf. We explicitly compute the
projections corresponding to the decomposition (4.3). For this let oc±,β+ and
y + be complex numbers. The equations

F± (iijuί) = α ± ( P ± ( ϋ ± ) 2 P ± )fι +β±(P± )*V± and

define unambiguously linear mappings of stf2 into itself. Using that P ± e
Mor(wc ® wc), P ± G Mor(w ® w) and (1.2), one easily verifies that F± and G ± are in
Mor(ad[ s&2\ Applying Lemma 3.2, (i), we compute that G+ and G_ are projec-
tions if (and only if) γ+ =qQ + {st±y1 and that G±F± =F±G± =0 if
7± = qQ + (*t±) x a n <3 α ± = — %β± • Keeping the latter equations for α + , β + ,
y± , another computation based on Lemmas 3.2, (i), and 3.4, (ii), shows that F± is
a projection if (and only if) α + = Q2+ $ + 1 . We fix the constants a + , j8 + , y + by
the preceding. Then F+ and G ± are projections and i m G ± n i m F ± = {0}. The
same computation (based on Lemmas 3.2 and 3.4) just carried out also shows
that F±((υ±)j) = (ι>±)j -*~ίδijV±. Hence imF+ + i m G ± = <(ϋ ± ) j : ίj =
1,. . . , JV> = : y± and F+ H- G ± is a projection of .s/2 onto f"+ . Recall that ir

± is
ad-invariant and that ad|" ^ ± is equivalent to adf ^ = [2, l ^ " 2 ] © [0] by (ii)
and (i). Therefore, F+ and F_ are the projections corresponding to [2, l ^ " 2 ]
and G+ and G_ are the projections for [0]. Consequently, S+ := E+ — F+ — G+
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and S_ := E- — F- — G_ are the projections for the Young tableaus [4, 2N~2]
and [2, 2, 1N~4], respectively, in (4.3). One easily checks that S+ and 5_ have the
form given by (2.4). Using (i) and (ii) once more, it follows that the ad-invariant
subspaces <(/ — P0)(v± )f > correspond to the Young tableau [2,1N~2] and that
(V+ > and <F_ > correspond to [0] in (4.3). •

From now on we suppose that M is as in Theorem 2.1, (i). We write a = b for
a, b e srf if a - b e 91.

Lemma 4.2. (/ - P o J ^ n J = {0}. Jn particular, u)$9t and u\ - ujφ^for i +j.

Proof. Assume to the contrary that (I - Po)jtfίn0l * {0}. Recall that
(/ — P0)jrfι( c kerε) is the representation space for the Young pattern [2, l ^ " 2 ] .
Since this representation is irreducible and 9ί is ad-invariant, it follows that the
space (/ — P0)^i is in 9t. Since kerε = 9t + s^u this implies that codim^ = 1,
which contradicts (i). •

Lemma 4.3. There are complex numbers λ +, λ~, μ + and μ~ such that

9t12 = δ(ΰ}@(V+ - μ+ΰ)®(V^ - μ~ Ό) ® iT+ ® W^ ® imS + ® imS- ,

(4.4)

where iV± denotes the linear span of elements (v + )j — λ± u) — δij5~ί(V± — λ± (7),
i,j = 1,. . . , N, and δ is either 0 or 1.

Pr<%>/ First note that it follows easily from Lemma 3.2, (i), that imS+, imS_,
W+ and W- are indeed contained in kerε. By Lemma 1.4, the mapping
x -> x = x — &{x)t is an isomorphism of J/, onto stf-3 for) = 1, 2 which intertwines
the adjoint representation. Therefore, by Lemma 4.1, (i) and (iii),

adf (J/I ® J2) ^ ad[ {dγ ® stf2)

~ 3[0] ® 3[2, 1N-2] ® [4, 2N~2-] ® [2, 2, l ^ 4 ] . (4.5)

Let # Ί be an ad-invariant linear subspace of ^γ ® s32 such that Ml2 © #Ί =
J/I ® J/2 Since 9t\2 + ^ i = ^ θ ^ζ by assumption, there is a canonical map-
ping of j/i onto # Ί belonging to Mor(ad|~ J/ 1 S adf # Ί ) . Since
adf" J#X = [0] 0 [2, l ^ " 2 ] , the latter implies that

a d f i p i = ^ o [ 0 ] Θ ί 1 [ 2 , l N - 2 ] , (4.6)

where δo,δi e {0, 1}. Comparing the decomposition . ^ © ̂ ζ = 9tX2 ® J î with
(4.5) and (4.6), we conclude that

adΓ # 1 2 = (3 - δo)[0] Φ (3 - δΐ)ί291
N'2] © [4, 2"~2] © [2, 2, l ^ 4 ] . (4.7)

From Lemma 4.1, the corresponding subspaces of the decomposition (4.5) are
<β9 V+9V-} for 3[0], <(/ - P0)wj>, <(/ - Po)(^+)j> and <(/ - P0)(ι>-)j> for the
three patterns [2, 1N~2]9 imS+ for [4, 2N~2~\ and im5_ for [2, 2, I * ' 4 ] . If ίx = 0,
then <(/ - P0)wj> ^ ^12 by (4.7). But this contradicts Lemma 4.2, so that δγ = 1
and <(/ — P0)^j) π J>12 = {0}. Hence we can write the two ad-invariant subspaces
of Mi2 corresponding to [2, 1N~2] of the form H/\ and # 1 described above. If
U e 9tι2, t̂hen̂  s3γ © J2 = 9l12 + s3x = 9tl2 © (/ - P0)^i and hence δ0 = 0, so
that < (7, F+, F_ > c ^ 1 2 can be obviously written as in (4.4) with δ = 1. If U φ9tλ 2,
then <50 = 1 and the two-dimensional subspace <ί7, V+, F_ > n ^ 1 2 is of the form
<f+ - μ+ Uy ® <F_ - μ- Uy as required in (4.4) with δ = 0. •
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The main purpose of the following is to determine the values of the four
numbers λ ± and μ ± . For this we essentially use the fact that the images of S+ and
S- are contained in Sί12 together with some compatibility conditions. See the proof
of Lemma 4.5 below.

For the following computations it is convenient to work with the numbers
Λ+ a n d M±defined b y Λ±:=5~±

ιλ± a n d M+ := q{s± i ± ) ~ 1 μ ± . T h e n , s ince
iV± ^ ^12 by Lemma 4.3, we have that

(t>±)JΞΞs±Λ±uj f o r i φ j and V± = q~H± t ± M ± U . (4.8)

In Lemma 4.4 and in its proof we shall not sum over repeated indices.

L e m m a 4.4.

(i) u)uι = 0 ifi Φ j , ί Φ U Φ j and k Φ /.
(ii) UjUk = (Λ+ + Λ-)u) ifi φ j , i ^kandk φ j .

(iii) Ujuj = Ujul = Q+Λ + u] ifi φj.

(iv) uι

ku\ = (qΛ+ —q~ίΛ-)ulifiή=l and k < I,

uι

ku\ = (q~xΛ+ — qA-)u\ if i φ / and k> I.

(v) UjU =(q~1Λ+ — qA)ύ\ + (qΛ+ — q~1Λ-)ύJ

j

(vi) u\u\ = β + A + ύ\ + β + s~ :(s + M+ — β + /l + )t7 + ll.

Proof Since the sets im S+ and im S- belong to ^ 1 2 by Lemma 4.3, we have by the
definition of S + ,

The lemma will be proved by calculating the right-hand side of the preceding
equation combined with (4.8). As a sample, we prove (vi). From (2.1) and (2.2) it
follows that a term {Px)km{vx)^(Px)^ is non-zero only if τ = + and k = m = n = i.
Since (P+)// = l and (P_)// = 0, u\u\ - I = β ϊ s ; 1 ^ ) / - ^ β + ίs + t + Γ 1 7.
From (t + ̂ - s ' ^ Ξ j . + ί M ? - s " 1 ! / ) we derive (£+)/ = s + Λ + fi/+
s + s~ 1 (ς[~ 1 t+M + — Λ + )Ό. Putting this into the preceding equation,
we have u\u\ - t = Q2+Λ + ύ\ + Q + 5~l(q~lQ + t+M+ - Q + Λ + )U - β + M + 17.
Since ς f~ 1 β + t + — s = s + , (vi) follows. We omit the details of the other
computations. •

Lemma 4.5. The numbers Λ± and M+ fulfill the following four equations'.

(i) l = Q2

+Λ2

+{Λ++Λ-)N~2.
(ii) 0 - (q~1A+ - qΛ-)(qΛ+ - q'1 A-\

(iii) 0 = -(Λ+ +Λ-)2 + Q2

+Λ + (Λ+ +Λ- + 1)
+ β + £ Γ 1 ( s + M + - β + yl + )(s + yl+ +s_y l_ - s) + 1.

(iv) 0 = (q-ίΛ+ - qΛ-)(qQ + Λ+ - 1) + ( ^ + - q-1Λ-)(q'1Q + Λ+ - 1)
+ δ- 1 (5 + M + - 5_M_ - β + ( y l + - yl_))(s + yl + + S-Λ- - δ).
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Proof, (i): As usual, we set Eiχ *N := ( - q)σ{iι> ' i j v ) if (^,. . . , iN) is a permutation
of the integers 1,. . . , N and σ(iu . . . , i^) denotes its length and £ ? 1 • ••**:= 0
otherwise. Using the fact that the quantum determinant det̂ w is one, u\u\x = 0 if
ίί > 1 and u\u\ = Q+Λ + ul by Lemma 4.4, (i) and (iii), we get

If ik = 2 for some fe §; 3, then we have u\uf2 . . .u\ . . . u?N — const.
ulu2u£. . .uζ = 0 again by Lemma 4.4, (i). Therefore, by the preceding and by
using u\u\ = Q + Λ+ul, we obtain

A repeated application of Lemma 4.4, (ii), leads to U\ΈΞQ2

+Λ2+{Λ+ +
Λ-)N-2ulE12 -'N. Since u\ φ@ by Lemma 4.2, (i) follows.

In the rest of the proof of Lemma 4.3 we will not sum over repeated indices,
(ii): Suppose that i < j < k. By Lemma 4.4, (iv.l), (qΛ+ — q~ι Λ-)uku\ =
u)uku\ = ufuj'ul = (qΛ+ — q~iΛ-)Ujul. Applying now Lemma 4.4, (v), twice and
using that u\ — ujφffl by Lemma 4.2, we get (ii).
(iii) and (iv) follow in a similar way. In case of (iii) we begin with ujujuf = ufujuj,
i < j < fc, and apply Lemma 4.4, (ii) and (vi). Treating wjw/wj = wjwjw/, i < j , by
using the assertions (v), (iii) and (i) of Lemma 4.4, (iv) can be proved. We also need
that u\φm for (iii) and that u)$@ for (iv) by Lemma 4.2. •

Now we solve these four equations. Because of (ii), there are only two possible
cases.

Case 1: q'1Λ+ = qΛ-.

Then, by (i), (Λ+Q+q~1)N = q~2, i.e. there is an Λfth root qk of q2 such that
A + Q + q " 1 = q^1. T h i s g i v e s λ + = λ % Λ a n d λ ~ = λ + >k. W e p u t Λ + = q k

λ q Q + *

and Λ- = qk~
1q~1Q + 1 into the equations (iii) and (iv). If k = r( + ,q), then

qk

 1 s + — s = 0 and (iv) has no solutions M+, M_. Hence k φ r( 4-, q). But then we
find that μ+ = μXtk and μ~ = μ + tk.

Case 2: qΛ+ = q"1 Λ-.

Then we have (Λ+Q+q)N = q2 by (i) and there is a fee {1,. . . , N} such that
Λ + Q+q = qk. Similarly as in Case 1 it follows that λ± = λ- fc, k φ r( — , q) and

Finally, we show that δ = 0 (see Lemma 4.3 above). Assume to the contrary that
δ = L Then ϋ e & by (4.4), so that ϋu\ = Uu\ - sul = (ι;+)2 + (v-)\ - su\ e SI
and hence (λ+ + 2~ - z)uι

2 e SI by (4.4). Since u\φSt9λ
+ + ^ ~ - s = 0. Inserting

the above solutions and using k φ r( + , q) in Case 1, resp. fe Φ r( — , q) in Case 2,
the last equation leads to a contradiction. Thus δ =0. Since δ = 0, Lemma 4.3 says
that ^ 1 2 = ̂ (τ , fe), where τ = + in Case 1 and τ = — in Case 2. Since
^ = St12' d by Lemma 1.1 and St(τ9 fe) = ̂ (τ , fe) ja/ by definition, SI = St(τ, fe).
This completes the proof of implication (i) -• (ii) of Theorem 2.1 for N ^ 4.

In case N = 3 the representation for the Young pattern [2, 2, 1N~4] has to be
omitted in the decomposition of adf stf2 in Lemma 4.1, (iii). But, since also S~ = 0
for N = 3, the rest of the proof is still valid.
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Completions of Proofs of Theorems 2.1 and 2.2.

Let fe e {1,. . . , N} and τ e { -f , — } be such that fe + r(τ, q). First we study the
pair (Γ(τ, fc), d) in a little more detail. Set ωu := Qq'1 qk~*X( + , k)™ηnm for τ = +
and ω o := - Qq~2N~ιqkX{ - , fe)Γ^m for τ - - . Since fe * r(τ, 4), X(τ, fe) is
invertible, hence {ωo : ίj = 1,. . . , A/"} is a basis of the vector space Γ(τ, fc)inv.
Using (2.8), (2.7), (2.5), (2.6) and finally Lemma 3.6, (iii), we obtain for τ = +

durj = ηurj - u)η = q~2s(ηssu
rj - u]ηss)

qk κpnκsj ηnm —

= Qq~Xqΰlu[X{ + , k)ΐΓηnm = "fωy.

For τ = — , a similar reasoning yields

du] = Qq~2N-ιqkulX{ - , k)™ηnm = u*ωu .

Therefore, we have Pιny(dulj) = κ(uι

r)durj = ωtj in both cases. Further, the latter
implies that Γ:= (x du): x e jtf, ij = 1,. . . , N} contains each form ωrs and so
each form ηnm, so that Γ = Γ(τ, k). From the definition (2.8) of d it is obvious that
d satisfies the Leibniz rule, hence (Γ(τ,k),d) is indeed a first order differential
calculus. Since η is both left- and right-invariant, (Γ(τ,k),d) is bicovariant. By
construction, dim Γ(τ, fe)inv = JV2. The preceding proves the implication (ii) -• (i) of
Theorem 2.2.

Next we verify that (Γ(τ, fe), d) has the properties stated in the second half of
Theorem 2.2. Since the set {ωfj } is a basis of Γ(τ, fe)inv, we know from the general
theory in [Wo2] that there exist linear functionals Ifnm a n d \χnm on sd such that
(2.9) is valid. Comparing (2.7) with the first formula in (2.9), we conclude that
ifU^X^kY^X^ky1)™ τ

kVxκ{llys) Combined with (2.5) and (2.6), this gives
kfnm(urs) = T(τ, fe)[j"m. From the second equation in (2.9) and from Pinv(dwj) = ω t J

we obtain τ

kχnm{Uj) = lXnm{ulj) = δinδmj. Comparing the latter with formula (5.20) in
[Wo2], we get lχnm(ύ)d) = τ

kfZ(a), α e i . Thus (2.10) holds. Since Ke
Mor(uc ® u), the formula for ΔR(ωij) follows at once from the corresponding
expression for AR(ηij). From the definitions of X( + , fe), ω and η we obtain
ωa-aω = Qq~^qk~ *(ηa - aη + (1 -- qk)qQ~^*(ηa - aη)) = (qk-

1*'+ - ^)(ηa -
aη) — S+kda, a e sd, for τ = + . Similarly, ωa — aω = S-kda for τ = — .

Let 01 be the ad-invariant right ideal of kerε which is associated with the
bicovariant differential calculus (Γ(τ, fe), d). We show that & = <%(τ,k). Since
codim^ = dimΓ(τ, fc)inv and kerε = 01 + ^ by Lemma 1.5, ^ satisfies the condi-
tions in Theorem 2.1, (i). Therefore, by the proof in the preceding subsection,
0t = 3t{τ\k') for some fe' e {1,. . . , N}, τ ' e { + , - }, fc'Φr(τ',g). Set ϋj:=
q~2rRr;pu

s

ruj. From (2.10), we have

IXnmiUuj) = q-2rllnm(urrU]) = q~lrT^ k)™? = (tΓ12 T (l, fe))^ (4.9)
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and

hnm(Uj) = q~2TR^p{kXnm(uS

rU
Pj) + δτsδnpδmj

= (tri (T(τ, k)R12)W + (tr\R12YnL (4.10)

where we used q2p~2rRr

sρ = q2i~2sRr

sρ by (2.1). Recall that v) = q{υ+))-
q~ι(v-)) and Vu) — {v+)lj + (ι;_)j by definition. Suppose that τ' — + . Then, for
i Φj, the elements au:= (ΰ + s - #Λ~V+)uj = (u + )j -f (ι>-)j ~ OU./c' + ^ + ,*')Mj
and bij ^Vj-qΰΉq + q~3Wj = q{v + )j - q'^V-)* - (qλlΛ> - q~ιX~ϊ,k>)u) be-
long to ^ = ^ ( + , fc'). From (4.9), (4.10), Lemma 3.4, (iv) and (v), and Lemma 3.2,
(i), we get

tXijΦij) = (qk~
1 -qΰ'l){q + q'3) ~kXιAaij) = 4fc*'- - tffc"1*'*

and

By the general theory ([Wo2], pp. 161-162), the elements αι7 and bi} are annihilated
by each functional lχnm. Since g is not a root of unity, we conclude easily from
kXij(aij) = klijΦίj) = 0 that k = k' and τ = + = τ'. In case τ' = — we take
fltJ := (ί7 + s — qk'ζ>-)ulj and ί?I </:= u} — qw (q1 + q~2N~1)u) and argue in a similar
way. This proves that (Γ(τ, fc), d) is the bicovariant calculus associated with M(τ, k).

In particular, the preceding paragraph implies that M(τ, k) satisfies statement (i)
of Theorem 2.1. Of course, the ad-invariance of PΛ(τ,k) follows also from the
ad-invariance of M(τ, k) (recall that the groups of elements (l)-(3) generate ad-
invariant subspaces) combined with Lemma 1.7 of [Wo2]. Since
codim^(τ, fe) = dimΓ(τ, fc)inv = N 2 , kers = M(τ, k) ® s3x. Suppose M(τ9k) =
£%(τ\ k'). Since u)φM(τ, k) for i Φ j , we see from the group (2) of generators of
^(τ, k) that λ*k = λ$Λ>, which in turn implies that (τ, k) = (τ\ k'). This completes
the proof of Theorem 2.1.

If two differential calculi (Γ(τ, k\ d) and (Γ(τ\ k'\ d) are isomorphic, then by
the general theory, the corresponding right ideals M{τ, k) and M(τ\ k') are equal.
Hence (τ, k) = (τ'? k'). Finally, we verify the implication (i) ~> (ii) of Theorem 2.2. If
(Γ, d) is as in Theorem 2.2, (i), then the associated right ideal PΛ is as in Theorem 2.1,
(i). Hence 01 = 0l(τ, k), so that (Γ, d) is isomorphic to (Γ(τ, k), d). The proof of
Theorem 2.2 is complete.

5. The Classical Limits

In the previous sections the value q = 1 is excluded by our standing assumption
that q is not a root of unity. In this section we consider the case q = 1 for N ^ 3 and
we briefly discuss the limits of our calculi (Γ( + , k\ d) for q-+\. Since q = 1, the
Hopf algebra <$/ is isomorphic to the coordinate Hopf algebra of SL(n).

Suppose that ζ is an Nth root of unity. Let X* := \ζ{N ± 2). Set
μt := i(JV ± 1)(C + 1) if ζ φ 1 and μξ := ΛΓ ± 2 if C - 1. Let &(ζ) denote the right
ideal ^(C) ^/ of kerε, where 0&(ζ) is the linear subspace of siλ 0 ^ generated
b y i m S ± , ί ϋ ± ) j - X* u) - δijN~ί(V± - Xf U) f o r i,j = l , . . . 9 N a n d
V± - μfU - | ( A Γ ± 1 ) 1 - μf N t .
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Next we define a bicovariant differential calculus (Γ(£), d) over «*/. First we
enumerate the Nth roots of q2 such that qk belongs to the kth branch of the root for
all q and we fix k such that qk

ι -+ ζ if q -> 1. Let T(ζ) denote the limit of the
transformation T( + , k) for q -* 1. From (3.1) we obtain that

1K 2 3/i2 f o r ζ Φ l and

2(iV2 - iyιK23Rί2 - 2(iV3 - N)-ιK23ίX2 ,

i.e. in terms of matrix elements we have

= ζδinδjmδrs + (C - Wijδnδn, - (ζ ~ VN-^tjδnnδr, (5.1)

for ζ φ 1 and

- 5ίΛ^-m5rβ + 2(iV2 - l)-ιδnmδisδrj - 2(iV3 - NΓ'δijδ^δ,, . (5.2)

We consider the bicovariant differential calculus (Γ( + ,k\d) as given in the
second paragraph of Theorem 2.2 (i.e. by the formulas (2.9) and (2.10) therein) and
we take the limit q -• 1 by keeping the basis {ωί<7 } of Γ( + , fc)inv fixed. Then we
obtain a bicovariant differential calculus (Γ(ζ), d) over srf for q = 1 which is
described again by the formulas (2.9) and (2.10) if T( + , k) is replaced by T(C). If
χnm are the corresponding linear functionals from (2.10), we define Vwm(α) := χπm * α,
aesi. Further, we set VM.-VM+1,W + 1 - VMΠ, Λ ί V ^ £ π Vππ, ω π :=ω Λ Ϊ I and
ω := Yjn ωn. Obviously, by (3.2), the limits of T( — , k) and (Γ( — , k\ d) for ^ -> 1
are T(C - 1 ) and (ΓίC" 1),^), respectively.

Let ^ be the ad-invariant right ideal of ker ε associated with the bicovariant
calculus (Γ(0, d). We verify that ^ = ^(C). Indeed, the proof in Sect. 4 till Lemma
4.5 goes through also for q = 1, so that 01 is completely characterized by the values
of the four parameters λ ±, μ ±. Since the functionals χnm annihilate ffl, we conclude
from (2.10) and (5.1), resp. (5.2) that λ± = λf and μ± = μf , hence m = M{ζ).

It is well-known that the classical bicovariant differential calculus (Γc, dc) over
$0 is associated with the right ideal (ker ε)2 of ker ε. It is not difficult to check that
(kerε)2 is not contained in M(ζ)ι if ζ φ 1 and that (kerε)2 = M(X) + <t/>. The latter
relation implies that the classical calculus is a quotient of the N2 dimensional
bicovariant calculus (Γ(l), d). That is, the limit q -> 1 (in the sense explained above)
of the bicovariant calculus (Γ( + , k\ d) contains the classical calculus as a quotient
if and only if qk belongs to the first branch of the Nth root.

From (2.9), (2.10) and (5.1), resp. (5.2), we obtain that

, (5.3)

Vnm(αiij) = αVBm(iij) + CVBW(α)iij if n φ m and (5.4)

Vr(αuj) = aWj) + ζVMWj + (C - l)NVυ{a)u){δr+ Uj - δrj) (5.5)

for a E si, ij, n, m = 1,. . . , N and r = 1,. . . , N — 1. If ζ φ 1, then (5.3) implies
that dα = ((ζ — l)N)~1(ωa — aω) for aesi, i.e. the bicovariant differential calcu-
lus (Γ(C), d) is inner. The calculus (Γ(l), d) is not inner.

Suppose now that ζ = 1. Then, by (5.4) and (5.5), Vwm for n φ m and Vr for
r = 1,. . . , N — 1 satisfy the "ordinary" Leibniz rule, so they correspond to left-
invariant vector fields of the Lie group SL(n). Since they are obviously linearly
independent, these vector fields form a basis of the Lie algebra of SL(n). Setting
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ξr := jjoj — ω i — — ωr, we have for a e s/,

da-Vv(a)ω= £ Vnm(a)ωnm - - £ (Vu(a) - V j 7(α)H
n + m ^ i,j

= Σ V n m (α)ω n m + Σ V r (α)ί Γ .
n Φ m r = 1

We consider Γo := <αωπm, αω r: α e i , n + fw,r= 1,. . . , N — 1) as a left module of
stf and define a bimodule structure by ηoa = aηo, ηoeΓo, aestf. Set
doα := da — Vυ{a)ω. From the preceding it follows that (Γo, d0) is isomorphic to the
classical bicovariant differential calculus (Γo dc) over j</, i.e. we have

dfl = dcα + Vc/(α)ω, ae si .

Moreover, by (5.2),

ωnmu} = u)ωnm + 2(N2 - l ) " 1 ^ ^ - N - ^ j ω ω .

That is, if we set ω = 0 in the calculus (Γ(l), d), then the bimodule Γ(l) becomes the
commutative bimodule Γo of stf and the mapping d of (Γ(l), d) goes into the
classical exterior derivative dc over si.

Part II: Classification of Bicovariant Differential Calculi
on (Oq(N) and Spq(N))

6. Definitions and Main Results

Throughout Part II let sd denote the Hopf algebra of one of the quantum groups
Bn, Cn, Dn as defined in [FRT], Definition 11. Let N = In + 1 for Bn and N = 2n
for Cn and Dn. Recall that Bn, resp. Dn is the quantum group Oq(N) and Cn is the
quantum group Spq(N). Let R and C = (Cj) be the corresponding matrices and let
P+, P_, Po be the three spectral projections of R defined in [FRT], 1.4. Let
B = (Bj) denote the inverse of the matrix C and let K = {Kfm\ where Kfm := ClBJ

m.
SetQ:=q-q-\ and V:= N + 1 - ΐ. Let z:= ^ N " x for £„, DM and z:= - qN+1 for
CΛ. Note that K*l = q'^.K1^ = qz~ι SindC2 = ±1. Further, C) Φ 0 if and only
if j = ϊ. By definition (cf. [FRT], (1.9) and (1.13)), we have

Rl = qδimδjkδik + δimδjk(l - δik)(l + (q-1 - 1)3^)

+ QΘ(k-j)(δijδkm-Kiϊyδik.δjn<) (6.1)

for all ij, fe, m = 1,. . . , N except for the element R"+l't"+l = I in case of
Bn and

uCu'B = Cu'Bu = I or equivalently φ)) = C^B™ . (6.2)

The Ad-Invariant Right Ideals M+ and 01-

In order to define these right ideals, we introduce a number of notations. We
abbreviate Q+ := q + q'1, Z : = z — z" 1 ,
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s:= 1 + Z β " 1 and D:= B'C, i.e. D) = D{ = B\c). Further, we set

(« ± )j := Br

k(P± )™CJM*, (ι>± )j := (P ± )?JDk

mur

ku
sj ,

(f± )j := Bί(P+ )™Cj(t> ± ) i , (3 ± )j := Br

k(P- )^Cι

t(υ ± )* ,

{7 := D/uj and F ± := DJ{v + )j .

With the coefficients

_ egί(gz-i) ._ QQΪ

+q2z~1)

we define linear mappings S + : J / 2 ~̂  ̂ 2 by

S ± («>*):= (P ± M!« 2)t - α ± (P ± (/± ) 2 P ± ) ^

(The proof of Lemma 8.1 below shows that S+ and S- are well-defined projec-
tions.) We introduce twelve numbers φ+ , φ= , ψ+ , φ= , μ+ and μz by

μΐ^l + β-1^^-^-^"1), μΐ^l + β-'te-^-^z-1) and

μ r : = - β Z ( β Z + 2 s ) " V ΐ i f β Z + 2 5 φ O .

For τ = + and for τ = - if β Z = 2$ Φ 0, let ̂ τ denote the right ideal &τ si of
ker ε, where ^ τ is the linear subspace of s$γ © J / 2 spanned by the following groups
of elements:

(1) S+(«ju*), i , j , f c , m = l > . . . , N .

(2) (/ + )j - φ * (M + )j, (g + )j - ^ («_)], /,; = 1,. . . , N.
(3) V± - μt~ U.

(Note that the eight groups of elements (l)-(3) generate ad-invariant linear sub-
spaces of kerε, see Lemmas 8.1 and 8.2 below.)

Theorem 6.1. The right ideals &+ and 01- for QZ + 2s Φ 0 are the only ad-invariant
right ideals 0t of the algebra ker ε such that ker ε = 0t © stfγ.

The Bicovariant Differential Calculi {Γ+,d) and (Γ_, d)

For τ = + and for τ = — if β Z + 2s φ 0, we define linear mappings Xτ e
L{(£N ® <£N) and Tτ e L{<£N ® <CN ® <CN) by

X+:=zI-R9 X-:=zI -R + 2Q~ιK and

T±:= ± (X+ )2iR12 RniX± )i2
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Note that X+1 = z(Z - β)[(z - Q)I + R - Qz-χZ~ιK'\ and XZ1 =
z(Z - β)[(z - Q)I + R + (Q- Qlz(QZ 1

Let L ± = ( * / ] ) be the N x N matrix of linear functions ± I) on si defined in
[FRT], Sect. 2, for the quantum groups Bn, CΛ, £>„. By the formula (2.1) in [FRT]
we have

+ l)(ι4n) = R%j and κ(~l))(uk

m) = R% (6.3)

for i,7, fe, m = 1,. . . , N. By a similar reasoning as in case of SLq(N\ Γ2 := (w, L~ ' C )
and Γc

2\=(u\ L + ) are bicovariant bimodules of ja/. We still need another new
bicovariant bimodule Γo = (uc, L). For this let L = (/j) be the N xN matrix of
linear functional I) on si defined by /j(l) := δtj and /j(α) := ( - l)*( + /j)(α) for α e «s/fc

and fc e N. Since only quadratic relations for the matrix entries u) are involved in
the definition of the algebra si, the functionals I) are well-defined. Since L+ is
a representation of si on (C^, L is also a representation of ^/. To verify the
compatibility condition (1.1), we apply Lemma 1.3. If T is the mapping for (uc, L)
occurring therein,, then —T( = R) is the corresponding mapping for the bi-
covariant bimodule Γc

2 = (u\ L +), hence T e Mor(wc (x) w, M (g) wc). Thus
Γo = (t/c, L) is indeed a bicovariant bimodule.

By Lemma 1.2, Γ+ := Γ2 ® Γ2 and Γ_ := Γo ® Γ2 are bicovariant bimodules of
si. By definition there is a basis {77̂ : 1,7 = 1,. . . , iV} of the vector space (Γ+ ) i n v

such that AR(ηij) = ηkm® (u^fuj1. From (6.2) we conclude easily that the left-
invariant element η:= D)ηij is also right-invariant. As in case of SLq(N), we set
dα = ηα — ηα for α e si.

Theorem 6.2. Up to isomorphism (Γ+, d) and (JΓ_ , d) for QZ + 2s Φ 0 <2r£ ίfte
TV2 dimensional bicovariant differential calculi (Γ,d) over si for which
Γ = (a-dUj: aesi,ij= 1,. . . ,JV>.

T/ie structure of(Γ+, d) and O/(JΓ_ , d)/or QZ + 2s Φ 0 is t/ie same as given in the
second part of Theorem 2.2 if the linear mapping T(τ, fe) is replaced by B2 T+ C[, the
invariant form ω by DjCOtj and the constant 3τΛ by (QZ)'1 for (Γ+,d) and by
(QZ + 2sJT1/or (Γ_, d). Moreover, the ad-invariant right ideal 01 ± corresponds to
the bicovariant calculus (Γ± , d).

The proofs of both theorems are given in Sect. 8. We add a few remarks.

1. Theorem 6.2 corrects an error in the formulation of Theorem 7 in [SS], where
the bicovariant calculus (Γ_, d) is missing.

2. If q satisfies the algebraic equation QZ + 2s = 0, only the right ideal ^ + and the
calculus (Γ+, d) appear in Theorems 6.1 and 6.2, respectively. While M- and T_ are
not defined for QZ + 2s = 0, the pair (Γ_, d) is still a well-defined bicovariant
differential calculus, but Γ_ Φ <αdwj>. The condition QZ + 2s Φ 0 excludes pre-
cisely 6 values of q for 0^(3), 8 for Oq(A) and 12 for Spq(4); none of them is real or
a root of unity.

3. Let Γj and Γ]J = 1, 2, be the bicovariant bimodules of si which are defined as
in the case oϊSLq(N) by letting p = 1. Then the bicovariant bimodules Γ2 ® Γ2 and
^ ί ® A (which were not isomorphic for SLq(N)\) and hence the corresponding
inner bicovariant calculi are isomorphic for si = Bn, Cn, Dn.

4. Our standing assumption N ^ 3 excludes only the quantum groups ^ = SLq(2)
and Cj = Spq(2). Since the Hopf algebras SLq2(2) and Spβ(2) are isomorphic, it
suffices to discuss the case of SLq(2). Then the 4D + - and 4D_-calculi are the only
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bicovariant differential calculi satisfying condition (ii) of Theorem 2.2, cf. [St].
Their structure is also of the form described in the second half of Theorem 2.2.
We set T± := ±(X±)Ϊ3 Rϊi RiΛX±)n for the 4D±-calculus, where X+ :=
{q2-Q)I + R and X- := (q2 + Q)I - R. In particular, both calculi are
inner.

7. Morphisms of Tensor Products

Throughout this section let v and w be representations of the quantum
group si. The following notation is often used in the sequel. Let T be an
intertwiner of two tensor products of representations of J / , where the first one
has u as the m t h factor and the second one has u as the A;th factor. We
set k

mT:= BίTCn. Since uc = B'uC by (6.2), k

mT intertwines the corresponding
tensor products obtained if the m t h factor of the first one and the kth factor
of the second one are replaced by uc. In particular, the mapping T -*\T
is a bijection of M o φ ® u ® v, u ® u ® w) to Mor(uc ® u ® v, u ® uc ® w)
and T->\T is an algebraic isomorphism of the algebras Mor(w®ι;) and
Mor(uc®v). Similar to the case of SLq(N), we have TeMor(uc®uc) if
T G Mor(u ® u).

Lemma 7.1. Setting D o := Bι

rC
J

r and Dij:= B\Ch we have D^u^l = Dkmt and

Proof. We prove the first equality. Using (6.2), we obtain DijUι

k(ucym —

B>Ciuί(C?uy

xBj) = ^ButC™ = Bk

xC?t = Dkmt. •

Lemma 7.2. (i) For S e MOΪ(U ®v,u®w) and T e Mor(ι; ® u, w ® u), we define
(trί S)* := DijSfm and {tx2

2 T )* := DυT *}. Then we have trί S e Mor(i;, w) and tγ2

2 T e
Mor(ι;, w).
(ii) Let (irc

12S)ϊs

m:=DijS%s

m and (tr 1 2 T)k

s

m := B f T ^ C * /or S e M o φ c ® u ® ϋ,
w ® uc ® w) and T e Mor(w ® u ® v, u ® u ® w). Then tr^^S 6 Mor(wc ® v,uc ® w)
and t r 1 2 TeMor{u ®v,u® w). Moreover, trc

12 Γ = }(tr12S) if T = ?S.

Proo/. The proof is similar to the proof of Lemma 3.1 if we replace q'2ιδij
and q2iδij by Dij and Djh respectively, and use Lemma 7.1 or (6.2) instead
of (2.3). •

Now we introduce a twist Φ (see Fig. 5 below) of the algebra Mor(ι* ® u) by
defining Φ(T)k

s

m:= B-TJjCJ

m for T e M o φ ® u). Obviously, Φ(I) = K and
Φ(K) = I. From formula (1.10) in [FRT] we obtain Φ(R) = R~\ That is, Φ maps
the basis {R, /, K} of the vector space Mor(w ® wj on the basis {R'1, K, I}. Hence
Φ is a bijective mapping of M o φ ® w). Since i^" 1 = R - QI + βX (cf. [FRT],
1.4), we conclude that Φ(Φ{T)) = T for all T e M o φ ® u).

Set q+ := - g(gz - I ) ' 1 and f̂_ := - Q{q~ιz + I ) " 1 . Recall that by the for-
mulas in [FRT], 1.4, we have

P+ =Q + l{R + q-lI + q+K\ P_ = Q^-R + ql + q-K),

P0 = s~1K. (7.1)
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The morphisms 77 + := Φ(Φ(P± )2) e Mor(w ® u), see Fig. 4 below, play an impor-
tant role in the proof of Lemma 8.1. By direct computations based on (7.1) and the
fact that the Φ = Φ~ι one proves

Lemma 7.3. (i) (77 + )£» = Bζ(P+ )iJyD
i

p(P+ )™CJ.
(ii) 77± = α ; 1 P + + j S ; 1 P - + s y ± 1 P 0 .

Lemma 7.4. (i) tr}£ = z7, t r ί f l " 1 = z" 1 /, t r j/ - s7, tr}K = 7.
(ii) trί T = trf Γ /or Γ e Mor(w <g) w).
(iii) t r ί P ± = Q + 1{q*1s±z + q±)Iandtτl(tτ{P±) = y-±

i.
(iv) trίΦ(>±) = 0.
(v) t r 1 2 (£ 1 2 JR 2 3 ) = K and tr12(R^R23) = Qzl - QR + K.
(vi) t r 1 2 £ = z~ιI, t r 1 2 7 = 7, t r 1 2 K = $7.
(vii) t r 1 2 X + = ZI and tr 1 2 X_ = (Z 4- 2sβ- 1 )7.

Proof, (i) can be verified in a similar way as Lemma 3.2, (i), by direct computations
using the formula (6.1) for JR and the relations K^l — q"1 z, K^ = gz~1. We have
tr2 Γ = tr2 Φ(Φ(Γ)) = Bίtrί T)C, hence (i) implies (ii). (iii) and (iv) are immediately
obtained from (i) and (7.1). The first formula of (v) can be derived from the known
relation ^12^23^12 = ^23^12- Since R'1 = R — QI + QK, the second formula
of (v) follows from the first one combined with tr 1 2 7£ 2 3 = R and (tr 1 2X 1 2 JR 2 3) r

k

s

m =
δfcr(trί R)Γ = {zI)rS

m by (i). From RK = z~1K we get t r 1 2 JR - z~17, the rest of (vi) is
obvious, (vii) follows at once from (vi). •

We introduce six intertwiners g ± , (5+ and £>± of Mor(u g) M ®«) by
a + + ( + ) 2 3 ( + ) i 2 ( + ) 2 3 , + i + ( ) 2 3 ( + ) i 2 ( + ) 2 3 S + y +

K 2 3 Φ ( P ± ) 1 2 , see Fig. 4 below. Further, we define ψ±(T):= tτ{{TΦ{P±)ί2) for
T e Mor(u ®u®u). Note that Ψ±(T)e Mor(w ® w) by Lemma 7.2, (i).

Lemma 7.5. 77or τ e { + , — }, we have:

(i) Tτ + K 1 2 = φ τ

+ g + +<pΓ8r- +ιA τ

+ © + +ιAΓ©_ + μ τ

+ § + + μ τ ~ δ -
(ii) ^ + (Γτ + K 1 2 ) = φ * P + + ̂ Γ P- + ̂  P o .

(iii) t r 1 2 ( y ± ( Γ T + K 1 2 )) = μτ

±7.

Proof. All assertions can be verified by direct (lengthy) computations inserting the
definitions of the constants φ* , \j/^ , μ* and using the above formulas for P± and
Φ(P+ ) and of Lemma 7.4. We omit the details. •

The formulas in Lemma 7.5 give important links between the bicovariant
differential calculus (Γx,d) and its associated ad-invariant right ideal 0tτ\ The
structure of the calculus (Γτ, d) is completely described by the linear transformation
Tτ, while the ideal Mτ is characterized by the six constants φς1, ψ* , μ^ as shown by
Lemma 8.2 below.

The linear transformations T+ and T_ belong to the algebra Mor(w ® u ® u).
This algebra is isomorphic to the Birman-Wenzl-Murakami algebra (cf. [BW],
[Re]) ^ 3 (/, m) with parameters / = — fz"1, m = iQ. An isomorphism of ^ 3 (/, m)
onto Mor(w ® u ® u) is defined by G; -> iRjJ+u E} -> — KjJ+1 for j = 1, 2. Note
that the vector space dimension of Mor(u ® u ® u) is 15.

Figures 4, 5 and 6 give the graphical representations of some important
intertwiners, operations and identities appearing in Part II.
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Λ 1
P+

> β± = At

P±

\
/

, π ± =

Fig. 4. The graphical representations of some intertwiners for stf = Oq(N) and J / = Spq(N)

tv\(T) = T

1 1

Φ(Γ) =

Fig. 5. The graphical representations of some operations with intertwiners for stf = Oq(N) and
s* = Spq(N)

Lemma 7.4, (i):

Lemma 7.4, (v):

-Q X +

Fig. 6. The graphical representations of some identities of intertwiners for stf = Oq(N) and
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8. Proofs of Theorems 6.1 and 6.2

Suppose that 9k is an ad-invariant right ideal of kerε such that ker ε = & © s$x. As
usual, a = b means that a — beM. Our aim is to show that 01 = ^ + or 01 = J L .

Lemma 8.1. Suppose that N ^ 4. T/zen we

(i) adf ^ ^ uc ® M ^ M ® w ̂  [0] Θ [2] ® [ I 2 ] .
The projections of ^ onto the subspacesfor the Young patterns [0], [2] and [ I 2 ]
are }P0, {P+ and \P-, respectively.
(ii) The linear mappings A ± defined by A ± (wj):— {v ± )], i, j = 1,. . . , N, belong to
the space Mor(adf sίu adf s/2)-
(iii) adf ^2 ^ ([2, 2] © [3, 1] © [4]) © ([2, 2] © [2, 1, 1] © [ I 4 ] ) © 2[2] ©
2 [ 1 2 ] ® 3 [ O ] .
T/ze mappings S+ and 5_ are ί/ze projections for the two subrepresentations in
brackets. The mappings F±, G± and H± defined by (8.5)—(8.7) below are projections
for each two subrepresentations [2], [ I 2 ] and [0], respectively. The third subspace of
srf2for the trivial representation [0] is <1>.

Proof (i): Decomposing the tensor product represetation [1] (x) [1] in case of
Bn, Cn and Dn, we obtain u ® w = [0] © [2] © [ I 2 ] and the corresponding projec-
tions are the three projections Po, P+, P_ of the intertwining space Mor(u ® u).
Since uc = B'uC by (6.2), we have uc ® u ^ [0] © [2] © [ I 2 ] and the correspond-
ing projections are \Pτ = B[PτC{ for τ = 0, + , — . The assertion for adf j / x

follows by applying the isomorphism lχ e Mor(wc (x) u, adf J^J) .
(ii): From P ± 6 Mor(wc ® wc), (1.2) and Lemma 7.1 we obtain

= (P± )EDy

xu
T

s\ur

s\

(8.1)

so that A± eMor(adf j / 1 ? a d f J / 2 ) by (1.2).
(iii): First let us note that

(uc ® uc) ®(u®u) = ([0] © [2] © [ I 2 ] ) ® ([0] φ [2] © [ I 2 ] ) . (8.2)

The projections for the decomposition of uc (x) uc are Po, P+,P-β Mor(uc (x) uc\
while the projections for u®u are P o , P+, P_ e Mor(w (x) M). The
same reasoning as in the case of SLq(N) (see the proof of Lemma 4.1, (iii))
shows that im(Pτ ® Pτ.) c kerΓ> for τ Φ τ', τ, τ' e {0, + , - }. For Bn and /)„,
we have dimim(P0 ® P o + P+ ® P+ + P_ ® P_) ^ 1 + (jN(N + 1) - I) 2 +
(i(N(N - I))2 = i ( N 4 - JV2 - 2iV + 4) - dimadf s/2. Similarly, dimim(P0 ® P o +
P+®P+ + P- ® P-) = i{N4 - N2 + 2N + 4) - dim ad® P_ f srf2 in case of Cn. Hence
Po ® Po + P+ ® P+ + P- ®P- = h ®/o θ P+ ® / + © P- ® P- and I 2 f W is
an isomorphism of ΊV := im(P0 ® P o © P+ ® P+ ©P_ ® P_) onto J / 2 Therefore,
using once more the general rules for decomposing tensor product representations
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([BR, H]), it follows from (8.1) that

ad[ rf2 = ([0] <g> [0]) Θ ([2] ® [2]) Θ ( [ I 2 ] <g> [ I 2 ] )

= ([0])

© ([2, 2] ® [3, 1] θ [4] © [2] © [ I 2 ] © [0]) (8.3)

© ([2, 2] © [2,1, 1] © [ I 4 ] © [2] © [ I 2 ] φ [0]) . (8.4)

Let Eo, E+ and E- denote the projections corresponding to the subrepresentations
of adf J / 2 in the preceding three lines. By construction, Eτ(uljU^) = (Pτu1u2)jm f° r

τ = 0, + , - and ij\ k, m = 1,. . . , N. From (Po)/J = jCl

kB
T

s and (6.2) we get
E0(uljUn) = (Po)fmt. We denote by S+ and S_ the projections corresponding to
[2,2] © [3,1] © [4] and [2, 2] © [2, 1,1] © [ I 4 ] in (8.3) and (8.4), respectively.
Further, we define linear mappings F±,G±,H±: stf2 -+ ^i by

F± (MJM*):= α ± ( P ± (/± ) 2 P ± )j* , (8.5)

G ± («>*):= J8± ( P ± (^± ) 2 P± )jί, , (8.6)

f/ ± (M>U):=); ± (P ± ) j *7 ± , (8.7)

where the α + , β + , y ± are the constants defined in Sect. 6. It is easily seen that
these mappings are well-defined and that i m F ± , i m G ± , imH± ς i m £ ± . Ap-
plying Lemma 7.3, we get

F± ( ( / ± )j) = α ± ( iP + )y"(P ± )£Dι

p(P± )Z(f± YZ(P± )Γm

z

= a ± (p+ c 1γi;
n(B'kD

ι

p(p± yxi(p±),»cr)βj(/± )2

y

= α ± (P+ C\ ),7(77 ± ) ^ β ; ( / ± )z

y = (! (77 ± P+ ))/)z(/± )»'

= α

Since i m F ^ c < ( / ± ) ; > by definition, this proves that F± is a projection of
si2 onto <((/± )j>. The same reasoning shows that G + is a projection of J / 2 onto
<(fif + )j>. By Lemma 7.4, (iii),

H± (V± ) = D{Dr

s{P± )UH± (uϊuΓ)

= y±D(Dl{P±)s

riV± = y ± ( t r 1

1 ( t r 1

1 P ± ) ) 7 ± = V± ,

so H± is a projection of J / 2 o
n t o <^± )•

Next we show that F+, G+ and //+ are mutually orthogonal. (Here we call two
projections E and F orthogonal if EF = FE = 0.) We have

= α + (P- Cί X 7 ( ^ ^ ( P + )ί*(P+ )Γ« Cs

w)By

s(Λ)ί

; + ); - 0 ,
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where the last equality follows from P+P- = 0. Similarly, G+(( /+)]) = 0, so that
F+ and G + are orthogonal. Writing H+ as // + (ujw*) = y + (P+(h+)2P+)jm with
(h+Yj'= (\Po)ϊj{v + )ζ = $~1δijV+, the same reasoning shows that F+H+ =
G+H+ =0. From Lemma 7.4, (iv),

and similarly H+((g + ))) = 0, so that H+F+ = H+G+ = 0, i.e. F+ and i/+, resp.
G + and H+ are orthogonal.

By the preceding, i^+ := <(ι; + )]> is the direct sum of the subspaces im F+, im G+
and imH+. From (8.1) we see at once that these three spaces are ad-invariant.
Hence the mapping A + from (ii) is injective and A + gives the equivalence of ad f s$γ

and adf f^+. Therefore, by (i) and by the definitions of F+, G+ and H+, the latter
are the projections corresponding to the Young patterns [2], [ I 2 ] and [0] in (8.3)
and S+ = E+ — F+ — G+ — H+ has the form given in Sect. 6. A similar reasoning
works for F_, G_, H_ and S-. M

Lemma 8.2. There exist complex numbers φ +, φ~,ψ + ,ψ~, μ+ and μ~ such that

®12 = <y+ - μ+ϋ)® <F_ -μ-U>®&+®^- ® ^ + ® ^ _ ®imS+

+ := ((g + )j - ι//± («-)j:
U = 1 , . . . , Λ T > .

Proof. First let us assume that JV ^ 4. We take an ad-invariant linear subspace
#Όf j / x φ J/ 2 such that ^ 1 2 φ #" = j ^ © ̂ . Since ker ε = ^ 0 ^ by assump-
tion, ^ 1 2 Θ ^ i = 4 θ 4 and hence ad[ #" ^ adf ^ ^ [0] © [2] © [ I 2 ] by
Lemma 8.1, (i). Since l e ^ 2 and tφsrfu we have ad[ ( J ^ φ J/2) =
adf (J/J © ^ίζ) © [0], where the subspace for the trivial representation [0] is <1>.
Therefore, from the decompositions of adf J ^ , adf stf2 and adf #" it follows that

adf ^ 1 2 ^ ([2, 2] © [3,1] © [4]) © ([2, 2], φ [2, 1, 1] © [I 4 ])

©2[2]©2[1 2 ]©2[O] .

By Lemma 8.1, (iii), the subspaces for subrepresentations in brackets are im S+ and
imS-. The two subspaces for [2] are ad-invariant subspaces of <(/+)]> φ
<(/-)]> θ <("+)]>. Since <(w + ) j > n ^ = {0} by the assumption kerε = &®du

we conclude that there exist numbers φ + , φ~ e(C such that the subspaces for [2]
are #"+ and # 1 . Similarly, the subspaces for [ I 2 ] and [0] can be written as ^ + , c§-
and <F+ — μ+ U), <F_ — μ~ (7), respectively. This completes the proof of Lemma
8.2 in case N ^ 4.

Suppose now that N = 3. Clearly, the assertions (i) and (ii) of Lemma 8.1 remain
valid. For N = 3, the Young patterns [2, 2], [2, 1, 1] and [ I 4 ] do not occur in the
decompositions of adf j / 2

 m Lemma 8.1, (iii), and of adf .^1 2, cf. [H]. Thus we
obtain adf ^12 ^ ([3,1] © [4]) © 2[2] © 2[12] © 2[0] and the corresponding
subspaces are im S +, #+ , ̂ ± and <F± — μ ± Ό > similarly as in case JV ^ 4. Since
S- = 0 for JV = 3, the assertion of Lemma 8.2 is also true if TV = 3. •
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Our aim is to determine the numbers φ ±, φ ± and μ ± . For these computations
we shall use the abbreviations

a ± := α ± φ±, b ± := β ±φ ±, m ± := y ± μ±,

v:= (z - ^ ρ ^ f a z - I ) ' 1 = QlHq'1 + 4 + ) ,

a±:=q±1a+-q + 1a-,b±:=q±1b+-q+1b- ,

c+:={Q + q+ + 1)Λ+ ~q~2a- -b+ +(q~2 -Q+q-)b- ,

C-:=(β+<?+ + 1 + ^ ~ 2 - ^ 2 ) α + -^f 2 β- -b+ +(q~2 -Q+q-)b- ,

rf+ = ( β + ^ + ^ ~ 1 + < 3 " 3 + ^ ~ 1 -^)α+ -qa- + qb+

Throughout Lemma 8.3 and its proof we shall not sum over repeated indices.

Lemma 8.3.

(i) tfjtt* = 0 ifi φ j , i φ m, fc + j , fe φ m, i φ fe' α π d j φ m'.

(ii) MJ«ί = β ; 2 ( ( α + + fl-)(iι+)j + (fc+ + b-)(u-)})ifi * Λ i * k , i * fc',7 *
J Φ fc'.

(iii) u)u} = (Mjiij = ) β ; 1 ( ^ + (^ + )j -f & + ( t t - ) j ) ϊ / ΐ + Λ i Φ / and i φ i ' ( ; Φ / ) .

M^M/, = u\'u\ = va + Ui' ifi φ /'.

Mίu;; = e ; 1 ^ + D/:(«+ - β ) ) a + 4 i/i < r.

«/:«/- = ρ ; 1 ^ - 1 + D\q+)a+u\. ifi < V.

(n)u)uik = {uiu) = )Q-+

2{a + {u+)i + b+{u-)i) ifi+j, i+f, i + /c, j # /c' and
< /c(; < 0

u > i Ξ ( M / M j Ξ ) ρ ; 2 ( a - ( w + )̂  + 6-(M-)ί) i / i φ j , i φ / , iΦfc, ΦΛ' and
y > k(j > i).

(V)U/.MJ' = (uj'wj. = )β;3(d+wj + Kj^c-uf) ifi ΦjJ < i' and ί Φ V (j +f).

ul-uj = (uj'uj. = )ρ;3(d_wj + K%c+u{.) ifi φy,y > i' and i Φ V (j Φ/).

(VΪ)M/M/' Ξ β; 1 (q + - θ(f - i)Q)a + K$.uϊ ifi Φj, i Φ / and i Φ i'.

u)4 = e;Hfl+ - 0(/ - i)ρ)fl + X^«/. ι/i ΦΛ i Φ / and i Φ i'.

(vii) U/M/ Ξ a + (tί+)i

i + b + (u-)l + m+U + tifi + Γ.

J ρ ; 2 ( a + ( w + )j + a-(M + )i

ί + fo + (M_)j + ί>-(M-),i) + ρ; 1 (m + -m_)ί7
j/i < j and i Φj'.

Proof. By Lemma 8.2, we have i m S ± £ ^ . Since wjw^ = J ] r S{P+)lk

su)us

m +

Στ,Ap-)*uJum + (^o^ ml, by the definitions of S± this implies that

u)uk

m - δtjδ^l = (F + + F_ + G + + G_ + H+ + H-)(u'}u*)~ . (8.9)
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All assertions of Lemma 8.3 are derived from (8.9) by direct computations. For this
we essentially use the explicit formulas (6.1) and (7.1) for R and P± , respectively. As
a sample, we carry out the proof of (v.l).

From (6.1) and (7.1) it follows that a term (P± )ι

k

ι

m(P± )*, is non-zero only in the
two cases k = ϊ,rn = i,r=j and k =j9m =j',r = Γ. Since i Φ ϊ and V >j, we have
(P+ )?',{P+ i\ =Q'+

1(±q~ι+q±)Q~+

1qτl in the first case and (P± )fy(P± )% =
Q+1K'/r(q± +Q)Q + 1(± 1) in the second case. Since (/+)™ = φ±(u+)?>, this gives

k,m,r

= oc±φ±Q^2l( ± q'1 + q±)q+\u+)) + (q±+Q)(±

so that

{F+ + F-)(ii/'«j') = Q'ΛMq'1 + q + )q-χ + α.( - q'1 + q-)q)(u+Ϋj

+ (a+(q+ ~ Q) ~ a-(q- + Q))*]/(" + )/'')

Similarly, we obtain

(G+ -f G-)(tt/^j#) = Ql2({b+(q-i + q + )q~ι + 6_( - q'1 + q~)q){u-))

+ Φ+(q+ - Q) - fe-te- + Q))κ%(u-){:).

Moreover, we have H+ (w uj) = y + (P± )"7 F ± = 0 and (M + )^ =
Q+\qTlu^± K^m.up) if fc' > m and fc φ m. Combining these formulas with (8.9)
and using the definitions of d+ and c_, (v.l) follows. •

α_) 2 .

Lemma 8.4.

(i) Q+q+a + <

(ii) Q + (q+ —

(iii) q2Q2

+va +

(iv) q 2 β+vα +

(v) q ~ 2 Q + va

(vi) fl"^2θί.vα

i_ +

β ) α +

d_ =

c + =

+ d+~-

+ c_ =

α + c.

« ( « •

= ί~

= < ? ^

\-a~c

~ιa +

^ α +

1 ( ί α +

1(βα +

Proof. We carry out the proofs of (ii), (iii) and (iv). Since CS

Γ = 0 if 5 φ r', (6.1) and
Lemma 8.3, (i), imply that

C\.uy = X u\ Clu\ukr = CluWiUr + C ί ' u ί ^ ' 4 . (8.10)

Note that (8.10) is also valid for N = 3. Applying Lemma 8.3, (ii), twice (note that
j = V and k = k' are not excluded therein) and using that (u+ )]> — uj> and (M_ )/ = 0,
we get Uyulul' ~ Q^Ar(a+ 4- a-)2u\.. Similarly, from Lemma 8.3, (v.l), (vi.2) and
(iv.2), we have

- Q)d+a+Kί

2

1

2:U

1

v + Q + 5 c - a

\ Putting these facts into (810) and using that C\Recall that C\'K\l' = c\ . Putting these facts into (8.10) and using that C\> φ 0
and u\>φ$ by assumption, we obtain equation (ii). The proof of (i) is quite similar;
one replaces C2'Uy in (8.10) by C\>u\ .
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Due to Lemma 8.3, (iii.2) and (v.2), we have

u\uXu\ = q2va+u{'u2 = q2Q + 3va + (d-U2 + K^c+uX) . (8.11)

Lemma 8.3, (iii.l) yields u{u\=qQ-2((q~γa++qb+)u\+K2

ιl\a+-b + )u2

v).
Using the facts that u\u\ = qu\ u\ and u2

vu\ =q~1u\ u\> together with the
previous equations and Lemma 8.3, (v.2) and (v.l), we obtain

ίa+ + qb+)qd- + K%(a + - b + )q^Kγ&C-)uϊ

((q~ίa+ + qb+)qK£c+ + κ£(a + - b+)q~ιd+)u2'} . (8.12)

Note that K\rK\}2 = K[{'; = ϋ{' = qz~\ Setting (8.11) and (8.12) into the equa-
tion u\u\ u\ — q~xu\u\u\ and comparing the coefficients of u\ and of u\ (both
are linearly independent over 01 by assumption!), we get (iii) and (iv), respectively.
In order to derive (v) and (vi) we begin with the equation u\>u\>u\ = qu{> u\ u\> and
argue in a similar way. •

The equations (i)—(vi) of Lemma 8.4 form a system of quadratic equations for
the numbers φ ± and φ ±. Now we solve this system. For this we essentially use our
standing assumption that q is not a root of unity. Throughout this derivation, we
abbreviate b:= b+ + (Q + q- - q~2)b-.

First we check that a+ Φ 0. Assume to the contrary that a+ = 0. Then we have
c+ = — q~2a~. — b and c- = — q2a- — b by definition and
— q~1a-c+ = — qa-C- = g+ — Q + a2- from (i) and (ii). Since Q+ φ 0, α_ φ 0.

H e n c e c+ = q2c- w h i c h gives b = — (q2 + 1 + q~2)a- a n d so c_ = q~1Q + a-.
Inserting the latter into — qa-C- = Q5+ — Q + a2-we get Q+ =0 which is a contra-
diction.

Further, we show that d _ φ θ or c _ φ θ . Assume to the contrary that
d- = c- = 0. Then we have c+ = — q~~1Q + b, d+ = Q+b, a- = a+(Q+q+ + q~2)
and a+ + a~ = — q'1Q~ιb. Since α + φ θ , the two latter equations imply that
b φ 0. Setting the preceding expressions for c+ and d+ into (i) and (ii) and using
that b Φ 0, we find a- = (Q + q3q + z + q2)a+. Compared with α_ =
a + (Q+q+ + q~2) and α+ φ 0, this leads to a contradiction.

If d-=0 and c _ Φ θ , then a+=b+ by (iii) and hence
{q~2QΪv — 1 — q~2)a+ = 0 b y (vi) which is a contradiction, because α+ φ 0 and
q is not a root of unity. Putting the preceding together, we have proved that d- φ 0.
By a similar reasoning it follows that c+ φ 0.

Next we prove that c-(a+ — ί? + ) φ θ . Assume the contrary. If c_ = 0 , then (vi)
yields a+ = b + , since rf_ ΦO. Hence a+ = b+. Inserting α+ = b+ into (iii) and
using that d- φ 0 and α+ φ 0, we obtain a contradiction.

Let x:= c-dZ1 and y= QQ + a + (a+ — b + y1. Dividing (iv) by c+ and (iii) by
d_, we conclude that x = d + c +1. Therefore, by (iii) and (v), x = q2zQ~1(yq+ + Q)
and x " 1 = q~2z~ίQ~1(qq+zy + Q). Multiplying both equations, we get a quad-
ratic equation for y which has the solutions y = 0 and y = (qz — 1)(1 + q~1z~1).
Since α + φ 0 , y φ O . The second solution for y yields x = — q. Hence
d+ + qc+ = 0, so t h a t α_ = {q~ιz — q2)(qz — l)~1a+, a+ = — g + g + zα+ a n d
α~ = — Q+qq+a+ by the definitions of d+ and c+. Setting these formulas into (i)
and (ii) and using that c_ + qd- = 0, we finally get (α+ + α_) 2 = β ί .
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First we suppose that a+ + α _ = Q+- Inserting the above expressions for
α_ and y, we obtain α+ = qQ + (z — q~1)(z — q)'1, a- = q~ιQ + {z — qz)(z — q)'1

and b+ = Q + (qz + q~2)(z + q'1)'1 so that φ± = φ+ and φ + = ψX. F r o m (i)
and c-+qd-=0 it follows that b = QQl(q~xz + \){z + q'1)'1 and
b- =Q + (q~1z + lKz + g ^ Γ S s o t h a t i / r = φ + . Obviously, if (φ + > φ~, φ + , φ~)
is a solution of (i)-(vi), so is ( — φ+, — φ~, — Φ + , — ψ~)> Therefore, the second
possible case a+ -f a- = —Q+ gives ψ± = — φ ί = φ ί

^± = -ψi =φί.
Next we compute the numbers μ+ and μ . For this we need the following

Lemma 8.5. (i) (1 + qq+)(a+ + q2b+)a+ + q~1(q+ + z~1)(a+ - b + )a+ +
Q + (q+a+ +q.b+)(φ+ + φ~) + Q%(\ +m+{φ+ + φ~ - s ) ) = q^q'1 +q + )2a\.
(ii) Q2

+q2va+{q-1a~ + qb~) + Qlq'2vz~ia + {a~ - b~ - qQa+ +qQb + ) +
(a+ +a-)(q-ιa+ +qb + ) + q2z-Ha+ -b + )(a+ + a_) + Q2

+(q+(a+ + a~ ) +
+ ί +

Proof. To prove (i), we use the relation u\u\u{ = q*u\>u\u\. By definition, we
have (u±γ1=Q^1(qτlul±z--1u1

v+q±U), D\=q~lz, D$ = qz~ι and
Uul = (v+ + v-){. = (f+ + g+ +/_ + gS)\. = (/+ +/_)}- = (φ+ + φ-)u{.. Us-
ing these facts and applying Lemma 8.3, (vii), (iii.3), (iii.4), we get

+ (q+a+ +q-b + )(φ+ + φ ~ ) β + ] + m + ( φ + + φ~ - s) 4- \}u\> .

By Lemma 8.3, (iii.2), u\>u\u\ =v2alu{>. Comparing the coefficients of u\>, (i)
follows.

From u\u\> Ξ O by Lemma 8.3, (i), and u\u\> = qu\>u\ we find u\u\u\> = 0.
Since Ό\. = q3z~1 for N ^ 4 and Ό\ = 1 for N = 3, we have
(u±)l = Q + 1(qτlul ±q2z~1ul' + q±U + Qqz~ιUy) for all N ^ 3. U s i n g t h e
latter expression, we treat the relation u\u\u\> = 0 first by Lemma 8.3, (viii), and
then by Lemma 8.3, (ii), (iii.3), (iii.4). Equating finally the coefficients of u\>, we
obtain (ii). •

Now we insert the above two solutions for φ ± and φ ± into equations (i) and (ii)
of Lemma 8.5. Note that φX + φ+ - s = QZ and φt + φZ — s = — β Z — 2s.
One computes that μ± = μ ί in the first case, and that μ ± = μ ΐ in the second case
if QZ -f 2$ φ 0. If QZ + 2s = 0, the equations (i) and (ii) have no solution in the
second case. Note that except for the last summand on the left-hand side all terms
in (i) and (ii) have the same values for both solutions. Therefore,
μ+ QZ = μ= ( - QZ - 2s) for QZ + 2s + 0, so it suffices to compute μ ί from (i)
and (ii).

By Lemma 8.2 and Lemma 1.1, we have thus proved that $12 = ^+ and so
31 = &+ or that 3t12 = 01- and so m = 31- if QZ + 2s Φ 0.

Next we show that the pair (Γ ± , d) has the properties asserted in the
second paragraph of Theorem 6.2. As always, in case of (Γ-9d) we assume
that QZ + 2s Φ 0. It has been already noted in Sect. 6 that in this case the linear
mappings X+ and X_ are invertible. Hence {cθij'= +Q({X±)ΪΓηkm'
ij = 1,. . . , N} is a basis of the vector space (Γ ± ) i n v . Using (6.3),
the formula ( iT % α = Φ(R)£ = Cy

rR
r

xlB
h

a and finally Lemma 7.4, (v), we obtain
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for(Γ+, d)

du] = Dl (irs

« p (

-u)η rs)

•c(-/f)(«; )ηkm - Dr

s

K. ί

u}ηr
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= uiDr

s£
r

xlR™ηkm - u\,Dk

mδpjηUm

= u\,{Bl(R-χxClR^ - Dk

mδpj)ηkm

= ui

p(\{U12R;2

1R23)-\K)^ηkm

= up(Q 1X+)ij ηkm = upωPj .

In case of (Γ_, d) we have to replace +lr

k{uζ) by l[(uζ) = — Rr

xk and the above
reasoning gives du) = uι

p( — Q {X-)lmηkm = uι

pωpj, so that Pinv(dwj) = ωtj in both
cases. Further, by the definitions of ω and η and by Lemma 7.4, (vii), we have
ω = Djω o = QDjCiX+)ΪΓikm = Q^{tr12X^ηkm = QZDk

mt]km = QZη and hence
da = (QZ) 1(ωa — aω\ α e i , for the calculus (Γ+, d). Similarly,
da = (QZ + 2sΓ x(ωa - aω), α e i , for (Γ_, d).

The rest of the proofs of Theorems 6.1 and 6.2 is similar to the case of SLq(N).
We only carry out the proof that the right ideal &τ is associated with the
bicovariant calculus (Γτ,d). From (f±)) — φ^(u + ))eMτ and the definitions of
F± and g ± we compute that F+ {u)ur

s) - φ* ( ? g ± ) ̂ t/ y

x G^ τ . Similarly,
G ; (W>;) - <Ar (?© + ) ^ ' < e mτ and H~+ (njuί) - μ? (?§"+ ) ^ ^ e ^ . Therefore,
by (8.9) and Lemma 7.5, (i), (MJKJΓ - ( ( ? X I 2 + \Tτ)lfs

yu^y e ^ τ , so these ele-
ments are annihilated by the functionals χkm of the corresponding bicovariant
calculus. But, by (2.10), each functional χkm of (Γτ, d) annihilates u)uτ

s — (5ί; ws

τ —
(52^tCίX>yWy = « X - ( ? ^ i 2 + 2iTxYJs

yuf. Since ^ n i ^ j O } , we conclude
from the preceding that ^ τ corresponds to (Γτ, d).

9. The Classical Limits

In this section we briefly consider the case q = 1 and the limits of the calculi (Γ+ , d)
for q-> 1. Let G denote the corresponding classical simple Lie group Bn, Cn or Dn.
We set σ = 1 for J3n, Dn and σ = - 1 for Cw.

Let ^ + = 3$± - stf be the right ideal of kerε as defined in Sect. 6, where the
constants ot± , β+ , γ ± , φf , φz , ^ J , ι/̂ r , μ j , /ιr are replaced by their limits for
g-»l . That is, we have φX = iσ(iV + 3 — σ), φ+ = iσ(iV — 3 — σ) and
μ+ = σ(N ± 2). Let T+ denote the limits of the linear mappings T+ from Sect. 6 as
q -> 1. From Lemma 7.5, (i), it follows that

T + = R12R23 + 2(Nσ - 2)" 1 (N - σ ) ' 1 (

+ (Nσ - 2 ) - 1 [ ^ 2 3 ^ 1 2 + R12K23R12 - I - K12K23

+ σ(R12 + X 1 2 ^23 - ^ £

and

T_ = - Γ+ - 2K 1 2 + 2σN-1K23K12
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As in Sect. 5, we obtain a bicovariant differential calculus (Γ+ , d) over stf for q = 1

if we replace the transformation T± in Theorem 6.2 by their limit as q -> 1. The

same reasoning as in Sect. 5 shows that the right ideal 0t± is

associated with the bicovariant calculus (Γ+,d). Lemmas 8.1 and 8.2 remain

valid also for q = 1. Arguing similarly to the proof of Lemma 8.2 we derive

the decomposition of ad(~ ((ker ε)2)12 into irreducible components. In fact,

we obtain that imS ± , ϊmH± , im \P0 ^ (kerε)2 for Bn, Cn and Dn, im \P+, imF± ,

0+ c (kerε)2 for Bn,Dn and im 1

1 P_, imG ± , ^ + c (kerε)2 for Cn. From this

we conclude easily that (kerε) 2 ^^L and that (kerε)2 ^ ^ + for all three

series Bn, Cn and Dn. Therefore, in the limit q -> 1 only the bicovariant

calculus (Γ+, d) contains the classical differential calculus on the Lie group G as

a quotient.
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