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Abstract. Mirror Symmetry, Picard-Fuchs equations and instanton corrected Yukawa
couplings are discussed within the framework of toric geometry. It allows to es-
tablish mirror symmetry of Calabi-Yau spaces for which the mirror manifold had
been unavailable in previous constructions. Mirror maps and Yukawa couplings are
explicitly given for several examples with two and three moduli.

1. Introduction

Mirror symmetry [1] started from the trival observation [2,3] that the relative sign
of the two £/(l)-charges of (2,2) super-conformal field theories is simply a matter
of convention. Geometrically, however, if one interprets certain symmetric (2,2)
superconformal theories as string compactifications on Calabi-Yau spaces, the im-
plications are far from trivial and imply identical string propagation on topo-
logically distinct manifolds for which the cohomology groups HM and Hq'3~p,
p, q = 1, ..., 3 are interchanged.

Within the classes of Calabi-Yau spaces that have been investigated by physi-
cists, namely complete intersections in projective spaces [4], toroidal orbifolds [5]
and hyper-surfaces or complete intersections in products of weighted projective
spaces [6], one does indeed find approximate mirror symmetry, at least on the
level of Hodge numbers, which get interchanged by the mirror transformation:
hp>q <-> hq>3~p. Most of the known candidates for mirror pairs of Calabi-Yau mani-
folds are hypersurfaces or complete intersections in products of weighted projective
spaces and are related to string vacua described by N — 2 superconformal limits
of Landau-Ginzburg models [7, 3, 6]. For subclasses of these manifolds one can
find discrete symmetries such that the desingularized quotient with respect to them
yields a mirror configuration; see ref. [8] and for a somewhat more general con-
struction, ref. [9]. Likewise the corresponding superconformal field theory exhibits
in subclasses symmetries [10], which can be used to construct the mirror SCFT by
orbifoldization. The Landau-Ginzburg models in the sense of ref. [7] have been
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classified in [6]. It turns out that the spectra in this class do not exhibit perfect
mirror symmetry, even after including quotients [11]. A gauged generalization of
Landau-Ginzburg models was proposed in [12]. The associated Calabi-Yau spaces
are realized as hypersurfaces or complete intersections in more general toric varieties
or Grassmannians.

A particularly appealing construction of Calabi-Yau manifolds, within the frame-
work of toric geometry, was given by Batyrev in [13]. It gives hypersurfaces in
Gorenstein toric varieties and unlike previous constructions it is manifestly mirror
symmetric. This is the approach we will take in this paper. We will show that
mirror partners, which are missing in the conventional Landau-Ginzburg approach
[6], even when including the quotients [11, 9, 8], can be constructed systematically
as hypersurfaces in these generalized Gorenstein toric varieties.

A much less trivial implication of mirror symmetry than the existence of Calabi-
Yau spaces with flipped Hodge numbers, is the isomorphism between the cohomo-
logy ring of the (2, 1 )-forms with its dependence on the complex structure moduli
and the quantum corrected cohomology ring of the (1, l)-forms with its dependence
on the complexified Kahler structure parameters. The most convincing evidence for
this part of the mirror conjecture is the successful prediction of the numbers of
certain rational curves for the quintic in [14] and other manifolds with hι>ι = 1 in
[15-19], which test mirror symmetry, at least locally in moduli space in the vicinity
of the point of maximal unipotent monodromy.

Further evidence for mirror symmetry at one loop in string expansion was pro-
vided by the successful prediction [20] of the number of elliptic curves for the
manifolds discussed in [16, 17].

From a mathematical point of view mirror symmetry is so far not well under-
stood. Some of the problems have been summarized in [21]. The question of mirror
symmetry for rigid manifolds (h2'1 = 0 ) , which is again obvious from the conformal
field theory point of view, has been discussed in [22].

Aside from the mathematicians' interest in the subject, mirror symmetry has
turned out to be an indispensable tool for e.g. the computation of Yukawa-couplings
for strings on Calabi-Yau spaces. This is a problem of prime physical interest, so
let us briefly review some aspects. We will restrict ourselves to strings on Calabi-
Yau spaces corresponding to symmetric (2, 2) conformal field theories, since they
are on the one hand, due to their higher symmetry, easier to treat than e.g. the more
general (2, 0) compactifications, and on the other hand general enough to allow for
potentially phenomenologically interesting models.

The Yukawa couplings between mass-less matter fields, in the following char-
acterized by their Eβ representation, fall into four classes, symbolically written as

(273), (273), (27-27-1) and (I 3 ) . Here 27 and 27 refer to the charged matter
fields which accompany, via the (right-moving) extended world-sheet superconfor-
mal symmetry, the complex structure and Kahler structure moduli, respectively. The
singlets are neutral matter fields related to E n d ( ^ ) . Unlike the singlets, the charged
matter fields can be naturally identified as physical states in two topological field
theories, which can be associated to certain (2, 2) superconformal theories by twist-
ing, as described in [23]. Here we will be concerned only with the couplings in
these topological subsectors.

The (273) Yukawas depend solely on the complex structure moduli and do not
receive contributions from sigma model and string loops; in particular, the tree level
results are not corrected by world-sheet instanton corrections [24], In contrast to
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this, the (27 )'s are functions of the parameters of the possible deformations of the
Kahler class only and do receive non-perturbative corrections [25]. This makes their
direct computation, which involves a world-sheet instanton sum, virtually impossi-
ble, except for the case of Έn orbifolds [26]. These difficulties can be circumvented
by taking advantage of mirror symmetry. This was first demonstrated for the quintic
threefold in [14] and subsequently applied to other models with one Kahler mod-
ulus in refs. [15-19]. The idea is the following: in order to compute the (27 )
Yukawa couplings on the CY manifold X, one computes the (273) couplings on
its mirror X* and then returns to X via the mirror map which relates the elements
b)λ(X) e Hι(X,3T*X) ~ ϋ£\X) to the bfι(X*) G Hι(X*9PX*) ~ H%\X*) and

their corresponding deformation parameters t* and U(i = l9...h
ι'ι(X*) — h2>ι(X)).

In the Landau-Ginzburg models one can straightforwardly compute ratios of
(273) Yukawa couplings by reducing all operators of charge three, via the equations
of motion, to one of them. This fixes the Yukawa couplings however only up to a
moduli dependent normalization. Information about the Yukawa couplings can also
be obtained from the fact that the moduli space of the N = 2 theory has a natural
flat connection [27-29]. The route we will follow, which was first used in [14], is
especially adequate for models with an interpretation as Calabi-Yau spaces.

In this procedure, the Picard-Fuchs equations, i.e. the differential equations sati-
sfied by the periods of the holomorphic three form as a function of the complex
structure moduli, play a prominent role. They allow for the computation of the
(273) Yukawa couplings and furthermore, the mirror map can be constructed from
their solutions. This has been abstracted from the results of [14] in [15] and further
applied in refs. [18, 19]. In this paper we develop a way of getting the Picard-Fuchs
equations for a class of models with more than one modulus. This construction uses
some results from tone geometry, which are especially helpful to give a general
prescription for the mirror map.

The mirror map also defines the so-called special coordinates on the Kahler

structure moduli space. In these coordinates the (27 } Yukawa couplings on X
are simply the third derivatives with respect to the moduli of a prepotential from
which the Kahler potential can also be derived. Whereas the left-moving N — 2
superconformal symmetry of (2,2) compactifications is necessary for having N =
1 space-time supersymmetry, it is the additional right-moving symmetry which is
responsible for the special structure [30].

The paper is organized as follows. In Sect. 2 we describe those aspects of toric
geometry which are relevant for us and give some illustrative examples of mirror
pairs. We also state the rules for computing topological couplings using toric data.
In Sect. 3 we discuss the Picard-Fuchs equations for hypersurfaces in weighted
projective space and show how to set them up. Section 4 contains applications to
two and three moduli models. We compute the Yukawa couplings and discuss the
structure of the solutions of the Picard-Fuchs equations. In Sect. 5 we show how to
find the appropriate variables to describe the large complex structure limit and the
mirror map. In the last section we interpret our results for the Yukawa couplings as
the instanton corrected topological coupling. We conclude with some observations
and comments.
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2. Toric Geometry: Mirror Pairs and Topological Couplings

In this section we will describe the aspects of the geometry of hypersurface (com-
plete intersection) Calabi-Yau spaces, which we need later to facilitate the derivation
of the Picard-Fuchs equation, and to define the mirror map on the level of Yukawa
couplings. These types of Calabi-Yau spaces arise naturally from the Landau-
Ginzburg approach to two dimensional N = 2 superconformal theories [3, 12]. The
hypersurfaces with ADE invariants are related to tensor products of minimal N = 2
superconformal field theories.

Some important geometrical properties of these manifolds are however easier
accessible in the framework of toric geometry [31, 8, 13]. We therefore want to give
in the first part of this section a description of Calabi-Yau hypersurfaces in terms
of their toric data. We summarize the construction of mirror pairs of Calabi-Yau
manifolds given in [13] and describe the map between the divisors related to (1,1)-
forms and the monomials corresponding to the variation of the complex structure
and hence to the (2,l)-forms. In the second part of this section we give the toric
data for manifolds with few Kahler moduli which we will further discuss in later
sections. In Sect. (2.3) we use the toric description to construct the mirrors which
were missing in [6, 11]. In Sect. (2.4) we summarize results for the topological triple
couplings of complete intersection manifolds using toric geometry. As they are the

large radius limit of the (27 ) Yukawa couplings, we will need this information for
the mirror map.

2.1. The Families of Calabi-Yau Threefolds. Consider a (complete intersection)
Calabi-Yau variety X in a weighted projective space ΊPn(w) — IPrt(wi,...,wv,+i)
defined as the zero locus of transversal quasihomogeneous polynomials W({i —
1,..., m) of degree d e g ( ^ ) = dt satisfying Σ L i di = Σ £ ί ™f>

X = Xdχ,... ,dm (w) = {[zu... ,zπ+i]

= O(i = l,...,m)}. (2.1)

Due to the action z, —> λWizif λ e C*, whose orbits define points of Ψn(w), the
weighted projective space has singular strata Jfs = Ψn(w)Π {zt• = OVz e {1,...,
n -f 1}V>} if the subset {w{}ί€s of the weights has a non-trivial common factor
Ns. We consider only well-formed hypersurfaces where X is called well-formed if
Ψn(w) is well-formed, i.e. if the weights of any set of n projective coordinates are
relative prime and if X contains no codimension m + 1 singular strata of Ψn(w).
In fact, every projective space is isomorphic to a well formed projective space and
furthermore, one can show, using the explicit criteria for transversality given in [32],
that transversality together with ΣϊϊL\ di = Σ y ί ί wj already implies well-formedness
for Xdv...,dm.

Hence the possible singular sets on X are either points or curves. For singular
points these singularities are locally of type <£3/ΈNs while the normal bundle of a
singular curve has locally a (£2/ZNs singularity. Both types of singularities and their
resolution can be described by methods of toric geometry. The objects which we
will be concerned with are families of Calabi-Yau manifolds describable in toric
geometry, as explicated below.

To describe the toric variety P^, let us consider an π-dimensional convex integral
polyhedron A C R" containing the origin v0 = (0,..., 0). An integral polyhedron is
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a polyhedron whose vertices are integral, and is called reflexive if its dual defined

by

h i , . .,Xn)\Σ*iyi^-l for all (yu...9yn) e A\ (2.2)

is again an integral polyhedron. Note if A is reflexive, then A* is also reflexive since
(J*)* = A. We associate to A a complete rational fan Σ(A) as follows: For every
/-dimensional face (9/ c A we define a n-dimensional cone σ(Θj) by σ{βι) :=
{λ(// — /?)|λ € IR+, p € Δ,p' £ Θι}. Σ(A) is then given as the collection of
(n — /)-dimensional dual cones σ*(Θ/)(/ = 0, ,n) for all faces of A. The toric
variety P j is the toric variety associated to the fan Σ(Δ)9 i.e. P^ := P ^ ) (see
[33] for detailed constructions).

Denote by V, (Ϊ = 0,...,^) the integral points in J and consider an aίfine space
(Cs+1 with coordinates (α0, •••>#?)• We will consider the zero locus Zf of the
Laurent polynomial

V .Λ± l] (23)

in the algebraic torus (<C*)n C P^, and its closure Zf in P j . Here we have used
the convention Xμ := Xf1 ... JSζfΛ.

f := fA and Z/ are called J-regular if for all / = l , . . . , w the / # , and

Xi-ΛrfΘn\/i = 1,...,/z do not vanish simultaneously in (<C*)". This is equivalent to

the transversality condition for the quasi-homogeneous polynomials W{. When we
vary the parameters at under the condition of A -regularity, we will have a family
of Calabi-Yau varieties.

The ambient space P j and so Zf are in general singular. A -regularity ensures

that the only singularities of Zf are the ones inherited from the ambient space. Zf

can be resolved to a Calabi-Yau manifold Zf iff P ĵ has only Gorenstein singular-

ities, which is the case iff A is reflexive [13].
The families of the Calabi-Yau manifolds Zf will be denoted by 3?(A). The

above definitions proceeds in an exactly symmetric way for the dual polyhedron J*
with its integral points v*(z = 0,...,s*).

In ref. [13] Batyrev observed for the case of hypersurfaces that a pair of re-
flexive polyhedra (A, A*) naturally gives us a pair of mirror Calabi-Yau families
(^{A\^(A*)) as the following identities (n ̂  4) on the Hodge numbers ((n - 1)
is the dimension of the Calabi-Yau space) hold

Σ /;(θ*)+ Σ /
codim6>*=l codim6>*=2

(n+l)- Σ ϊ(&)+ Σ ΐ(Θ)l'(Θ*). (2.4)
codimΘ=l codim6>=2

Here l(Θ) and /'(©) are the number of integral points on a face Θ of A and in
its interior, respectively (and similarly for Θ* and A*). An /-dimensional face Θ
can be represented by specifying its vertices vil9...9vik. Then the dual face defined
by Θ* = {x G z! * I (JC, v^ ) = = (x, Vik) = — 1} is a (n — I — 1 )-dimensional face of
A*. By construction (Θ*)* — (9, and we thus have a natural duality pairing between
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/-dimensional faces of A and (n- I — 1 )-dimensional faces of J*. The last sum in
each of the two equations in (2.4) is over pairs of dual faces. Their contribution
cannot be associated with a monomial in the Laurent polynomial. In the language
of Landau-Ginzburg theories, if appropriate, they correspond to contributions from

twisted sectors. We will denote by h ' and h ' the expressions (2.4) without the
last terms.

Three dimensional Calabi-Yau hypersurfaces in P 4(w) were classified in [6]. A
sufficient criterion for the possibility to associate to such a space a reflexive polyhe-
dron is that Ψn(w) is Gorenstein, which is the case if lcm[wi,...,wn+\] divides the
degree d [34]. In this case we can define a simplicial, reflexive polyhedron A(w)
in terms of the weights, s.t. P^(w) ~ P(w). This associated ^-dimensional integral
convex polyhedron is the convex hull of the integral vectors μ of the exponents of
all quasihomogeneous monomials zμ of degree d, shifted by ( - l , . . . , - l ) :

Δ(w):= | ( x i , . . . , x Λ + i ) G R π + 1 | i ; ^ i = 0^ι ^ ~ l } ( 2 5)

Note that this implies that the origin is the only point in the interior of A.
If the quasihomogeneous polynomial W is Fermat, i.e. if it consists of mono-

mials zfWι(i — l , . . . ,5),P 4 (w) is clearly Gorenstein, and (Δ,Δ*) are thus simpli-
cial. If furthermore at least one weight is one (say W5 =1) we may choose e\ —
(1,0,0,0, -wι), e2 = (0,1,0,0, -w 2 ), e3 = (0,0,1,0, -w3) and e4 = (0,0,0,1, -w4)
as generators for Λ, the lattice induced from the Zn+ι cubic lattice on the hyper-
plane H = {(xι,.. ,9xn+ι) € IRrt+11 Σ"^ WiXi = 0}. For this type of models we then
always obtain as vertices of A(w),

vs =(-1,-1,-1,-1) (2.6)

and for the vertices of the dual simplex Δ*(w) one finds

v? = (1,0,0,0), v; = (0,1,0,0), v;=(o,o,i,o), v; = (o,o,o,i),

v* = (-wu -w2, -w3, -w4). (2.7)

We can now describe the monomial-divisor mirror map [35] for these models. Some
evidence for the existence of such a map was given by the computations in [36].
The subject was further developed in [8, 13].

The tone variety VA*(W) c a n be identified with

WA,iw) = H4

d(w)

= /[£/„, Ult U2, U3, U4, U5] e I P ' I Π ^ ' = uΛ , (2.8)
K ί = l

where the variables X{ in Eq. (2.3) are related to the Ut by

— 1 — — — — — (79\
UQ UQ UQ UQ UQ_
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Let us consider the etale mapping φ : P 4(w) —• Hj(w) given by

[zuz2,z3,zt,z5] ~ [Zιz2ziz4Z5,z?w\zd

2

/w\zfw\Zi
/w\zfWί}. (2.10)

In toric geometry, this etale mapping replaces the orbifold construction for the
mirror manifolds described in [10]. Furthermore, the integral points in A*(w) are
mapped to monomials of the homogeneous coordinates of F 4(w) by

TT4 - M M
^ ^ q r . (2.11)

Since in toric geometry the integral points of Δ*(w) inside dim 1 and dim2 faces de-
scribe the exceptional divisors which are introduced in the process of the resolution
of the toric variety JPA(W), a n d the point (0,0,0,0) correspond to the canonical divi-
sor induced from the ambient space the map (2.11) is called the monomial-divisor
map.

2.2. Models with few Moduli. We are interested in studying systems with few
Kahler moduli. For Fermat hypersurfaces in P 4(w) we find five two moduli sys-
tems1. In Table 1 we display these models, their Hodge numbers, the points on faces
of dimensions one and two of A* and the face 6>* these points lie on, specified by
its vertices. Points lying on a one-dimensional edge correspond to exceptional divi-
sors over singular curves whereas the points lying in the interior of two-dimensional
faces correspond to exceptional divisors over singular points (cf. Sect. 2.3 below).
There is also always one point in the interior, vj = (0,0,0,0), corresponding to the
canonical divisor of P 4(w) restricted to X. We also give the exceptional divisor E
and the G-invariant monomial Y related to it via the monomial-divisor mirror map.
Here G is the group which, by orbifoldization, leads to the mirror configuration. Its
generators g™ = (gf\ . . . , , g%), with g\k) e Z, act by

g : zt i—• exp ί 2πz^ —- j z; (2.12)

on the homogeneous coordinates of Jζ/(τv). Note that this action has always to be
understood modulo the equivalence relation zt ~ λWιZi. For Fermat hypersurfaces G
consists of all g^ with Σ?i=ι gf^Wi/d — 1. The generators of G are also displayed
in the table. Here we have suppressed # ( 0 ) = (1,1,1,1,1), which is present in all
cases and which acts trivially in P4(w). The first four models of the table have a
singular TLi curve C and the exceptional divisor is a ruled surface which is locally
C x P 1 . The last example has a 2£3 singular point blown up to a IP2.

The Hodge numbers are in accordance with the formulas for the invariants of
twisted Landau-Ginzburg models [3] or the counting of chiral primary fields in
the ^-series N = 2 superconformal minimal tensor product models2. Contributions

1 In addition, five non-Fermat examples can be found in [6].
2 The first model in Table 1 corresponds to a tensor product of five minimal N = 2 super-
conformal ;4-models at levels (2,2,2,6,6). If one replaces the two level 6 v4-models by level 6
D-models, the spectrum and the couplings of the chiral states does not change. Geometrically
the latter model corresponds to a complete intersection of p\ + Σi=ι zt an(* P2 + z*z\ + z$zi m

P 4 x P 1 . It would be interesting to see how these two geometrical constructions are related.
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Table 1.. Hypersurfaces in P 4 ( w ) with h1'1 = 2.

A1'1

A2'1

<
Θ*
E
Y
G

^(2,2,2,1,1)

2(0)
86(3)
(-1,-1,-1,0)
(1,2,3)
CxP1

-4-4
Z4Z5
(0,0,0,7,1)
(0,0,3,0,2)
(0,3,0,0,2)

T a b l e 2 . . Hypersurfaces

A1'1

A2'1

V 6
V*

Θ*
E

Y

G

^2(6,3,1,1,1)

3(1)
165(0)
(-2,-1,0,0)
twisted sector
(1,2)
P 2 ,P 2

-4_4_4
Z 3 Z 4 Z 5>~
(0,0,0,11,1)
(0,0,11,0,1)

X12(6,2,2,l,l)

2(0)
128(2)
(-3,-1,-1,0)
(1,2,3)
CxP1

-6-6
Z4Z5
(0,0,0,11,1)
(0,0,5,0,2)
(0,5,0,0,2)

in P4(w) with A1

X12(3,3,3,2,l)

3(0)
69(6)
(-1,-1,-1,0)
(-2,-2,-2,-1)
(1,2,3)
Cx^ΛF1)
_4_4 _2_8
z4z5,z4z5(0,0,0,5,2)
(0,0,3,0,3)
(0,3,0,0,3)

X12(4,3,2,2,l)

2(0)
74(4)
(-2,-1,-1,-1)
(1,3,4)
CxP1

72Z6

Z 2 Z 5(0,0,0,5,2)
(0,0,5,0,2)

•'=3

^15(5,3,3,3,1)

3(0)
75(12)
(-1,-1,-1,-1)
(-3, -2, -2, -2)
(2,3,4)
C x (P1 ΛP1)
-2_5 10
Z 1 Z 5' Z 1 Z 5
(0,0,0,4,3)
(0,0,4,0,3)

^4(7,2,2,2,1)

2(0)
122(15)
(-3,-1,-1,-1)
(2,3,4)
CxP1

Zχz\

(0,0,0,6,2)
(0,0,6,0,2)

X18(9,3,3,2,l)

3(0)
99(4)
(-3,-1,-1,0)
(-6,-2,-2,-1)
(1,2,3)
C x ( P ] A P ! )
_6_6 .3-12
z4z6,z4z5(0,0,5,0,3)
(0,5,0,0,3)

Xis(9,6,1,1,1)

2(0)
272(0)
(-3,-2,0,0)
(1,2)
P 2

z6z6xβ

(0,0,05,17,l)
(0,0,17,0,1)

X24(12,8,2,l,l)

3(0)
243(0)
(-3,-2,0,0)
(-6,-4,-1,0)
(1,2,3), (1,2)
C x P \ ^ 2

z\z\z\,zfzf
(0,0,0,23,1)
(0,0,11,0,2)

which come from the last terms in (2.4) correspond to twisted vacua in the CFT or
Landau-Ginzburg approach. Their contribution to /i1'1,/*2'1 is indicated in parenthe-
ses; e.g. in theXi4 (7, 2, 2, 2, 1) model we have / ;(β(2,3,4)) /'(<9*(1,5)) = 1 - 1 5
states from the twisted sector. Similarly, for the five three moduli systems the data
are collected in Table 2.

The first model in Table 2 has two singular Z3 points which are each blown up
to a F 2 . The second through the fourth models have singular Z3 curves for which
the exceptional divisor is a ruled surface which is locally the product of the curve
C and a Hirzebruch-Jung Sphάrenbaum. The last model has a singular Έ2 curve
with an exceptional ΊL4 point which is blown up to a Hirzebruch surface ^ 2 .

Finally we list a class of models whose Kahler moduli stem from non-singular
ambient spaces, the product of ordinary protective spaces. The simplest model in
this class is the bi-cubic in F 2 x P 2 whose defining equation is

W3) = 0 , (2.13)

where z\9Z29zs and w\,W29W3 are homogeneous coordinates for each P 2 , respec-
tively. We write the family of this type as X ( 3 |3 ) (1,1,1|1,1,1). In Table 3 we list
all Calabi-Yau hypersurfaces of this type, together with their Hodge numbers.

The polyhedra associated to these models are the direct product of the polyhedra
which describes each projective space, e.g., for the bi-cubic model it is given by
J ( l , l , l ) x J ( 1 , 1 , 1 ) G R 4 .

We will see in Sect. 5 that these kinds of non-singular Calabi-Yau manifolds
will provide good examples for which one can compare the instanton expansions
with calculations in algebraic geometry [37].
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Table 3.. Hypersurfaces in products of projective spaces

h1*1 2 2 3 4
A2'1 83 86 75 68

Related few moduli models can be obtained by passing to products of weighted
projective spaces, such as e.g. X(4|3)(2,1,1|1,1,1) with /ί2'1 = 75 and hlyl = 3. For
details about complete intersections in products of ordinary projective spaces we
refer to ref. [4].

2.3. Reflexive Polyhedra for Calabi-Yau Hypersurfaces in non-Gorenstein IP4(w).
Let us now consider examples of Calabi-Yau hypersurfaces in F 4(w) for which
the ambient space is non-Gorenstein. We will show that A(w) defined in (2.5) is
reflexive also for these spaces. We claim an isomorphism between X{w) and Zf ^y

indicated by the fact that the Newton polyhedra of the constraints are isomorphic and
the Hodge numbers coincide. Passing to Z/^*,^ we obtain a mirror configuration.
The relation between X(w) and Zf^{w) is that the latter is a partial resolution,
namely of the non-Gorenstein singularities, of the former.

The manifold which we treat as an example, appears in the classification of
ref. [6]. Its mirror manifold can however not be constructed using the methods of
[9] nor as an abelian orbifold w.r.t. symmetries of the polynomials of the models
in [6]. We consider the following hypersurface in P4(w):

zx + z\z5 + z\z2 + z\zx + z\z\ =0e P4(3,9,17,22,24). (2.14)zf

One can choose the generators of A as e\ — (-8,0,0,0,1), e2 = (—17,0,3,0,0),
e3 = (-13,0,1,1,0) and e4 = (-3,1,0,0,0). In this basis the 10 vertices of A(w),
which has 33 integral points, are

v, =(-1,-1,2,-1) , v 2 = (-1,-1,2,0), v3 =(-1,0,-1,-1),

v4 = (-1,0,-1,7), v5 = (-1,0,0,3), v6 = (-1,1,-1,-1),

v 7 =(-l ,1,-1,1) , v8 =(0,1,-1,-1),

v9 = (1,0,-1,2), v,0 = (2,0,-1,-1).

The dual polyhedron Δ*(w) with 44 integral points has the following 12 vertices:

vj =(-9,-18,-14,-3), v* =(-8,-17,-13,-3), v* = (-5,-11,-8,-2),

vj =(-5,-10,-8,-2) , v; =(-3,-6,-5,0), v* = (-2, -7,-5,-1),

v7* = ( - 2 , - 6 , - 4 , - 1 ) , v8* =(0,-3,-2,0), vj = (0,0,0,1),

vΓ0 = (O,O,l,O), vj, =(0,3,1,0), vJ2 = (1,0,0,0).

In Table 4 we list the numbers l(Θ) of lattice points inside the faces of dimension
0,...,4.

For dim© = 1 and 2 we also indicate on which edges the points lie and spe-
cify the corresponding two-dimensional dual faces of Δ*. Applying now Eq. (2.4)
we obtain hι>\ZfΔ) = h2 \ZfΔ,) = 35 and h2'\Zfά) = hu(Zfj,) = 38. As Ψd* is
Gorenstein while P(w) is not, we see a difference in the structure of the singularities,
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Table4.. Toric data for hypersurface in IP4(3,9,17,22,24)

dim<9

4

0

1

2

3

Δ(w)

l(Θ)

1

10

1
2
7
0
0
0
0
0

7
1
0
0
0
0
0
0
0
0

4

Θ

(8,10,12)
(9,10,11)
(10,11,12)

(5,8,Π,12)
(1,2,5,6,8)

(1,5,Π)
(1,5,9,10)
(1,10,11)

(10,11)
(9,12)

(5,8)
(5,11)
(4,12)
(2,6)

(1,5)

(1,11)
(8,10)
(1,10)

dim<9*

4

3

2

1

0

Δ*(w)

l(Θ*)

1

4

0
0
0
3
3
1
3
1

2
0
2
2
1
1
2
2
2
2

12

Θ*

(6,7)
(3,10)
(3,4)

(1,2)
(2,8)
(2,10)
(8,10)
(9,10)

(3,4,9,10)
(1,3,6)
(1,2,8)
(1,2,10)
(2,4,5)
(2,5,8)
(2,8,10)
(2,9,10)
(6,7,8)
(8,9,10)

i.e. not all exceptional divisors which correspond to curve and point singularities
on Xd(w) in P(w) are represented by points on faces of dimension one and two in
A*. The mirror of the manifold (2.14) is the hypersurface Z/^* in P^*.

We have looked at a large number (several thousand) of models which appear
in the lists of refs. [6, 11] including especially those for which no mirrors could be
found, even after considering all abelian orbifolds3, and verified that they always
lead to reflexive polyhedra and that thus the corresponding P j * is Gorenstein. This
in particular entails that one can explicitly construct all mirrors for these manifolds
as hypersurfaces in P^*. A general combinatorial proof that quasi-smoothness and
vanishing first Chern class of Jζ/(w) are equivalent to reflexivity of A(w), will
be published elsewhere. It has however been shown in ref. [38] that a reflexive
polyhedron in three dimensions can be associated to every Kz hypersurface in P3(w).

2.4. Topological Triple Couplings. We now want to give a recipe of how to
compute topological triple couplings or intersection numbers of divisor classes on
the CY three-fold X, which is the global minimal desingularization π : X -* X of
X = Xdu..,dm(w) defined in (2.1). Proofs can be found in [33, 39] and [32]. A
related application to orbifolds of tori is discussed in [40]. If J ^ is a singular
stratum of Ψn(w), we denote by M C {1, ..., m} the subset which consists of the
indices of those defining polynomials Wj which do not vanish identically on J#s>
The singular sets £?$ on X can be described as X{d'.}eM({wi}ies) (the relation be-
tween w[, dj and w^dj is explained below). Their dimension is \S\ — \M\ — 1 and,

3 We thank M. Kreuzer for providing a list of these manifolds.
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as mentioned before, only points and curves occur, £f$ is a weighted projective
space (\M\ = 0), a hypersurface (\M\ — 1) or a complete intersection (\M\ > 1) in
a weighted projective space.

For singular points we distinguish between isolated points and exceptional points;
the latter are singular points on singular curves or the points of intersection of
singular curves where the order of the isotropy group / of the exceptional points is
higher than that of the curves.

For the singular sets we get, through the process of blowing up, exceptional
divisors which are Kahler. We use the following notation: £>, and Ej denote the
exceptional divisors on X coming from the resolution of the singular curves and
points, respectively. J is the divisor on X associated to the generating element of
Pic(X), cf. [41].

Each irreducible exceptional divisor provides, by Poincare duality, a harmonic
(1,1) form, which we will denote by hj,hE and hD. hι'ι(X) is # exceptional divisors
+ 1. The topological triple couplings are then given as e.g. Ej Dj J = J ^ / ^ Λ
hDj Ahj.

In toric geometry the topological data of singular points are represented by a
three-dimensional lattice and a simplicial cone defined by three lattice vectors from
which, however, the lattice points within the cone cannot all be reached as linear
combinations with positive integer coefficients. For Abelian singularities of type
<£3/ΈNs the local desingularization process consists of adding further generators
such that this becomes possible. This corresponds to a subdivision of the cone into
a fan. The endpoints of the vectors generating the fan all lie on a plane, called
the trace ZJTr of the fan. This is a consequence of the fact that the isotropy group
of singular points is a subgroup of 577(3), necessary for having a trivial canonical
bundle on X. The exceptional divisors are thus in 1-1 correspondence with lattice
points in ATr, whose location is given by

(nun2,n3)€Z\

, =i

Here elements of / describe the action of the isotropy group on the coordinates of
the normal bundle of the singular point and ei,<?2,β3 span an equilateral triangle
from its center.

For an isolated singular point there are only points in the interior of the tri-
angle, whereas for an exceptional singular point there are also points on its edges,
corresponding to the exceptional divisors that arise from resolving the curves on
which the point lies.4 If an exceptional point is the intersection of two or three
curves, there will be points on two or three sides of the triangle. For points on
curves with ^A^-i-type (U2/ZMS singularity, there are Ns — 1 points on a side of
the triangle. The possible5 triangulations of ΔΊτ with its points in the interior,
on the edges and its three vertices, correspond to the different desingularisations

4 Not all exceptional divisors have a toric description, only h ' of them do. The remaining ones
cannot be treated by the methods outlined here.
5 Not all triangulations lead to a projective algebraic desingularization, see [32] for local criteria.
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on which some intersection numbers will depend. The number of triangles into
which the trace is subdivided is equal to Ns, the order of the isotropy group.

Let us now discuss the various possible intersections in turn.

(A):

J3 = ^ | J n\ (n - m = 3 for threefolds),

where n0 is the least common multiple of the orders Ns of the isotropy groups of
all singular points, e.g. for a manifold given by a single constraint of Fermat type,
this is the least common multiple of the common factors of all possible pairs of
weights.

(B): The action of the isotropy group on the fibers of the normal bundle to curves
with an ^ , . - 1 singularity is generated by g = diag(oί,{χNs~ι), where a = e2πι^Ns.
Resolving these singular curves adds Ns — 1 exceptional divisors A which are F 1

bundles over the curves C. For the intersection numbers one finds [32]

(a):

A Dj Dk = 0 for i+j + k + i,

(b):

D)_λ Dj = φ(σ(j-Ns 4 l);w';/') - - χ c ,

D) Dy_! - φ(σ(Ns -j);w';df) - -χc ,

D] -Dj = 0 for \i-j\ > 1.

Here χc is the Euler number of the singular curve X{d'} M({wi}ies), embed-
ded in a well-formed weighted projective space, i.e. w = w /m/ and dj = dj/m,
where m = lcm({cj}jes)9mi = \cm({cj}J€S\{i}) and Q = gcd({wy}yGiS\{/}). Since
gcd(wί,cί) = Ns, there exist, for all n G Z, two integers αf(w) and fe,(w), such that
Nsn — cii(n)wi 4- bi(n)ci with 0 ^ αz (w) < C//i\fa. We then define

m

The function φ(n;w';d') is defined to be

φ(n;w';d') = φ(n;w';df) - 0

where

φ(n;w;d)= — —
x) _

with φ(0; w d) = 1 and ^(w; w; d) — 0 for « < 0.

(c):

( 4χc for C without exceptional points

4χc — Y^j=\{l) - 1) for C with exceptional points .
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As for the second contribution for curves with exceptional points, we recall that
each exceptional divisor Z), over C corresponds to a point Py on the side of the
triangle belonging to the / h exceptional point over C. Now r is the total number
of exceptional points over C and lιj are the number of links between the point Py
and other points of the / h triangle which do not lie on the same side.

(d):
J2 D = 0 .

(e):

J ' Dj = ~γs (ψ(σ(no) w' d') - λ-

(f):

j ^ o ) ; w' / 0 - \χc) for \ί - j \ = 1 .

I 0 otherwise

(C) For the intersection of the divisors resulting from the resolution of singular
points, one obtains [33]

(a):
Ef = l2-ξi9

where ξt is the number of triangles which have the point ι?, corresponding to Ei as
a vertex.

(b): Ef ΈjjrO iff the points υi9Vj belong to a common 2-simplex. If u and u1 are
the two unique additional points such that (vi9Vj,u) and (vi9vj9u

f) are 2-simplices,
then we have the relation

(Ef - Ej)Vi + (βt Ej)vj + u + u' = 0

from where we can determine the intersection numbers.

(c): Ei Ej Ek = l(/=K/φA:φ/) if (vi,Vj,Vk) is a two-simplex; these couplings
vanish otherwise.

(d):
J2 Ei=J Ef =J - Ei Ej = 0.

(D): What is left are (a) the intersections between Et and Dj and the intersection of
divisors over different but intersecting curves. These cases are again easily described
in terms of the toric diagram and do in fact follow from (C(b)), where the points
Vi, Vj may now also lie on the sides of the triangle, in which case they represent
exceptional divisors over the curve. And (b) E D J = 0.

Let us finally discuss some examples: Consider the two-moduli model X8(2,2,2,
1,1). The singular set consists of one singular A\ curve C =X 4(1,1,1) which is
already well-formed, i.e. σ(n) = «. Its isotropy group is a ΊL2, and χc — — 4. Also,
ΠQ = 2 and one easily computes ψ(2\ 1,1,1;4) = 6. We can then collect all triple
intersections, using an obvious notation, in the form K° — &/3 - SJD2 - 16£>3.

For the hypersurface X24(12,8,2,1,1) the singular sets are an A\ curve C =
^12(6,4,1) ~X6(3,2,1) with an exceptional Z4 point P =Z 6 (3,2) ̂ X\(l, 1). Here
ΠQ = 4 and applying (A) gives J3 = 8. The points in zlτ> are v = (1,0,0), w =
(0,1,0), ι/ = (0,0,1), vE — (5, | , i),ϋ2> = (0, 5, 5), i.e. three corners, one internal
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point and one point on the edge, the latter corresponds to the exceptional divisor
D of the resolution of the Ax singular curve. χ(C) = 0 and by (B(c)) we have
D3 = 0. Furthermore, σ(4) = 2 and φ(2;3,2,1;6) = 2. The unique triangulation of
Ajτ consists of four triangles with common point VE> Applying (B(b)), (C(a, b))
and (D) we finally obtain K° = 8J 3 - 2D2J - 2D2E + 8£ 3.

Let us summarize the intersection numbers for the two and three moduli models.
For the models with two moduli we find

X8(2,2,2,1,1): K° = 8/3 - %JD2 - \6D3,

X12(6, 2,2,1,1): K° = 4/3 - 4JD2 - 8D 3,

XX2(4,3,2,2,1): K° = 2J3 - 6JD2 - 24D3,

XM(7,2,2,2,1): K° = 2J3 - UJD2 - U2D3,

X18(9,6,1,1,1): K° = 9J 3 + 9E3. (2.15)

The topological coupling for the models with three moduli are

X12(6,3,1,1,1): K° = 18J3 + 9E\ -f 9E3,

X12(3,3,3,2,1): K° = 6J3 - SJ(D2 + D2) + 4JDιD2 +4D$Dι - \6(D3 +1%),

Z1 5(5,3,3,3,1): K° = 3J 3 - \0J(D2 + D2) -f 5JDXD2 + 5D2DX - 40(D3 + D 3 ) ,

X18(9,3,3,2,1): K° = 3J3 - 4J(D2 + D2) + 2JDXD2 + 2D2DX - 8(D3 +D%),

X24(12,8,2,1,1): &° = 8/3 - 2D2J - 2D2E + 8 £ 3 . (2.16)

The intersection numbers for hypersurfaces in products of ordinary projective
spaces can be readily calculated following [4]. One finds

1|1,1,1): K° = 3J2J2 + 3JXJ
2,

l, 1,1,1): K°=2Ji+4JιJ*,

/3

2

(2.17)

1,1,1): ^° = 2/iJ3

2 + 2J2/3

2

3. Picard-Fuchs Differential Equations for Hypersurfaces

Consider the unique holomoφhic three form Ω(φ) of a Calabi-Yau three-fold X as a
function of the complex structure moduli ψi,i = 1, ..., /z2>1. Its derivatives w.r.t. the
moduli are elements of H3(X), which is finite dimensional. This means that there
must be linear combinations of derivatives of the holomorphic three form which are
exact. Upon integration over an element of H?>(X) this leads to linear differential
equations for the periods of Ω, the Picard-Fuchs (PF) equations. Candelas, De la
Ossa, Green and Parkes showed in [14] how the solutions of the PF equation,
together with their monodromy properties, allow for the computation of the (273)
Yukawa couplings, the Kahler potential for the complex structure moduli space and
also for an explicit construction of the mirror map.

The discussion in [14] was limited to models with one complex structure modu-
lus only. Here we want to discuss the PF equations for the case of several moduli.
We start with a review of a method to set up the Picard-Fuchs equations due to
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Dwork, Griffiths and Katz. In the second part of this section we show how one
may use the tone data of a Calabi-Yau hypersurface to construct the PF equations.

3.1. Dwork-Griffiths-Katz Reduction Method. As shown in ref. [42, 15], the pe-
riods Πi{φ) of the holomorphic three form Ω(φ) can be written as

m)-l-Uw°w '"- 2<*! 1+1)- <31)

Here

ω = Σ ( - 1 )ιWiZidzχ Λ . . . Λ dz, Λ . . . Λ dzn+x (3.2)

Γi is an element of H-^iX.Έ) and jj a small curve around Wj = 0 in the n-

dimensional embedding space. The observation that •$- ( p/^z' Pm ) ω is exact
OZ[ \W ^ - - - Wm J

if f(z) is homogeneous with degree such that the whole expression has degree zero,

leads to the partial integration rule, valid under the integral ί δt? = -4- j :

Pk Wj fd,wk

•••Wim p j -lWf1--- W £ m fejpj - 1 Wk Wfι •••W ( • }

In practice one chooses a basis {Qk(z)} for the G-invariant elements of
the local ring (%. For hypersurfaces £% = <E[z\, ...9 zn+\]/(diW). One then takes
derivatives of the period w.r.t. the moduli until one produces an integrand of

the form ^f such that g(z) is not one of the β, (z). One then expresses

θ(z) — Σ,n=ι fi(z>Ψ)dίW(z>Ψ) a n d uses (3.3). For complete intersections 01 —
CE d Σι

(<C[zu .. Zn+dr/CEiWiWu . . . , diW^ + ΣjWjiClzu . . . , z Λ + 1 ] r ) and for the ba-

sis elements of the ring one can choose vector monomials, i.e. m-component vectors
whose only non-vanishing component is a monomial [43].

The generalization to complete intersections in products of projective spaces is
straightforward [4]: one simply replaces the measure ω by ΓLω>*> w ^ h cor given
by Eq. (3.2) for each factor in the direct product of projective spaces.

Note that the PF differential equations contain only those complex structure
moduli for which there exists a monomial perturbation in the defining polynomials

~2 1

(there are h ' of them). This will also be true for the method described in the
following subsections.

Above method of deriving the PF differential equations has been used in [15]
[17] [16] for one modulus hypersurfaces and in [18] [19] for one modulus complete
intersections. It applies in the form given above only to complete intersections in
products of projective spaces and not for manifolds embedded in more general toric
varieties. Applied to models with several moduli it becomes rather complicated.
However, one can extract the general structure of the PF differential equations by
inspecting the structure of the local ring 01.

To see this let us restrict our arguments to the case in which the mirror mani-
fold X* of a Calabi-Yau three fold X can be obtained by the orbifoldisation by a
finite abelian group G [10], and consider the period integrals on the mirror man-
ifold X*. In this case the local ring MG for the mirror X* consists of the G-
invariant elements of M — C[zi, ,z5]/(d; W). We fix a basis of the ring 0ίG as
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{φo;^i,...,φΛ~2,i;φΛ~2,i+1,...,φ2Λ»2,i+1;φ2Λ~2,i+2} where the elements are grouped ac-
cording to their degrees (0;d;2d;3d). The elements with degree d correspond to
the perturbations which are parametrized by the complex structure moduli φi in the

untwisted sector. (It will turn out that a choice for the monomials ψi(i = 1, ..., h ' )

which is determined by the tone data of Δ* by the monomial-divisor map (2.11)

is a natural basis to study the mirror map.) Then the period matrix (77/) defined

by Π{ = k\ j Γ yyrj+i ω (k — - degree (</>/)) satisfies the first order system, called

Gauss-Manin system

dΦkΠ = Mik\φ)Π (k = 1, -,/ί 2 ' 1). (3.4)

~2 1 ~2 1

Here M(k)(φ) are (Ih ' + 2) x (2A ' + 2 ) matrices parametrized by φt. This system
is defined completely by the local ring 0lG. Our PF differential equations are a
minimal set of (higher order) differential equations which is equivalent to the Gauss-
Manin system.

Now let us note that the local ring MG can be expressed as

-2, (3.5)

Here the ideal y is generated by algebraic relations of the form P{ψ\,...,
φ~2,\) = 0(mod diW), i.e.

P{ψu-..,φ^i) = ΣQfau •, zS)diW , (3.6)
ί = l

where P and Qi are polynomials in the φ, and z{ respectively whose coefficients are
polynomials of the moduli parameters. The relations (3.6) can be readily translated
into PF differential operators for the periods Πi(φ) = Γlf(φ) by replacing monomi-
als φ\\ . . ., φn/ by differential operators c^1, ..., dn/ and reducing successively the
terms of type QfiiW by using (3.3). Multiplication by ψi at the level of the ring
(3.5) just translates to derivatives with respect to the complex structure moduli at
the level of the PF differential equations. Therefore the requirement that the relations
(3.6) from which the PF differential equations are derived generate J constitutes a
necessary and sufficient condition that the PF differential equations are equivalent
to the Gauss-Manin system.

By simple analysis one now sees how many PF differential equations and of
which order one obtains. For one modulus cases the ring will be of the form
{1, φ, φ 2 , φ3} and the truncation at degree Ad is done by an algebraic relation φ4 =
Σ f QidiW leading to a fourth order PF differential equation. For two moduli cases
there will always be one relation of degree 2d which truncates the three possible
products ψiψj at level Id to two dimensions. This relation multiplied by ψ\, ψ2 gives
two, necessarily independent, relations at degree 3d. Hence there must be always
one further relation of degree 3d. Also, for Fermat hypersurfaces, the relations at
degree 3d always generate five independent relations at degree Ad so that the ring
is trivial at this degree. The full information about the period is therefore contained
in one second and one third order differential operator.

For higher dimensional moduli spaces the order of the full set of differential
equations depends on the details of the ring (3.5). For example, in the case of the
X24(12,8,2,1,1) model the three relations of the type (3.6), generating the ideal at
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degree 2d, generate in fact the whole ideal. Applying (3.3) yields immediately the
three second order differential operators, given in Appendix A.

For the model Xn(3, 3, 3, 2, 1) the three relations at degree Id only yield
seven independent relations at degree 3d. Hence the system has to be supplemented
by two relations at degree 3d in order to generate J. The system of Picard-Fuchs
equations will therefore contain three second and two third order equations, compare
Appendix A.

For our purpose of constructing the mirror map, we need to find the point where
the monodromy of solutions for the PF differential equations becomes maximally
unipotent [44] and the local solutions around this point as well as the concrete
form of the PF differential equations. We will find that the toric data encoded in
Δ* provides us all necessary information for this purpose.

3.2. Generalized Hyper geometric Equations and PF Differential Equations. We
will now describe an equivalent but often more efficient way to obtain the PF
differential equations satisfied by the period integral on the mirror manifold X* of
X. We will mainly discuss, again, the case where the mirror X* can be obtained
by orbifoldisation by a finite abelian group G[10]. We will briefly comment on the
general case at the end. The following arguments for toric varieties are largely due
to Batyrev [13].

As summarized in Sect. 2, in toric geometry the mirror manifold X* is described
by the toric data encoded in the reflexive polyhedron Δ*. In this language the period
integrals are written as

π ' ( α ) = / 7 7 ^ n Π ^ , 0.7)

with ji e Hn(((E*)n\Zf). The Laurent polynomial / is given by

f(a,X) = i>Xv<* , (3.8)

where v*'s (z = 0, ,s*) are integral points in Δ* which do not lie in the interior
of codimension one faces of J*.

Now let us introduce the generalized hypergeometric system of GeΓ fand, Kapra-
nov and Zelevinsky [45] which is defined for each configuration of a given set of
integral points A = {v0, , υp} in R n . We consider the embedding of these points
in the plane with distance one from the origin of Rn+ι by ϋi = (l,ι?, ) and denote

A = {VQ, ,vp}. We assume that the integral vectors £o> * * >vp span ΊLn+λ. Since
we have p -f 1 integral points in R w + 1 , there are linear dependences described by
the lattice

( ^ 1 έ = θ) . (3.9)
i=0 )

Obviously ^ U — 0. Considering the affine complex space C^ + 1 with coordinates
(#o> >cip), we define the homogeneous differential operator

for each element / of L. In addition, we define differential operators
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4 (3-11)
1=0

'i4r
ϋaί

with β e IRn+1 and vtj representing / h component of the vector ϋi e JRn+1. One
can show [45] that the operators (3.10) and (3.11) define a consistent system of
differential equations

®,Φ(α) = 0 (/ e L\ %jΦ{a) = 0 (7 = 0,...,/i), (3.12)

which is called ^4-hypergeometric system with exponent β.
In [13] Batyrev remarked that for a reflexive polyhedron Δ*, the period integral

(3.7) satisfies the ^-hypergeometric system with exponent β = (-l,0,. . . ,0) and
A being the set of the integral points in Δ* which do not lie in the interior of
faces of codimension one. Following Batyrev, we will refer to this system as Δ*-
hypergeometric system.

In general, the zl*-hypergeometric system does not suffice to derive the Picard-
Fuchs differential equations. It turns out that in general we need to extend the system
by supplementing further differential operators. This depends heavily on the tone
data of zΓ. However the system (3.12) is quite useful because (i) for some mo-
dels, the zl*-hypergeometric system provides the Picard-Fuchs differential equations
directly and (ii) even if this is not the case, this system gives finite dimensional
solution space in which the solution space of the Picard-Fuchs differential equations
is a subspace. On the other hand we should be very careful when applying the
general results for the ^4-hypergeometric system in [45] to our J*-hypergeometric
system because the latter is not generic in that it is (semi-non) resonant (see [45]
for details) and the monodromy group is no longer irreducible. This is reflected in
the simple example below by the fact that the fifth order operator we start with
factorizes, leaving a fourth order operator which is precisely the PF differential
operator for that case.

In order to obtain an idea of the Zl*-hypergeometric system, let us study the case
of the quintic hypersurface in F 4 . In this case, the integral points of the reflexive
polyhedron Δ* are given by (2.7) and the corresponding vertices v* = (l,v*) G 1R5

become

v j = (1,0,0,0,0), vj =(1,1,0,0,0), v * = (1,0,1,0,0),

v3*= (1,0,0,1,0), v j = (1,0,0,0,1), v5* = ( 1 , - 1 , - 1 , - 1 , - 1 ) . (3.13)

As an integral base of the lattice L, which is one dimensional in this case, we can
choose / ( 1 ) = (-5,1,1,1,1,1), i.e. L = Z/ ( 1 ) . The system (3.12) then becomes

\ i , ~ + 1 > J7/(α) = 0 , (3.14)
0 OQi J

fl5-T—) I7, (α) = 0 (/ = 1,...,4) , (3.15)

together with

dαi d α 2 0CI3 CCI4 da5

for ^/ with / = / ( 1 ). If we translate the period integral (3.7) to the more familiar
expression
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Πi(ά) = / / 7 5 5 —5 5 , (3.17)

utilizing the correspondence described by the monomial-divisor map (2.11), we
see that (3.16) originates from the trivial relation in the integrand z\ z\ —
(Z1Z2Z3Z4Z5)5 = 0. The two equations (constraints) (3.14) and (3.15) can be un-
derstood as the infinitesimal form of

Πi(λsao9...,λ
5a5) = λ-5Πi(a0,...,a5),

J7I (αo,...,Affl/,...,AΓ5fl5) = JΪ/(flo,...,fl5) ( i = 1,. . , 4 ) , (3.18)

with λ,λi e C*, which are verified by a change of integration variables. The PF
differential equation can be extracted from the zl*-hypergeometric system by making
the Ansatz

ίΠi(a) = —Πi , (3.19)
ao \ al J

which solves (3.14) and (3.15). Then Eq. (3.17) becomes

ΘX{Θ4

X~ 5x(56>x + 4)(56>x + 3)(56>x + 2 ) ( 5 β , + 1)} Π^x) = 0 , (3.20)

where x = aιa2a3a4a5 a n ( i Qχ — x-f-. Since the factored operator Θx has only con-
α0 ax

stants as solutions, we can remove this factor by introducing a constant. However,
the asymptotic behavior of the period Πi(a), for α0 -^ 00 with the other αz 's fixed,
tells us that this constant must be zero (cf. Sect. 4). We then obtain the generalized
hypergeometric equation of fourth order in [14].

As this simplest example shows, the differential operators ®/(/ E I ) represent
the algebraic relations among the G-invariant monomials q>o9--9φs* which are the
image of the integral points v* under the monomial-divisor map (2.11). We will
see that if these monomials generate the G-invariant polynomial ring <E[z\, -,zs]G

then the independent algebraic relations at lowest non-trivial degree result in the
Picard-Fuchs differential equations, after factorization similar to the example above.

3.3. Extension of the A*-Hypergeometric System.Consider G-invariant monomials
ψo,''', Ψs* which correspond to the integral points in Δ*(w) not lying in the interior
of codimension one faces. Then the orbifoldization of the zero locus of the quasi-
homogeneous polynomial

) (3-21)

describes Calabi-Yau hypersurface X* =X/G. The period integral (3.7) in the toric
language is then translated to the form (3.3) as

ΠAμ) = \l-wk> (122)

with Γi € Hn(X,Έ). As elucidated on the example of the quintic hypersurface, the
differential operator 3iι(l e L) stems from the algebraic relations satisfied by <p;'s.
On the other hand the operators 2£i(i — 0, . . . 9 n) represent the constraints which
reduce the apparent redundancy in the description of the complex structure defor-
mation of X* (3.21) that arise from introducing parameters at for all i e {0,... ,s*}.
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Apart from the problem of solving these constraints by defining suitable variables,
which will be discussed later, the main idea of the /d*-hypergeometric system lies
in the fact that we can find algebraic relations among the G-invariant monomials
ψo>''' > ψs* which result in the PF differential equations.

In order to verify this for the models specified in the tables of Sect. 2, we
classify them into three types. Type I: there are no integral points inside codi-
mension one faces of Δ*(w) and the G-invariant monomials φo,...,φs* generate
the ring C[zi, . . . ,z n + i] G . Type Π: there are m > 0 integral points in the inte-
rior of codimension one faces of A*(w); if we include the corresponding mono-
mials φs*+ι9...9φ5*+m then φOi...,φs*+m are G-invariant and generate the ring
(C[zi,...,zn +i]σ. Type III: there are m ^ 0 integral points inside codimension
one faces of Δ*(w) but we also need to consider m! > 0 G-invariant monomi-
als τ\9...,τmt of degree greater than d together with the degree d G-invariant
monomials φ\, ..,φs*+m to generate the ring <E[z\,...9zn+\]G. According to this
classification, the models of type I are

X8(2,2,2,l,l), JΓ{3|3)(1,1,1|1,1,1), Jr ( 2 | 4 ) ( l , l | l , 1,1,1)

X ( 2 | 2 | 3 )( l , l | l , l | l , l , l ) , X ( 2 |2 |2 |2 )(1,1|1,1|1,1|1,1); (3.23)

for type II we have

X 1 2(6,2,2,l,l), X1 4(7,2,2,2,l), X18(9,6,1,1,1),

X12(6,3,1,1,1), Z 2 4(12,8,2,l,l) (3.24)

and finally for type III

Z1 2(4,3,2,2,l), X1 2(3,3,3,2,l), X15(5,3,3,3,1), X18(9,3,3,2,1) . (3.25)

For the models of each type we can now find the algebraic relations which result
in the PF differential equations otherwise obtained through the reduction method
reviewed above. More precisely, for models of type I, there are elements / e L
for which the operators 3)ι produce the PF differential operators after solving the
constraints and some factorization as we have observed in the example. For models
of type II and III, in general, not all of the PF differential operators follow from 3)\
with some / G L. We miss the algebraic relations which involve φs*+\9 ..., φs*+m
and τi,. . .,τm/. We develop below a formal procedure for handling the models of
type II and then demonstrate the recipe applicable to the most general case, type
III, by treating an example.

To formulate the recipe for the models of type II, let us recall [13] that the
integral points in the interior of codimension one faces of A*(w) are related to the
automorphism group GA* of I P ^ * W by the formula

dimGj* = n 4- Σ l\Θ*) ( 3 2 6 )
codim(9*=l

The first term takes into account the w-dimensional torus action which exists canoni-
cally for toric varieties while the second term indicates additional symmetries, which
can be written in infinitesimal form as

+ Σ^bf\z) ( i=l, . . . ,5), (3.27)
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where m = dimG^* - n. In order to take advantage of these additional symmetries
we extend the quasi-homogeneous potential (3.21) to

s*+m

W(z,a)= Σ > φ , ( 2 ) . (3.28)

We can then utilize the symmetries (3.27) to derive the relations

using frr(o' — fΓω for the automorphism (3.27). Since bf\z) has the same de-
gree as z;, the term in the integrand can be written as a linear combination of
the degree dG-invariant monomials. All degree JG-invariants can be obtained by
differentiating ilf(α) (cf. Eq. (3.22)) with W(z9ά) given by (3.28). Therefore we
obtain independent differential operators of the form

ϊϊl Ά

φt — V C^'a Π ^0^

for each ε*(A: = 1, ,m). In this way we arrive at the linear system which extends
the zΓ-hypergeometric system to

= 0(7 €=//), &jΦ(a) = 0(j = 0,...,n),

= l,...,/w), (3.31)

where L' is now the lattice of relations between all integral points vj, ..., v**+w in

A*(w) (cf. Eq. (3.9)).
As a simple but non-trivial example, let us consider the model Xu(Ί9 2,2,2,1)

with defining polynomial

W = aλz\ + a2zl -h a3zl + a4z
Ί

4 -f a5z
ι

5

4 + αOφo + a6ψβ + «7φ? + «8φ8 , (3.32)

where φ0 = zιz2z3Z4Z5,φ6 —z\z\,φη = zjz^z^l and φ 8 = z\z\z\z\. The latter two
correspond to integral points inside faces of Δ*(w) of codimension one. This leads
to two additional symmetries (3.27) which are easily recognized as

z[ = zi + ειZ2Z3z4z5 -f £ 2 ^ ?

 z/ = zi 0' = 2,..., 5 ) . (3.33)

From Eq. (3.29) we then get the extended system with two additional linear oper-
ators

Z'2=2ai-?-+ao-ϊ-+a64- (3-34)
Ode OCLη das

The algebraic relations φ\ — zjz\4 — 0 and ψoψl - z\z\z\φ^ — 0 then lead to PF
differential equations of second order and, after factorizing a trivial first order opera-
tor, of third order, respectively. To get the third order equation we use the relations
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(3.34) to express -£— in terms of derivatives with respect to ao,a$ and a$ and set

aΊ = as = 0.
Let us now show how the models of type III are treated. In this most general

case we will have to go beyond linear systems such as (3.31). For illustrative
purposes we will treat the model Xi2(4,3,2,2,1) as an example. We start with the
perturbed potential

W = a\Zγ -f a2z2 + #3Z3 -j- a$z4 + a$z5 -\- aoψo -f- a^φβ •> (3.35)

where the G-invariant monomials φo — zxz-iZiz&s and φ$ — z\z\ correspond to the
origin and an integral point on a one-dimensional face of Δ*, respectively. Δ*
for this model has no integral points in the interior of faces of codimension one.
However the operators 3)\ in the J*(w)-hypergeometric system miss the algebraic
relations among the generators of C[zi, , z 5 ] σ , because it turns out that we need
to incorporate the degree 24 invariants, τ\ = zχz\z\z\,τ2 — z2z\z\z\,τi — z\z\z\z\
and τ 4 = z\z\z\z\ into the generators of the invariants <C[zi, ,z 5 ] G . Though the
algebraic relations which produce the PF differential operators are not unique, we
may choose to consider the relations φ\ — z\zx^ = 0 and φ\t\ — z\z\z\φ§ — 0. The
former relation directly gives us a differential equation

iβ j ua2 uus j

In contrast to this, we need to define

\dμ, (3.37)

in order to express the latter algebraic relation as

] 77 (α) Πi(a) = 0. (3.38)
daoj oa\ oa^ oa$ oa6

On the other hand, since up to total derivatives with respect to the coordinates zt

we have the relation a\x\ = \2a§aχa2φ\ — 24aQa2aβφoφ6 — \2aχa\ψQzψ we obtain

If we now combine (3.38) and (3.39), we find a fourth order differential operator
which annihilates Πi(a). We again find the fourth order operator to factorize, leading
finally to a third order differential operator.

We want to close this subsection with a comment. The discussion presented here
was restricted to Fermat hypersurfaces for which the mirror X* can be obtained from
X as an orbifold, i.e. X* = X/G. With the exception of the analysis of the type III
models however, all the information that was used in the derivation of the extended
hypergeometric system and of the PF differential equations, is directly contained
in Δ*. We can thus base our discussion also on the expression (3.7) rather than
(3.22). The generalization for hypersurfaces in products of projective spaces and to
complete intersections is also straightforward.
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3.4. Application to Hypersurfaces with Two and Three Moduli. In this subsection
we will show how the general discussion above applies to the models with few
moduli that we have listed in Sect. 2.

Let us first go to a new gauge and define

Πi(a) = —Πiia). (3.40)

The linear operators (3.11) then read

Zj = t*ljai4-. (3.41)

One then notices easily that the constraints 2£jlli(a) — 0 are solved if 77, depends

on the variables #/ through the combination a1 := αo° asC for arbitrary / G L. We
therefore introduce variables

,t=(-lA^:=(-l)f)

β?
)...α?) (3.42)

with {/<A)} an integral basis of the lattice L (cf. (3.9)); i.e.

L = Z / ( 1 ) Θ Φ Z / W , (3.43)

~2 1

where d = h' (X*). The integral basis is however not unique, but we will find
in Sect. 4 that the variables Xk, which are good coordinates of moduli space to
describe the large complex structure limit of X* and, through the mirror map, the
large radius limit of X, are defined in terms of the basis of the Mori cone. Since, for
the moment, we do not need the detailed definition of the Mori cone, we postpone
its definition to Sect. 5 where we show how it is obtained from the toric data.
In Appendix A we list this basis for L, together with the resultant PF differential
equations, for each model. We notice that the appropriate basis does not always
consists of the shortest possible vectors.

For any / ^ G L, we can then rewrite (3.10) acting on Π(x) as

(3.44)

where ΰj is α , ^ and is related to ΘXk by

(3.45)

Depending on fk\ this operator will factorize, leading thus to an operator of lower
order. For some of our models, this leads directly to a complete set of PF equations.
For these cases the basis {/^} consists of the shortest possible vectors in L. In
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Appendix A we have indicated the differential operators which cannot be obtained
directly for some vector / ^ G l .

The completeness of the PF differential equations follows from the application
of the arguments presented in Sect. 3.1. Since the variable %k in our PF differential
equations are coordinates on the complex structure moduli space in the vicinity of
the large complex structure, each PF differential equation can be brought to the
form

l \ Π(x) = 0 , (3.46)

where pa, qab and fab are polynomials with property fab(O) — 0 and pa is homo-
geneous. The homogeneity of pa(Θ) follows from the characterization of the large
complex structure by the requirement that the indices of the PF differential equations
should be maximally degenerate and the gauge choice which gives a power series
solution that starts with a constant. The relation of the PF differential equations to
the elements of the local ring 0ίG described in Sect. 3.1 also holds in the large
complex structure limit. Therefore the criterion we should verify is that the ring

€[©!,..., β-2.i]/(Λ(β)) (3.47)

is isomorphic to the local ring 0ίG. We can verify this for all models listed in
Appendix A.

4. Logarithmic Solutions, Mirror Map and Yukawa Couplings

In the previous section we have derived the Picard-Fuchs differential equations
starting from the zΓ-hypergeometric system. Now we can argue the general form of
the solutions using results for the generalized hypergeometric system. After finding
the point of maximally unipotent monodromy, we define the mirror map. Once
we have the Picard-Fuchs differential equations, we can determine the Yukawa
couplings on the complex moduli space of X*. We will see that these Yukawa
couplings are expressed in concise form using the discriminant of the surface.

4.1. Solutions of the Picard-Fuchs Differential Equations and Mirror Map. When
deriving the (Picard-Fuchs) differential equations, we have defined the expansion
variables as

x i : = ( - l ) ' V (k=l,...,hV) (4.1)

with an integral basis {l^} of the lattice L (3.9) for Δ*. We find, by solving the
recursion relations for the coefficients c(n,p), a power series solution around x^ = 0
with the general form

Pk)) Ut^nΣk^Pk + 1)^1 + P 1 χnp+Pp

Σ/f ι ""p

(4.2)

ns of
the indicial equations of the differential equations. c(n,p) is normalized so that
where p = h' and the pj{j = 1, •,/?) are the indices, i.e. the solutions of

h
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c(0,p) = 1. This is in fact of the form of the general solution for the hypergeo-
metric system given in [45] and thus applies for an arbitrary choice for the integral
basis {l(k)} of the lattice L.

Note that the power series solution can also be easily obtained by explicitly
performing the Cauchy integral (3.7) in the limit a^ —> oo and choosing the cycle
y = {(XuX2,X?,X4) € (C*)4||X,| = = \X4\ = ε}.

For the mirror map we need to find the local solutions of the PF equations
with maximally unipotent monodromy [46]. This means that when expanding in the
appropriate variables x ,̂ the solutions of the indicial equation will be maximally
degenerate (in fact all zero) and there is a unique power series solution of the form
(4.2) with all other solutions near x# = 0 containing logarithms.

We find that if we define the expansion variables x# = (—l/o a1 (k = 1,...,

h ' ) with /(*) being the basis for the Mori cone in L, we can take the large radius
limit at Xk = 0, i.e. by what was said before, at this point the monodromy becomes

~2 1

maximally unipotent with h ' solutions linear in logarithms:

Wk(x) = wo(x) logx£ 4 W/(x, 0) (k = 1,..., h ' ) . (4.3)

Here wo(x) = w(x,0) is the unique power series solution and W;(x,0) are also power
series. We will normalize these solutions such that they do not contain a constant
term (see also [37]).

Let us now turn to the explicit form of the logarithmic solutions. Using standard
arguments for their construction, they are obtained by taking derivatives with respect
to the indices which are then set to zero. To get the solutions containing higher
powers of logarithms, one has to choose certain linear combinations of derivatives
with respect to the p#. This point is best illustrated by working out an example, for
which we choose the model X8(2,2,2,1,1).

It is easy to verify that the indicial equation at xi = aιa2^da6 ^X2 _ #4^1 _> Q
aQ a6

has six ( = dim H3(X*)) solutions which are all zero. (This is e.g. not the case if
one expands around xi,x2 —> oo.) To find the logarithmic solutions at xi,x2 —• 0 it
suffices to note the relations

= Σ c{0,n2)p\(-2n2 + px - 2p2)xp^+Pϊ ,

(4.4)

where the coefficients are

(nun2;p) =

• pi) 4 l)Γ(pi 4 l)3Γ(p2 4 l) 2 Γ( P l - 2p2 4 1) _

- Pι 4 l)3Γ(n2 4 p2 4 \fΓ(nι - 2n2 4 pi - 2p2 4 l)Γ(4P l 4 1)

Due to the factor Γ{n\ — 2n2 4 Pi — 2p2 4 1) in the denominator, we have that (i)

c(nun2)\p=o = 0(ΛI < 2n2) and (ii) (25P l + dP2)c(nun2)\p=0 = 0(nι ^ 2n2). Us-

age of this and \βiy -Λ-] = 0 allows us to find all five logarithmic solutions for

this example:
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dPιw(x;OldP2w(x;O);d2

pιw(x;O\dPιdP2w(x;O); (d3

pι + \&PχdΛ w(x O). (4.6)

The logarithmic solutions for the other models can be found in Appendix A.
The mirror map, which relates the complex structure moduli space on X* to the

Kahler structure moduli space on X, is described by the variables tk(x), which are
defined as

(4.7)

In fact, in addition to the power series solution, we can also give the general
expression for the logarithmic solutions that enter the mirror map. They are

wk(x) = w0(x)logxk + Σ
»€Z£ol. J ' <>0

(4.8)
where WQ(Z) is the power series solution

wo(x) = Σp c{n)x"

with

4.2. Yukawa Couplings. Those Yukawa couplings which are functions of the com-
plex structure moduli, are defined through the holomorphic three form Ω(x) as (cf.
e.g. [47])

KXiXjXk{x) = JΩ(X) A dXidXjdXkΩ(x). (4.9)

Ω(x) can be expanded in a basis of #3(X*,Z) as

Ω(x) = Σ (Λx)*a - %(x)βb) , (4.10)

where p = h2*1 and oca,β
b are a symplectic basis of H3(X*,Έ). za and &b are the

period integrals with respect to the cycles dual to oca and βb. Then the Yukawa
couplings can be expressed through these periods as

Kxixjxk = Σ(^XidXjdXk9a - <$adXidXjdXkz
a) . (4.11)

a

We now define

(4.12)
a

In this notation, W^k) with £^λϊ = 3 describes the various types of the Yukawa
couplings and W(k) = 0 for ^ * / = 0,1,2.

Now let us write the Picard-Fuchs differential operators in the form
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®ι = Σfΐ^ . (4-13)
k

then we immediately obtain the relation

£/}*>fr(*>=o. (4.14)
k

Further relations are obtained from operators dXi2ι. If the PF differential equations
are complete in the sense of Sect. 3.1, they are sufficient for deriving linear relations
among the Yukawa couplings and their derivatives, which can be integrated to give
the Yukawa couplings up to an overall normalization. In the derivation, we need to
use the following relations which are easily derived:

0,(3,1,0,0) = 3 d ^(2,1,0,0) + i d ^(3,0,0,0)

0,(2,2,0,0) = dχι 0*1,2,0,0) + ^ ^(2,1,0,0) >

0,(2,1,1,0) = gχi ^(UΛO) + 1^(2,0,1,0) + K ^(2,1,0,0) ?

ff 0.1.1.1) = ^ ^ ( 0 , 1 , 1 , 1 ) + Q^ψlWA) + ^ flKUAU + ^ f f ( .U.O)) . { 4 . 1 5 )

By symmetry the above relations exhaust all possibilities.
We have determined the Yukawa couplings for our models. They are displayed

in Appendix A. We should remark that they are all of the form

q(x)dis{(X*)

where p(x) and q{x) are polynomials and disi(X*) is a component of the discrimi-
nant of the hypersurface, the set of codimension one in moduli space where the

manifold becomes singular, i.e. where / j * = Xι-^r-fA* = ••• —X^-β^-f^ — 0.

Other components of the discriminant surface can be read from poles of the indi-
vidual Yukawa couplings.

Note that for the models considered here the Laurent polynomials remain trans-
verse if we turn off the terms corresponding to the divisors via the monomial divisor
map, i.e. the corresponding points in moduli space are regular.

5. Piece wise-Linear Functions and Asymptotic Form of the Mirror Map

The mirror map is a local isometry between two different kinds of moduli spaces;
the complex structure moduli space of X* and the (complexified) Kahler moduli
space of X. We will be concerned with the real structure of the latter moduli space
in this section. It has the structure of a cone, the so-called Kahler cone. How
this cone structure appears in the definition of the mirror map (4.7) can be seen
explicitly in our two and three moduli models. We should also remark that we are
only discussing the toric part of the Kahler cone.

5.7. Kahler Cone. Let us consider a Kahler form K on a Calabi-Yau manifold X.
The Kahler cone is defined by the requirements
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fKΛKΛK> 0, fKΛK> 0, fK> 0, (5.1)
X S C

with S and C homologically nontrivial hypersurfaces and curves in X, respectively.
For toric varieties, Oda and Park [48] have shown how to determine the Kahler cone
of P j based on the toric data encoded in the polyhedron Δ. We will only sketch
their construction and illustrate it on the simplest example, the torus X = ̂ (1,1,1) .

We start with the ̂ -dimensional polyhedron Δ and consider its dual Δ*. We
extend Δ* to the polyhedron Δ e JR.n+ι by considering a convex hull of the origin
and the set (1,J*). Then a simplicial decomposition of Δ* induces a correspond-
ing simplicial decomposition Π of Δ . We denote the subset of the A>dimensional
simplices as Π{k). We consider piecewise linear functions, PL(77), on the union
\Π\ = L C O ^ W - A piecewise linear function u is defined by assigning real values
Ui to each integral point v* G Δ*(i = 0, ,s*) which is not inside a codimension
one face of Δ* (we denote the set of such integral points as Ξ with s* = \Ξ\
and its one dimensional extension by Ξ = {(l,v*)|v* G Ξ}). If the vertices of a
simplex σ e Π(n + 1) lying on (l,Δ*) are given by v*, , v*, then an arbitrary

point v e σ can be written as v = C/Ov* H , + Q,,V*(ciQ -\ V cin ^ l9cik ^ 0)

and the piecewise linear function u takes the value

u(v) = Ci0uh + 4- cinuin . (5.2)

Equivalently, the piecewise linear function u can be described by a collection of
vectors zσ assigned to each simplex σ € Π(n -f 1) with the property

u(v) = {zσ,v) foral l i e σ , (5.3)

where {*, *) is the dual pairing.
A strictly convex piecewise linear function u e CPL(77) is a piecewise linear

function with the property

u(v) = {zσ, v) when v £ σ ,

u(v) > (zσ,υ) when υ <£ σ . (5.4)

It is clear that if u is a strictly convex piecewise linear function then so is λu(λ e
IR+). Thus the set of the piecewise linear functions has the structure of a cone. In
order to describe the cone structure, we consider a vector space W[ whose basis
vectors are indexed by the set Ξ

W{= Σ^eξ9 (5.5)

with the basis βξ. According to the construction of Oda and Park, the convex
piecewise linear functions CPL(17) constitute a cone in the quotient space

V = »ΐ/{ Σ <*>ξ)eξ\x e R w + 1 } , (5.6)

where ξ = (l,ξ). In our context this cone can be identified with the Kahler
cone of F j (cf. also [49, 13, 33]). In the case of the torus X3 (1, 1, 1), we
have v; = (l,O,O),vJ = ( l , l , 0 ) , i ζ =(1,0,1) and vj = ( 1 , - 1 , - 1 ) as the one di-
mensional extension of the integral points of Δ*. Simplicial decompositions of
Δ* and Δ are evident, and we have 77(3) = {σi,σ2,σ3} with σ\ = (O,vJ,iζ,v^),
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σ2 — (0,^,^,1^3)^3 = (0, vj,v*,v£). Therefore a piecewise linear function u is de-
scribed by either (uo,Uι9u2>u3) or (zσι,zσ2,zσ3) which are related through

Zσχ = ( M 0 , 2UQ -U2- M3, U2-U0), Zσi = ( M 0 , U\ - UOi 2u0 - U ι - 1 4 3 ) ,

Zσ3 = (MO,«1 ~ Wθ,W2 ~ Uo) . (5.7)

The condition of the strict convexity (5.4) on u becomes the inequality

MI 4- u2 + W3 - 3w0 > 0 . (5.8)

This inequality produces a cone whose generic element Ku is

3 1

Ku = ~Σuiev* = -((MI H- M2 + M3) - 3MOKJ > (5.9)

where the second equivalence is modulo the relations in (5.6) which are

ev* + ev* + ev* + ev* = 0, βv* - ev* = 0, ev* -ev* =0 . (5.10)

The inequality (5.8) shows that Ku is a generic element of a cone, a half line in
this case. The identification of the base ev* with a divisor of P j , which is justified
for a general toric variety, results in the Kahler cone of this model.

Models with several moduli are treated similarly. For example, in the case of
X8(2, 2, 2, 1, 1) we obtain two independent inequalities

-4u0 + u\ + u2 + M3 + w6 > 0 ,

w4 -hw5 - 2w6 > 0 (5.Π)

from the condition (5.4). As a general element of the divisor of P^, we have

Ku = - ( - 8 M 0 + 2MI + 2u2 + 2w3 + M4 + M5)βvj + - ( M 4 + w5 - 2w6)βv* . (5.12)

This example already demonstrates the general situation. If we write the inequa-
lities in the form (w, fk)) > 0, then the ftk) form a particular integral basis for the
lattice of relations L of the points Ξ. This basis generates a cone in the lattice of
relations, called Mori cone; it is dual to the Kahler cone. The / ^ are exactly the
basis of L by which we have defined the variables Xk (see Eq. (4.1)) to observe the
maximally unipotent monodromy at x# = 0. In terms of the fk\Ku can be written

as Ku = A(w,2/(1) + l{2))ev* + A(M, l(2))ev*. We thus see that the inequalities (5.11)

give rise to a cone, the Kahler cone, in the quotient space V. From the general
theory of toric geometry it follows that we may identify the basis ev* and ev* with

0 6

the divisor J associated to the generating element of Pic(X) and the exceptional
divisor D o n ! coming from the resolution of the TL2 singular curve, respectively.

The situation is now again easily described for the general case. If we express
each point corresponding to a divisor as a linear relation of the vertices of Δ in
the form Σ iff} = ° f o r t h e *th divisor, such that /<'"> = Σ^ikl{k) with {/<*>} being
the basis of the Mori cone and the Λ# positive integers, then we have

Ku = ΣΦ> ^Vv* = Σ ^ (Σ**(U, l{k))) ev* , (5.13)
' J l
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where the c, are rational numbers.

We should note that the identification of the basis ev*(i — 1, ..., h ' (X)) with
the divisors is justified only up to an as yet unspecified constant, whose determina-
tion will be the subject of the next subsection.

Let us finally give a simple example for a non-singular case, the bi-cubic
X(3,3)(l, 1,1|1,1,1). Starting from the polyhedron J ( l , 1,1) x Δ(l91,1), we obtain
the following independent inequalities

u\ -f U2 4- uι — 3ι/0 > 0, U4 + US+U6 — 3u0 > 0 , (5.14)

and for the divisor of P^

Ku = -(u\ +U2 + U3 - 3uo)ev* - («4 -f us + u6 - 3uo)ev* . (5.15)
3 o

In Appendix A we list the expressions of the generic divisor Ku for all models
we are considering.

5.2. Mirror Map and Instanton Corrections. In Sect. 4.2. we have determined
the Yukawa couplings on the manifold X* up to a constant as a function of the
complex structure moduli utilizing the PF differential equations. The results for the
models that we will consider in some detail have been collected in Appendix A.
We will now use these results to determine the quantum Yukawa couplings on X
as a function of its Kahler moduli. This will be achieved by close study of the
mirror map tkipc) (4.7).

As we have seen, the variable tk is associated with Mori's basis for the lattice of
relations L. We now need to find the variable 4 which corresponds to elements A,- 6
Hl'l(X9Z), such as to reproduce the intersection numbers (2.15), (2.16) summarized
in Sect. 2. In terms of the ti9 we have an expansion of the Kahler form

A<U)

K(X) - Σ Uhi . (5.16)
/=i

After identifying the integral basis we will be able to read off the degrees of the
rational curves with respect to the divisors J,D,E introduced in the Sect. 2. We
take the relation between the two sets of parameters to be linear:

A 1 ' 1

7 = 1

Those Yukawa couplings on X which are functions of the Kahler moduli, are
described by those on X* which are functions of the complex structure moduli
through the mirror map [14, 46]. To obtain them one first changes coordinates from
the Xi to the Γ, coordinates and goes to a physical gauge by dividing by WQ(X(Ϊ))2

[14, 46]. Here w(x) is the power series solution of the Picard-Fuchs differential
equations normalized by setting Wo(x) = 1 4 - O(x). The transformation properties of
the Yukawa couplings under a change of coordinates follows from Eq. (4.9) and
the fact that / Ω Λ θ, Ώ = / Ω Λ didjΩ = 0. We then obtain the following expression
for the Yukawa couplings on X as a function of the Kahler moduli ζ:
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Introducing variables qt = eli, we expect the instanton corrected Yukawa couplings
in the form of a series, which generalizes the successful ansatz made in [14] for
predicting the numbers of rational curves on the quintic in F 4 to the multi moduli
case. It was justified in ref. [50] in the framework of topological sigma models [51]
and reads6

Kϊiϊjh = fht Λ hj
J x

f j Σfjjj
x cc c c \-eJ

o

where we have defined w/ = Jchh which is an integer since hi G Hι'ι(X,Έ). The
sum in the first line is over all instantons C of the σ-model based on X and the
denominators take care of multiple covers of them. N({rii}) is also an integer which
is the instanton number with degrees {«/}. By considering specific examples below,
however, we will see that it is not necessarily a positive integer. For more than
one Kahler modulus the «/ do not have to be positive, especially for the manifolds
obtained from singular varieties by resolution. The integral JCK(X) however does
have to be positive for K(x) to lie within the Kahler cone. These requirements on
the series expansion of (5.18) result in several constraints on the my in (5.17) and
the integration constant for the Yukawa couplings KxμjXk on X*.

In our calculations, the constraints from the topological triple coupling (the
leading term of (5.19)) allow several possible values for the my. The additional
constraints which stem from the form due to the multiple covering turns out to be
satisfied by almost all solutions which satisfy the first constraint. In order to fix the
parameters my we need to take a closer look at the mirror map (4.7) in the large
radius limit.

In the previous subsection we have described the Kahler cone by using its
isomorphism with the class of strictly convex piecewise linear functions. These
functions were defined by their values w/ on the integral points of Δ*(w) not lying
inside codimension-one faces. The condition of strict convexity resulted in inequal-
ities (w, fk)) > 0, with the ftk) a basis of the Mori cone. In terms of the fk\ a
general element of the Kahler class of P j can be written in the form (5.13).

On the other hand, from the definition of the x# through the basis of the Mori
cone, we have in the large radius limit x^ —• 0,

ft-log^-Edogα,-)/^. (5.20)

The similarity of the condition for the large radius limit — ί#>0 to the inequality
for the Kahler cone {uj^k)) > 0 then suggests to identify m with logα, as an
asymptotic form of the mirror map. If we impose this asymptotic relation ut —
logαt when x^ —> 0, we can translate the expression (5.13) for the Kahler class
to ΣiΣjCinijtjev* = Σ / Σ / kcinvmβtkev? F° r e a c n model we can find an integer
solution rriij with the property

= Σciev*tki (5.21)
i jjc=\ l i

Recall that for (2,2) string models there are no further corrections from curves of finite genus.
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Here c'fi are giving the normalization factor to the integral basis. In this way, we
fix the solution my which reproduces the topological triple couplings together with
the normalization of the basis ev* under the Ansatz of the asymptotic form of the

mirror map. This suggests that we associate c, βv* with the element A/ e Hι>ι(X,Έ)

and get the Kahler cone as the part of moduli space in which the tt may lie such

that (5.1) is satisfied.
The asymptotic form of the mirror map was also considered by Batyrev [49]

in his definition of the quantum cohomology ring, (these asymptotic relations also
appeared in ref.[35]). Our analysis described above is consistent with these refer-
ences.

We will apply this recipe in the next section to some examples.

6. Predictions and Discussions

In this section we will present the instanton expansions and calculate the topological
invariants N{{rii}) for various two and three moduli cases. If at a given degree
{rii} the manifold has only isolated, nonsingular instantons, N simply counts their
number. However for non-isolated, singular instantons the situation becomes less
clear and further detailed studies are needed.

Let us turn to our examples and fix the mirror map by applying the formalism
described in the previous section. For the singular hypersurface X8(2,2,2,1,1) Ku is
given in Eq. (5.12) and we have /<*> = (-4,1,1,1,0,0,1) and l& =
(0,0,0,0,1,1,-2) for the generators of Mori's cone. Using Eqs. (5.12) and (5.21)

we get for the variables my in the Ansatz (5.17) m = I * o~2 ) We now com-

pare the intersection numbers given in Sect. 2.4 as K° = 8J3 — SJD2 - 16D3 with

the O(q°) terms in the expansion of the Yukawa couplings (5.18),

Khhh = 8 4

* l V a = 0 4

A W 2 - ~ 8

^ ¥ ' 2 = - 1

Ό{q)

-O{q)

6 + OI

4
= —mn(2n

i) = ^3 m12C

:«) = - ^ 1 2

in +3m2i) + O(g),

1̂1̂ 12 4- 2m\2m2\ + m\\m22) λ

2mnmn + mi2m21 + 2mnm22]

(2m\2 + 3m22) -f ^(^) 5

ι-o(?).

(6.1)

here we have taken an integration constant 8/c3 into account; it arises when inte-
grating the first order differential equations satisfied by the Yukawa couplings.

One constraint on the my is that they have to be integers since the expo-
nents of the qι are the degrees of the rational curves with respect to the various
hi e Hι'ι(X,Z). As the only solution which leads to integer m we can identify m =

0 -2 ) w i t h c e Z ' W i t n t h i s A n s a t z w e o t > t a m κtλtλtλ = -16- Z2\ -h .
The second term gives rise to a fractional topological invariant N(0, —2c) =
32/(2c)3 if \c\ > 1. The two choices of the sign just correspond to an overall sign
of the two Kahler moduli. Our sign convention will always be such that nj ^ 0.



Mirror Symmetry and Calabi-Yau Hypersurfaces 333

Requiring integral topological invariants we therefore conclude that m — (

and c — ί 4, — 1 j . Thus we may associate J and D to ^ev* and —ev*, respectively.

If we combine this with the general description for the Kahler cone given before,
we can determine the Kahler cone σ(K) as

σ(K) = {hhj + t2hD\h + t2 > 0, t2 < 0} . (6.2)

It describes possible directions for the large radius limit where the instanton
corrections are suppressed. The topological invariants N({rii}) can now be read
off the expansion of Kt~j fk(q\,q2). From the relation between the basis ί, and

ti in terms of the integer matrix m we find that the degrees are of the form
(nj,nD) = (p9p — 2q), with p,q = 0,1,2,... We have listed the topological invari-
ants up to order p + q <^ 10 and find non-zero numbers only at degrees (nj,nD)
within the wedge nj ^ \nγ)\,nj + np even, and in addition at (0, —2). Whereas
πj = Jchj ^ 0, π£> = Jc hD also takes negative integer values. We observe the sym-
metry N(nj,n£>) — N(ΠJ9—ΠD) for nj > 0, and have thus listed only the former.
All topological invariants are non-negative integers for this model.

The other models can be discussed similarly. In Appendix A we give the Kahler
cones and in Appendix B the topological invariants N({rii}) at low degrees.

The model X\2{6, 2,2,1,1) is very similar to the model discussed above. It also
has a singular Έ2 curve. Here the degrees are of the form (πj,nD) = (p, p - 3q)
and we have listed them again up to order p 4- q — 10.

There are two more models with the singular set being a ΊL2 curve, namely
X12(4,3,2,2,1) and X H ( 7 , 2,2,2,1). We get from the Yukawa couplings the topo-
logical invariants with degrees (nj,ri£>) — (p, 3p — 2q) and (nj,nc>) = (p,7p —
2q), p, q — 0,1,2,..., respectively. In contrast to the first two models some of the
invariants now are negative integers.

Let us note some observations which relate these four models to the one-moduli
complete intersections discussed in [18] and [19]. If for fixed nj > 0 we com-
pute Y^n N(ΠJ9ΠD), we find for the four models discussed above the same num-
bers as for the one modulus models Z(4 |2)(l, 1,1,1,1,1),X(6|2)0,1,1,1,1,3),X(6|4)
(1,1,1,2,2,3) and X8(4,1,1,1,1), respectively [16, 19, 18].

In contrast to these three models, Xi8(9,6,1,1,1) has a 2£3 point singularity. The
topological invariants appear in the instanton expansion of the Yukawa couplings
at degrees (ΠJ9ΠE) = (p, p — 3q) with p, q = 0,1,2,.... We have listed them for
p + q ^ 6. We find non-zero values for all degrees within the cone generated by
(1, 1) and (0, —1). We again find that some of the topological invariants are
negative.

As examples for hypersurfaces in ΊP4(w) with three moduli we have picked
from Table 2 three models, representing the three different types of singulari-
ties which occur. The hypersurface X24O2,8,2,1,1) has a singular Έ2 curve with
an exceptional 2£4 point. The exceptional divisors correspond to the ruled sur-
face C x F 1 and the Hirzebruch surface J^ 2. Here the degrees of rational curves
are (nj,nD,nE) = (n92m - p9n — 2). We have displayed the topoiogical invariants
for (n + m + p) ^ 6. Again, some of the invariants are negative. For the case
X12(3,3,3,2,1) we have a singular TL^ curve. The two exceptional divisors are the
irreducible components in C x (P 1 ΛP 1 ) . Nonvanishing contributions to the instan-
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ton sum occur at degrees (nj9 ΠDX , «D2 ) = (n,m — 2p,2n -2m + p). As before the
topological invariants take both signs and are tabulated for (n + m -f p) ^ 6 in
Appendix B. In the model Xι2(693,1,1,1) we have a two-fold degenerate Έ3 fixed
point, which results in two exceptional divisors E\ and E2, each isomorphic to P 2 .
The interesting point is that they correspond in the Landau-Ginzburg description
to one invariant and one twisted state. The Picard-Fuchs equations derived as in
Sect. 3 contain only two parameters x, y. A consistent instanton sum emerges, if we
interpret the corresponding parameters t\ and t2 after the mirror map, as associated
to J and the symmetric combination E\ + E2. In doing so, the my have to be
adjusted s.t. they fit the intersections K° = 18J2 + 18(£Ί + £ 2 ) 3 , which results in

1 1
0 - 3

For the model X(3j3)(l, 1,1|1,1,1) the topological invariants are all non-negative
and positive for njvπj2 ^ 0, and satisfy N(nJχ,nj2) = N(nj2,nJχ), as expected. We
have listed them for njχ 4- nj2 ^ 1 0 . Some of these numbers can in fact be com-
pared with results in [37] where the same model was studied on a one-dimensional
submanifold of the Kahler structure moduli space which corresponds to requiring
symmetry under exchange of the two IP2 factors which leaves only one parameter in
(2.13). This corresponds to hj = hJχ + hj2 and the numbers N(nj) given in [37] are
related to the numbers listed in the appendix by N(nj) = Σn +n =n N(nJχ,nj2).

Especially the number of rational curves of degrees (1,0) and (0, 1) agrees with
the explicit calculation in [37]. We also want to point out the periodicity of the
topological invariants at degrees (0,n).

The following observation about the numbers N(0,n) for the model X(3|3)
(1,1,1|1,1,1) has been related to us by Victor Batyrev. He points out that there are
no rational curves on this manifold for n > 3. Yet we do find non-zero instanton
numbers. The mathematical explanation of this fact is connected with covers of
degenerated rational curves.

We have furthermore listed the first few topological invariants for the models
^(2|4)(1> 1|1> 1> 1J 1) and X(2j2|3)(l, 1|1,1|1,1,1). One observes an equality of the in-
variants N(k90)(k ^ 0) for X ( 2 | 4 )(l, 1|1,1,1,1) with those N(k,k) for the model
^8(2,2,2,1,1).

Let us conclude with some remarks. We have extended the analysis that was
initiated in [14] to models with more than one modulus. It turned out that one en-
counters several new features as compared to the one-modulus models. For instance,
the fact that some of the topological invariants N({rii}) turn out to be negative in-
tegers was a priori unexpected since the experience with the one-modulus model
showed that they are simply the number of rational curves at a given degree. This
simple interpretation does however have to be extended in the case where one has
non-isolated or singular curves and our results show that the topological invariants
are then no longer necessarily positive.

To push the analysis further to models with many moduli seems to be a difficult
task. Even though straightforward in principle, it becomes exceedingly tedious to
set up the Picard-Fuchs equations and especially to obtain the Yukawa couplings.

We have restricted ourselves in this paper to a computation of the Yukawa
couplings in the large radius limit. The couplings that were computed are however
not normalized appropriately to yield the physical couplings. To achieve this, one
needs to know the Kahler potential. It can be obtained from the knowledge of all
the periods, i.e. all the solutions of the Picard-Fuchs equations, as was first done
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explicitly for a one-modulus model in [14]. It is however largely determined by the
Yukawa couplings, since they are third derivatives with respect to the moduli of the
prepotential from which the Kahler potential can be derived. This leaves only terms
polynomial of order two in the moduli undetermined. The only relevant term is
however the quadratic one which is known to be proportional to the Euler number
of the Calabi-Yau manifold.

Let us finally point out again the relevance of mirror symmetry in the analysis
presented here. Even though it is still a mystery from the mathematical point of
view, we have given further compelling evidence by giving an explicit construction
of the mirrors of all Calabi-Yau manifolds which are hypersurfaces in weighted
projective space. The successful framework which is general enough to discuss
mirror symmetry for these spaces is that of tone geometry.
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Appendix A. Picard-Fuchs Differential Equations, Discriminant Surface and
Yukawa Couplings

In this appendix we give the basis l^ for Mori's cone in the lattice L of linear
relations (3.9) and the Picard-Fuchs differential operators Q)k, acting on 77. Dif-
ferential operators, which are not directly obtained by factorizing Eq. (3.44) for
some fk) are marked with a star. For convenience we abbreviate the variables
xk = (-l) zo aι(k\k = 1,...A2'\ as x,y etc.

We also give the logarithmic solutions around the point of maximal unipotent
monodromy, as linear combinations of derivatives of the power series solution wo
with respect to the indices pk, evaluated at pk — 0.

Next we provide the discriminant and the Yukawa couplings. To simplify the
formulas for the discriminant hypersurface disi(X*) and the Yukawa couplings we
use rescaled variables x, y etc. Furthermore, to save space, we list K = dis\(X*)K

and write, for example, K ' = dis\(X*)Kχχy. Also, the PF equations determine the
Yukawa couplings in each model only up to a common overall constant, which we
have suppressed below.

We finally give the matrix m (Eq. (5.17)) and the Kahler cone; the inequalities
are to be understood to hold for the real parts of the moduli parameters.
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A.I. Hypersurfaces in P4(w).

JT8(2,2,2,1,1).

/<*> - (-4,1,1,1,0,0,1), /<2) - (0,0,0,0,1,1, - 2 ) ,

£&ι = 0 X ( 0 X ~ 2Θy) - 4x(4<9x + 3)(40X -f 2)(46>x + 1) ,

®2 = Θ2

y - y(2Θy -Θx + l)(2Θy - Θx), (A.I)

wo; SpιWQ9dP2wo; d2

pιwo,dpιdP2wo; (d3

pι + \d2

pιdP2)wo,

x = 28x, y = 4 j ,

~(3,0) 1 -(2,1) 2 ( 1 - x ) ~(i,2) 4 ( 2 x - l )
= -3", Γ

~(0,3) 8 ( 1 - ;
J\. — r

j 2 (l - yf

Ku = ±(u,2lW + /(2)K0 + \(u,ί2))ev; , (A3)

/ ( 1 ) = (-6,3,1,1,0,0,1), / ( 2 ) = ( 0 , 0 , 0 , 0 , 1 , 1 , - 2 ) ,

21 = 6>2(ΘX - 2Θy) - Sx(6Θx + 5)(66>x

0, dP2w0; dpλw0, dPλdP2w0\{dpι

x = 2633x,

~(3,o) _ J _ ~(2,i) _ 1 - x ^(1,2) _ 2 x - 1 ~(o,3)

~ 4 χ - 3 ' " 2 x ' 2 j ' χy(iy)'

tD > 0, ?D < 0} . (A.5)

= <92 - J(2Θ^ - θ , + 1 )(2Θ^ - Θx), (A.6)

(A.7)

χy(i-y)' f(i-y)2 '

Ku = -^{",2/(1) + /(2Vv0* + \{u,lm)evl , (A.8)



m = I ί \ I , (A.9)
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Ί l
0 -2

tDhD\tj + tD > 0jD < 0} . (A.10)

X12(4,3,2,2,l).

/W = (-6,2,0,1,1, -1,3) /(2) = (0,0,1,0,0,1,-2), (A.ll)

^ * = ©2(30* - 2Θy) - 36x(6Θx -f 5)(6<9X + 1)

x (Θy -Θx + 2y{\+ 6ΘX - 2Θy)),

@2 ={Θy - 0^)6)^ - ,y(36>x - 2Θy - l ) (3β x - 2Θy) .

Here ^ f is obtained by extending the hypergeometric system as described in Sect. 3,

wo, dPlwo, ^ 2 w 0 ; c^w0, (2δPl 5P2 + d2

p2)w0;

i(Z*) = 1 + 2x - βxy - 9x2y -f 6x2j;2 - x2f ,

~ (3,0) 1 + 3x - xy ~ (2,i) _ 3( 1 + 2x -

x3 ' 2x2y

9(2 + 4x - y - 5xy +
— \ —2

4f(3

27(4 + 8x - 3y - \2xy + f + 8xy2 - 4xf)

8(3 - yfy
, . .

^ , 2 / + 3/(2>>ev; + | <

Λ)' (A 14)

σ(K) - {ίyAy + ?z>Azj|ί> + 3?z) > 0,?/) < 0} . (A.15)

X14 (7, 2, 2, 2, 1).

/ ( 1 ) =(-7,0,1,1,1, -3,7), /(2) - (0,1,0,0,0,1, -2) ,

^ * -Θ2(76>x - 2Θy) - Ίx(y(2SΘx - 4Θy + 18) 4- 6>̂  - 36)^ - 2 ) ,

x (X28ΘX - 4Θy -f- 10) + 6>7 - 3ΘX - l)(y(2SΘx - 4Θy -f 2) + 6>v - 36>x),

- 3Θx)Θy - j ;(70 x - 2Θy -

Here ^ * is obtained by extending the hypergeometric system as described in Sect. 3,

w o ; d P ι w 0 , d P 2 w 0 ; d 2

p ι w 0 , (d2 + f 3 3 ) w 0 ;d2 + f
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= Ίy, (A.17)

disi (JΓ) = 1 + 27JC - 63xy + 56xf - 112xy3 - (7 - 4y)4x2f ,

~(3,o) 2 -h 63Jc — 155xy 4- 152xy2 - 48xy3

K =

~(2,i)
κ =

7( 1 + 21 x - 66xy - 32x j / 3

49(3 + 8 If - 2y - 243xy + 301xj;
2
 - 200fj;

3
 4- ) _

2
 _ _

 ?

343(9 + 243x- 11 j ; - 864xj; -f Ay1 -f 13O5xj>2 - 1092xj;3 + 560xy4 - 192xj;5)

j - 7)27)2

m =
1 7
0 -2) '

•tDhD\tj + ΊtD > 0,tD < 0} .

Γ18 (9, 6, 1, 1, 1).

/ < " = (-6,3,2,0,0,0,1), /(2) = (0,0,0,1,1,1,-3),

Qii — fi) if) — ̂ O Λ — 11r(fίfi) 4- SΛ(f\G<) A- \Λ

2>i = Θy- y(Θx - 3Θy - 2\ΘX - 3Θy - l)(Θx - 3Θy) :

wo; SPιw0,dP2w0; dp2wo,(d2

pι + jdPιdP2)wo; (3dpι + 3d2

pιdP2 + ί

~(3,o) 1 -(2,1) 3 ( l - x ) - ( u ) 9 ( 1 - x ) 2
~(3,0) 1 -(2,1)

A = —r,Λ =
~(1,2)

A =

~(o,3)
Λ =

27(l-3x

18 ' * '" v* ' 3 λ " ' 1 ' / W V6 '

1 1
m — 0 - 3 7 '

σ(K) = OJE < 0}.

Xn (6, 3, 1, 1, 1).

/ ( 1 ) = (-4,2,1,0,0,0,1), / ( 2 ) = (0,0,0,1,1,1,-3),

= ΘX(ΘX - 3Θy) - 4x(4<9x + 3)(40X + 1),

= Θl + 7(36>3, - 6>x + 2)(3Θj, - β x + 1)(3©3, - Θx) ,

(A.18)

(A.19)

(A.20)

j M > ,

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)
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w o ; dPιw0,dP2w0; {d\ + \d Pχd Pl)w^d2

piw^ ( 3 ^ + 3 3 ^ 3 ^ + dPιd
2

p2)w0 .

Note that this is a model with A2'1 = 3, but only two moduli can be represented as
monomial deformations,

x = 26x, y = y, (A.27)

disi(X*) - 1 - 3x + 3x2 - x3 - 27x3y ,

~(3,o) _ 18 ~(2,i) _ 6(1 - x ) ~(i,2) _ 2(1 - x ) 2 ~(o,3) _ 1 8 ( l - 3 x + 3x2)

x3 x2y xf f(\+2Ίy)x3 x2y

Ku = ±(u,2l{l) + /(2Vv0* + i(u9/
(2))βv* , (A.28)

(A.29)

σ(K) = {tjhj + tEhE\h + tE > 0,tE < 0} . (A.30)

X12(3, 3, 3, 2, 1).

/ (1) = (-4,1,1,1,0,-1,0,2), /(2) - (0,0,0,0,0,1,1, -2) ,

/ ( 3 ) = (0,0,0,0,1,0,-2,1), (A.31)

z - Θy) - y{2Θy - 2ΘX - ΘΣ + \){2Θy - 2ΘX - Θz),

^ 3 = ΘZ(2ΘX - 2Θy + 6),) - z(2<9z - Θy

The remaining second order and the two third order differential operators are
rather complicated, so we have not included them here. The leading terms are

* 2<92 + 2Θ] - 2ΘxΘy - 5ΘyΘΣ and *

Θ\{2Θy - 2ΘX - β 2 ) , l i m x ^ _ 0 ^ * = Θ2

X(2ΘZ - Θy),

= 5ΘXΘZ + 2<9 + 2Θ] - 2ΘxΘy - 5ΘyΘΣ and lim^^^o ®

\{2Θy -

x = 2\ y = 2y, z = z9 (A.32)

dis! (JSΓ*) - 1 + x - βxy - 4x2y + 12x2 f -h 4x3 f - 8x3 j ; 3 ,

- 18x2j)2f - 16x3y2z -f 36x3y3f - 27x3/f2 .

The expressions for the Yukawa couplings, even in the variables x9y,z, are by far
too lengthy to be reproduced here.

Ku = ±(uMl) + 4/ ( 2 ) + 2/<3Vv0* + !<«,/ ( 2 ) + 2/(3)>ev» + l(u,2l(2) + l(3))ev; ,
(A.33)

/I 0 2 \
m = 0 1 -2 , (A.34)

\0 -2 1 /

σ(K) = {fj/ίy + ίβj/ zj, + ΪD2hD2\tj + 2ίθ 2 > 0,tDι - 2tD2 > 0jD2 - 2tD[ > 0} .
(A.35)

^24(12,8,2,1,1).

/(») = (-6,3,2,0,0,0,1,0), / ( 2 ) = (0,0,0,0,1,1,0,-2),

Z ( 3 )= (0,0,0,1,0,0,-2,1), (A.36)
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3X = ΘX(ΘX - 2ΘZ) - 12x(6θ, + 5)(6<9Λ + 1),

92 = Θ2

y- y(2Θy -Θz + 1)(2Θ^ - Θz),

@3 = ΘZ{ΘZ - 2Θy) - z(2Θz -Θx + 1)(2ΘZ - Θx),

wo; dPx w0, dP2w0, dPiw0; (d2

pι + dPί dP3 )w0, dPl dP2w0, (d2

Pi + dP2dn )w0

ι P l P i ) wo ,

x = 2433x, y = 22y, z = 22z, (A.37)

<Bs,(AΓ ) = (1 - x)4 - 2f(l - x f + x*f(ί - y) ,

1 —x Λ(2,I,O) 1 - 2 x + x 2 - x 2 z Λ(2,O,I) (1 -x)2

Λx 4xzy xιz

( l - x ) ( l - 2 x + x 2 - 2 x 2 z ) -(1,1,1) _ (1 -x)(l - 2x +x2 -x2z)

l) ' ~

x)3 ~(OAD _ 2(2x - l)z(l - 2x + 2x2 - 2x2z)~dA2) _ (1 x) ~(OAD _
2 ' ~xz2 ' ~ I6y(l-2z+z2- yz2)

- 2x)f(( 1 - x)2( l - z - y z ) - x\z + yz - z2 - f

( 2 x - 1

( 2 x - 1

)((l-x)2(l-J-

4yz(l -

)(2(ϊ-xf+z(y

\- yz) - χ2

2z+z2-

(z-

0
2x

- yz-z2

)

\-2x2))

-yz2
))

Ku = £ ( v

(A.38)

/I 1 0\
m = 0 0 -2 , (A.39)

\0 -2 1 /

σ(2Q = {t/Ay + tDhD + Γ^lί} -h f̂  > 0, fo < 0, tD - 2tE > 0} . (A.40)

A.2. Hypersurfaces in Products of Projective Spaces

/(') = (-3,1,1,1,0,0,0) l(2) = (-3,0,0,0,1,1,1 ) . (A.41)

By factorizing 2)\ + 2>2 = (Θx + Θy)^* one obtains:

®x = @l - (3ΘX + 3Θy)(3Θx + 3Θy - 1)(3ΘX + 3Θy - 2)x ,

2 ΘΘ + Θ2^ * = (Θ2

X - ΘxΘy + Θ2

y) - 3(36>x + 3Θy - 1)(3©X + 3Θy - 2)(x + y),

o ; dPxwo,dP2wo; (d2

P2 + dPxdP2)wo,{d2

Pλ + dPιdP2)wo; {d2

PχdP2 + dP[δ
2

P2)w0 ,
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x = 33x, y = 33y9 (A.42)

diSl(X*) - 1 - (1 - xΫ + (1 - ΪΫ + 3xy(x + 7 + 7) ,

- 2 - x - j ; ~(2,i) _ x(2x + 7 - 1 ) - ( 1 - y)2

x , A — x

27x2 81x2j

For symmetry reasons K ' ,K are given by the above expressions but with x
and y exchanged,

Ku = -<«, /(1 Vv - <«, /(2Vv* , (A.43)
J o

o

rriij = (5,7 , ( A . 4 4 )

σ{K) = {tJλhA + thhh\th~th > 0} . (A.45)

/ (1) = (-2,1,1,0,0,0,0) / ( 2 ) = (-4,0,0,1,1,1,1). (A.46)

By factorizing Θ2

y9\ - 4@2 = (Θx + 2Θy)S>^ one obtains:

2λ = Θ2

X - (4Θy + 2Θx\AΘy + 2ΘX - \)x ,

St =ΘxΘ
2

y- 2Θy - 2{4Θy + 2Θx-\)

x (Θ2

yx - 4 ( 4 0 , + ΘX- 2X4Θ, + 2ΘX - 3)y),

wo; dP]w0,dP2w0; d2

p2Wo,dPidP2wo; (^ 2 ^ P l + ^ 2 ) w 0 ,

x = 22x, j? = 2 8 j;, (A.47)

dis i tr ) = (1 - f ) 4 + (1 - j ) 2 - 2xJ<6 + x) - 1 ,

~(3,0) j - 6x - x2 - 1 ~(2,i) 2x - j + x1 - 3
Λ = ί , A = „__ ,

4x2 Sxy

~(i,2) (l+x)(2x + y x 1 ) ~(o,3)_
A — x , A —

16j 2

x , A — ^ ,

16xj2 32 j 3

Ku = -(«, /(1))ev» - (u, /(2))ev* , (A.48)

mi] = «5y , (A.49)

σ(AΓ) = {Γj,Aj, + tj2hj2 \tA, h2 > 0} . (A.50)

/(1) = (-2,1,1,0,0,0,0,0), /(2) = (-2,0,0,1,1,0,0,0),

/< 3 ) = (-3,0,0,0,0,1,1,1). (A.51)

By factorizing 1 6 ( 6 ^ 1 + Θx@2) - 27^ 3 - \2Θz{Q)χ + 22)
 Ξ ( 2 ^χ + 26>^

3ΘzWt one obtains:
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®x = Θ\ - x(2Θx 4- 2Θy 4- 36)z -f 1)(26>X 4- 2Θy 4- 36)z) ,

@2=Θ2

y- y(2Θx 4- 26>y 4- 36>z 4- \){2ΘX 4- 26)^ 4- 3ΘZ),

x (33z(36)z 4- 26)x 4- 2 Θ . 4- 1) - 4y(36>z - 4©*)),

- dP2dP3)wOί

(d
Pι

4- 3dPλ dP2dP3)w0 ,

(A.52)

dis!(X*) = 1 - 6x 4- 15f2 - 20x3 4- lSJc4 - βx5 + f6 - 6j; 4- 18Jcj/ - I2x2y

- 6x5y 4- 15y2 - 12f j 2 -

4- 15X4/ - 2 0 / - - 20f3 f

4- 15/ 4- 18f/ 4- 15x2/ - 6y5 - βxy5 4- f - 4z 4- 24x2z

- 32x3z 4- 12x*z - U4xyz -f 96x2 j z 4- 48x3jz 4- 24/z

4- 96xfz - 120x2 fz - 32 / z 4- 48x/z + 12/z + 6z2 + 18xz2

4- 42x 2 z 2 - 2x 3 z 2 x2yf j;2z2- 36xyz2 - 30x2yf 4- 42j;2z

- 30x/z 2 - 2 / z 2 - 4z3 - 12xz3 - 12j;z3 4- z 4 .

The expressions for the Yukawa couplings, even in the variables x,p9z, are too
lengthy to be reproduced here.

V > (A.53)

(A.54)

(A.55)

rriij == δij ,

σ(K) = {tJχhjλ -I- tj2hj2 + tj3hj3\tjvtj2jj3 > 0} .

/<1> = (-2,1,1,0,0,0,0,0,0), /(2) = (-2,0,0,1,1,0,0,0,0),

/(3) = (-2,0,0,0,0,1,1,0,0), /(4) = (-2,0,0,0,0,0,0,1,1) . (A.56)

By factorizing (βx - @2)(@3 - ΘA) + (βι - 9Λ)(ΘX - Θ2) = (Θx 4- Θ2 + Θ3 +
Θ4)<3>* we define P * and similarly, by exchanging in the above equation the
indices 2 <-> 3 , ^ * , s.t. the system reads

0/ = <92 - JC, ( 2 0 I 4- 26)2 4- 2 β 3 + 2 0 4 + 1)

x(2Θi 4- 202 + 26) 3+26> 4), for z = 1,2,3,4,

* =(Θ{ -Θ2)(Θ3 -6) 4)4-2(26)i 4-26)24-26)3 4-26)4 - 1)

x (x i (6) 4 -6) 3 ) + x 2 ( 0 3 - e 4 ) 4 - x 3 ( 0 2 - 6 ) 0 - h x 4 ( 6 ) i - Θ2)),

* =(Θι - Θ3)(Θ2 - 6)4) + 2(26>ί 4- 26>3 4- 2Θ2 4- 26)4 - 1)

x (xi(6)4 - 6>2) + x2(6>2 - 6) 4 )+x 3 (6) 3 - » i
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Wo

343

dP28P3

(dPιdP2dP3 + dPιdP2dP4

* - («, /<2>)βv

σ(X) - tj2hj2 -f Γj3Aj3 -h tj4hj4\tjl9tj29tj39ij4 > 0}

(A.57)

(A.58)

(A.59)

Appendix B. Topolocical Invariants

Here we append the tables for the first few topological invariants N({rii}) for the
discussed cases. In the first column of the tables we list the degree. The first entry
is always the degree with respect to hj, the others with respect to ho or kg. In the
second column we list the non-zero invariants within the indicated range of degrees.

B.l. Hypersurfaces in F 4(w)

X8(2,2,2,1,1). From the relation between the basis U and ζ in terms of the matrix m
listed in Appendix A, we find that the degrees are of the form (n,m) — (/?, p — 2q)
with p, q = 0,1,2,.... We find non-zero invariants only for integers (n, m) within the
wedge n ^ \m\,n + m even, and in addition at (w,m) = (0,-2). We also observe
the symmetry N(n9m) = N(n9 —m) for n > 0 and only list the former.

Below we list the topological invariants for p + q ^ 10.

(0,-2)

(1,1)

(2,0)
(2,2)

(3,1)

(3,3)
(4,0)
(4,2)
(4,4)

(5,1)

(5,3)
(5,5)

4

640

72224
10032

7539200
288384

2346819520
757561520
10979984

520834042880
74132328704
495269504

(6,0)
(6,2)
(6,4)
(6,6)

(7,1)
(7,3)
(7,5)
(7,7)

(8,4)
(8,6)
(8,8)

(9,7)
(9,9)

(10,10)

212132862927264
95728361673920
7117563990784
24945542832

64241083351008256
15566217930449920
673634867584000

1357991852672

2320662847106724608
63044114100112216

78313183960464

5847130694264207232
4721475965186688

294890295345814704

Xi2(6,2,2,1,1). From the relation between the basis U and ί; in terms of the
matrix m we find, as in the previous model, that the degrees are of the form



344 S. Hosono, A. Klemm, S. Theisen, S.-T. Yau

(n,m) = (p, p — 2q) with p,q — 0,1,2,... and non-zero topological invariants at the
same points as indicated there. Also, for n > 0 the symmetry N(n,m) = N(n, —m)
is again present. We list the non-zero topological invariants again for p + q S 10
and n > 0.

(0,-2)

(1,1)

(2,0)
(2,2)

(3,1)
(3,3)
(4,0)
(4,2)
(4,4)

(5,1)
(5,3)
(5,5)

2

2496

1941264
223752

1327392512
38637504

2859010142112
861202986072
9100224984

4247105405354496
540194037151104
2557481027520

(6,0}
(6,2)
(6,4)
(6,6)

(7,1)
(7,3)
(7,5)
(7,7)

(8,4)
(8,6)
(8,8)

(9,7)
(9,9)

(10,10)

11889148171148384976
5143228729806654496
331025557765003648

805628041231176

24234353788301851080192
5458385566105678112256
199399229066445715968

274856132550917568

5277289545342729071440512
118539665598574460315052

99463554195314072664

69737063786422755330975040
37661114774628567806400

14781417466703131474388040

^12(4,3,2,2,1). The degrees are of the form (n,m) = (p,3p — 2q) with p,q =
0,1,2,.... Here we find non-zero topological invariants only for integers (n,m)
within the cone generated by (1, ±3) and, as in the previous two cases at
(n,m) = (0, - 2 ) . Again, there is the symmetry N(n,m) = N(n, -m) for n > 0. We
give the topological invariants for p + q ^ 8.

(0,-2)

0,1)
(1,3)

(2,0)
(2,2)
(2,4)
(2,6)

(3,1)
(3,3)
(3,5)
(3,7)
(3,9)

(4,0)
(4,2)
(4,4)
(4,6)
(4,8)
(4,10)
(4,12)

6

7524
252

16761816
5549652
30780
-9252

56089743576
10810105020

45622680
-4042560

848628

427990123181952
230227010969940
31014597012048

107939555010
-6771588480

691458930
-114265008

(5,5)
(5,7)
(5,9)
(5,11)
(5,13)
(5,15)

(6,10)
(6,12)
(6,14)
(6,16)
(6,18)

(7,15)
(7,17)
(7,19)
(7,21)

(8,20)
(8,22)
(8,24)

(9,25)
(9,27)

(10,30)

110242870186236480
348378053579208
-16730951255208

1299988453932
-138387180672

18958064400

-53592759845826120
3355331493727332
-288990002251968

30631007909100
-3589587111852

-778844028150225792
70367764763518200
-7266706161056640

744530011302420

-18212970597635246400
1813077653699325510
-165076694998001856

-470012260531104088320
38512679141944848024

-9353163584375938364400
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Xi4(7,2,2,2,1). The degrees are of the form (n,m) = (p,7p -2q) with p,q =
0,1,2,.... Here we find non-zero topological invariants only for integers (n,m)
within the cone generated by (1, ±7) and, as in the previous two cases at
(n9m) — (0, —2). Again, there is the symmetry N(n9m) — N(n, —m) for n > 0. We
give the topological invariants for p + q ^ 10.

(0,-2)

(1,1)
(1,3)
(1,5)
(1,7)
(2,0)
(2,2)
(2,4)
(2,6)
(2,8)

(2,10)
(2,12)
(2,14)

(3,7)
(3,9)
(3,11)
(3,13)
(3,15)
(3,17)
(3,19)
(3,21)

28

14427
378
-56
3

68588248
29683962
500724
-69804

9828

-1512
140
-6

-258721916
27877878
-5083092

837900
-122472

13426
-896
27

(4,16)
(4,18)
(4,20)
(4,22)
(4,24)
(4,26)
(4,28)

(5,25)
(5,27)
(5,29)
(5,31)
(5,33)
(5,35)

(6,34)
(6,36)
(6,38)
(6,40)
(6,42)

(7,43)
(7,45)
(7,47)
(7,49)

(8,52)
(8,54)
(8,56)

(9,61)
(9,63)

(10,70)

-652580600
109228644
-15811488

1841868
-154280

8008
-192

-2613976470
315166313
-29721888

2006914
-85064

1695

-6314199584
496850760
-28067200

1004360
-17064

-8479946160
411525674
-12736640

188454

-6238001000
170052708
-2228160

-2360463560
27748899

-360012150

Zig(9,6,1,1,1). From the relation between the basis U and tt in terms of the ma-
trix m we now find (n,m) = (p, p - 3q) with p,q = 0,1,2,.... We find non-zero
topological invariants on all of these points. Below are our results for p + q ^ 6.

(1,1)
(2,2)

(6.6)

(0,-3)
(1,-2)
(2,-1)
(3,0)
(4,1)
(5,2)

540
540

540

3
-1080
143370

204071184
21772947555

1076518252152

(0,-6)
(1,-5)
(2,-4)
(3,-3)
(4,-2)

(0,-9)
(1,-8)
(2,-7)
(3,-6)

-6
2700

-574560
74810520

-49933059660

27
-17280
5051970

-913383000

(0,-12) -192
(1,-11) 154440
(2,-10) -57879900

(0,-15) 1695
(1,-14) -1640520

(0,-18) -17064
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Xn(6,3,1,1,1). From the relation between the basis ί, and fz in terms of the ma-
trix m we now find (n,m) — (p, p — 3q) with p,q — 0,1,2,.... We find non-zero
topological invariants on all of these points. Below are our results for p -f q ύ 6.

(1,1)
(2,2)
(3,3)
(4,4)
(5,5)
(6,6)

(0,-3)

0,-2)
(2,-1)
(3,0)
(4,1)
(5,2)

216
324
216
324
216
324

6

-432
10260

1233312
26837190
368683056

(0,-6) -12
(1,-5) 1080
(2,-4) -41688
(3,-3) 810864
(4,-2) -61138584

(0,-9) 54
(1,-8) -6912
(2,-7) 378756
(3,-6) -11514096

(0,-12)

(1,-H)

(0,-15)
(1,-14)

-384
61776

(2,-10) -4411260

3390
-656208

(0,-18) -34128

Xi2(3,3,3,2,1). The degrees are (n, m - 2p, 2n-2m + p), n, m, p = 0,1,2,.
n -f m + p ^ 6, the non-zero invariants are

.. For

(0,1,1)
(1,-2,0)

(1,-2,1)
(1,-2,0)
(1,0,-1)
(2,0,1)

2
2
2

-28
-296
32272

(1,0,2)
(2,0,4)
(3,0,6)
(4,0,8)

(5,0,10)

(1,2,-2)

(1,1,0)
(2,2,0)

-28
-129

-1620
-29216
-651920

-28

-296
4646

(1,-1,1)
(2,-1,3)
(3-1,5)
(2,1,2)
(3,1,4)
(4,1,6)

(2,3,-2)
(3,2,2)

-296
276

4544
276

4544
100134

276
-7720

X24O2,8,2,1,1). The non-zero topological invariants, whose degree is of the general
form (72,2m — p,n — 2p) where n, rn, p — 0,1,2,.... In the range n + m + p ^ 6 we
find them to be

(0,-3,-10)
(0,-2,-8)
(0,-1,-6)
(0,-1,-2)

(0,0,-4)
(0,0,-8)
(0,1,-6)
(0,1,-2)

(1,-2,-7)

(1,-1,-5)

-10
-8
-6
-2
-4
-32
-6
-2

3360
2400

(1, —1, —1)
(2,-2,-2)
(3,-3,-3)

(1,0,1)

(6,0,6)'

(1,0,-3)

(1,1,-5)

(1,1,-1)
(2,2,-2)

(2,-1,-4)

480
480
480

480

480

1440
2400
480
480

-452160

(2,-1,0)
(4,-2,0)

(2,1,0)
(3,-2,-1)

(3,-1,1)
(3,0,-1)

(3,1,1)
(4,-1,2)
(4,1,2)

(5,-1,3)

282888
8606976768

282888
17058560
17058560
51516800
17058560

477516780
477516780
8606976768
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B.2. Hypersurfaces in products of ordinary projective spaces

l, 1,1|1,1,1). Due to the symmetry under exchange of J\ and J2, we list( |
only the curves of bi-degree (njχ, nj2) with rtjx ^ nj2. The table is for njχ -f- nj2 ^
10.

(0,1)
(0,2)
(0,3)
(0,4)
(0,5)
(0,6)
(0,7)
(0,8)
(0,9)
(0,10)

(1,1)
(2,2)
(3,3)
(4,4)
(5,5)

(1,2)
(2,4)
(3,6)

(1,3)
(2,5)

189
189
162
189
189
162
189
189
162
189

8262
13108392

55962304650
366981860765484

3057363233014221000

142884
12289326723

2978764837454880
1492290

2673274744818

(1,4)
(2,8)

(1,5)

(1,6)

(1,7)

(1,8)
(1,9)

0,2)
(2,4)
(3,6)
(2,3)
(4,6)

(2,5)

(2,7)

(3,4)

(3,5)

(3,7)

(4,5)

11375073
256360002145128

69962130
368240958

1718160174

7278346935
28465369704

142884
12289326723

2978764837454880
516953097

1182543546601766871

206210244204

28368086706594

3154647509010

114200061474474

60186196491885072

25255131122299086

X(2|4)(l, 1|1,1,1,1). We list the non-zero topological invariants at degrees
(nJvnj2) with nJλ,nj2 ^ 0 and nJχ + nj2 <; 10.

(1,0)

(0,1)
(0,2)
(0,3)
(0,4)
(0,5)
(0,6)
(0,7)
(0,8)
(0,9)
(0,10)

0,1)
(2,2)
(3,3)
(4,4)
(5,5)

64
640

10032
288384

10979984
495269504

24945542832
1357991852672

78313183960464
4721475965186688

294890295345814704

6912
8271360

26556152064
130700405114112

816759204484794624

(3,2)
(6,4)

(5,2)

(7,2)

(1,3)
(2,6)

(2,3)
(4,6)

(4,3)

(5,3)

(7,3)

31344000
2485623412554752

31344000

742784

75933184
15714262788770816

2445747712
33831527906249235456

130867460608

329212616704

329212616704
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(2,1)
(4,2)

(6,3)

(3,1)
(6,2)

(4,1)
(8,2)

(1,2)
(2,4)

(3,6)

14400
48098560

445404149568

6912
8271360

640

10032

742784

532817161216

1084895026038311424

(1,4)
(2,8)

(3,4)

(5,4)

(1,5)

(2,5)

(3,5)

(4,5)

(1,6)

(1,7)

(2,7)

(3,7)

(1,8)

(1,9)

7518494784
325754044147209418752

12305418469184

746592735013952

728114777344

97089446866176

4074651399444224

78142574531195136

69368161314176

6526028959787520

2336268973133447168

247572316458452288000

607840242136069376

56154770246801057024

^ ( 2 | 2 | 3 ) ( 1 J 1 | 1 > 1 | 1 > 1 > 1 ) W e n a v e t n e obvious symmetry ^ ^ ^

N(ΠJ2,ΠJVΠJ3) and we will list the non-zero invariants only for njλ ^ ιtj2 and for
njλ + nj2 + nj3 ^ 6.

(0,0,1)

(0,0,2)

(0,0,3)
(0,0,4)
(0,0,5)
(0,0,6)

(0,1,0)

(0,1,1)
(0,2,2)
(0,3,3)

(0,1,2)

(0,2,4)

(0,1,3)

(0,1,4)

(0,1,5)

(0,2,1)

(0,4,2)

(0,2,3)

168

168
144
168
168
144

54

1080
55080

5686200

9504

12531888

55080

258876

1045440

1080

55080

1045440

(0,3,1)

(0,3,2)

(1,1,1)
(2,2,2)

(1,1,2)

(1,1,3)

(1,2,0)

(1,2,1)

(1,2,2)

(1,2,3)

(1,3,1)

(1,3,2)

(1,4,1)

(2,2,1)
(2,3,0)

(2,3,1)

168

94248

22968

212527800

801720

14272344

54

84240

9589752

422121240

84240

37017000

22968

823968
54

2286360
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