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Abstract: We study partial differential equations of hamiltonian form and treat
them as infinite-dimensional hamiltonian systems in a functional phase-space of
x-dependent functions. In this phase space we construct an invariant symplectic
capacity and prove a version of Gromov's (non)squeezing theorem. We give an
interpretation of the theorem in terms of the "energy transition to high frequencies"
problem.

Introduction

Lebesgue measure as an invariant of symplectic transformations for a long time has
been used as a useful tool to study hamiltonian systems (we mention the Poincare
recurrence theorem as an example of its elegant application). Recently M. Gromov
[G] discovered another invariant which he called "Darboux width" and which was
lately developed by I. Ekeland-H. Hofer as "symplectic capacity." The new invari-
ant has already found several highly nontrivial applications, starting from
Gromov's sequeezing theorem1 (the "Darboux width" was created as a tool to
prove this result). Some alternative definitions for the I. Ekeland-H. Hofer capacity
("mostly," but not "absolutely" equivalent to the initial one) were given later by C.
Viterbo and H. Hofer-E. Zehnder. Below we use the definition from [HZ1, HZ2],
where references to the previous works also can be found.

On the other hand, it was realized during the last two decades, mostly starting
with the works of V.E. Zakharov (see e.g. [Za]) that partial differential equations
without dissipation of energy can be written as hamiltonian systems in an infi-
nite-dimensional phase-space Z of x-dependent functions. Thus a natural question
arises if infinite-dimensional symplectic invariants can be constructed and used to
study hamiltonian PDE's.

It is well-known that the Lebesgue measure dx has no infinite-dimensional
analogy. But the Gibbs measure e~H(x)dx, where H is the hamiltonian of the

Stating that "a symplectic camel cannot go through the eye of a needle" (V.I. Arnold, [1]).
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equation we study, could have it.2 Such a measure was first constructed by L.
Friedlander [F] for the <p4-equation

w = uxx — u3, u — u(t, x), x e T 1

lately invariant Gibbs measures were obtained for some other x-one-dimensional
equations with coercive hamiltonians by P. Zhidkov, H. McKean-K. Vaninski and
J. Bourgain (see [Bo] and references therein).

In this paper we construct for hamiltonian PDE's the second invariant -
symplectic capacity. For each open subset & of the phase-space Z of x-dependent
vector-functions we define its capacity c(G) in such a way that the following
properties are fulfilled:

1) translational inυaήance:

c(Θ) = c(Θ + ξ) for ξeZ;

2) monotonocity:

c(Θ1)^c(Θ2) if G1=>G2;

3) 2-homogeneity:

c(τθ) = τ2c(Θ)

4) nontrivialίty:

0 < c(G) < oc if G Φ 0 is bounded.

Our definition of the capacity c(G) is based on finite-dimensional approxima-
tions of G. Thus the capacity c inherits the very important normalization of the
finite-dimensional symplectic capacity:

5) c(Br) = c(Π{

r

k)) = πr\

where B is an r-ball in Z and Π^ is the cylinder based on an r-disc in the plane
spanned by the vectors φ^, φ^ from a fixed Darboux basis φf, φ}, ... in Z.
(Possibly the ball and the cylinder are not centered at zero.)

We prove that the capacity c is preserved by the flow-maps St of
a (nonautonomous) hamiltonian equation, provided that

St = linear operator + compact smooth operator, (1)

where the linear operator is the direct sum of rotations in the planes spanned by
ψj~ and φj (j = 1,2, ... ) and compactness of the nonlinear term "agrees with the
basis {ψf }" (these two assumptions hold trivially if the linear operator is the
identity map).

The assumption (1) does not hold for general hamiltonian PDE, but still it
holds for some important equations. For example, for

Nonlinear string equation

u = uxx + p{u;t,x\ u = u ( ί , x ) , x e T 1

5 (2)

2 The Gibbs measure depends on the hamiltonian. Therefore it can be used to study autonomous
equations only.
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where p is a smooth function which has at most a polynomial growth as \u\ -• oo

Quadratic nonlinear wave equation

ύ = Au + a{t,x)u + b{Ux)u2, x e l 2 ; (3)

Nonlinear membrane equation

i i = - Δ2u+p(u;t,x\ x e T 2 ; (4)

Schrόdinger equation

-iύ= - •\-£=G(U9U;t9x) \*ξ9 U = u*ξ, x e F , (5)

where w * ί is the convolution with a fixed real function ξ and G is a real-valued
smooth function.

Usually there is an arbitrariness in choosing a phase-space for a hamiltonian
PDE. In contrast, to construct the invariant capacity one should take for a phase-
space of the equation the Hubert space distinguished by the property that some
Hubert basis of the space is in the same time a Darboux basis for the corresponding
symplectic structure. For a nonlinear PDE such a distinguished phase-space Z is
essentially unique. In particular, for Eq. (2) the phase-space is
Z = Hil2{τι) xHll2{Tι\ formed by the vector-functions

(u(x\(-d2/dx2 + l)~1/2ύ(x)).

For (3) and (4) one should take Z = # 1 / 2 ( Ί Γ 2 ) x Ή1/2(TΓ2) and
Z = H 1 ( T 2 ) x H 1 ( T 2 ) ; for (5) the space should be Z - L2(TΓ"; <C).

The flow-maps St of Eq. (2)-(5) preserve the capacities of sets till the blow-up
time. In particular, due to properties 2) and 5) of the capacity c we get

Squeezing Theorem. //

St(BR) c J7<*> (6)

for some ball BR and cylinder Πyk\ then r ^ R.

For Eq. (5) we have φ^ = φs(x), φ^ = iφs(x), where {φs} is a complete system
of real eigenfunctions of — A + V(x). So

M(ί,x) = Σ us+ (0Ψs + u;(t)φ~ = X (us

+ + ΪM")(ί)<ps ,

and {ps = Us + ΐws~} are the complex Fourier coefficients of the solution w(ί, x).
The theorem implies that if \pk{t)\ < r for all solutions with u(09-)e BR, then r ^ R.

Another immediate consequence of the theorem is that a bounded solution of
the equation cannot be "uniformly asymptotically stable" as t -> oo, because for any
p-neighbourhood Bp of the initial point diameter of the set St(Bp) cannot tend to
zero.

The theorem is also connected with the following important question: does the
energy of nonlinear conservative oscillations spread to higher frequencies? A possible
mathematical reformulation of this physical question is the following.

Provide the phase-space of x-dependent vector-functions with some Hubert
norm || || ^ . Denote the corresponding Hubert space as Z and its Hubert basis as
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{ψf }. Take a ball BR = {|| z || ^ < K} in the space of initial data and consider the
problem: is it true that for fixed k "part of energy leaves A -th mode":

ST(BR) + \Pk + * < P2} (7)

for some T > 0, p < RΊ
If Z = Z, then (7) is the squeezing, which is impossible due to the theorem.
To explain why we treat (7) as the spread of energy, suppose that the phase-

space of the system we consider is the space of pairs of x-dependent functions with
x e 1 " - W/(2πΈ)n. Fix d ^ 0 and choose the tilde-basis equal to {φ* (x)\se Έn},
where

<5> = 1 + |s | and {φs{x)} is the usual trigonometric basis of L2(T"). For a vec-
tor-function denote by Zf the coefficients of its decomposition in the basis
{(φs(x), 0), (0, φs(x))} (i.e., its Fourier-coefficients) and denote by Es = zs

+ 2 + zs~
2 the

energy of the sth mode. Below we draw idealised pictures of the energy distribution
for the points from BR (at left) and from Πp with k = 1 (at right):

1 2 1 2

So if p < R and the map Sτ sent the left set inside the right one, then a part of the
energy indeed left the first mode. For more information on the energy-transition
subject we refer the reader, say, to [P].

For Eqs. (2)-(5) above the distinguished phase-spaces Z have the bases of the
form (8) with d = \, i, 1,0 correspondingly. The question if the "squeezing" (7) is
possible can be also stated with the distinguished phase-spaces Z replaced by some
smoother spaces. The most interesting seems the case of energetic spaces. For Eqs.
(2)-(5) these are respectively Sobolev spaces H1, H\ H2, H1 (having the bases of
the form (8) with d = 1, 1, 2,1). In such a case we do not know if (7) is possible or
not for general Eqs. (2)-(5). But for Eq. (2) with a time-dependent analytic function
p(u) of the form

p(u) = -mu au2 bu3
(9)

where m > 0, the answer again is "no" if p in (7) is sufficiently small. The reason is
that for Eq. (2), (9) has in rich supply small-amplitude time-quasiperiodic solutions.
See [BK] for the case a = 0, b = const φ 0 and [K] for the case m = m(x), where
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m( ) is a "typical function," even in x.3 In particular, (2) has time-periodic solutions
which lie in BR near the plane IR φ£ θ IR φ^ 4

1. Capacities of Finite-Dimensional Sets

We provide the linear space IR2" = IR£ x IR£ with the usual symplectic structure
dp Λ dq; for a smooth function f{p,q) we denote by Vf the corresponding hamil-
tonian vectorfield.

Given m > 0 and an open domain Θ c IR2" we call a function fe C°°($)
m-admissible if

i) 0 ^ / ^ m ;
ii) /vanishes in a nonempty subdomain of Θ\

iii) / = m in a neighborhood of d(P.

Following [HZ1, HZ2] we define the capacity c2n((9) of the domain (9 as

c2n(Θ) — inflm^l for each m > m% and each m-admissible/in Θ the vectorfield
Vf has a nontrivial periodic solution of period ^ 1}.

Clearly c2n is a monotonic symplectic invariant:

c2n((9i)Sc2n((92) if ^ l C = d ? 2 (1.1)

and

c2n((9) = c2Λ(0(ί?)) (1.2)

if φ:Θ -+ IR2" is a symplectomorphism.
Denote by £, the ball

and by Π r the cylinder

The following equalities gives the main property of the capacity c2n:

c2n(Br) = c2n(Πr) = πr2 (1.3)

(see [HZ1, HZ2] for a proof).
An immediate consequence of (1.1)—(1.3) is the famous squeezing theorem of M.

Gromov [G]: the ball Br can be symplectically embedded into the cylinder ΠR only
if R ^ r.

Take any rc-vector r = (r1? . . . , rn\ 0 < r ;-^ oo , where some r,- is finite. Then

3 More exactly, [BK, K] provide (2), (9) with time-quasiperiodic, x-periodic solutions which are
even or odd in x since theorems of these works are applicable to even-periodic and odd-periodic
boundary conditions (which are equivalent to Dirichlet and Neumann boundary conditions on
the half-period).
4 These solutions form symplectic ribs which prevent the symplectic camel from the first footnote
to go through the eye of a needle (cf. Sect. 1 in [A]).
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with some 1 ̂  jΌ = n* The ellipsoid

B{r) = {(p,q)\Σri2(Pj + qf) < 1}

contains the ball Br and is contained in the cylinder {pf0 + qf0 <r2}. So we get
from (1.3) (and (1.1), (1.2)) that

c2n(B(r)) = πr2 . (1.4)

2. Symplectic Hubert Spaces

Let Z be a Hubert space with the scalar product < , ) and a Hubert basis
{<Pf\j7t 1}. For « e N we denote by Z" the linear envelope of the vectors
{ψf 11 ^ 7 ^ n) and denote by 77" the natural projector

Πn Z-*Zn .

We also denote Zn = Z Q Z", use the decomposition of Z,

Z = Zn®Zn, (2.1)

and write accordingly z e Z a s

z^z",*,), z"eZ« z Λ e Z n .

We define the skewsymmetric linear operator J,

J Z^Z, ψf ^ + <̂ / ,

and supply Z with a symplectic structure by means of the 2-form

ω = (Jdz,dz} .5

We take a selfadjoint (possibly unbounded) linear operator A such that

f-λjφf Vj (2.2)

(the operator is selfadjoint in Z with the natural domain of definition) and consider
a hamiltonian

f=^<Az,zy + h{z;t), (2.3)

where h is a smooth in Z x IR function. The corresponding hamiltonian equation
has the form

t)) . (2.4)

By (2.2) the hamiltonian operator JA is diagonal in the complex basis

< —j= (φf ± iφj) > with the eigenvalues { ± iλj), and defines a group of isometries

{etJΛ\te R } of the space Z,

\\etJA\\z,z = l V ί . (2.5)

that is, ωK,?7] = (Jξ,η).
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Remark. The assumption (2.2) concerning Eq. (2.4) is not very restrictive, see Part
6 for concrete examples. Besides, this assumption can be achieved if the "un-
bounded linear part" JΛU of Eq. (2.4) has a discrete spectrum which is semisimple
and imaginary - we can put the operator JAU to the normal form (2.2) with some
Darboux basis {φf-} and introduce a Hubert structure in Z with {φf} as a Hubert
basis. The "bounded linear part" JAb can be added to the nonlinear term JVh, so it
may contain Jordan cells and hyperbolic eigenvalues.

We say that a continuous curve z(ί) e C(T1, T2;Z) is a solution of (2.4) in Z if
for 7\ ^ t ^ Γ 2,

z(t) = e{t-τ*)JAz(0) + } e{t~τ)JAJVh(z(τ);τ)dτ . (2.6)

The integral in the r.h.s. is well-defined due to (2.5).
We denote by STltT7 the operator which sends z(T±) to z(T2) (possibly

T2 <Tί) and abbreviate SOJ = St.

Remark. Define ZA as a Hubert space with the norm \\z\\A = <(1 + A2)~1 z,z)z.
Then Z cz ZA and the linear map

is bounded. In particular, the solution (2.6) is a C*-curve in ZA and defines a strong
solution of Eq. (2.4) in this space (both sides of (2.4) coincide as continuous curves
in ZA).

For a Hubert space Z_ we write

if Z is compactly embedded in Z_ and {φf } is an orthogonal basis of Z_ (not an
orthonormal one!). Clearly, the space Z is dense in Z_.

We identify the adjoint space Z* with Z. Then (Z_)* can be identified with
a subspace Z + of Z, Z+ < Z. So we have

Z+ <Z <Z- .

If II II _ is the Hubert norm of Z_, then

| |e t M | | _ f _ = l , (2.7)

and similarly with Z+ .
By #κ(Z)> or BR if the space Z is fixed, we denote the ball {z\ \\ z \\ < R}. We also

denote
h,(z) = h(z;t)

and impose the following compactness assumption: for some triad Z + < Z < Z _ as
above the function h can be extended to a C2-smooth function on Z_ x R. Then
the gradient map Vht:Z —• Z can be extended to maps

VheC'iΊ&xZ-iZ + l VfteC°°(IRxZ,Z) . (2.8)

In particular, the map

IR x Z - + Z + , (ί,z)h-> S/ht{z) (2.8')
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is bounded (sends bounded sets to bounded) because the embedding Z-^Z- is
compact. We suppose also that the map

R x Z - -> Z, (ί,z) h-> VΛt(z) is bounded . (2.8")

Definition 1. For an open domain Θ cz Z and T > 0 we write

τ(Θ) ^ T

if solutions u(t) of (I A) exist for 0 ^ ί ^ T for all u(0)from some neighbourhood of
Θ in Z (bar means closure).

Lemma 1. Suppose that the assumptions (2.2) and (2.8)-(2.8") hold. Let Θ c= Z be
a domain such that τ(Θ) ^ T > 0 and for each R > 0 and w(0) e ΘnBR the solution
u(t\ 0 ^ t ^ T, does rcoί /βα^ some /argfer ball BR,R' = ^'(.R). T/ί̂ w the flow-maps

Sf:u(O) ι-> M(t), O ^ ί ^ T ,

are smooth diffeomorphisms of the form

St = etJA(I + St) , (2.9)

where

Sτz,τ)dτ .

Proo/. It is sufficient to prove the statement for Θ replaced by ΘCΛBR with arbitrary
R > 0. In Appendix 1 below we prove (in a traditional way) that the maps Stlt tl(u)
for u e ΘnBR, 0 ^ tl912 S T, exist if | ί x — t2\ ^ τ(Λ, T) and are dififeomorphisms.
We can replace τ(R, T) by τ' = τ(Rf,T) ^ τ(R, T) and write St as

where tn = t, t0 = 0 and |ί7 — ίj _ ± | rg τ'. The representation (2.9) readily follows
from the integral equation (2.6) which holds for z(t) = St(z). •

The differential dST(z0) of the map Sτ sends a vector v0 to v(T), where ι (ί)
solves the linearised equation

v = J(Λv + dVht(z(t))v) (2.10)

with v(0) = vΌ. The curve {z(ί)|0 ^ ί ^ T } is compact in Z. Thus for all 0 ^ t ^ T

and we have

|| ϋ(ί) || ^ Ci (Γ, ̂ ( -)) || 17(0) ||, Oίt^T. (2.11)

Lemma 2. Under the assumption of Lemma 1 the flow maps St are symplectic:

S?ω = ω .

Proof We should check that for any two vectors ^10,^20 a n d 0 ^ t rg 7\

Sί*ω[ι;1o,^2o] = const .

That is, we should check that

l(t)\= (Jvi(t)9v2(t)} = const ,

where Vj(t) is the solution of (2.10) with Vj(0) = vjoj = 1,2.



Infinite-Dimensional Symplectic Capacities 539

Denote
lN(t) = (JvMΠNv2(ή}.

We have

^lN(t) = (Jύ1,Π
Nυ2) + (JvuΠ

Nύ2yat

= < J2(Avί + dVh,(z)vι),ΠNv2y

+ (JVι,Π
NJ(Av2 + dVht(z)v2)}

= - (dVh,(z)v1,Π
Nv2) + {vi,Π

NdVh,(z)v2y .

Thus,

l(t) - 1(0) = lim (lN(t) - /N(0))
JV^oo

t

= lim $((dVhτ(z)v2,Π
Nv1} - (dVhτ(z)vuΠ

Nv2})dτ = 0 ,
N-+00 0

due to Lebesgue theorem, because by (2.11) the function under the integral is
bounded by some (t, iV)-independent constant and pointwise tends to zero. •

We shall study Eq. (2.4) for w(0) = u0 e Θ a Z and 0 g t ^ T, where τ(Θ) ^ T.
In addition we suppose that the maps St: (9 -> Z are uniformly bounded for
O^t ST. That is, for each R > 0 there exists R' such that

St(ΘnBR) c:BR, VO ^ ί ^ T . (2.12)

To study the solutions with w0 e ΘnBR we can replace /^(M) by

ht(u) = g(\\u\\i)ht(u), (2-13)

where the function geC^(ΰt) is such that g(r) = 1 for |r | ^ .R ' 2 . Denote by
j : Z _ -^Z+ the duality isomorphism:

Then

and the^function h meets (2.8)-(2.8"). The equation with the transformed hamil-
tonian h has the same solutions for M(0) G ΘnBR and 0 ^ ί <£ T.

We say that the hamiltonian / is admissible if it satisfies (2.2), (2.8)-(2.8") for
some triad Z+ < Z < Z_ it is admissible for 0 ^ ί ^ T and w0 e C? cz Z if also
T S τ{Θ) and (2.12) holds for each R.

Definition 2. A symplectomorphism Φ:Z ~=> Θ -> Z is called elementary if it is the
ST-mapfor some hamiltonian equation which is admissible for 0 :§ t ^ T and u0 e Θ.

Each elementary symplectomorphism Φ = St admits the representation (2.9),
where the map St is compact by the assumption (2.8). Each compact map can be
approximated by finite-dimensional maps. Below we need a symplectic version of
this statement:

Lemma 3. For each elementary Φ, each ε > 0 and R < oc there exists N such that

Φ(u) = eTJA(I + Φε)(I + ΦΉ)(U) (2.14)
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for u e ΘnBR(Z), where (I + Φε) and (I + ΦN) are smooth symplectomorphisms of
Z such that

^ ε for u e (I + ΦN)(ΘnBR), (2.15)

and in terms of the decomposition (2.1)

ΦN{zN,zN) = {Φ%{zN),zN). (2.16)

For a proof see Appendix 2.

3. Symplectic Capacities for Hubert Space

F o r a n o p e n n o n e m p t y d o m a i n Θ c Z a n d π ^ l w e d e n o t e

and observe that

dGn <=.dGr\Zn . (3.1)

Consider a smooth function fe C<X)(Θ) and m > 0.

Definition 3. T/i£ function f is called m-admissible, if

i) 0 ^ / ^ m everywhere, f= 0 m 0 nonempty subdomaίn of Θ andf\m = m;
ii) ί/iβ 5βί {z|/(z) < m] is bounded. The distance from this set to dΘ is d(f) > 0.

Denote

Supp/={z |0</(z)<m}.

For each m-admissible function / we have

dist{f-1{0),dO)^d = d{f), (3.2)

dist(Supp/, dΘ) ^ d . (3.3)

Denote/„ =f\c» and consider the corresponding hamiltonian vectorfield Vfn in
Θn. We call a T-periodic trajectory of Vf fast if it is not a stationary point and
T ^ 1.

Lemma 4. Each fast periodic trajectory is contained in Supp/nZ".

Proof At each point z e Θn\Supp/ the function/„ takes either its minimal or
maximal value. So Vfn(z) = 0, z is a stationary point, and a fast trajectory cannot
pass through it. Π

We call an admissible function ffast if there exists n0 = no(f) such that for all
n^n0 the vectorfield Vfn has a fast solution.

Now we are in a position to define a capacity c:

Definition 4. For an open nonempty domain & a Z its capacity c(Θ) equals to

c{Θ) = inf{mj each m-admissible function with m > m* is fast}.

The capacity c(Θ) depends on the stratification Z1 a Z2 a of the space Z,
formed by invariant subspaces of the linear operator JΛ. The function h in (2.3) can
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contain a quadratic in z part. Thus the linear operator A is fixed modulo compact
linear operators only. Equations (2.4) with fixed "unbounded part" of the operator
A forms a natural class of equations which can be studied with the same capacity c.

Compact perturbations of the operator A imply perturbations of the basis
{ψf-}. The corresponding stability result for the capacity c can be stated as follows:

Proposition 1. The capacity c(Θ) of a domain Θ will not change if the basis {φr1} is
replaced by another Hilbert basis Darboux {φr-}, which is quadratically close to the
initial one,

For a sketch of a proof see Part 5.
We continue with some trivial properties of the capacity c which can be

obtained immediately.

Proposition 2. For nonempty domains (9 UΘ2,Θ <= Z and τ φ 0 we have

a) c(Θ1)Sc(Θ2)iϊΘ1^Θ2;
b) c(τ(9) = τ2c(Θ).

Proof For m < c(Θ1) we can find an m-admissible function/in Θ\ which is not fast.
That is there exists an infinite sequence {rc7-} such that each vectorfield Vfn has no
fast periodic trajectory. L e t / b e the function/, extended as m to C02\Θ1. The
function/is m-admissible in Θ2 and for n = n1, n2, ... the vectorfield Vja has no
fast solutions, because by Lemma 4 each fast solutions of Vjn lies in
supp fnZn = Supp/nZ", so it is a fast solution of Vfr Thus c(Θ2) ^ m and the first
assertion follows.

To prove the second we observe that a curve z(ί) e Θn is a T-periodic trajectory
of Vfn if and only if the curve τz(f)eτθn is a T-periodic solution of VΓn, where
fτ(y) — χ 2 / ( τ " i y) f° r y e τ® Moreover, the function/is m-admissible for & if and
only if/τ is τ2m-admissible for τΘ. Π

Proposition 3. For any Θ a Z,

Proof For m < c(Θ) there exists an m-admissible function/which is not fast. That
is, one can find a sequence {nj} such that the vectorfield Vfn has no fast solution.
For large n^ the function/^ is m-admissible in ΘHj. Thus, 'c2n(Θn) §: m and the
statement follows. •

Proposition 4. For any domain Θ a Z and ξ e Z we have

c{Θ) = c(Θ + ξ) .

Proof Let us denote Θξ = Θ + ξ. It is sufficient to check that c(Θ) ^ c(Θξ\ because
Θ = Θξ-ξso then also c(Θξ) S c{Θ). We decompose ξ as ξ = ξn° + ξno (see (2.1);
n0 will be fixed later) and denote Θx = Θ + ξn\ Clearly, c(GΪ) = c(θ) (see also
Lemma 5 below) and Θξ = (9X + ξno.

We take any m-admissible function/in Θξ with m > c{Θ) and wish to check that
this function is fast. As || ξn \\ -> 0 as n -» oc , then

dist(d&ί,dΘξ)^\\ξn\\-*O as n-+oo.
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So we can find n0 so large that d i s t ( d $ 1 ? d ^ ) ^ \\ξnj <jd(f). We extend/as
m outside Θξ and denote by f1 restriction of the extended function to Θγ. The new
function equals m in the \ d(/^neighborhood of d&i and vanishes at the set/ ~* (0)
which is contained in ΘιπΘξ by (2.2). So it is m-admissible and thus Vfi has a fast
trajectory in G\ if n ̂  π 0 is sufficiently large, because c{Θι) < m. By Lemma 4 this
trajectory lies in Supp/ 1 = Supp/cz (91n@. So it also is a fast trajectory of F / n .
Thus, the function/is fast. Π

Now we shall show that the capacities of ellipsoids and polydiscs are given by
formulas similar to the finite-dimensional formulas (1.3), and that the capacities
remain unchanged under some "reasonably wide" class of symplectomorphisms.

Let r = {r l j r 2 , ... } be a sequence such that 0 < r7-^ oo for all j and

0 < r : = inf r,-< oo . (3.4)
j

We define the polydisc D(r) and the ellipsoid B(r) as follows:

D(r)= {Z = ΣPJΨJ+ + qj<Pjr\Pj+qf<rj Y/} ,

Clearly,

B(r) c D{r) . (3.5)

Theorem 1. For each sequence r as in (3.4),

c(B(r)) = c(D(r)) = πr2 .

Proof of the theorem is given in Part 4 below.

Corollary. For r > 0

c(Br) = πr2 .

From this statement we get nontriviality of the capacity c:

Theorem 2. For each nonempty bounded open domain Θ we have

0 < c(Θ) < oo .

Proof. We can find p, R > 0 and ξ e Z such that

Bp + ξcz(9czBR.

Thus by Proposition 4 and the corollary we have πp2 ^ c(Θ) ^ π^R2. •

Now we turn to invariance of the capacity. We start with a trivial observation.

Lemma 5. // a map F :Z —• Z has the form

F(z",zn) = (F"(Z"),zΠ), (z",zn)eZ"xZn, (3.6)

where F n is a smooth symplectomorphism ofZn, then c(F{Θ)) = c(Θ)for each domain
Θ.

Proof The map F and its inverse are Lipschitz uniformly in bounded subsets. So
F* sends m-admissible functions in F(Θ) to similar ones in &. For N ^ n it
transforms the vectorfield Vfs,f = f° F, to VfN. So the classes of admissible and fast
functions are preserved by F, and the result follows. •
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A much more essential property of the capacity c is its invariance with respect
to elementary symplectomorphisms.

Theorem 3. For any elementary symplectomorphism Φ and any domain Θ we have

= c(Φ(Θ))>

provided that the map Φ~ι: Φ (#) -> Θ is bounded (it sends bounded sets to bounded
sets).

Proof of the theorem is given in Part 5.

Remarks. 1) The last assumption of the theorem holds trivially if the set Θ is
bounded.

2) If the map Φ " 1 is not bounded, we can only state that c(Θ) rg c(Φ(Θ)).
3) We need the compactness assumptions Vh e C 1 ( I R x Z _ , Z + ) and (2.8")

only to get the decomposition (2.14) which is essentially equivalent to compactness
of the operator St in (2.9). So what we really need to prove, that the maps St preserve
the capacity, is their smoothness jointly with the decomposition (1) from the
introduction.

Corollary (the Squeezing Theorem). If an elementary symplectomorphism Φ sends
a ball

{zeZ\\\z-z\\<r}

to a cylinder

{z = Σ Pj<Pj+ + 4j<PΓ\(Pjo ~ P)2 + (4jo ~ <?)2 < R2}

(the index j 0 is fixed) then r ^ R.

4. Proof of Theorem 1

We shall check that
c(B(ή) ^ πr2 (4.1)

and
c(D(r)) S πr 2 . (4.2)

After this the result follows from (3.5) and Proposition 2.

1) To prove (4.1) we fix any m < πr2 and produce an m-admissible function F in
B(r), which is not fast. The construction of the function F, given below, directly
follows [HZ1, HZ2].

The ball B = Br(Z) is contained in B(r). Fix any y e (m, πr 2). At the ball B the
function

varies from zero to γ. We can find p > 0, yx < γ and a smooth function/(ί) such
that 0 ύf'(t) <, 1, 0 Sf^ m and
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Define

F(z)=f(^\\u\\2

The function F is smooth in Z, it vanishes near zero and equals m outside the ball
B and in the set {u\ || u || > r^fy~Jy}. Thus, F = m in some ε-neighborhood of x <9#r

in Z, and so it is m-admissible.
We wish to show that the function F is not fast. We introduce in Z" the

action-angle variables /, φ,

1 2 2

Ij = - (pj -h qf), ^j = arctan(g/pj) ,

where {(pj9 qy}} are coordinates with respect to the basis {φϊ |1 ̂  j ^ n} in Z w .
Then

So

and T > 1 for each nontrivial T-periodic solution of VFn in Z".
Thus, c(B(r)) ^ m and (4.1) is proven.
2) Denote D(r) = Θ. To prove (4.2) we fix some m > πr2 and take any in-

admissible function/in (!?. As the interior of the s e t / " 1 ^ ) is not empty, then the
same is true for the set/~ 1 (0)nZ" with sufficiently large n. As δΘn a dΘ, then the
smooth function/„ =f\cn equals m near dθn. So it is m-admissible.

We know (see (1.4)) that cn((9n) = πminlsjύnrj. So cn(Θn)->πr2 and
cn{®n) < m f° r large n. For such n's the vectorfield F/ n has a fast periodic trajectory,
and the function / is fast. •

5. Proof of Theorem 3 and Proposition 1

We start with

Lemma 6. // Φ:(9 -> Q a Z is an elementary symplectomorphism such that the
inverse map Φ'1 is bounded then the symplectomorphism Φ~1 :Q -> Θ also is elemen-
tary.

Proof. If Φ is the Sτ-flow for some Eq. (2.4) satisfying (2.2), (2.8)-(2.8"), then Φ~ι

is the .SΓ-ΓIOW for the equation with the hamiltonian/

f= -l-(Az,zy-h{z,T-t),

which also meets (2.2), (2.8)-(2.8").

The flow 5,(3) is well-defined for 3 e Q, 0 ̂  t ̂  T; it is bounded by the lemma's
assumption. The flow-map Sτ is well-defined for u(0) from some neighborhood of Θ
(see Definitions 1, 2). Its image contains a neighborhood of Q, where the flow St is
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well-defined for 0 g t ^ T. Thus, the hamiltonian / is admissible for 0 ^ t ^ Γ,
u0 e β, and the assertion follows. •

Proof of Theorem 3. We denote Q = Φ{&) and take any m-admissible function/in
Q, where m > c(Θ). If we can prove that the function/is fast, then c(Q) ^ c(Θ) and
the result follows, because the suplectomorphism Φ " 1 also is elementary by
Lemma 6 and so c{Θ) ^ c(Q) as well.

The set Supp/ is contained in some ball BR. We take Rλ = R + d(f) and
denote Q' = g n B ^ i ) , 0' = Φ~ί{Q'). By our assumptions the set 0' is bounded,
fi/' c £(#')> and by Proposition 2,

We apply Lemma 3 with N so large that ε < jd(f) and denote by Θu Θ2 the
intermediate domains which arise from the decomposition (2.13):

We also denote

f2=f°eTJΛ\ei.

As the map eTJΛ is an isometry, then

dist(Supp/2, dΘ2) = d = d(f)

and the function f2 is m-admissible in Θ2-
We extend/2 as m outside Θ2 and get a smooth function/2

ext in Z. Denote by/its
restriction to (9 x. The ε-neighborhood of dΘι is contained in the 2ε-neighborhood
of dΘ2, where /2

e x t = m as ε <\d. By (3.2) /"^(O) =/ 2 " 1 (0) c ^ n ^ So the
function/is m-admissible in ^ ^

By Lemma 5 c(Θχ) = c(β?'). Thus

and the function / i s fast. So for each n P 1 the vectorfield Vjn has in β?" a fast
solution. By Lemma 4 this solution lies in Supp / which equals Supp/2 by (3.3).
Therefore the solution is also a fast trajectory of Vf2tι, the function f2 is fast as well
as the function / and the result follows. •

Now we go to a proof of Proposition 1. The linear transformation L which
corresponds coefficients of a vector's decomposition in the basis {<£>/} to its
coefficients in the basis [φr1} is a symplectomorphism, compact-close to identity.
Thus we can decompose it as

L = L2<>Ll9

where Lλ changes first 2N coordinates only and L 2 is close to identity:

where ε(JV) -> 0 as N -> 00 . For the map L we have got an analog of the decompo-
sition (2.14). So we can complete the proof by repeating the arguments we used
above to prove Theorem 3.
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6. Examples

6.1. Schrόdinger Equation

Take Z = L2(ΊΓM; (C), n ̂  1, TΓ" = IR72πZw, with the scalar product

<M,ι;> = Re J uvdx/(2π)n

and the symplectic form
[Mj ϋ] = - Im J wz; dx/(2π)n

ω

(corresponding to the operator Ju = iu).
Consider the operator

A = - A + V(x)

with a smooth periodic potential V(x) and denote by {ψj} the complete system of
its real eigenfunctions,

A ψj{x) = λjψjix) Vj; < φj9 φk > = δjk Vj, fe .

For the basis {φ^} of Z we take

φf = ψj(x), φf = iφj(x) .

Consider the hamiltonian

f=^<Au9uy+^lG(U9U;x9ήdx/(2πy9 U = u*ξ, (6.1)

where G is a real-valued smooth function and u * ξ is the convolution with a fixed
real-valued function ξ e if^ΊΓ"). Denote the second term in (6.1) as ht(u). Then

hf(iι + δυ) = ht(u) + ̂ j {(d/dU)GV

= ht(u) + (5<(δ/δUG)* ξ, ϋ> + 0{δ2) ,V =

So
Vht(u) = ξ*d/dUG(U9 U;t9x)9

and the equation with the hamiltonian / has the form

-iύ= - Au + V(x)u + (d/dUG(U9U;t9x))*ξ9 U = u*ξ. (6.2)

Take Z~ = ff-^ΊΓ C), Z + = J Ϊ 1 ( ¥ B ; C ) , where the Sobelev space Z + is
given the norm ||w||i = <(cl + A)u,u} with sufficiently large c. Then

z+ <z<z~.
The map

Z~ ->Z + , u ̂  ξ*(d/dUG(U, U;t,x))9

is smooth. So the relations (2.8)-(2.8") hold, the hamiltonian equation (6.2) is
admissible and its flow-maps St preserve the capacities c(Θ) of open domains G c Z
till the blow-up time. The blow-up will never occur, in particular, if the function
δ/dUG(U, U; t,x) is bounded or if G(U, U; t,x) =f(\U\2; t9x) for some real func-
tion /.
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If for some w e Z w e denote

B p = {u(x)\\\u-w\\ < p } ,

then c(Bp) — up2 by Theorem 1 and Proposition 4. If j 0 e N, if p, q are some reals
and

n R = {u = ΣPJ+ v! + vj ΨJ = Σ(PJ+ + ipΓ)<Pλχ)\Pjo - P\2 + I^Ό - <?l2 < R2} >

then c(ΠR) = πR2. So in particular

St(Bp) c ΠR implies K ^ p.

That means that if the initial wave-function u(0, x) was known with the accuracy
p and the system evolves in accordance with (6.2), then each Fourier coefficient
(Pio + Φ^)(0 n e v e r c a n be measured with an accuracy better than p. 6

(5.2. Nonlinear String Equation

Consider a nonlinear string equation

ύ = uxx —u—f(u',t,x), u = u(t,x),Ί (6.3)

where x e T 1 ^ !R/2πZ and/is a smooth function which has at most a polynomial
growth in u, as well as its u- and f-derivatives:

lCk(l+\u\)Mk for a + b = k and all k ^ 0, (6.4)

where positive constants Ck are bounded for bounded t and nonnegative Mfc's are
^-independent. We denote by B the operator B = ( — d2/dx2 + 1)1/2 and write the
equation in the form

ύ = — Bv,

v = Bu + B-1f(u;t,x). (6.5)

Define the phase-space Z of Eq. (6.5) as Z = H112 xHi/2, where
x) is the Sobolev space with the scalar product

2π

<WI,M 2 ) = j Buί(x)u2(x)dx/2π .
o

For the symplectic Hubert basis { ^ |j 6 Z} of Z we take

where

12 sin jx,

' cosj'x, j ^ 0.

6 We remark that this statement is trivial if G =f(\U\2; t,x) and w = 0, p = q = 0 in the
definitions of J?p and /7Λ because in such a case the flow-maps preserve the norm in Z.
7 We write the nonlinear term in the form u —f(u;t,x) for convenience; possibly
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We define the operator J as in Part 2 (i.e., J ψf = + φ.+ ). Then

J (u, v) = ( — v, u) .

Consider the functional ht in Z,

2π u

ht(u, v) = J F(u(x); t,x)dx/2π, F = \fάu .
0 0

Its gradient Vht in the space Z equals

Vht = (B-1f{u,{x);t,x),O).

So if we choose A = BxB, and denote U = (u, v), then Eq. (2.4),

U = J(AU + Vht(U))> (2.4)

coincides with (6.5).
For the space Z_ we take Z_ = H 1/2~θ x H1/2~θ with some 0 < θ < \. Clearly

2 θ l l 2 θ

z+ <z <z_.
Lemma. The functional h meets the compactness assumptions (2.8)-(2.8"), ifθ > 0 is
sufficiently small.

Proof To check the first relation in (2.8) we prove that the map

H 1 / 2 " f l x R ^ L 2 , (u( ),ί) •->/(«(•),*;•)> (6.7)

is C1-smooth. This statement follows from (6.4) and the Sobolev embedding
theorem. In particular,

\f(u(x) + v(x)) -f(u(x))\l S Cl\i\ + \u\)^υ\i2

so the map (6.7) is continuous, etc.
The second relation in (2.8) follows from smoothness of the map

which in its turn results from (6.4) because the space H1/2 is embedded in each
space Lp,p < oo .

The relations (2.8'), (2.8") both follow from the continuity of the map (6.7).

D

Thus Eq. (6.5) in the form (2.4) is admissible in the space Z and its flow-maps
St preserve the capacity c(Θ) of a domain Θ a Z if τ(Θ) ^ ί. So the "squeezing" (6)
(see Introduction) is impossible for the nonlinear wave equation in the phase space
H1/2 x H1/2 till the blow-up time.

We remark that solutions of (6.3) never blow-up in particular, if M o = 0 (i.e., if
the function/is bounded and meets (6.4)). This readily results from representing the
equation in the form (6.5).
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6.3. Nonlinear Wave Equation

The equation

ϋ = Δu-u-f(u;t,x)9 x e F , n ^ 2 , (6.8)

also can be written in the form (6.5) with Z = Hll2{Tn)xH1/2(T") and
B = ( - A + 1)1/2. Now it is much more difficult to satisfy (2.8)-(2.8"). The only
example we know is the quadratic in u function/for n — 2. So the only admissible
multidimensional equation (6.8) we know is the equation

ύ = Au + a(t,x)u + b(t,x)u2

y xeΈ2 .

We also remark that the assumptions (2.8)-(2.8") are fulfilled if the nonlinear
term is "smoothed out" and Eq. (6.8) takes the form

ύ = Au — u + ξ*g'(u*ξ,t), x e T " ,

where ξeHι{Ύn). Now

A(M,I>)= f fif(u*ξ,ί)/(2π)π,
T"

and one again can rewrite the equation in the form (2.4) with Z =
H1/2(J") x H 1 / 2 ( l β ) , choose Z_ - L 2 x L 2, Z + - H 1 x H1 and see that the equa-
tion is admissible.

6.4. Membrane Equation

Consider the nonlinear membrane equation

u= -{A2u + u+f(u;t,x)), xeT 2 , (6.9)

where the function/is the same as in (6.4). We denote B = (A2 + 1)1/2 and rewrite
Eq. (6.9) in the form (6.5). Take Z = H1xH\ where H1 = Hί(Έ2)is given the
norm

| | w | | 2 - J Bu(x)u(x)dx/(2π)2 .
TΓ2

Now Eq. (6.9) (in the form (6.5)) is a hamiltonian equation (2.4) with

h = j F(u(x);t,x)dx/(2π)2, F = ]fdu .
TΓ2 0

We take Z_ = H1~θ xHι~θ with sufficiently small positive θ. The functional
h meets (2.8H2.8") and Eq. (6.9) is admissible in the phase-space Z. So its
flow-maps St preserve capacities of subdomains in Z.

Appendix 1. Local Solvability of Equation (2.4)

We consider Eq. (2.4) satisfying (2.2), (2.8)-(2.8//).

Theorem . For each positive T and R there exists positive τ = τ(T,R) such that for
VE BR and 0 ^ t± < T the unique solution z(t) of (2.4) with z(tγ) = v exists for
h St S h = min(T, tx + τ). Moreover, z(t) e B2R and the operators Stitt(v) = z(t)
define smooth diffeomorphisms Stut:BR -> Z.
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Proof. In the Banach space of continuous curves \tγ,tϊ\^Z vanishing at ί1?

consider the ball B of the radius 2R centered at zero, and the map

t

F:B->B, 3(ί) h^ J e(t-τ)JAJVhτ{eiτ-h)JAv + ι{τ))dτ .
ίi

By (2.8) the map

[ 0 , T ] x £ 2 R - + Z , (ί,3)κ-,VΛ(3;ί) (Al)

is bounded and Lipschitz; the map e{t~τ)JA J is a linear isometry of Z. So F defines
a contraction of the ball B if | ί 2 — t1 | ^ τ, where τ is sufficiently small. Therefore
the map F has the only stationary point β( ) which defines the unique solution z(t)
of (2.6),

We skip a traditional proof of the fact that the maps Stlίt:BR-> B2R are
smooth.8 They are diffeomorphisms because the maps Stttl are their inverse. •

Appendix 2. Proof of Lemma 3

Proof. We can modify the hamiltonian h as in (2.13). After this modification the
map Φ is SΓ-flow for some Eq. (2.4), where

ht(u) Ξ O for | |u | |_ > R

with some R > R'.

We shall use the following statement which will be proven later.

Lemma. For | ί | ^ T, any R and w, v e BR(Z) we have

\\Vht(u)-Vht(υ)\\SC(R)\\u-υ\\, (A2)

and

\\Vht(u)-ΠNVht(u)\\SεΛN), (A3)

where Si(N) -> 0 as N -• oo .

Now we set hN = ht°Π
N. Then

We define ΦN as the time T flow 5^ of the equation

v = J(Λv + VAjv(t )) ,

or, equivalently, υ = (vN,υN) and

vN = J{AvN + ΠNWht{υN))9 vN = JΛvN . (A4)

As Vh(vN) = 0 for || vN \\ _ > .R and || υN(t) \\ _ = const, then solutions of (A4) cannot
leave the ball B2R(Z-) starting from BR(Z-). Therefore by (2.8"),

\\S7hN(υ(t))\\^C(R),

Warning: the map [ ί i , ί 2 ] *BR^> B2R, (t,u) i—• Stι,t(u) is not smooth in t.
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and for 0 ^ t ^ T solutions υ(t) with v(0) in BR(Z) do not leave some ball BR{Z). So
the flow S? is well-defined for 0 S t ^ T and sends bounded sets to bounded sets.

By Lemma 1

S? = ΦN = eTJA(I + ΦN), (A5)

where (/ -f ΦN) is a smooth symplectomorphism (as well as S% and eTJA ) and
Φ̂v has the form (2.16). Besides

(/ + φ ^ ) " 1 = SN °eTJA

is a smooth bounded map of Z.
Next we estimate the difference Φ — ΦN. We denote w(ί) = u(t) — ι (ί), where

u(t) and t (ί) = (yN,%)(ί) are solutions of (2.4) and (A4) with w(0) = v(0) = u.
For w(ή we get the equation

w - JAw = J(Vht(u) - Vht(v) + Vht(v) - VhN(v)) = Δ(t\ w(0) = 0.

By (A2), (A3) ||zl(ί)|| ^ C||«(ί) - v(ή\\ + ε1(N). So

t t

|| w(ί) || ^ j || zl (τ) || dτ ^ C j || w(τ) || <iτ -
o o

Now GronwalΓs lemma implies that

\\w(ή\\^Cίε1(N)eCt.

As

φ — φN — eTJA(Φ — ΦN)

and (Φ — ΦN) u = w(T\ then by the last estimate

(A6)

for M in BR(Z).
We can write Φ as

φ = eTJA(I + $N + (φ- φN))(I + φNy\l + φN)

- e™(/ + (Φ - ΦN)o(/ + Φ ^ ) - 1 ) ^ + ΦN) .

So we get the representation (2.14) with Φε = (Φ - ΦN)(I + Φ N ) " 1 . The estimate
(2.15) with large enough N results from (A6) and (2.16) follows from the very
definition of the hamiltonian hN. Π

Proof of Lemma. The ball BR(Z) is precompact in Z_ . So by (2.8),

\\Vht(u)-Vht(υ)\\S sup sup
\t\ST

and (A2) follows.
As the set K = [j | t | g τVht(BR) is precompact in Z+ and in Z, then (A3) results

from the following statement:

s u p | | w - J 7 N t t | | - > 0 as N -> oo. (A7)
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To prove (A7) we suppose that the convergence does not hold. Then we can find

a sequence {u{n)} a K such that || (/ — Πn)u{n) || ^ ε > 0. As K is precompact, then

u{n) -^ueZ. For rij > 1 we have

| | ( / - 7 7 " ' ) κ | | < ε / 2 , ||n(nj) - u\\ < ε/2 .

So ||((J — Π"j)u(rϊj) || < ε and we get a contradiction which proves (A7). •
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