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Abstract: A class of low temperature lattice classical spin models with a symmetry
group O(N) is considered, including the classical Heisenberg model. In this paper
a renormalization group approach in a small field approximation is formulated
and studied, with a goal to prove the so-called "spin wave picture" displaying
massless behavior of the models.

I. A Renormalization Group Flow

1. Introduction

We consider a model for classical TV-vector variables φ defined on a lattice Z d ,
φ(x)eRN for xeZd. It is a lattice "/l|</>|4" type field theory. To determine its
thermodynamic properties we apply the usual thermodynamic procedure of taking
limits of the corresponding finite volume models. We define them on tori T = {x e
Zd: — Lμ ^ xμ < Lμ, μ = 1, ... ,d} with periodic boundary conditions. A probabil-
ity measure connected with a torus T is defined by

dμ(φ) = p(φ)dφ9 p(φ) = exp[ - βA(φ) - £ ] , (1.1)

where dφ is the Lebesgue measure on the space of all configurations φ defined on
the torus T, β > 0 is a parameter proportional to the inverse temperature β = FT,
£ is a normalization constant, E = logZ, Z = \dφ exp[ — βA(φ)~\. The action A(φ)
is defined by

\ Σ \Φ(χ)-Φ(χ')\2 + i Σ IΦWI4-^ Σ \Φ(*)\2

1 <x,x'> aT 8 xeT ^ xeT

- Σ h.φ(χ) = \\\dφ\\2 + l\\\φ\2\\2 ~^\\φ\\2 - (h,φy, (1.2)
xeT l O 2
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where λ > 0, μ > 0, h e RN. The effective potential for this action is given by

-vho.φ-ξ-χ, (1.3)

where h = vh0, v ΐ> 0, \ho\ = 1. For v > 0 it has exactly one minimum at a vector
proportional to h0. It is convenient to normalize the potential in such a way that
this minimum is exactly equal to h0. This can be achieved simply by scaling the
variables φ. Denoting the rescaled coefficients in the same way we obtain the
effective potential of the form

V(φ) = ^(\φ\2-p)2-vh.φ-^p2, (1.4)

where h0 is denoted by h. This potential has a minimum at φ = h if p = l — χ
Assuming this we can finally write the action in the following form:

^(Φ) = ̂ I I # I I 2 + ^ I I I Φ I 2 - 1 | | 2 + ^ I I Φ - ^ I I 2

? (1.5)

if we rescale properly the parameter β also. The constant arising from these
transformations is included in E. We consider this model for β sufficiently large,
λ not too small, for simplicity we assume that λ ^ 1, v > 0 and h in the unit sphere
of RN, h e SN~*. We want to include the case λ = + oo , because all the construc-
tions and proofs in this paper are uniform for λ e [1, + oo ]. This case is under-
stood as the limit

lim

~β(\\\dφ||2 + V-\\φ -h\A - EΔ Π H\Φ(X)\2 - 1) , (1.6)

which is a classical Heisenberg model, or its N-component generalization.
Let us make a comment on other possible parametrizations of the model.

Rescaling φ by β~J we obtain the density p(φ) = exp[ — A(φ) — E~\ with the action

A(φ) = \ || W + ̂  || \φ\2 - n2 + \ IIΦ - β"h\\2

For λ ^ 1, v small, this is an immediate iV-component generalization of the lattice
version of the model considered in [4]. All the above representations are connected
by simple scaling transformations, so they have exactly the same properties, but
there are differences on a technical level, in particular renormalization procedures
will have different forms. We have found the form (1.5) most convenient to work
with.
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The action (1.5) has some important symmetries. The first two terms are
invariant with respect to transformations of the orthogonal group O(N). The third
term breaks this symmetry, it is invariant with respect to the subgroup of O(N)
leaving the vector h invariant. This can be formulated also as an invariance with
respect to transformations of O(N) acting simultaneously on both variables φ,h.
The action is also invariant with respect to Euclidean transformations of the lattice
T. Let us write the action A(φ) more explicitly as A(φ;h,λ,v). The symmetries can
be formulated as the equalities

A(Rφ;Rh, λ, v) = A(φ; h, /, v) for aΆReO(N),

A(rφ;h,λ,v) = A(φ;h,λ,v) for all Euclidean transformations

r of the lattice T, where (rφ)(x) = φ(rx\ x e T. (1.7)

In particular the Euclidean symmetries include all translations of the torus T.
Let us recall the well-known heuristic picture for this model, the so-called "spin

wave picture," e.g. see [7,9]. According to it the model has exactly one state in
a thermodynamic limit if v > 0. Denote the state, or rather the corresponding
expectation value, by < ) v . It is determined by the parameters β, h, /, v, we have
written explicitly the dependence on v only. This state has a non-zero magneti-
zation, i.e. a non-zero expectation value <</>(x)>v. By the symmetries (1.7), which
imply the corresponding symmetries of the finite volume states, and these are
preserved in the thermodynamic limit, this expectation value must be a constant
vector proportional to h. Thus we can write (φ{x)}v = mv/i, and the statement is
that for β sufficiently large mv > 0. The two-point truncated correlation function
{φ(x)φ(x/))J = (φ(x)φ(xf))v — {φ(x))vζφ(x/))v and higher-point truncated cor-
relation functions have an exponential decay with a decay rate proportional to «J\\
These states have a limit as v -• 0 + , limv_>0 + < >v = < )o + F ° r β sufficiently
large the limit has a non-zero spontaneous magnetization <φ(x)>0 + = mo + h,
m0+ = limv_>0+ mv > 0, and the truncated correlation functions have a power law
decay. The decay is quite complicated and depends on components of correlation
functions. For transversal components of the two-point function, i.e. for compo-
nents in directions orthogonal to the vector /?, the decay is as in asymptotically free
massless theories, i.e. it is given by the operator ( — Δ)~1. The above picture holds
for d ^ 3, N ^ 2, and can be obtained from a properly constructed perturbative
expansion, e.g. see [9].

There is quite a number of rigorous mathematical results concerning the above
and related models. We do not intend to make a survey of those results, but let us
mention a basic paper [5] in which some fundamental aspects of the above picture
have been proved, like existence of the non-zero magnetization, domination of the
two-point correlation function by the free massless Green's function, etc. These and
the other results have been obtained by very elegant and simple methods, like
infrared bounds, chessboard bounds, correlation inequalities, etc. We develop here
a different approach based on expansion methods, so we do not go into any further
details of the above mentioned results. In this series of papers we will eventually
prove all the statements of the heuristic picture, but our fundamental goal is to
construct a convergent low-temperature expansion for the considered model, an
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analog of such expansions for the Ising model, or for this model with N = 1
constructed in [4]. A reason for this is that our interests are not in this particular
model, but in corresponding models with various disorders, or with stochastic
dynamics. It turns out that to understand these more complicated models it is
crucial to get precise results on this basic and simplest one, underlying all the
others. Moreover it turns out that it is not enough to have even the most precise
results, but it is important to have a sufficiently flexible and robust expansion
method. This should be clear from the paper [4], in which the Ising model plays the
role of the basic underlying model, and where it is crucial to have the low-
temperature Peierls expansion for it, not just its properties. This is why the
emphasis in these papers is almost entirely on a construction of such an expansion
method. It should be clear also that in our case it must be a multi-scale expansion,
because of massless modes, or slow decay properties of correlation functions. We
construct it using renormalization group ideas and techniques, in particular the
ideas and techniques developed for lattice scalar and gauge field models in [la,b,
2a-e].

An important ingredient of any renormalization group program is to establish
how scaling transformations of a space act on various quantities of a considered
model. Let us describe these scaling transformations in our model. We scale the
unit lattice T by a positive number ε, so we obtain the ε-lattice Tε = {εx: x e T}.
The effective potential for the action (1.5) is given by

V(φ) = V(φ;h,λ9v) = l(\φ\2 - l)2 + V-\φ - h\2 . (1.8)

It has a minimum a.tφ = h, and for v = 0 a set of minima is the unit sphere | φ | = 1.
We want to preserve this property by the scaling transformations, so the variable
φ does not scale, or rather it scales with the trivial factor ε° = 1, and we have
φ(εx) = φ(x). Actually we should distinguish between the two configurations
defined on the lattices with different scales, but because of this scaling property we
always use the same notation for configurations defined on rescaled lattices. Using
this property we have

<X,X'> c Tt

° xeΓε

 λ xeTε

- βε2-dAε(φ;hλε~2,vε-2) = βεAε(φ;h,λ\vε), (1.9)

where Aε denotes the action with all the expressions, like derivatives, norms, etc.
defined on the ε-lattice, and βε, λε, vε are the corresponding coefficients calculated
for this scale. From (1.9) we obtain the scaling laws for the coefficients

β* = βε2-d^ λ ε = λ ε ~ 2 , vε = v ε ~ 2 . (1.10)

These are the basic, canonical scalings. Renormalizations connected with the
renormalization group approach introduce some additional changes of the coeffi-
cients, but for d > 2 the canonical scalings dominate an asymptotic behavior as
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ε -» 0. In particular they decrease the temperature, strengthen an effect of a barrier
well around the sphere \φ\ = 1 by increasing Λ, and they increase the external field
v. Our approach to the low temperature problem for this model is based on these
scaling properties.

Let us describe now some basic features of the renormalization group approach
we apply here. We will be very brief because it has been described already several
times, so we refer the reader to the previous papers for details, in particular to
[la,2a,c]. We apply a sequence of renormalization transformations with linear
averaging operations and Gaussian densities. For future references let us recall the
most important definitions. A renormalization transformation applied to a density
p(φ,β), depending on the parameter /?, is defined by the formulas

t(y;φ,φ;β9a) = cxpϊ ^

(QΦ)(y)= Σ L-"φ(x), (l.ii)
xeB(γ)

where B(y) denotes the L-block with center at ye T(^\ T | υ denotes the new
L-lattice of centers of the blocks, and φ is a new spin configuration defined on the
new lattice. Let us make a few comments on this definition. At first, it has the usual
normalization property: \dφ(Tp)(φ) = \dφρ(φ). Second, we take a ^ 1, e.g.
\ < a < 4; later we will specify this constant more precisely. The definition depends
also explicitly on the parameter β. In a next step this parameter is rescaled as in
(1.10) and renormalized, so the next renormalization transformation depends on
a different β. Thus we do not iterate simply the above transformation, but we take
a product of different transformations of the form (1.11) determined by a sequence
of the so-called running, or partially renormalized constants βk. We renormalize
also the new spin variable φ by applying a properly chosen scaling transformation.
To indicate these changes we introduce the subscript k denoting new constants and
variables after k transformations, starting with k = 0 for those in (1.1), (1.5). The
renormalization transformations (1.11) are followed by scaling transformations
which rescale L-lattices of new spin variables into unit lattices, for example the
lattice T{

L

1] in (1.11) into the unit lattice T[1]. They do not change spin configura-
tions, as has been discussed above, and they are denoted by S. Actually we write the
transformations 5, T with superscripts indicating to what densities they are ap-
plied, for example we denote the density given by (1.1), (1.5) by p 0 , and the
transformations applied to it have the superscript "0." Thus applying k renormaliz-
ation and scaling transformations yields a density pk for which

pk = S{k-ί)T<k-ί)pk-1 = Π S{k'j)T^k-^p0 = (ST)kp0. (1.12)

The basic goal is to give a sufficiently detailed and precise description of the
densities pk.
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To cover also a renormalization group analysis of correlation functions we
consider a density of a generating functional for the correlation functions, which
means simply that we add the linear function <#, φ} to the exponent in (1.1), where
g is defined on T and has values in CN. We denote this density by p 0 , so ρk denotes
a density of the generating functional after the k transformations.

To understand better various issues connected with an inductive description of
the densities ρk we discuss briefly some basic aspects of the first renormalization
transformation applied to p 0 . It is defined by the integral

(T (O)po)(«A) = ί dφQxpl - β o \ - a L ~ 2 \ \ φ - Qφ\\t + - \\dφ\\2

φ \ 2 - ψ + ^ \ \ φ - h A + <iy9φy--Et

0\, (1.13)

where the normalization constant of the renormalization transformation is in-
cluded in the constant E'Q. Consider the underintegral expression in (1.13) and
define

+ y l l φ - Ί | | 2 . (1.14)

We are interested in low temperature properties of the model, so β0 may be
arbitrarily large and it is natural to apply a saddle point method to calculate the
integral (1.13). This method requires finding all critical points of the function (1.14),
which is multiplied by β0 in (1.13). The problem of finding the critical points on the
whole space of configurations φ is a highly singular one; it is easy to construct
examples of configurations ψ with many critical points, in fact with quite singular
sets of critical points, and with a discontinuous dependence on φ. Also, expanding
the function (1.14) around some of the critical points we obtain functions with no
good positivity properties, so the resulting integrals cannot be treated by any
known method. To avoid all these problems we have to introduce some restrictions
on configurations ψ,φ. These restrictions are naturally connected with positive
terms in the effective action (1.14), for example they may be defined by

\Φ(y) - (QΦ)(y)\ < β-hiβo), \(dΦ)Φ)\ < β

\\φ(x)\2 - 11 < λ-*β-Q*p(βo)AΦ{x) ~ h\ } }

(1.15)

where Ao is a positive constant and p0 is an even integer. These constants have to
be chosen to satisfy various conditions appearing later in this and subsequent
papers. The restrictions (1.15) are introduced in the following way. We decompose
the space of all configurations φ into subsets, each subset being characterized by
the condition that at each point or bond of a corresponding lattice either an
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inequality in (1.15), or a complementary inequality holds. For a given subset denote
by X the set of points and bonds at which the complementary inequalities hold.
This is, rought speaking, "a large field domain" and the part exp[ — j? 0 ^i] of the
density ρ0 restricted to this domain can be bounded by exρ[ — ̂ p2(β0)\X\']. The
integral of the density restricted to the domain can be bounded also by such
a factor with the constant ^ replaced by some other positive number. This factor is
sufficiently small to control the combinatorics of the decomposition. On the
complement of the set X the inequalities (1.15) hold, so it is "a small field domain,"
and the integral restricted to this domain can be calculated by the saddle point
method indicated above. The action Ax restricted to the domain has exactly one
critical point, and its expansion around the point has sufficiently good properties,
so that the integral can be analyzed by a simplified version of a cluster expansion.
In the first three papers we discuss problems connected with the small field
domains. For simplicity and clarity we discuss mainly the case when a whole lattice
in each step is the small field domain. Considering a general case in a final paper
will be quite simple, it will demand only minor modifications of the analysis in this
special case. Thus we consider here the sequence of effective densities pk restricted
to properly defined small field spaces and determined by the renormalization group
transformations restricted also to some small field spaces. Thus instead of the
densities given by the formula (1.12) we consider here the small field densities
denoted also by pk and given by the formula

Pk = XkS(k-i)T(k-i)x(k-» ... S(0) τ<°YO )Po , (1.16)

where the characteristic function χk,χ
U) yield restrictions to proper small field

spaces. They will be defined precisely later on, but the idea is that they are
essentially equivalent to restrictions of the form (1.15), only for technical reasons
they are formulated in a more elaborate way.

The basic goal of this paper is to give a precise description of the densities pk

and to prove some of their properties and bounds. This description will be given in
the next section, together with a formulation of a main theorem of this and two
subsequent papers. In the remaining two sections of this paper we analyze the
densities, or rather corresponding effective actions, and we prove proper bounds
for them. The next paper deals with the problem of critical points for generali-
zations of the function (1.14). We prove there all technical results about solutions of
the corresponding variational problems needed in the rest of this work. In the third
paper we finish the inductive proof of the main theorem. In the last paper we
consider the general case including contributions from the large field domains and
analyzing their renormalization and bounds. We hope that the papers are self-
contained, but in case some doubts arise in connection with notations used here we
refer the reader to [2a, c] for more detailed definitions.

2. An Inductive Description of the Effective Densities and a Formulation
of the Main Theorem

A fundamental role in the inductive description is played by critical points of
effective actions which are simple generalizations of the action (1.14). These critical
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points turn out to be minima of the corresponding actions, so we consider the
appropriate variational problems. Let us start with definitions. We rescale the
lattice T to the scale η = L~k, so we get the lattice Tη. Spin configurations φ are
defined on Tηy and new spin configurations φ are defined on the lattice Tf\ which is
a unit lattice of centers of/c-blocks, i.e. blocks containing Lkd sites of Tη. We define

^ - 1 | | 2 + ^ I I Φ - ^ I I 2

? η = L ~ \ (2.1)

where the norms are defined on the ^-lattice, except the first one which is defined on
the unit lattice. We want to solve the problem of finding

inί Ak(ψ9φ;h9a9λ9v) . (2.2)
Φ

This problem is analyzed in detail in the next paper, where we prove that in
a proper small field domain there exists exactly one critical point of the function Ak.
This point is a minimum of the function, so it is a solution of the problem (2.2). We
denote this minimal configuration by φk. It is an analytic function of ψ9 h, ay λ, v on
corresponding domains, and it has some regularity properties as a function on the
lattice Tη. These properties will be described in detail later on. Let us mention that
the above problem and properties of solutions are most naturally described on the
7/-scale, but they can be rescaled and formulated on any other scale. The rescaling
has been explained in the Introduction, we change properly scales of the lattices
only; spin configurations are unchanged. For example consider a minimal config-
uration φj for some; < k. It is determined naturally by the corresponding function
Aj given by (2.1) on the lattice Tξ9 ξ = L~\ as the solution of the problem (2.2). We
have

where the function on the left-hand side is defined for spin configurations φ, φ and
norms on the 1-lattice T[j\ and the ^-lattice Tξ correspondingly, and the function
on the right-hand side is defined for the rescaled configurations ψ, φ and norms on
the L-^-lattice T^)η9 and the ^-lattice Tη correspondingly. The above equality
implies the following scaling law for the minimal configurations φf.

φj(x;ψ,h,a9λ,v) = φj(Ljηx;φ,h,a(Ljηy2,λ(Ljη)-2, v(LJη)~2)9 xeTξ, (2 .4)

where the configuration φ is simply rescaled by the equality φ(y) = φ(Ljηy),
y e Tψ. A minimal configuration φj considered as a function of lattice points only
is also rescaled in the same simple way.

A first inductive assumption is about a general form of the kth density pk. We
assume that

(H.1) pk(φk) =

^u = ~ βkAk(ψk9 φk; Kak9 λk9 vfc) + £ki$k9 h)-Ek9

where φk is a new spin configuration on the unit lattice T^K The coefficients
βu^kΛk^k are determined by a sequence of inductive renormalization equations,
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which will be discussed in the third paper. Now let us mention only that the leading
asymptotic behavior of these coefficients is determined by the scaling (1.10), i.e. we
have approximately

i _ r -2
O ^ OTk(d-2) ~ n 2 ~)T2k V ~vT2k Π M
Pk ~ P1^ •> ak ~ aZ j _2fc5 λk ~ ΛL, , Vk ~ VLJ . {Z.D)

The minimal configuration φk is determined by φk, h and the coefficients ak,λk,vk.
We shall describe successively inductive assumptions for the remaining expres-

sions in the effective density pk.
Let us begin with the term ik in the effective s/k. It demands a most detailed

and careful description because the renormalization operations are determined by
its properties. Before we begin this description we have to introduce another class
of minimal configurations. They are solutions of variational problems which
connect functions φj and φk. The configurations φj are determined by the function
(2.3) as solutions of the problem (2.2). If we compose the next k — j renormalization
transformations Tu\ . . ., T ( k ~ υ , we obtain a renormalization transformation with
a Gaussian kernel determined by the averaging operation Qk-j and some constant
ak-j. A quadratic form of this kernel combined with the main term of the j t h

effective action yield a function of a new spin variable φj of the j t h action. We want
to find a minimum of this function, i.e. to solve a variational problem,

infβfl Λ _,- | |^ - Qt-jψjWl +

(2.6)

The function Aj has been rescaled to the ^/-lattice by (2.3), and the scaling factor
(Ljη)~(d~2} has been incorporated into the constant βj. We disregard at this
moment changes connected with the renormalization operations, we want to
capture only a leading effect of the renormalization transformations. The above
problem is analyzed in detail in the next paper, where we prove that in a proper
small field region there exists exactly one critical point of the function in
(2.6), which is a minimum of this function, so it is a solution of the problem
(2.6). Denote this solution by φ(

k

j}. It is a function of φk, h and the coeffi-
cients determining the function in (2.6), so we may write more precisely
Φ{j) (Ψkl K ak-j, aj(LJηy2,λj(LJη)~2, Vj(Ljηy2). It is a configuration defined on the
lattice T^jζ, and it has various analyticity and regularity properties described in
that paper. The most important property is its relation to the functions φk. It
follows from the identity

. fl 7 1 . _ 9 7

(2.6) = mίmι<-ak-j\\ φk — Qk-jφj\\ί + ~aj(LJη) \\ φj — Qjφ \\ιJη

+ Al(φ ,h,λj(L>η)-2,VjiL>ηr2)\ = mϊ\~ ^ " ^ . , \\ψk - Qkφ\\2

= i n f A k ( φ k , φ ; h , k ' J / ,λj(Uη)-2,Vj(LJη)-2) . (2.7)
φ Clj~τ~ &k — j yJu YJj
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This identity means that if we substitute the solution of the problem (2.6) into the
function φj9 we obtain a solution of the last problem above, i.e. a function φk. The
composition property φj ° φk

j) = φk can be written precisely in terms of the coeffi-
cients of the above problems as follows:

In the above definitions and identities we have determined all the functions in terms
of the coefficients of the j t h action Λj and the constant ak-jy in particular the last
configuration φk in (2.8) is such a function. In our inductive description of the
effecitve action $k(φk,h) we assume that it depends on φk through the functions φ[j\
and we need a different interpretation of the above formulas. We require that the
identities (2.7) yield always the main part of the effective action after k steps, i.e. the
action Ak(φ, φk; h, aki λk, vk), and the identities (2.8) yield the corresponding minimal
configuration φk{φk',Kak>λk>

vk\ for all j = 1,2, ... ,/c — 1. This requirement deter-
mines the coefficients λj9vj9

λj = λk(Uη)\ vj = vk{Uηf , (2.9)

and imposes the following sequence of equations:

ak-j(LJη)'
• = ak. (2.10)

These equations can be solved with respect to the constant ak9 and the solutions are
given by the formulas

1-L~2k

(2Λ1)

Let us remark that equalities (2.9), (2.11) would be satisfied for the actual renormali-
zation group flow of the constants {λJ9Vj,aj} if no renormalization operations were
necessary and the constants were determined only by the scaling operations and
compositions of the renormalization transformations. As the actual flow differs from
such an ideal flow due to renormalization operations performed at each step, we
interpret the equalities (2.9), (2.11) as definitions of this ideal flow matched to the
constants λk,vk,ak at the kth step. Because of this dependence we should write the
constants λ^\ha} with an additional index k, but for simplicity we keep the above
notation. In almost the whole paper the index k is fixed. Thus in the future when we
write a configuration φ[j) we understand by it the function

ψk

J\ψk;h,ak-J9aj{LSηr\λk9vk) , (2.12)

where ak-j9aj are given by the formulas (2.11). Let us remark also that this function
depends on h through the product vkh, but for simplicity of the formulas we have not
written it explicitly, although we will use it in the future. Finally let us notice that the
identities (2.7) allow us to write an explicit formula for the configuration φ^ in terms
of φk. Calculating the infimum with respect to φj for the function on the right-hand
side of the first equality in (2.7) we obtain the following formula for the critical point:
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Substituting next φk instead of φ, and using the equalities (2.10), (2.11), we obtain

Ψίj) = QjΦk + -(Ljη)2Q^j(φk - Qkφk)

J k 1 — L 2k j

This formula is of fundamental importance for the future analysis of these functions,
in particular for localization and regularity properties.

Now we can begin the inductive description of the function Sk{ψk, h). We assume
that it is a sum of contributions coming from k renormalization steps, and that each
contribution can be represented as a sum of localized contributions on a correspond-
ing lattice, i.e. it has basically the same form as in [2d]. We assume also that a j t h

contribution depends on ψk through the function ψ[j\ We write these assumptions as
follows:

(H.2) there exist functions <f0) (y;ψj,Vjh), where ψj is a spin variable on the lattice
Tu\ such that

Let us make a few remarks about the above assumption. The function $u\ψj, Vjh) is
constructed at the j t h step, and φj is a new spin variable defined on the lattice T[j\
These functions are renormalized, corresponding counterterms are included in their
definition. The renormalization conditions will be formulated in the next subsection
as inductive assumptions. The effect of subsequent renormalization steps is that the
variable ψj is replaced by the corresponding functions ψψ. Each renormalization
step increases the index k by 1. The functions ${j) and ψ[j) are also rescaled to the
L^-scale, but the only effect of this scaling operation is that the lattice T[J) is rescaled
to T^]η9 and the functions are defined on the rescaled lattice in the same way as they
were defined on the original unit lattice. Thus in the second equality above it does
not matter what is a scale of the lattice Tϋ\

Consider the functions S'^(y;ψj,Vjh). They have three important properties:
analyticity in φβ h, symmetries and localizability. We shall describe these properties
in detail as further inductive assumptions.

To formulate the analyticity properties we have to introduce at first some spaces
of spin configurations. It is important to consider spin configurations together with
external field vectors h. We start with a space of configurations φ on the lattice Tξ,
ξ = L~j, with values in R^, and of vectors h from the space R^. We define

Φj(σ,ε;λ,v)

= \(φ,h):\dξφ\ < σε,\Aξφ\ < σ 2 ε , |α | < σ2ε,\φ - h\ < -= , \\h\2 -
σ2ε2

(2.15)
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where σ, ε, λ, v are positive constants. This definition is motivated by properties of
the minimal configurations φy The space is defined in a natural way on the lattice
Tξ, but we may rescale the lattice and the configurations to any other scale, and we
obtain the space defined on the new lattice. It is still defined by the same conditions
as in (2.15), formulated in terms of the scale ξ. If we want to write these conditions
with derivatives for the new scale, we have to introduce corresponding factors on
the right-hand sides. We extend the above real space to a complex space of
configurations (φ -h φ',h + h'\ where φ and h are as above, φ' is defined on Tξ and
has values in CN, h! is defined on T[j) and has values in CN. We consider h + W as
a function on T[j\ and we define

Φ)(σ,ε;λ,v) = Uφ + φ',h + h'):(φ,h)e Φ>,ε;λ,v),

σ2ε
\φ'\ < ε,\δξφ'\ < σε,\Aξφ'\ < σ2ε,\δa\ < σ2ε,\h'\ < , \φ h'

v v

δoc = ^{{φ + Φ'f - Φ2) = ^(2φ φ' + φ'2) . (2.16)

In the future it will be convenient to use conditions on configurations φ + φ'
directly. The conditions in (2.15), (2.16) obviously imply the following ones:

2σ*e,\h'\<—,\φ K\< —
V V

(2.17)

In fact the above conditions are equivalent to (2.16), except some unimportant
numerical factors on the right sides. We will use the spaces ΦCj{o, ε; λ, v) in the case
when λ = λj9 v = v,-. In this case the condition on the first derivative in (2.16) or
(2.17) can be strengthened, but for the longitudinal derivative only. For simplicity
let us write φ instead of φ + φ\ thus φ has values in CN. We have the equality.

φ(x).(dξφ)«x,x'y) = -^φ{x).{φ{x') - φ(χ))

β(0V) - 1) - -2{φ\χ) - 1)1,

(2.18)

which implies the bound

\φ dξφ\ < 2ξσ2ε2 +-^ξσ2ε < 5ξσ2ε , (2.19)
λζ
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assuming that ε is sufficiently small, e.g. ε < γo, and for λ = λj the constant λjξ2,
which is close to λ0 by (2.5), should be greater than a constant close to 1, e.g.
λjζ2 > l The spaces Φ) are natural analyticity domains for functions of minimal
configurations φj. In particular we will construct the solution φk of the variational
problem (2.2) in the space Φk(ί,c0;λ,v) for c0 sufficiently small.

To consider functions oϊ(φp h) we have to introduce new spaces. The configura-
tions φj are defined on the lattice TiJ) and have values in RN, the vectors h belong to
the unit sphere SN~ι. We define

Ξj(σ, ε) = {{φj, h): (φ}(φf, h, cij, λv v,), h) e Φj(σ,ε; λn v7) ,

\Φj - QJφi(φj;Kaj,λj,vj)\ < σ2ε) . (2.20)

We have assumed implicitly in the above definition that (φj, /?) belongs to a domain
of the function φ}(φj,h). We will see that the conditions above imply stronger
restrictions on (φj, h), assuming that ε and σε are sufficiently small. We assume that
after k steps the constants cij,λj,Vj are given by the equalities (2.9), (2.11), so the
space Ξj(σ, ε) depends actually on k also. We do not write this dependence explicitly
for the same reason as before. We extend the above real space to a complex space of
configurations (φj + φ),h -f hf), φ)Jϊ are defined on T{j) and have values in C v .
This space is defined by

Ξcj(σ,ε) = {(φj + φ'jji + 1ϊ):(φj,h) e £,(σ,ε) ,

(φj(φj + ψ'j'Ji + h'\h + h') = (φj(φjjή + δφj(φ'jjϊ\h + A') e ΦC}(σ,c;λj, v;) ,

\φf

J-Qjδφj(φ'Γh')\<σ2ε) , (2.21)

where we have dropped the dependence on cij,λj,Vj in the functions φj,δφj. The
last function is defined by the equality in the definition. We have used the fact that
the function φj(φj\h) has an analytic extension φj(φj -f φ)Jι + h') to some abso-
lutely defined domain, which will be described in the next paper when we will prove
this statement. We have assumed again implicitly in the above definition that the
configurations (φj + φph + /?') belong to this domain. Notice that in the defini-
tions (2.15), (2.16), (2.20), (2.21) not all conditions are independent, for example the
conditions involving the Laplace operator Aξ are consequences of the others. We
have listed all conditions which are explicitly used in the renormalization analysis.

Now we can formulate the next inductive hypothesis:

(H.3) the functions 6°{J) (y;φj,Vjh) are defined on the space Ξj(l,εj), and have

analytic extensions defined on the space Ξj(l,£;), where v.j = otOΛ ξ 2 ~'<]

(Ao + logt Y, (Xo.k — α o 0 + Σ»f=k^)? Q = 7 < 7o ̂  ~τ~

Let us make a few comments on the constants above. The spaces increase with
increasing y, and the two extremal cases are especially interesting. For y = 0 we
have the smallest space, and we take p = p0 and Ao as in the definition (1.15). The
space contains then the corresponding small field domain. In this case we obtain
best bounds for the actions Su\ which yield a uniform bound for Sk. With
)' increasing the spaces and the bounds increase also, and we define y0 as the upper
bound of these /s for which we still have a uniform bound for S\. We will find y0

explicitly. For y close to y0 we have largest spaces, and therefore best analyticity
properties. We choose y depending on a problem we want to solve. To study decay
properties of correlation functions we will need the largest analyticity domains, so
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we consider γ close to γ0. In this case we do not need the logarithmic factors and we
take p = 0. In the future we will consider for simplicity this case only, although all
constructions and bounds are valid for all γ in the interval [0,yo[ The constant α0

must be chosen sufficiently small in order to satisfy various restrictions connected
with our analysis.

We have not yet explained a reason for introducing the parameter σ in the
definitions (2.15), (2.16), (2.20), (2.21). It is a very important parameter; it measures
scaling properties of bounds for corresponding expressions, in particular improve-
ments of the bounds with increasing k. This fundamental property is clarified in the
following lemma.

Lemma 2.1. The function φ^ determines an analytic mapping of the space Ξc

k(σ,ε)

into the space ΞCj(Ljησ,ε\ i.e.

φ(

k

j):{ψ + ψ'9h + h')eΞc

k{σ,ε) -> (ψv>(ψ + ψ'9h + h')9h +h')eΞcj(Ljησ,ε)

(2.22)

for ε sufficiently small, σ ^ 1.

A proof of this lemma follows immediately from the composition property (2.8),
the equalities (2.14), (2.9), (2.10), (2.11), and the definitions of the spaces Ξ). Let us
remark that the lemma gives a main reason for introducing these spaces; they are
matched with properties of the functions φ[j) in the arguments of the functions <ί(J).
We apply the lemma in the case σ = l,ε = εk. The values of ιj/(

k

J) are then in the
space Ξ)(Ljη,εk) = Ξ)(Uη,j.Cj\ and in comparison with ΞCj(ί,8j) we improve the
bounds by corresponding powers and products of the factors Ljη and fj. This is
a basis of the whole renormalization analysis.

Let us formulate now assumptions on symmetry properties of the functions
${i) (y; ψj, Vjh). Let r denote a Euclidean transformation of the lattice T ( ; ) into itself.
Such transformations are generated by translations, reflections and permutations
of coordinates. The transformation r determines a transformation of configurations
on TU) in the usual way, e.g. (rψj)(y) = ψj(r~ίy),y e Tu\ We assume that

(H.4) gi>\ry\rψj9 Vjh) = g™{y9 φj9 Vjh) ,

u\y; Rφj9 VjRh) = Su\y ψj9 Vjh)9 ReO(N)9

hold on Ξj(l,Cj) and the same equalities hold for the analytic extensions of
the functions Su\ the second on the space Ξ)(\9 Cj), the first on the subspace
of this space with constant configurations h + h'.

Of course the Euclidean transformations r and the orthogonal transformations
R leave invariant the spaces and the subspace. The above symmetries play a crucial
role in the renormalization analysis, in particular the second one. The first has two
important implications. For Euclidean transformations r leaving a point ye T(j)

invariant, i.e. ry = y, we have

- rψj9 vjh) = δ^{y9 ψj9 Vjh) . (2.23)

This symmetry is used to determine a final form of renormalization conditions in
the next subsection. Taking constant configurations (ψj9h), e.g. ψj(y) = ψ, and
taking r as a translation by a vector z e TU) we obtain

βU)(y + z; ψ9 vjh) = SU) (y; ψ9 vjh) . (2.24)
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Thus all the functions S{j){y; φ, Vjh) are equal for y eT{J\ and we define an effective
potential for the action SU) by the equality

//'{j)(φ,Vjh) = 6°{J)(y;φ, Vjh) . (2.25)

The effective potential has an analytic extension on a domain in CN x C^ which
may be identified with a set of constant configurations in Ξ)(\, c,-), and it is invariant
with respect to orthogonal transformations, i.e. it satisfies the second equality in
(H.4).

The third property of the effective actions S(j)(y; φh v}h) is their localizability. It
has basically a standard form, e.g. see Sect. 0 in [2d]. At first we define a class 2j of
localization domains of the lattice Tξ. We take a partition of Tξ into large cubes,
i.e. cubes of size M = Lm, where m is a sufficiently large integer. We require that
partitions taken for various scales are compatible with each other. It is convenient
to identify domains in lattices with properly defined domains in the continuous
space Rd, or rather in the corresponding torus. A simple way to do it is to consider
the torus T } as a subset of the lattice Zd + ( ϋ , ... ,i), and to assign to a point
xe Γ] the unit cube of Rd with center at the point x and with vertices at points of
the unit lattice Zd. We identify a subset X of the lattice with a union of cubes
corresponding to points of the subset. A partition of Tλ into large cubes can be
obtained by taking a partition of Rd into cubes determined by points of the lattice
MZd, and all subsequent partitions are determined by the lattices V MZd and
rescaled to the corresponding ζ-scales. We denote them correspondingly by π,. For
such a partition we construct another partition, or rather a cover π} by LM-cubes
which are unions of Ld of the corresponding M-cubes. For the cover π} of the lattice
Tt we define a class <2Ί as a class of domains X which are connected unions of open
cubes from π), i.e. such that

χ= U • • ( 2 2 6 )
• e π): • cr X

The cubes in the above decomposition may overlap. We consider X as an open
domain in Rd, and we assume that it is connected. The class ζlj is defined for the
lattice T* in the scale ξ, and if this lattice is rescaled, then domains in Θ} are also
rescaled in the same way. For domains X e Q)} in the scale ξ we define a function
dj(X) which measures a tree size of X. We consider X as a domain in the
continuous space, and we define

dj(X) = inϊ{M~1\Γ\: Γ is a continuous tree graph

contained in X and intersecting every cube • c X, • e π)} . (2.27)

This definition refers explicitly to the scale ξ. If a domain X e SΊ is considered in
a different scale we can define dj(X) either by rescaling X back to the (f -scale and
using the above definition, or writing the above definition with an additional
scaling factor. We can formulate now the next inductive assumption

(H.5)

where the functions S){j)(y\X;φj,vjh) have analytic extensions defined on
ECj(l,Cj); these analytic extensions depend on (φj + φ'jji + h') restricted to
the corresponding domains X and satisfy the bounds
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where Eo, K are positive constants, K can be chosen arbitrarily large, depend-
ing on the large cube size M. The analytic extensions are invariant with
respect to orthogonal transformations R e O(N), i.e. they satisfy the second
equality in (H.4).

The above expansion, called a localization expansion, plays a fundamental role
in the renormalization analysis, and one of the main steps in the presented method
is an inductive construction of such an expansion for a new contribution to the
effective action determined by the k + 1st renormalization transformation. This
construction will be described in the third paper. It will also yield some additional
properties, e.g. an Euclidean covariance of the localized actions as in the first
equality in (H.4), only on the left-hand side the transformation r has to be applied
to X also. This property is not important here. The constant K depends on the size
M, and this dependence will be described precisely later on. We fix K and M by
several conditions they have to satisfy, which will be formulated successively in the
future. The most important condition is a convergence of the series below

Ko= X exp{-κdj(X)\ yeZd. (2.28)

The class of localization domains above is defined for the whole lattice ςZ d , and it
is well known that the series is convergent for K sufficiently large, e.g. K ̂  κ0, and
the sum is bounded by a constant depending on d only. The sum above does not
depend on the point y, so Ko is a function of K only. In the future we will use Ko

defined for κ0, so we will have a bound from above by Ko instead of equality (2.28).
As a simple application of this bound we obtain

IS^HywI/j.Vjh^^EoKo (2.29)

on the space Ξ){\,εj). Here φh h denote, for simplicity, elements of the complex
space. In the future we will use frequently this simplified notation. The above
bound implies that the j ι h contribution S{J) to the effective action can be bounded
by E0K0 I T[j)\ = £ o ^ o l ^ i \L~j(\ so for the whole action Sk we get

\S\\^ Σ EoKolT.lL-^ <(Ld ~ lΓ'EoKolT.l .

From the renormalization group point of view it is a very bad bound; after k steps
we would like to have a bound by a constant times \Tf)\ = \Tη\ = ηd\T1\. Such an
improvement is connected with a renormalization of the effective action we have to
do after each step. This renormalization is discussed in the third paper. Here we assume
that the effective action is properly renormalized, and this can be expressed in the
form of some renormalization conditions. We will formulate these conditions now.

The first set of conditions concerns the effective potential i *{j)(ψ,Vjli) defined
by (2.25). We assume that

(H.6) r{J\euvjel) = 0,(j^1'{i)\eί,vjeί).el = 0, eλ = ( 1 , 0 , . . . , 0 ) ,

for all j = k.
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The second condition involves the second order differential of the function
S>ij)(φ,vjh) with respect to the spin variable φ. We assume that

ϊ lim(H 7) Σ tr Jim [-——-S^ Ueι,vJeί).(e2®e2) \x\2 =Q .

A role and the form of the above conditions will become clear in the next section.
The constants on the left-hand sides will appear as coefficients at relevant and
marginal expressions, as usual in the renormalization group approach. A meaning
of these concepts, the relevant, marginal, irrelevant expressions, will be also
explained in the next section.

We have to introduce one more assumption, a more precise description of the
asymptotic behavior (2.5). It is not uniquely defined; it depends on how we
formulate renormalization group equations for the coefficients βk,ak,λk,vk. It turns
out that we do not need all these coefficients for the renormalization procedure,
so we have freedom of choice of some additional equations. Depending on this
choice we have different precise forms of the asymptotic behavior, but they all
have the general form (2.5). We will discuss all these issues in detail in the third
paper. Here we formulate the following particularly simple assumption on those
coefficients:

1 - L ~ 2

/ΎΎ o\ o or k(d — 2)., -. ~ T 1 j 2k Λ. Λ. r 2k £
^Xl Ô  pk — p]Lu ykj Uk — U — I~τT 5 Λβ — Λ I J , Vk — VLJ Uk ,

1 — L

and the constants γk,δk are arbitrarily close to 1 if β is sufficiently large.

From this assumption it follows that ak and λk are determined by the free
renormalization group flow (2.10), (2.11) and the pure scaling (2.9) correspondingly,
but our whole analysis in this and the subsequent papers does not depend on this
assumption. In the third paper we will formulate more precise inductive assump-
tions on the constants yk9 δk, from which it will follow in particular that there exist
limits limfc_00'yfc = y^, l i m ^ ^ ^ = δ^. This was our last hypothesis, and we have
completed the inductive description of the effective actions.

We describe now the second term in the exponential in (H.I). This term
determines a generating functional for correlation functions, and here we describe
minimal assumptions which can be reproduced by the renormalization transforma-
tions, and which are sufficient to control a convergence as T —• Zd and v —• 0 4- ,
or k -> oo . They will allow us to establish existence of the correlation functions in
these limits, hence to establish existence of the corresponding thermodynamic
phases, but they are not enough to prove more detailed properties of the correla-
tion functions. Such properties will be proved in another paper, in collaboration
with M. O'Carroll, based on a much more elaborate description of this term. Now
we assume that

k

(H.9) ^ΛΨkiKθ) — (,9*Φk)\ + Σ βf-

ψj,Vjh,g), x e T , have analytic extensions defined on the space
x {g:g are defined on T and have values in C^, || g\\^ < 1}, and these



120 T. Balaban

analytic functions have corresponding invariance and localizability proper-
ties as in (H.4),(H.5). Terms of the localization expansions satisfy the bounds

x,X;ψj,Vjh9g)\ S M 0^- 2 α iexp( - κdj(X)) ,

where M o is a positive constant and o^ is a sufficiently small positive
constant.

The above bounds imply in particular that the sum over j in (H.9) can be
bounded by MoKoβ~Ί, so it is small for β sufficiently large. Notice also that
invariance with respect to the orthogonal transformations R e O(N) means actual-
ly covariance for the functions Jί{j\ i.e. if ψj,h, g are transformed simultaneously
by R, then JίU) is also transformed by R. This follows from the invariance of the
corresponding function ϊFU).

The last element of the effective density pk in (H.I) to define is the characteristic
function χk. It is given by

Xk = χ(\\Ψk - QkΦkl < βr P(βk) on τ[k),\d"φk\ < βΓ p(βk),

~3 P(βk),M < β~i p(βk),\φk -h\< v^β^ p(βk) on T ,

(2.30)

The domain defined by the above characteristic function can be identified with the
subspace of Ξk(l, βk* p(βk)) corresponding to a fixed unit sphere vector h.

We have finished the description of the effective densities pk, but there are still
some undefined elements in their definition (1.16), namely the characteristic func-
tions χ(j\ Their exact definitions are quite technical and we postpone them to the
third paper, but let us make a few explanatory comments now. The functions χU)

give restrictions on fluctuation variables at corresponding steps. Once the variables
are defined, the restrictions are very simple, just on the magnitude of the variables.
The definition is inductive and technically involved, and although it could be
formulated here it is much more natural to do it at a proper place in the third
paper.

We can formulate now the main result of this part of the work connected with
the small field analysis.

Theorem 2.2. Consider the model given by (1.1), (1.5) for d ̂  3, N ^ 2, β > 0,
1^/lrg + oo, 0 < v ̂  1, and define the seguence of densities pk applying the small

field renormalization transformations (1.16). For β sufficiently large there exist
constants βk,ak,λk,vk,Eo,M,κ,ao,γ,Mo,(x1 such that the densities pk satisfy the
inductive hypotheses (H.1)-(H.9), as long as vk ^ 1.

This theorem will be proved in several stages in the three papers. The proof will
provide many detailed estimates of terms of the effective actions, and conditions on
various constants. In particular we will construct renormalization group equations
for the coefficients βk,ak,λk,vk which will determine them uniquely in terms of the
initial coefficients. In this paper we analyze consequences of the inductive hypothe-
ses (H.1)-(H.8) and we obtain improved estimates of the effective actions SU) and
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6\. This analysis is called a renormalization analysis because of a crucial role
played by the renormalization conditions (H.6),(H.7). It is a subject of the next
section.

3. Renormalization Analysis and Bounds on the Effective Actions

In this section we describe in detail the renormalization analysis, which could be
called also a renormalization expansion, and with its help we prove uniform
bounds of the effective actions &k by volumes \Tη\ = \Tf}\. The main results are
formulated in Proposition 3.4, Corollary 3.5, Proposition 3.10, and Corollary 3.11.

Before we start this analysis we have to introduce some new spaces of config-
urations (φj,h).

The spaces ΞCj(σ,ίή are crucial for inductive constructions of this paper, but the
fact that we have to use the non-linear functions φj in their definition makes them
difficult to work with, it is difficult to perform various operations on configurations
φj. For such purposes we have to find another, more convenient characterization
of these spaces, formulated directly in terms of the configurations (φjji). Let us
study at first some implications of the definitions (2.15), (2.16), (2.20), (2.21) for those
configurations. We have

\(dιφj)(b)\ ύ\ΦjΦ + ) - (Qjφj)(b + )\ +\(QjΦi)(b + )-(Qjφj)(b-)\

+ \ΦjΦ-) ~ (QjΦj)(h-)\ < v2^ + σε + °2^ ^ 3σε > ί3-1)

where we have used the restriction σ rg 1, and where 6 = <6_,£> + > is a bond of the
lattice T{j\ For a locally longitudinal derivative, i.e. a derivative in the direction of
φj, we have

Φj(y) {dι Φj)«)\/» = (ΦAy) - (QjΦMy)) (cιΦf)«\\/»

- Σ £2d Σ
v, \' e B,(\) b cz <.\'. \' +

+ Σ ξ" Σ ξφj(b-).(diφj)(b), (3.2)
x'eB,(\) h c <\ ' \-' H- (Λ ' — \ )>

where Γx λ- is a shortest path of the lattice connecting the points x, x'. Hence

+ 5ξσ2ε < 5σ2ε (3.3)

for c sufficiently small, e.g. (d -f 5)c ^ 1. Next

Φ2(y) - 1 - (Φj(y) - (QjΦMy))2 + 2(ψj(y) - (QjΦj)(y)) (QjΦMy)

--z Σ C 2 d ( ( ^ , ) ( / \ . X ' ) ) 2 -f- (QAΦj - l))(y) , (3.4)
^ x- .\ 'eB,(\)



122 T. Balaban

hence

\φ2(y) - 1| < σV + 2σ2είl + 2°^) + l-d2σ2ε2 + 2~

< 3σ2ε (3.5)

for ε sufficiently small, e.g. 2d2ε ^ 1. The above bound and (3.2) imply also (3.3) as
in (2.18), (2.19). From the fourth condition in (2.15) we get

\φj(y) - h\ £ \ψj(y) - (Qjφj)(y)\ + (Qj\φj - h\)(y) <σ2ε+-^=^ 2^= .

This inequality squared yields

2{\φj{y)\\h\ - Φj(y) h) ϊ \h\2 + φ ) - 2ψj(y) h< 4 — ,

hence

K (l - (Ψj(y))o h)\ < 2 | ^ Hh v,.|l - \h\\ < 2 ^ - ^ + σ2ε2 g 4σ2ε2 (3.6)

for ε sufficiently small, e.g. 9ε ^ 1, where (^)0 = ^ . The inequalities (3.1), (3.3), (3.5),
(3.6) describe basic properties of configurations (φj,h) from the real space Ξj(σ9ε).
Consider now configurations (φj 4- φj, h + h') from the complex space Ξ)(σ, ε). For
φj we obtain

l ^ ω i ^ WAy) - (QjδΦj)(y)\ + (Qj\δφj\)(y) <σ2ε + ε, (3.7)

|(5V(6)I < 3σβ (3.8)

the last inequality is obtained in the same way as (3.1). To the expression
(Φj(y) + Φj(y))- {^(Φj + Φj))((y,yfy) we apply the same transformation as in (3.2)
and we obtain the bound

\(Φj(y) + ΦΆy))'(dι{φj + ^ ) ) « J > , / » | < 7σ2ε (3.9)

for ε sufficiently small. To the expression (φj(y) + φ'j{y))2 — φj(y) we apply the
transformation (3.4), and we obtain the bound

\(Φλy) + Φj(y))2 - Φj(y)\ < 3*2ε (3.10)

for ε small, e.g. 6d2ε ^ 1. Finally we have

\ψj(y) h'(y)\ S \(ΦAy) ~ (Qjφj){y)) h'{y)\ + \(Qj(Φj'hf))(y)\

In the future we will have to estimate the expression with the unit vector (φj(y))0.
We have

2 σ V 2 σ2ε2 σ2ε2

\(h(y))o h'(y)\ <^^— < 3 - i ί — < 3 — . (3.12)
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The above inequalities capture all important properties of the considered config-
urations, and they suggest the following definitions of new spaces:

Ψj(σ,ε) = {(ij/j,h):\d^j\ < σc,\\φj\2 ~M< σ2ε ,

\vj(l-(ψj)0-h)\<σ2ε2,\vj(h2-ί)\<σ2ε2}, (φ,.)o = A , (3.13)

Ψ%σ,ε) = {(φj + φ'j,h + h'):(φph)e Ψj(σ,ε),\φj\ < ε + σ2ε ,

\dιφ)\ < σc,\(ψj + ψ'j)2 - φ)\ < σ2ε,\vjh'\ < σ2ε,\vj(φj)0-h'\ < σ2ε2} . (3.14)

These spaces depend on Vj. If we want to indicate it explicitly, or if we want to
consider more generally a parameter v, we will write Ψj(σ, ε; v), ΨCj(σ, ε; v). The above
definitions describe the most important properties of the considered configura-
tions. In particular the expressions occurring in the definition (3.13) are the basic
scaling, or rather pseudo-scaling expressions in our renormalization group ap-
proach. We will expand effective actions in terms of these expressions. Notice that,
as in the case of the definition (2.16), we may replace the conditions in (3.14) by the
conditions

|^; | < ε + σ2ε, \dHΨj + Ψ'j)\ < 2σε, \(ψj + ψ'j)2 - 1| < 2σ2ε, \vjhf\ < σ2ε,

|v,(^)o ftΊ<<r2*2. (3.15)

The results of the transformations and bounds (3.1)—(3.12) imply the following
lemma

Lemma 3.1.

Ξj(σ,ε) <= Ψj(3σ,ε), Ξ$(σ,ε) c= lPJ(3σ,e) (3.16)

for ε sufficiently small.

The spaces Ψ)(σ,e) are crucial for the renormalization analysis, but they cannot be
used as a basis of our inductive construction, in particular we cannot use them as
analyticity domains of the functions $ {j\ because the functions ψ(

k

j) do not establish
generally any simple relations between these spaces. We mean here relations of the
type described in Lemma 2.1, which are necessary for the inductive construction.
They are the main reason for using the spaces Ξ) instead of Ψ). Actually we have to
use both classes of spaces for reasons which will be clarified in the future. Now let
us describe briefly the way we use these spaces. The most important conclusion of
Lemma 2.1 can be written as the statement

ψ\»: Ξ i ( ί 9 ε k ) - Ξ e j ( L % ε k ) c Ξ ) ( U j ) 9 j ^ k . (3.17)

It implies that the effective action $ίk is an analytic function defined on Ξk(l, εk). To
perform various operations connected with the renormalization analysis we have
to interpolate between the last two spaces in (3.17) using proper spaces ΨCj(σ,ε). By
Lemma 3.1 we have ΞCj(Ljη,εk) c ΨCj(C0L

jη,εk) if C o ^ 3, and the question is
whether the last space is contained in Ξ)(\, ε7). This holds for k — j sufficiently large,
or for C0L

jη sufficiently small. It is a statement about bounds satisfied by the
function φj considered on the space ΨCj(C0L

jη, εk). These bounds are formulated in
definitions (2.15), (2.16), (2.20), (2.21) with σ = 1, ε = εj. Such bounds hold with
milder assumptions on configurations (φj + ψ'.,h + h). Let us introduce another
class of spaces, simpler than the spaces Ψ). We do not need the second condition in
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(3.13) and the third condition in (3.14), we also bound σ2 by σ in the third condition
in (3.13), and in the first and fourth conditions in (3.14). A reason for this is that the
bounds for φj usually involve most of the conditions in (3.13), (3.14), in particular
the conditions on derivatives, so the constant σε is the best we can get in those
bounds. For simplicity let us denote δ = σε, so δ ^ ε, and define

Ψj(δ) = {(ψj,h):\δ1ψj\<δ, \\ψj\2-l\<δ, K α - O / o V / i ) ! ^ 2 ,

\vj(h2 - 1)1 < δ2} , (3.18)

Ψcj(δ, ε) = l(ψj + ψ'j9 h + ft'): (ψj9 h) e Ψj(δ)9 \ φ)\ < ε + δ,

Id'ψ'jl < δ,\(ψj + ψ'j)2 - ψ2\ < δ9\vjh'\ < ^ , K # , )o /z'| < δ2\ . (3.19)

The above spaces will be used in the case σ = C0L
jη, ε = εk, and v, = vk(Ljη)2,

hence v, g (Ljη)2 ^ σ2 = (~)2. We assume generally that Vj ̂  (|)2. Obviously we
have

Ψj{σ9ε) c ψj(δ)9 Ψcj(σ,ε) cz Ψ)(δ9ε) i ί σ ε ^ δ . (3.20)

The space Ψj{δ) is defined by simplest and most natural smallness conditions on
basic quantities connected with the action (1.5). The definition of the space ΨCj(δ,ε)
extends these conditions to complex variables, except that the variable \j/r. is treated
separately in a special way. This is because it does not scale, or rather it does not
scale with a negative power of L as the other quantities, so bounds for functions
involving φ'j, in particular bounds for δφj(ψfj), have to be treated carefully. From
Lemma 3.1 and (3.20) we obtain the inclusion Ξcj(σ,ε) a ΨCj(3σε,ε). One of the
fundamental results of the next paper can be formulated in the following way: there
exists a constant Kί > 1 depending on d only, such that

Ψcj(δ, ε) c 25(1, e) if ε + Kt δ ^ ε (3.21)

for β, ε sufficiently small. If not for the conditions on \j/'p δφj(ψ'j) we would have
Kiδ ^ ε in the above statement. Unfortunately these conditions will cause some
complications in the future. From the above statements we obtain the lemma

Lemma 3.2

φ{

k

j):Ξc

k(Uεk) -+ Ξcj(L%εk) cz Ψcj(C0L%εk)

cz Ψcj(σ9εk) cz Ψcj(δ,εk) c ΨCj(δ0,ε0) cz Ξcj(ί9εj)

if C o ^ XC0L
jη ^ σ,σεfe ^δ,δ£ δo,εk S ε 0 > - ^ — ,ε<> + ^ i ^ o S Cj (3.22)

This lemma establishes a scheme of applications of the above spaces. We consider
a function &{ί) on the space !?5(^o5

£o) with properly chosen <50,ε0 and we perform
all operations on this space, e.g. applications of Taylor fomula. To bound expres-
sions obtained by such operations we use the space Ψcj(<τ, εk) with a properly chosen
σ, e.g. σ = C0L

jη. This scheme will be applied usually with ε0 = εj+ί.
Now we describe the main steps of the renormalization analysis and give some

additional explanations for definitions introduced before. The action ik has the
representations (H.2), (H.5). Take a term $U)(y,X\ φ(

k

j\vjh) in the corresponding
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sum. It is a function of φ[j) and we want to expand it around a constant configura-
tion equal to a value φk

j)(y). There are several problems connected with such an
expansion. The function $ij)(y,X;φj,Vjh) has an analytic extension defined on
Ξcj(l, Cj). A problem with this space is that if we take a configuration φj from it, then
a constant configuration equal to a value ψj(y) at a point yefϋ) does not
necessarily belong to the space. To overcome this problem we consider the function
on a smaller space ΨCj(δ,ε) with <5, ε satisfying the condition in Lemma 3.2. This
space obviously has the desired property, namely if a configuration φj belongs to it,
then constant configurations equal to values φj{y) at points of TU) belong to the
space also. This is the main reason for introducing these spaces. The spaces Ψ){σ, ε)
have this property also, and they are introduced to describe precisely pseudo-
scaling properties of corresponding local functions of φj,h. Consider now the
above mentioned expansion around the constant configuration. A problem with
this expansion is that a remainder depends on configurations φjtt = φj(y) + tδφj,
δφj(x) = φj(x) — φj(y), 0 ̂  t S 1. These configurations generally do not belong to
the space ΨCj(δ,ε) for φj from this space, in particular the conditions defining the
space are not satisfied usually for points x sufficiently far away from the point y.
This forces us to restrict further the space, or to decrease the constants <5, ε, and to
impose a restriction on X, more precisely on dj(X). We consider the function $U)

on configurations φ[j\ so we have to make sure that these configurations belong to
the space ΨCj(δ,ε). By Lemma 3.2 this is true if k —j is sufficiently large, e.g.
k—j^rix, or j ^ k — Άγ. Precise conditions on nx will be obtained later. Now
a basis of the renormalization analysis and the proof of the uniform bound on Sk is
the following formula:

+ f Σ Σ t*iJ)(y> x\ Ψίj)> vjh) - <r ( % , x ; Φ[j)(y\ vjhn
j=l yeTU) Xe@,:yeX

+ Σ Σ £a)(y;ΨΪ\vjh), (3.23)
j = k-rt! + ί yeTU)

where we have used the definition (2.25) of the effective potentials f^u\ A depend-
ence on φk above is through the functions φk

j). In the rest of this subsection we
analyze successively terms of three sums above.

Consider a term of the first sum. By Lemma 3.2 the values φk

J)(y) are in
a domain ΨCj,COnst(v,£k), σ^C0L

jη, which is defined as a domain in C ^ x C *
determining constant configurations in Ψ)(σ,εk). It is defined by (3.13), (3.14), but
with conditions on derivatives dropped out. We would like to obtain bounds on the
effective potential i^ij) considered on this domain. This potential is defined and
analytic on a larger domain, certainly on ̂ $ ,consί(<5o,εo)5 where δo,εo satisfy the
conditions in Lemma 3.2. Let us analyze these conditions in more detail. Obviously
they can be satisfied only if k — j is sufficiently large, for example we conclude that
KιC0L

jηεk < ε,-. We can take ε0 = ε; + 1 above, and then the crucial condition is
εj+1 + K^o ^ sj. We have ε,- - εj+1 = εj+ί(L~2 y - 1) ̂  ε/ + 1 l o g L ( ^ - y).
Let us denote for simplicity ^ ^ — y — α, so the condition is satisfied if
K1δ0 S aεj + 1. We take <5o = 0'oeJ-+1, hence the condition is K1σo^θί. For
σo = CoL

jη we obtain a restriction on k—j of the form C0K1L
j~k ^ α, or
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jji-j ;> c0K^. We choose n1 ^ the smallest integer satisfying the last inequality.
With this assumption we have the inclusions

: Ξi(l9εk) -» ΨCj,conΛσ^k) c Ψc

jtC0nst(δ^ c= fc

jtC0H8t(Su*J+i) > (3.24)

where σ = C0L
jη,δ = σ^.δ^ = σ ^ + ^ σ ! = KΓ 1 ^. The effective potential *VU) is

analytic on the last domain above.
The most important property of the effective potential is the invariance (H.4)

with respect to orthogonal transformations. We study consequences of this sym-
metry quite generally, so let us drop the index j . Consider a function i^(φ,vh)
of real vectors (φ9h) in a domain invariant with respect to the group O(N), e.g. in
some Ψc

COnst(δo)' Take at first R1 transforming a vector φ into \φ\eχ, Riφ = \φ\eί9

hence R^1e1 = φ0, and i^(φ,vh) = r'Hij/lei, vRxh). We write Rλh =
(Rityiβi + (Rxh)\ where ex -{Rih)' = 0, and we take R2 such that R2eγ = eί9

R2(Rίh)f = \(Rλhy\e2. We have (Rίh)ί = e^R^ = R^e^h = ψo.h9 and \Rxh\
= \h\, hence \(Rxhy\2 = \h\2 - (R^)2, = \h\2 - (ψO'h)2. From the above equalities

we obtain

r(φ,vh) = r(\φ\eΐ,v{φ0.h)e1 + v^\h\2 -{φO'h)2e2) . (3.25)

Consider the function i^(ueu vveι + vwe2). It is defined for u close to 1 and (v, w) in
a neighborhood of the unit circle in R2, and it has an analytic extension to
a function of u + u', v + v\ w + w', where u\ v\ W are complex numbers
in a neighborhood of 0. More precisely we consider the function Ψ"((u + uf)e1,
v(v + v')e1 + v(w + W)e2\ which is an analytic function of u + u\ v + v\ w + w',
defined on the domain

ιι,D,weR,M > 0, \u2 — 1| < <50,|v(?;2 + w2 — 1)| < <5Q,|V(1 — v)\ < δ2) ,

u\v',w' EC,\U'\ < ε0 + δo,\(u + u')2 — u2\ < δo,\vv'\ < δo,|vw'| < —^= — .

(3.26)

For the j t h potential we shall take δ0 = δuε0 = εj+1. This function is invariant with
respect to rotations of the plane spanned by eί,e2 which leave the vector ex

invariant. It means simply that it is an even function oίw + w'. We define

f(u + u\v(v + vf\v2(w + w')2) = ̂ ({u + u')el9v(υ + v')ex + v(w + w')e2)

(3.27)

For simplicity we write it as/(w, vv, v2 w2), and the complex numbers w, v9 w belong
to the domain described by (3.26). From the above definition and the equality (3.25)
we obtain a representation

r(φ,vh)=f(\Φ\MΦo'h\v2(\h\2 -(φo h)2)) . (3.28)

This is a fundamental representation of the effective potentials, it is formulated in
terms of invariants of the orthogonal group O(N\ and it is a basis of the renormal-
ization analysis. From the restrictions defining Ψconst(δ0) we see that the expres-
sions \φ\ — 1, v(l — φO'h) are small, and they are also the basic pseudo-scaling
quantities, as it has been mentioned before, so it is natural to expand the effective
potentials with respect to those expressions. This will give us an expansion into
relevant, marginal and irrelevant quantities. To construct such an expansion we
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have to expand the function/(u,vw,v2w2) around the point u = 1, v = 1, w = 0.
Obviously this point belongs to the domain (3.26) for any δ0 and ε0. To study this
expansion we restrict the function to a polydisc with a center at this point. It is easy
to see that the polydisc in C 3 defined by

| M _ l | < _ ^ 0 i^ 11 < —̂  Iw| < - (3 29)
3 v' Λ / ^ 0 '

is contained in the domain (3.26). The function f(u,vv,v2w2) is analytic on it and
bounded by E0K0, hence derivatives of this function satisfy the following bounds:

/(W,VU,V2W:

(duf(dvυ)β(d(v2w2)) χ + lβ + 4-y
0

on the polydisc

\u — l\<-δ0, \v — 1 | < - — , | w | < - — (3.31)
6 2 v 2v£0

Of course only the powers of δ0, ε0, and the factor E0K0 are important in the above
bounds.

We can write now a Taylor expansion of the function/to any order, and we can
write bounds on its terms based on the bounds (3.30). Having in mind applications
to the effective potentials we write the following expansion:

f(u,vv9v
2w2) =/(l,v,0) -

+ /2,O,O(H,V,0)(M - I) 2 +/lflfO(w,v,0)(w - l)v(v - 1)

+ /o.2.o(",vι>,0)(v(t> - I))2 +fo,o,i(u,vu,v2w2)v2w2, (3.32)

where the functions/α?/?y are expressed in terms of the corresponding derivatives of
the orders α, /?, γ by the integral representation of remainders in the Taylor formula.
From this representation and the bounds (3.30) we obtain

-/(l,v,0) - ί— / }(l,v,0)(u - 1) - ί—/J(l,v,O)v(ι; - 1)

(3.33)

on the polydisc (3.31).
Now we apply the results of the above general analysis to the effective poten-

tials f^ij)(φ,Vjh) for j ^k — nί. We have the representations (3.28) with functions
fU) which are analytic on the domain (3.26), hence on (3.29) with δ0 = ^ and
£o = £/+i They have the expansions (3.32) and satisfy the bounds (3.33) on the
polydisc (3.31). We formulate the hypothesis (H.6) in terms of the corresponding
functions fu\ We have

f{j)(u,VjV,0) = /riS)(ueuVjVe1) = ^{y ueuVjve^ (3.34)
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for any y e Tu\ Using these equalities we can rewrite (H.6) in the form

/O)(l,V;,0) = 0, — / '

From this and the bound (3.33) we obtain immediately the bounds

;£

(3.36)

on the polydisc (3.31) with δ0 = δu ε0 = εj + ί, v = Vj.
We have obtained the representation (3.28) of the effective potential for real

vectors φ, h. We can construct an analytic extension of the potential by using the
analyticity of the function/and taking analytic extensions of the expressions inside
the function. We introduce the following three functions of φ + φ\h -f h':

W2 = (h + h1)2 -V2 = (h + h')2 - {{φ + φ')0 (h + h'))2 . (3.37)

The functions U,V,W2 are natural analytic extensions of \φ\, φo K \h\2

— (φo h)2. We have to obtain bounds for these functions considered on the
domain Ψc

consM^) We have

hence

assuming

V -

U - 1 =

ε sufficiently

1 = (Φ + Φ1.

- (v7! + (Φ2 -

x l(φ2 ~ 1)

\u-

small. Next

)o (h + h')-

- i ) +

+ ((Φ

- 1 | <

1 = (φ

((φ +

+ ΦΊ

2σ2ε

o h-

φ'f-
2 ~ Ψ

>

-1) +

-ψ

2 ) ]

1 / 1

2) +

>

( / -

i )-

® ψo)Φ'

(3.

(3.

•h

38)

39)

• h)((ψ + tψ')0 • ψ') (3.40)

' U ~(Ψ + tψ')o ® (Ψ + Ψ)oW)((Φ + Ψ)o h))} +φo h'

} dt l [I -{φ + tφ')0®(φ
o V(Ά + tφ')2

and (/ - φ0 ® φo)φ' h = φ' (h-φo) + (ί-φo.h)(φ'
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These identities yield the estimate

1 ( σ2ε2 2ε fJϊσε σ2ε2\ o 2 / σ 2 ε 2 \ Λ J σ2ε2

| V - 11 < + ^ - 7 — + + 8ε2 1 + 4- 4ε2 1 +
v 1 " A v v v / V v J \ v

σ 2 ε 2 σ 2ε σ 2 β 2

+ + 4 ε — < 22 , (3.41)
V V V

where we have used the assumption v ^ σ2. Notice that the above estimate is not
an optimal one, we have simply estimated all expressions close to 1 by 2 in each
term. For the function W2 we have

W2 = (\h\2-l I) + 2(ψo.h)ψo.h' + 2{l-xjjQ®xljQ)h-hf

+ {h')2 - 2(V - 1) - (V - I) 2 , (3.42)

hence

+ "° + 4 4 — + 22^-f < 5 6 ^ - , (3.43)
V V V V

for ε sufficiently small. We conclude from the inequalities (3.39), (3.41), (3.43) that
the following bounds hold:

We obtain the lemma

Lemma 3.3. The analytic functions U,V,W2 map the domain Ψc

COnst(σ,ε) into the
polydisc (3.31) ίfε^ε0, 7σε0 ^ δ0.

We apply the lemma in the case where ε0 = εj+ί, δ0 — δγ = σ1εj+ί, and then
the condition 7σε0 ^ δ0 means Ίσ ^ σ±. We have found that σγ = Kfι α, hence it
can be written as ΊKX \σ ^ 1. We have also σ = Co L

jη, so the condition takes the
form 7C0K1^LJη ^ 1, or Lk~J ^ 7C0Kι\. It implies the previous one, which has
the same form but with 7 replaced by 2. We adjust nί properly so that the above
condition is satisfied.

Let us consider the equality (3.28). The function / is analytic on the polydisc
(3.31), so the right-hand side of the equality has an analytic extension defined on the
domain Ψc

const{σ, ε0), if 7σε0 ^ δ0. This defines an analytic extension of the effective
potential by the formula

-r(ψ + φ',v(h + h')) =f(U,vV,v2W2) . (3.45)

Consider now the effective potentials Ϋ~{j\ They have analytic extensions given
by the corresponding formulas (3.45), and defined on domains Ψc

const(^^) with
7σ ^ σί9 ε ^ £/+i We take ε0 = εj+l7δ0 = δ± = σ1εj+ί, v — Vj in definitions and
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bounds above. The equality (3.45) and the bounds (3.36), (3.44) imply

', vj(h + h'))\ < SE0K0 (
3Λilσfε2 + ̂ i(7σ)4.4 +

£32EoKo(-)Ί—Y. (3.46)

This is a fundamental bound on the effective potential i^ij\ it describes precisely its
pseudo-scaling properties. We formulate the most important conclusions of the
above considerations in the proposition

Proposition 3.4. The effective potentials irϋ)forj ^k — n1 are given by the formulas
(3.45) with functions f{j) defined and analytic on the polydiscs (3.31) with
δo = δi = σίεj+ly ε0 = εj+uv = Vy, and satisfying the bounds (3.36). Therefore the
effective potentials ^ ( J ) are analytic on domains Ψc

COnst{σ>ε) with 7° = σi> ε = fy+ij
and they satisfy the bounds

on those domains.

h'))\ < 32E0K0(lKlL
i^\*(^) (3.47)

We apply the above proposition to the case ε = εk, σ = C0L
jη. The assump-

tions are satisfied if Lk~j ^ ΊC0Kί £. We take the integer nγ as the smallest integer
satisfying the inequality L"1 ̂  7 C 0 X i i , and k — j ^ nu or j ^k — n1. We obtain
the bound

ί f ^Uη)d+2'2y . (3.48)

In this bound we want to have power of LJη larger than d, so we assume γ < 1. We
have assumed also y < ̂ ^ in (H.3), so we can write both conditions together as
γ < min{l,^2^}. In this case we could take y0 = min{l,^2^}. It turns out that this
is a correct choice of y0 in general, for all remaining cases we will study in the future.
Denote for simplicity

Kα = 32KOI ΊCoK, Π - I , 2(1 - y) = α 2 . (3.49)

By (3.24) we have

Corollary 3.5.

(y;ψ + ψ', vk(h + A')), vj(h + h'(y)))\ S E0Kx(LjηY + x' (3.50)

This is a basic bound on the expressions i/"U)(ψ{

k

j)(y), Vjh) which will contribute
to the uniform bound on Sk. If we change k into k + 1, the above bound is
multiplied by the factor L~d~a\ This means precisely that the expressions are
irrelevant quantities.

Consider now terms of the second sum in (3.23). Take a term corresponding to
some j ,y,X, and consider the function SU) (y,X; φJ9Vjh). We expand it around the
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constant configuration ψj(y) up to an appropriate order. We analyze this expan-
sion in most of a remaining part of this subsection, so for simplicity of notation we
drop the index j . It turns out that we have to expand up to the fourth order, thus we
write

S{y,X;φ,vh) - g(y,X;φ{y),vh)

δφ(x) = φ(x) - φ(y),φt(x) = (1 - t)φ(y) + tφ(x) = φ(y) + tδφ(x), (3.51)

We will study successively the terms of the expansion. Our basic goal is to
decompose them further into sums of relevant, marginal and irrelevant expressions,
and to construct their analytic extensions.

Let us start with the last term of the expansion. By Lemma 3.2 the function $ is
analytic on a space Ψc(δ0,ε0) with δo,εo satisfying the conditions of the lemma, in
particular with δ0 = δλ = σι&j+u ε0 = εj+1. We choose this space as a maximal
analyticity domain, and all other spaces will be contained in it. We would like to
extend the last term in a natural way as an analytic function of (ψ + ψ', h + h!) e
Ψc(δ,ε) for properly chosen <5,ε. The derivative of $ in that term depends on
(ψ + ψ')t = Ψt + ψt> s o w e have to determine to what space these configurations
belong. We have

d1φt = td1ψ, hence \dι\jjt\ S I^Vl < δ , (3.52)

and obviously the same bound holds for dι\jj't. Next

ψ2(x) - 1 = (1 - t)(ψ2(y) - 1) + t(φ2(x) - 1) - ί(l - t)(ψ(x) - ψ(y))2 . (3.53)

hence \ψ2(x) — 1| < δ + i\ψ(x) — Ψ(y)\2- It is immediate to estimate δψ(x) =
ψ (x) — ψ (y) by I Γy x \ δ, where Γy, x is any unit lattice path connecting the points y, x
and lying inside the domain X. We would like to have an estimate in terms of
dj(X) = d(X\ so we have to choose Γyx properly. Take a tree graph Γ satisfying
the conditions of the definition (2.27), and two cubes of the cover π} containing the
points y,x and contained in X, e.g. Π', D " e π}, Ώ\ D " c X, y e D', x e DΛ'• By
the conditions of (2.27) the graph Γ intersects both cubes, take points x\x"
belonging to the corresponding intersections. There exists a subgraph of the graph
Γ which is a path containing the two points x\ x". Denote by Γ the part of this path
from x' to x", hence Γ a Γ and \Γ'\ g \Γ\. We approximate this path by a unit
lattice path contained in X in the following way. Start with the point x\ x ' e Q ' and
• ' is an open LM-cube, so there exists a unit cube Δ(y0) such that x' e Δ(yo\ and
the interior of Δ(y0) is contained in •'• Denote by Γx the part of Γ' starting at x'
and with \ΓX\ = 1. Obviously Γx a Δ(y0), where 2(y0) is a union of 3d unit cubes
touching Δ(y0). Denote by xx a final point of Γ 1 ? and let y1 be a unit lattice point
such that xγs Δ(yx) c Δ(y0). The point xλ lies inside X, hence the interior of zl(^i)
is contained in X, and at least one of the unit lattice shortest paths connecting y0
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with yγ is contained in X. Denote such a path by Γ > W i , hence \Γyo>J?l| ^ d. Take
now the point x1 and denote by Γ2 the part of Γ' starting at xx and with | Γ 2 | = 1.
Then Γ2 <= A(yx\ and we denote by x 2 a final point of Γ 2 , and by y2 a unit lattice
point such that x2 e Δ(y2) c /JO^). The point x 2 and the interior of the cube Δ{y2)
are inside X, hence there exists a shortest path connecting the points yuy2 and
contained inside X. Denote such a path by Γyu}.2. We continue this construction
until we reach a point xp in Γ such that a length of the remaining part of the path Γ
starting at the point xp is rg 1. We denote this part by Γp+ί. Of course the point x"
is its final point. It belongs to Π", hence there exists a unit lattice point yp+1e[J"
such that x" e A(yp+ί), and a shortest path Γ3W,p+i contained in X. Thus we have
constructed a unit lattice path, a union of the paths Γyhyι+ι, i = 0,1, ... ,p, connect-
ing the points yo,yP + ι and contained in X. It is an approximation of the path Γ',
and we have the inequality

P

y o rMnx
=
<

P

Σ lj

ί = 0

d\r +

P

vi+1\ = d(p + 1) = d ^

d .

Let us take a shortest path Γy r o connecting y,y0, and a shortest path Γyp+ίtX con-
necting 3;p+i,x. Of course Γy,tyo c Π ' ^ ^ ^ . x c D", and

IΓ^yJ ^ rfLM - d, \Γyp+uX\ ^ Λ M - d .

We combine these two paths with the previously constructed path and we get the
following path from y to x

J y p
ί = O

It is a unit lattice path contained in X, and we have

\ΓyJ S 2(dLM -d) + d\Γ\ +d< 2dLM + d{\Γ\ - 1) .

Taking Γ such that \Γ\ - 1 < Md{X), we obtain the bound

\ΓytX\<> 2dLM + dMd(X). (3.54)

We use this path to estimate διj/(x\ and we get

< (2dLM + dM d{X))δ for x e X . (3.55)

The identity (3.53) and the bound (3.55) imply

\ΨΪ(x)-l\<δ+ ^(2dLM + dMd(X))2δ2 for x e X . (3.56)

We require that ψt belong to the space Ψ(^δ0) on X. This is implied, for example,
by the conditions

2dLMδ^^δ0, dMd{X)δS^δ0. (3.57)

We will discuss them in detail later on. Consider now the last condition defining the
space Ψ(δ). The inequality 1 — ψ0 h < v is really restrictive for -• small, because if
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v ^ 1 then 1 - φ0 h ^ 2 < ^ holds for all non-zero vectors φ.Iϊ*< 1, then the
inequality 1 — φo-h <γ defines a convex spherical cone in the space RN, with an
axis determined by the vector h. If φ(y), φ(x) satisfy the inequality, then they belong
to the cone and their convex combinations (1 — t)φ(y) + tφ(x) = φt(x) belong to
the cone also for all ί e [ 0 , 1 ] . Thus generally the configuration φt satisfies the
condition v(l — (φt)0 h) < (2δ)2 on X, assuming that (3.57) holds, because then
φt + O on X. We have proved the following statement: if (φ, h) e Ψ(δ) and the
conditions (3.57) hold, then (φt,h) on X, satisfies the conditions defining the space
Ψ(?δ0). We would like to extend this statement to complex configurations and
spaces. We have (3.52) for dίφ't and obviously also \φf

t\ < ε + δ. Consider now
(φt + φ't)

2 — φ2. The identity (3.53) holds for complex configurations also, in
particular for φt + φ't = (φ + φ')t. Subtracting corresponding identities we get

(φt(x) + φ't(x))2 - φ2(x)

= (1 - t)((φ(y) + φ'(y))2 - φ2(y)) + t((φ(x) + φ'(x))2 - φ2(x))

- ί(l - t)(φ\x) - φ'(y))(2(φ(x) - φ(y)) + (φ'(x) - φ'(y))\ hence

|(^(x) + φ't(x))2 - φ2(x)\ <δ+ ^(2dLM + dMd(X))2δ2 <^δ0

if the conditions (3.57) hold. The configuration h' satisfies

δ2 1 δ 1 δl . δ δ0
W\< — ^j17τ7δ0- < - — i f - ^ - .

vε AdLM vε 4vε0 ε ε0

Further

φt(x). h'(x) = φ(x) h'(x) - (1 - t)δφ(x) fe'(x) , hence

l ^ fc'l < | ^ ( x ) | — + (2dLM + dMd(X))δ— < 2— + 2δ0-v vε v v

l δl iδ2

~ < o " ~ ' a n d

v 8 v

The conditions defining the space ^ c ( iδo,ε o ) are therefore satisfied on X, if (3.57)
hold and ε rg ε0. The configuration (φt + φ't,h + h') may be extended onto the
whole lattice by the formula

(φt + φ't,h + h')x = χx(ψt + φ't,h + h1) + χAΨ(y) + Ψ'{y),h + h'{y)), (3.58)

and the extended configuration satisfies all the conditions defining the space
Ψc(^δ0,ε0)on the whole lattice, hence it belongs to this space. The above consider-
ations are summarized in the following lemma

Lemma 3.6. If(φ + φ'9h + ti) e Ψc(δ,ε),ε ^ εo,f ^ § and the conditions (3.57) are
satisfied, then (φt + φ't,h + h')xe Ψc(Uo^o)for t e [0,1].

The function (3.58) is a linear, therefore analytic function of (φ + φ',h + hf), and
the lemma implies that the last term in (3.51) is an analytic function on Ψc(δ, ε), or
rather that its natural extension is such a function. Let us determine a maximal
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analyticity domain. We take ε = ε0 = εj+u and we use the conditions (3.57) in the
following way: the first condition determines a maximal δ satisfying it, i.e.
δ2 = (4dLM)~1σ1εj+1 = σ2εj+u where σ2 = (4dK1LM)~1a, and the second con-
dition is considered as a restriction on X, i.e. we assume that X satisfies

^ (3-59)

Thus the last term in (3.51) is an analytic function on the space Ψc(δ2, £o)>or on any
space Ψc(δ,ε) such that δ ^ δ2, ε S ε0 ? I ύ τ0-

Let us estimate this term. For the analytic extension of the derivative in this
term we have

Λ,X;(φ + φ%v{h + h')),δ(φ + φ'), HΦ + ΦΊ,
dφdφdφdφ

δ(φ + φ'\ δ(φ + φ')

^ ; { φ + φ'\ + τδ(φ + φ'),v(h + A'))|τ = 0

= T~. ί dτ±£(y,X;(φ + φ'\ + τδ(φ + φ')Mh + h')), (3.60)

where r is a sufficiently small positive number. In order to get a best bound we have
to take a maximal possible r. We find it from the requirement that

({φ + ψ')t + τδ(ψ + ψ'),h + h')xeΨc(δ0,ε0) for all τ: |τ | ^ r ,

because then we use the analyticity of the function $ on this space to conclude that
the expression (3.60) is an analytic function of (ψ -f ψ',h + h!) on the space
Ψc(δ2,ε0), and an analytic function of τ on the disc {τ: | τ | < r 0}, where r 0 is
a supremum over all r for which the above condition is satisfied. From Lemma 3.6
and the definition of the space Ψc(δ2,ε0) it follows easily that the condition is
satisfied if the following three bounds hold on X

\τδ(φ + φ')\ s\δ0, |τ(δV + dψ)\ s\δ0,

\2(φ + φ'), τδ(φ + φ')+(τδ(φ + φ'))2| ί φ 0 .

The expression on the left-hand side of the last inequality above can be bounded by

+ φ')\ S ( 2jl+-δ0 + 2εo+-δo )\τδ(φ + ψ')

for εo,δo sufficiently small, hence the three bounds hold if |τ<5(ι̂  + φ')\ ^ iδ0. By
(3.55) we have

\τδ(φ + φ')\ < r(2dLM + dMd(X))2δ on X ,
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hence the last condition is satisfied if r(2dLM + dMd(X))2δ ^ ^δ0, and the maxi-
mal value r 0 is given by

0 \2{2dLM + dMd(X)) δ 24dLM(l + izd(X)) δ '

From the inductive hypothesis (H.5) and the representation (3.60) we can bound the
last term in (3.51) by

-4 Eo exp( - κd{X)) ^ (24dLM)4 exp f — d(X) ) (— ) £ 0 exp( - κd(X))
r0 \2L J \ooj

ί δY
^ {24dLMf I — j Eo exp( - (K - l)d(X)) . (3.61)

This bound holds on the space Ψc(δ, ε) with δ, ε satisfying conditions δ :g δ2, ε ̂  ε0

We consider now the above conditions and bounds for the spaces Ψc(σ,ε). In
particular by Lemma 3.2 values of the function φ[j) are in the space ΨCj(C0L

jη,εk),
so we analyze the conditions and bounds for this space. We have

hence now δ = C0L
jη εk ε = εk. The first condition in (3.57) is equivalent to

δ ^ δ2 = (τ2dj+1 = σ2L~αε7 , or

Ljη- ^ Co 1 σ 2 L ~ α ι ι

This can be written as a condition on /c — j of the form

L 1 + α M^ 0 i (3.62)

We define Πi as a smallest integer satisfying this inequality. It satisfies also the
inequality in Proposition 3.4. Consider the second condition in (3.57), or the
condition (3.59). It can be written as

- d (XX Gl£J+1 - α j (i +α)(fc-τ) /α fir*
- dλx) z 2dMCoLJη£k - 2 d C o K ι L « M

L I-3-6-3)

From the definition of n1 it follows that it is implied by the simpler condition

dj(X) S 2 L L ( 1 + α ) ( f c " ^ m ) . (3.64)

This gives a transparent condition on the tree-size of the admissible localization
domains.

Making the corresponding substitutions in the bound (3.61) we obtain the
expression

^ ^ Y - (K - l)dj(X)) .

Let us recall that we have denoted α = ̂ - — y, so 1 + α = -f — γ and
4(1 + α) = 2d — 4γ. We require that 4(1 + α) > d, hence d — 4y > 0. Notice that we
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have assumed y < γ0 = min{l ,^}, so d - Ay = 2 ( ^ - 7) + 2(1 - y) ^
2α + α2 > 0. Denote

/

V
We summarize the results on the last term in (3.51) in the following lemma.

Lemma 3.7. The last term in the expansion (3.51) can be extended to an anlaytic
function defined on any space Ψc(δ,ε) with δ g <52, c ^ £0, f ^ S, <md /ί c'tfft ^
bounded on this space by the right-hand side of (3.61). Ifk — j ^ ?tl5 where nt is the
smallest integer satisfying the inequality (3.62), ί/?eπ ί/ie space Ψc(δ2^o) contains
ΨCj(C0L

J'η,εk\ and the last term can be bounded on it by

Kx(L^y + '2Eoexp(-(K-l)dj(X)). (3.65)

Notice that the above bound implies again that the last term is an irrelevant quantity.
Consider now the terms of the second sum in (3.23) for which the condition

(3.63) is not satisfied, i.e. we have

The corresponding functions ${J) (y\X,ψj,Vjh) can be extended to analytic func-
tions on the space Ψc(δuε0), and we have the bound

/ ]\4

^ 2£oexp( - κdj(X)) < 2£O4! 2dC0KγL*M-
\ α/
1

exp( — (K — \)dj(X)) = 2—4^α(^7>?) 2 ^ o e χ p ( — (κ — l)dj(X))

(3.66)

Thus these terms have the same bound as the last term in the expansion (3.51), and
they are irrelevant quantities also.

The remaining three terms in the expansion (3.51) cannot be shown to be
irrelevant by such straightforward bounds as above. They demand a much more
detailed analysis in order to insure the irrelevance. We start this analysis with
bounds on derivatives occurring in the three terms. We need such bounds in
slightly more general situations. We have

\Xlψ + φ',v(h -f- h!)\δφi, ... ,δ\

oτι ••• dτn

= ^~. ί ^τ" ~ . ί ^τ£(y,X;ψ + ψ'+ t *MiMh + Ό) . (3-67)
^ π ι lτχl = lχ i\ 2M\ |τιi| = Γιi τ,, , = 1

We take (ψ + φ\ h + h') e Ψc(jδ0,ε0), δφi are arbitrary configurations with values
in CiV, and i\ are sufficiently small. We find them from the condition that the
configuration inside the last function above belongs to the space Ψc(δ0,ε0). By the
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same analysis as in the proof of (3.61) we can show that this condition is satisfied if

n

Σ τiδφi ^-δ0 on X, hence if rt ^
6

From this we obtain the bound

HJL
[(δφT

-g)(y,X;φ + φ'Mh + h')),δφu ...,δφn

\δφn\x (3.68)

holding on Ψc{jδ0,ε0) and for arbitrary δφt.

We need to consider the derivatives for constant configurations only, i.e. we
take (φ + φ\h + h') e Ψc

const(jδo,εo). Let us study symmetry properties and their
consequences. The inductive assumption (H.4) and the formula (3.67) imply

(y9X;R(φ + φ%vR(h + h'))9Rδφl9 ... 9Rδφn

(3.69)

for .R e O(N). We take ι/̂ ' = 0, h' = 0, and we use the above invariance in the same
way as for the effective potentials in the proof of (3.25), we take the same R = R2Rι
and we obtain

{y,X;φ,vh),δφι, ... ,δφn(δφT

+ Vy/\h\2-(φ0'h)2e2)9Rδφl9 ... 9Rδφn) . (3.70)

The expression on the right-hand side obviously has the invariance property (3.69), in
particular with respect to all the transformation R" eO(N) leaving invariant the
vectors e^, e2. By the form of this expression it means that it is invariant with respect to
the transformations R" acting on the configurations Rδφx only. Consider the functions

... dψ(xn)
vwe2) . (3.71)

They are defined and analytic on the domain (3.26) with ^δ0 instead of δ0, but we
are interested again in a neighborhood of the point u = 1, v = 1, w = 0, so we
consider it on the domain (3.29) with the same ?δ0. The functions are analytic on
this domains and satisfy the bound (3.68). By the preceding remark they have the
symmetry property

(δφ)n vwe2)

δn

(8ΦT(
(y,X;ueί9vveι + vwe2) (3.72)
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for all R" e 0(N) leaving invariant the vectors e1,e2. Of course they have also the
more general property (3.69). Now we study consequences of this symmetry for the
three cases n = 1,2,3 which are interesting for us. These consequences become
more complicated with increasing n, although they are quite elementary.

Take n = 1. The first order derivative is a vector invariant with respect to the
transformations R", hence it is a linear combination of the vectors eΐ,e2. Applying
(3.69) with R equal to the reflection with respect to the e2 component, we obtain
that the e1 component of the derivative is an even function of w, and the e2

component is an odd function of w. Thus we can write

" ι(y9X;uei9vveί + vwe2) =

+ v2(x,y,X;u, vv, v2w2)vwe2. (3.73)

and v1,v2 are analytic functions on the domain (3.29) with jδ0 instead of δ0. The
function vxu satisfies the bound (3.68) with n = 1 and eλ δψx instead of δφ1. For
the function v2 we have the representation

v2(x,y,X',u9vv,v2w2) = — ( δ )(y,X;ueι,vveι + vwe2)-e2 , (3.74)
vw\oψ(x) )

so it satisfies the bound (3.68) with n = 1, and with an additional factor yjϊ-^—.

The function δψi is replaced by e2 δψ1. For further reference let us write the
domain (3.29) with \ δ0 instead of (50 explicitly in the form

\u-ι\<Uo, I r - i | < ^ , Iw a l<4f-
6 4 v 32\vεo

Guided by the analysis of the effective potentials, and by the fact that the function
Vι is multiplied by ex δψ, we expect that it is enough to expand v1 up to the first
orders in u — 1, v(v — 1) and v2w2, to get irrelevant expressions. The function v2 is
multiplied by vwe2 δψ, which corresponds to a marginal expression, so it is enough
also to expand up to the first orders in all the variables. Thus we write

υσ(x9y9X;u,vυ9v
2w2) = υσ(x,y,X;l,v90) + υσ.lΛ0{x,y,X;u,vυ,v2w2)(u ~ 1)

+ vσ.Λh0(x,y,X;u,vv,v2w2)v2w2. (3.76)

The functions vσ^β>y are expressed in terms of the corresponding derivatives of the
functions υσ by Taylor's formula in the integral, or by the corresponding difference
quotients, which is actually more convenient for bounds. Using the last representa-
tion we obtain easily the bounds

Kυσιatβty(y9X;u9vυ9v
2w2)9δζ>\

εσ-l +2γ

°
1 +

Eoexp( _ κd{x))\δζ\χ ( 3 > 7 7 )

on the domain (3.75) and for α,/?,y such that α H- β + y S l The function δζ is an
arbitrary complex valued function defined on X.
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Take n = 2. The second order derivative in components of φ is a matrix

commuting with all the matrices R", by the symmetry (3.51). This implies that it is

a block matrix with two blocks. The first block is a 2 x 2-matrix in components

with indices 1,2, the second block is a (N — 2)x(N — 2)-matrix in components

with indices 3, . . . , N, commuting with all orthogonal matrices in those compo-

nents, so it is proportional to the identity matrix. Denote the first block by
\_c a

and the second block by el. The second order derivative has also the general
covariance property (3.69). Applying it to the reflection in the component of e2, we
obtain that α, d, e are even functions of w, and b, c are odd functions of w, so
b(w = 0) = c(w = 0) = 0. Take now the second order derivative at w = 0. It has the
invariance property (3.72) with R" replaced by R\ where Rf e O(N) is an arbitrary
transformation leaving the vector eγ invariant. This invariance implies that the
corresponding matrix has also a block structure with two blocks, the first is just the
element a(w = 0), the second is a (N — 1) x (N — l)-matrix proportional to the
identity matrix. The coefficient multiplying the matrix must be equal to d(w = 0)
and e(w = 0), hence d(w = 0) = e(w = 0). Thus the matrix representing the second
order derivative is a sum of two matrices, one is the matrix el, where / is now the
identity matrix in all components, and another is a matrix which in the first two

[a - e b Ί
components is equal to , , and all the remaining elements are equal

[_ c d - e\
to 0. Notice that d — e is an even function of w, and it is equal to 0 at w = 0, so we
can write d — e = d^w2. The above considerations lead to the following repre-
sentation of the second order derivative:

i d 2 \

\δφ(xι)dφ(x2) J

= υo(xι,x2,y,X',u,vv,v2w2)/ + vΐfl(x1,x2,y,X;u,vυ,v2w2)u2ei ® eγ

+ Vιί2(xi,x2,y,X;u,vv,v2w2)uvwe1 g) e2

+ v2, i(xi,*2,y,X\ u, vv, v2w2)vwue2 <g) eγ

+ υ2t2(xi,x2,y,X;u,vυ,v2w2)v2w2e2 ® e2 . (3.78)

The functions vo,vσfP, σ, p = 1,2, can be written as the corresponding linear combi-
nations of matrix elements of the second order derivative. For example we have

^ ) ( X + vwe2)(e2 ® e2 - eN ® eN)
V2W2 | _ V # ( X l ) # ( X 2 )

{JL

\δ(vw)2d4/(xι)dφ(x2)

x (e2 ® e2 - eN ® eN) , (3.79)

1 X ( d2 d2 \
:f dί(l -t)tr\ 2 δ )(y,X;ueuvve1 + tvwe2)o [\d(vw)2dφ{x)dφ{x) J
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and similar, but simpler and obvious formulas for the remaining functions. From
these formulas we obtain that the functions satisfy the bounds (3.68) with some
additional factors, which we will write below. In the expansion (3.51) the second
order derivative of S occurs with the second power of δφ, so it is at least a marginal
quantity. We will see that the last four terms in the representation (3.78) provide
some additional scaling factors, so they are actually irrelevant quantities. We
expand the function v0 up to the first order in all variables writing the same
formulas as (3.76) for vσ, and we obtain the bounds

- κd(X))\δζ1\x\δζ2\x (3.80)

on the domain (3.75), where α 4- β + y ^ 1 and δζ1,δζ2 are arbitrary complex
valued functions on X. Similarly for the functions vfftP we obtain

\<υσ,p(y,X;u,vv,v2w2)δζuδζ2}\

l P - κd{X))\δζ,\x\δζ2\x (3.81)

on the domain (3.75), σ,p = 1,2, and δζl9 δζ2 as above.
Applying the formulas (3.70), (3.73), (3.78) to the terms of the expansion (3.51)

we get a sum of terms in which the configuration δφ is replaced by |ιA(y)|β! Rδφ or
v^J\h\2 -{φo(y)*h)2e2*Rδφ. By the definition of R we have Rψ(y) = \ψ(y)\el9

hence Rδφ(x) = Rιj/(x) — \φ{y)\eu and

= φ(y) δφ(x) = ψ(y) (ψ(x) -

= Z 1 ( x , 3 / » . (3.82)

For the second expression we have

= vR2(Rιh)' (Rψ(x) -

= viR.hY iR.φix) - (R1φ(x).e1)eι)

= v({Rιh eί)e1+(R1h)ΉR1φ(x)

-(Rιψ(x) eι)e1)

= vR1h (R1ψ(x)-(R1ψ(x).e1)e1)

= vh-(φ(x)-(φ(x)-φo(y))φo(y))

= vh (I-φo(y)®φo(y))φ(x).

We have used here the definitions of Rι,R2 and R — R2Rι given between the
formulas (3.24) and (3.25). It is not clear from the expression above that it is
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marginal, so we transform it further

vh.(i-φo{ψ)®φo(y))Ψ(χ)

= (vh φo(x) - vh φo(y))+(\φ(x)\ - 1)

•(vh φo(x) - vh-φo(y)) + ^vh-φo(y)\φ(x)\\φo(x) - φo{y)\2

= (vh φo(x) - vh φo(y)) + (\φ(x)\ - l)(vh φo(x) - vh-φo(y))

- vh φo(y))+-v\φ(x) - φ(y)\2 + RAx,y,φ,vh) = Z2(xuy,φ,vh) .

(3.83)

The expression in the parenthesis on the right-hand side is marginal, the remaining
expressions are irrelevant. We have separated the second term, although it is
basically irrelevant because of the factor v, having in mind some simplifications in
the future. The expressions Zγ, Z2 are simple algebraic functions of (i^, h) and they
can be extended to analytic functions of (φ + φ',h + h!) on large domains, certainly
on Ψc(δ, ε) for c sufficiently small. We want to estimate their restrictions to X. For
Zj it is simple, by (3.55) we obtain

\Zi{x,y,φ + φ')\< -{2dLM + dMd(X))2{2σε)2 + 2σ2ε

= 2σ2ε(l+(2dLM)2Π+^-d(Xyj ε

where we have assumed that (2dLM)2ε ^ 1. The constant ε is one of the ε/s, so we
assume simply that (2dLM)2a0 g 1. We will have to make strong assumptions on
α0 in the future. The expression Z2 can be written in terms of the functions U, V
defined in (3.37),

Z2(x,y) = (vV(x) - vV(y)) +^v(δ(φ + φ')f + R^y),

R^y) = (U(x) - l)(vV(x) - vV(y))-^v(U(x) - U(y))2

ΦΊ)2 _ m x ) _ U ( m . ( 3 . 8 5 )

From the inequalities (3.39), (3.41) and (3.55) we obtain immediately the bound

|£i(x, j>)| < 8 8 σ V + 8vσ4ε2 + (22σV + 2vσ2ή

x [16σ4ε2 + (2dLM + dMd(X))24σ2ε2~]

<10σ 4ε 2M + ^ ( J C ) j , (3.86)
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where we have assumed that 15(2dLM)2ε rg 1. To estimate the first two terms on
the right-hand side of (3.85) we use additionally the assumption v ^ σ2 and we get

\W(x)-vV(y)\*

2
2σ4ε2(2dLM)2( 1 + ^d(X)j . (3.87)

Combining the estimates (3.86), (3.87) we obtain for example

\Z2(x9y9φ + ψ',v(h + h'))\ < 44σ2ε2 + 3σ4ε2(2rfLM)2( 1

(3.88)

The bounds (3.84), (3.88) hold for x j e l , and they are a basis of an estimate of the
first two terms in the expansion (3.51).

Let us write now the sum of these two terms using the above representations
and expansions. We have obtained the following equality:

^ A {y9 X; φ(y\ vh), δφ\ + \((-^τ A (y, X; φ(y\ vft), δψ, δφ

y;l9v90)9\ψ -φ(y)\2) + ^faX hvJlR^ψ.vh)}

+ Σ Σ <vσ:^y(y,X;\φ(y)lvh φ0(y)y(l-(h-φ0(y))2))
σ= 1,2 α

•(\Φ(y)\ - lf(v(h.ψo(y)-ί)Y(v2(ί-(h φo(y))2)γ,ZΛy,Φ,vh)}

+ \ Σ <vo^βJy,X;\ψ(y)\,vh.φo(y),v2(l-(h.ψo(y))2))

•(\ψ(y)\ - mv(h ψo(y) - l))β(v2(l-(h-ψo(y))2)Y,δψ,δψy

+ \ Σ <»<r.p(3'.-X';Î U')l,vΛ ^o0'),v2(l-(Λ ^o0'))2)).
^ < x , P = l , 2

xZσ(y9ψ9vh)9Zp{y9φ9vh)y. (3.89)

We will analyze in detail the terms on the right-hand side of this equality. Let us
mention that the third term in the expansion (3.51) does not demand such
a detailed analysis, so we will treat it separately in a simpler way.

Let us start the analysis with estimates of the three sums in (3.89). All terms of
those sums have obvious analytic extensions through the functions U,V, W2 on
the spaces Ψc{σ,ε) with σ,ε satisfying proper conditions. We have discussed this
already in the case of the effective potentials, and only small adjustments are
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needed here. We require that the three functions map analytically the correspond-
ing domain Ψc

cons1{σ,ε) into the polydisc (3.75). From the inequalities (3.39), (3.41),
(3.43) we conclude that the following bounds hold on the domain Ψc

COnst{σ^)''

| [ / . , < W ) 8 , l » 1 , < , | » ' ^ < l ί ί 5 ^ . ,3.90,
6 4 v 32 v

Thus the functions U,V,W2 map the domain Ψc

COnst(σ>ε) m t o t n e polydisc (3.75) if
ε ^ ε0,10σε0 ^ <50. We have δ0 = σίε0, hence the last condition can be written as
lOσ ^ σ1 ? or lOKxjσ ^ 1. In the future we will always assume that these condi-
tions are satisfied for considered spaces.

Consider the first sum on the right-hand side of (3.89). Its bound is straightfor-
ward; we use the inequalities (3.77), (3.84), (3.88) and (3.90). We can simplify a little
bit the bound (3.88) using the condition σ ^ τwκι\ we have

\Z2(x,y,Ψ + Ψ'Mh + Λ'))l < σ2ε2(2dLM)2(l + ^ ( J f ) J on X . (3.91)

These inequalities imply that the first sum on the right-hand side of (3.89) can be
bounded by

Lu 1 Z ' / s : l +

Σ 72

2 l[(Wσ)4£2 (10σ) 4ε 3 (10σ)6 ε3 ε2

0Ί / t 1 W / λλ

εQ t (10σ) 4 ε 4 ε Q | (10σf

Co C 0 OQ

ί ε\2 1
< 4(10σ)4 ί - ) -5 {2dLM)2 Eo exp( - {K - \)d(X)) , (3.92)

where we have used the conditions 10σε0 ^ δ0, ε ^ ε0, and the equality <50 = σxε0.
Similarly the second sum can be bounded by

?2+αH

-{2dLM + dMd(X))2(2σε)

ε \3 1
18(10σ)4( - -ϊ(2dLM)2Eoexp( ~ {K - l)d(X)) . (3.93)
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Finally the last sum can be bounded by

^ ( I ) y + S 64<τ4 ε4(2dLM)2(l+^<ί(I) ) \.Eoexp(-κ,

.4/ \ ΠJΓ Λ^2

έ^OΊ'^
< (10σf - —6{2άLMf Eoexp( - (K - ί)d(X)), (3.94)

There is one additional term, the fourth term on the right-hand side of (3.89), which
is irrelevant also. It follows from (3.77), (3.86) that it can be bounded by

+ ^-d(X))2E0exp(-κd)(X))

.. v ™ ) 4 [-) —Eo exp( - (K - l)d(X)), (3.95)
i z V^oy 0"i

Among the bounds (3.92)-(3.95) the bound (3.94) is the largest one, the others give
only small contributions to it. We can bound the four expressions in (3.89) by the
right-hand side of (3.94) multiplied by 2.

Consider the remaining four terms on the right-hand side of (3.89). Let us write
them again in the following form:

- Ψ(y)\2> + ~<v2(y,X; l9v,0),\ψ - ψ(y)\2)

^ ; l v , 0 \ \ Ψ \ 2 ~ \Ψ(y)\2> + <υ2{y9X;l,v,0)9vh.ψo ~ vh.

(3.96)

In the last two terms the functions \ψ(x)\2 — \ψ(y)\2, vh ψo(x) — vh ψo(y) are
antisymmetric functions of x, y. We will show that sums over X of the functions
υσ(x,y,X; 1, v,0) are symmetric in x,y, so these two terms resummed over X and
y in the sum (3.23) will contribute 0. Consider the first three terms in (3.96). We
decompose them into sums of simple local expressions and irrelevant expressions
by applying a lattice Taylor formula. Such a formula has been used before in
a similar context in [2d]. Let us recall it. Let x, y be two points of a unit lattice, and
let Γyx be a unit lattice path from y to x. Take the part of this path which is parallel
to the unit vector eμ of the xμ-axis, give it a positive orientation with respect to this
vector, and denote by [_Γyx[μ the set of initial points of bonds contained in this
part. For a function / defined on the unit lattice we have

/ « =f(y) + Σ (*μ - yμ)(W)(y) + Σ Σ Σ s i § n (^ - y*)WJ)Φ)
μ=l μ = l x 'e[Γ, i λ |> b c Γy,,.

=f(y) + (x - y) (Vf)(y) + R2(χ,y,82f). (3.97)
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The remainder R2 satisfies the following bound:

i)\(ryj\d2f\Γyx

^ dMd{X))2\δ2f\x, x,yeX, (3.98)

where the last inequality holds, for example, for the path constructed in (3.54).
Apply the formula (3.97) to the function δφ(x) = φ(x) — φ(y) in the first three terms
in (3.96). Each term gives a rise to four terms, for example for the first term we have

+ 2{Vl (y, X-1, v, 0), ((x - y) • (Vψ)(y)) R2(x, y, d2φ)}

;\,v,0),{R2{x,y,d2ιl>))2^ , (3.99)

similarly for the second and third, with some obvious modifications. The last two
terms on the right-hand side above are irrelevant, and their analytic extensions can
be bounded by

12 —E o exp( - κd(X))(2dLM + dMd(X))32σc\d2{φ + φ')\x

+ 12^-£ oexp( - κd{X))-(2dLM + dMd{X)f\d2{φ + φ')\2

xΰ0 4

S I3σ-\d2(φ + φ')\x— (2dLM)4E0exp( - (K - ί)d(X)) . (3.100)
β 0 σ1

Let us make a few comments on this bound. We apply it to the case φ = φ[J\ and
then the second order derivatives can be bounded by const. <τ2~αβ, where α is an
arbitrary positive number, the constant depends on α. Thus we have a bound by
σ3~αε2, which is enough to prove the irrelevance. Unfortunately it is not enough to
prove the best possible choice y0 = min{^^, 1}, for which we need σ4~αε2. A rea-
son for the worse bound is the second term on the right-hand side of (3.99), in which
there is a mixture of first and second order derivatives. Actually such terms should
vanish, and we could show it resumming over X and using the symmetries in (H.4).
Such an analysis is quite straightforward, but lengthy, and for the sake of brevity
we present the above shorter one. We will prove that y0 —

 m i n {^iΛi} is a possible
choice, and for d = 3 it agrees with the best possible one. Consider briefly the
second and third terms in (3.96). The corresponding irrelevant terms can be
bounded by

/ ε\2 1
8 62σ2 - -ϊ(2dLM)4E0exp(-(κ-l)d(X)) , (3.101)

\εoj 0"i

where we have used the condition v ί σ 2 , and by

2- 122σ^\d2(φ + φ')\x\{2dLMfE0Q^{ - (K ~ l)d(X)) . (3.102)
ε0 σ1

Finall consider the third term on the right-hand side of (3.51). It is an irrelevant
term, and a more careful analysis of this term would be needed only if we wanted to
show that we can choose y0 in the best possible way. Without doing such an analysis
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we can bound simply its analytic extension using the bounds (3.68), (3.55) by

^β-Eocxp( - κd(X))(2dLM + dMd{X)f{2σεf

< 3 6 3 σ 3 ( - ) - ί(2JLM) 3 £ o exp( - (K - l)d(X)) . (3.103)

We have finished this part of the renormalization analysis which can be done
for a single term of the second sum in (3.23). Let us summarize the above results in
the lemma.

Lemma 3.8. Consider a localized function i(y, X\ φ, vh). It has an analytic extension
onto the space Ψc(δ0,ε0) with δ0 = ^ = σ1ε0,ε0 = εj+ί,σί = Kf 1 α. We restrict it
to a smaller subspace Ψc(δ, ε) with σ, & satisfying the conditions ε ^ ε0, σ ^ σ2, where
a2 — (4dKiLM)~1 α, and we assume that X satisfies the condition (3.59), i.e.
d(X) ^ liϊvT^F = 2dκιM^ On the space Ψ(σ,ε) we have the representation

, X; φ, vh) - δ{y, X; φ{y\ vh)

9 X; 1, v, 0) - vυ2(y, X; 1, v, 0), ((x-y) (Vφ(y))2)

+ #irrel{y> Xl Ψ> vh) > (3.104)

where the last term is a sum of all the irrelevant expressions analyzed above. It has an
analytic extension onto the space Ψc(σ,ε), and the extended function satisfies the
inequality

K^ίlOdKyLM-<

^\d2(φ + Φ')\X)EOQXP(-(K- l)d(X)), (3.105)
£o /

following from the bounds (3.61),(3.92)-(3.95),(3.100H3.103). The functions
Vι,v2,v0 are defined by the formulas (3.73), (3.74), (3.78), i.e. by

>]•
(3.106)

and they satisfy the bounds (3.77), (3.80) correspondingly.
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Let us make a few remarks about the above statements. At first let us stress that
we have done all the expansions and transformations for functions of real config-
urations (φ, h), and then we have constructed analytic extensions of the resulting
expressions. This means that the constructed analytic extension of the right-hand
side of (3.104) is not necessarily equal to the assumed analytic extension of the
left-hand side. The constructions of this subsection may be interpreted as a con-
struction of a mapping from a space of given analytic extensions onto a subspace of
new analytic extensions with better bounds. Next, notice that we have not made
any effort to find optimal bounds, e.g., the constant in (3.105) is just a simplest
common constant for all terms in the expression.

Eventually we apply the representation (3.104) to configurations ψ = ψ(

k

J\
where the function \j/[j) is considered on the space Ξ£(l,εk). The values of the
function are in the space ΨCj(C0L

jη,εk) with C o ̂  3, and the constants σ = C0L
jη,

ε = εk satisfy the conditions of the lemma if k — j ^ nγ. The function φ[j) satisfies
also the bound

^ ^ ^ ε , (3.107)

for any constant α 1 , 0 < α 1 ^ l , where Cαi is an absolute constant depending on oq
only. It follows from the formula (2.14), the inclusions in (3.22), and properties of φk

discussed in the next paper. Thus the bound (3.105) in this case yields the bound

firrel(yX;ΨίJ)Mh + ft'))I < KlC(y,X;ΦiJ)Mh + ft'))I < K\CΛι-[ 20dC0KxL
ι

. ( L ^ ) d + ^ E o e x p ( - (K - l)d(X)) , (3.108)

where α3 = 1 — 2y — a1 = 2{j — y) — oq ̂  2(y0 — y) — ax and we have taken now
γ0 = mm{^-,j}. We assume γ < y0, hence γ0 — γ > 0 and we may take
α i = Ύo — 7, we have then α3 ̂  y0 — y > 0. Notice also that α = ̂ r 1 — y ^ y0 — 75

and that y0 — \ for d ̂  3.
To analyze further the first four terms on the right-hand side of (3.104) we have

resum the representation over X and y. Denote p = σj- and d(p) = 2dκλM^ We
te

to resum
write

X X (tiy, X; φ, vh) - g{y, X; φ(y), vft))
yeT(j) XeΘy,yeX

= Σ Σ d?irrel(y,X;Ψ,vh)
yeTiJ) Xe&j ,yeX,d(X)£d(ρ)

+ Σ Σ ίS{y,X;ψ,vh)-S{y,X;φ{y),vh)
yeT(j) X e 2y, y e X,d(X) > d(p)

-^(υx{y,X;\,v,%φ2{x) - φ2(y))

- ζv2(y,X;l,v,0);vh φ0(x) - v

Σ \^v1(x,y;l,v,O)(Φ2(x)-φ2(y))
x,yeTϋ

+ v2(x,y, 1, v,0)(v/i φo(x) - vh φo(y))
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+ Σ \ Σ (C-ΰ,, +
y e T 0 ) ̂  μ , v = 1

- Σ ί Σ «)

μ,,U')-<Vv
> e Γ ω Z μ, v=l

(3.109)

where the functions vσ(x,y; l,v,0),σ = 1,2, ^0(^1^2^; l,v0) are sums over all
X e@j = @j(Tξ) of the corresponding localized functions, and are given by the
formulas (3.106), in which the function i(y, X; φ, vh) is replaced by the sum over all
X, which is equal to the function S(y\ φ, vh). Functions v^ are defined as thermo-
dynamic limits of the corresponding vσ as Tξ -> ξZd, i.e.

i £ ° W ) = lim vσ(x9y; l,v,0) = £ vσ(x,y,X;l,v90) 9

v{

0

co\xux2,y) = lim

Σ vo(xux2,y,X;Uv,0). (3.110)
Xe^^ξzy.yeX

Functions υ{£\x,y\σ = 1 ,2,^(xi ^2?^) are given by the corresponding sums on
the right-hand sides above, in which the summations over X are restricted by the
condition d(X) > d(p). Finally the constants ^ V J ^ v are given by the formulas

ί ; (oo) _ y 7,(oo)/ w _ v ) / γ — v )

x e Z "

C = Σ <'\xx,x2,y)(xι,μ-yμ)(x2,v-yy). (3.111)
1

Similarly the functions v(

σ™μ]v (y), v^J^y) are given by the above formulas, but with
functions v{aO){x,y\v{^\xux2,y) replaced by v(£)(x,y),v(g)(x1,x2,y). It is clear that
the sums in the above definitions are convergent, and do not depend on y in (3.111),
by translation invariance. Let us analyze more closely symmetry properties and
bounds for the introduced functions and constants. We assume that the functions
S(y\ φ, vh) satisfies the basic Euclidean symmetry (H.4), or (2.23). This symmetry
and the above definitions imply

vσ(rx,ry) = υσ(x,y), σ = l,2,vo(rxurx2,ry) = υo(xl9x2,y) (3.112)

for all Euclidean transformations r of the lattice TU). The same holds for the
corresponding thermodynamic limits. In particular applying translations and a re-
flection at the origin we conclude that the functions vσ(x, y) are symmetric in x, y:

vσ(χ,y) = v*(χ -y,0) = vσ( - (x - y)9o) = vσ(y,χ). (3.113)

This implies that the third sum on the right-hand side of (3.109) is equal to 0,
because we sum over all x,y e Tϋ) the products of symmetric and antisymmetric
functions, so we sum over x, y an antisymmetric function in x, y. The symmetries
(3.112) for the thermodynamic limits of the functions imply that the matrices
defined by the elements v\°°Jv, v^°Jv are proportional to the identity matrix. Thus we
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can write the fourth sum in (3.109) in the following way:

Uv^-v^ + vv^) Σ Σ \(^^)m2=\{v^-v^ + vυ^)\\dιlj\\\
L yeTU) μ=l Z

(3.114)

where

1 d

ί;(oo) (oo) y (oo) Q i 2 ί3 115ϊυσ υσ,μ,μ A L a υσ;μ,μi u — u, ±, z, . yj.iijj
U μ=l

The last sum in (3.109) remains unchanged. Let us introduce the following defini-
tion:

£(σ,ε)-irrel{y,X',Ψ,vh) = Sirrel{y, X\ ψ, v/l), ίf d{X) ^ d{p\ p = G~ ,

,X;ψ(y)9vh)

2 -Ψ2(y)>

.^o ~ vh ψo(y)} , (3.116)

if d(X) > d{p). The functions above have analytic extensions onto the spaces
Ψc(σ,ε) with σ,ε satisfying the conditions in Lemma 3.8. Actually in the second
case, i.e. for d(X) > d(p), they are analytic on the larger space Ψc(δ0, ε0). Bounds for
the functions have been written in the first case in (3.105). In the second case they
have been partially written in (3.66) for the special cases ΨCj(C0L

jη,εk). On the
space Ψc(σ,ε) they can be bounded by

2 £ o e χ p ( — κd(X)) + 24σ — E o

e χ P ( — κd(X)) + 6 (lOσ) —rr-E0Qxp( — κd(X))
do o0

l\4 / ε\3

W-\ σ3ί-) Eoexp(-(κ-l)d(X)),

hence they certainly satisfy the bound (3.105). This bound is universal for the two
cases.

Finally we want to obtain bounds for the functions v^μv(y). We have

« # £ » = Σ <vσ(y,X; 1, v,ϋ),(xμ - yμ)(xv - yv)> , (3.117)
X e S!j(ξzJ):y e X,d(X) > d(p)

hence

I Mlv(y) I < 12γEo Σ e x P( ~ κd(X))(2dLM + dMd(X))2

^0 Xe®j(ξz.d):yeX,d(X)>d(p)

< 12(2dLM)2yE0 e~d{p) ^ exp( - (K - 2)d(X))

( 1\3 ε
S 12K0E0[2dK1LM-) σ-~ .

\ CLJ ε0

Obviously we can obtain a bound by any power of p, but we need only the power 1.
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In the same way we obtain bounds for v(

2

p)

μ v(y) and v{

o

p)

μ v(y), for example

Combining the above bounds together we obtain

Notice also that the same arguments yield

/ IV ε
|Γ(«» _ υ(co) + VΓ(co)| < K o E l 2dKiLM~ σ-; . (3.119)

V «/ $
The constant estimated above determines a renormalization counterterm in the
future analysis of renormalization group equations, and the bound gives a magni-
tude of this counterterm.

We summarize again the results of the above analysis in the following lemma.

Lemma 3.9. Consider a family of functions δ(y,X;φ,vh) satisfying the inductive
assumptions (H.3), (H.4), (H.5). They have analytic extensions onto the spaces Ψc{σ, ε)
described in Lemma 3.8, and on the space Ψ{σ,ε) we have the representation

X X lδ{y, X; ψ, vh) - δ[y, X; ψ(y\ vΛ)]
ye TU) Xe^y.yeX

+ Σ Σ S(aa)-irrel{y,X^,vh). (3.120)
yeTU) Xe&y.yeX

The functions S>

(σfε)-irreι(y,X;φ,vh) have analytic extensions onto the space Ψc(σ,ε\
and they satisfy the bound (3.105). The first two terms on the right-hand side
are sums of local expressions given correspondingly by (3.114) and the last sum
in (3.109). A term of this sum for a fixed point y can be bounded by
2d2 K0E0(2dK1LM^)4σ3 (fj3, hence it is an irrelevant quantity.

Thus only the first term on the right-hand side of (3.120) is not irrelevant, it is
proportional to the gradient term in the main action. If we assume that the
coefficient in front of this term is equal to 0, then the whole expression in (3.120) will
be irrelevant. This leads to the inductive hypothesis (H.7). The function δU)(ιl/j, Vjh)
defining the j t h term of the effective action has the localization expansion
(H.2), (H.5) which obviously satisfies the assumptions of the above lemma, therefore
it has the representation (3.120) for every (σ,ε) satisfying the conditions of the
lemma. In this representation the coefficient in the first term on the right-hand side
does not depend on σ,ε, and is given by the corresponding formulas
(3.110), (3.111), (3.115). Denoting the constants by ^ ' G 0 ) we write them in terms of
derivatives of the function ${j)(y\\l/,Vjh) in the thermodynamic limit. They are
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expressed in terms of such derivatives by the formulas (3.106), (3.110), (3.111),
(3.115). In the formula for y(

(/'00) we apply the identity

(χi - J>) (*2 - y) = - ^ l χ i ~ χ2\2 + 2 | X l " y][1 + 2 | X 2 ~ ^ ' 2 '

where now |x | denotes the Euclidean norm of the point x. We obtain

Σ

+ VJ Σ

For the second term above we have used the symmetry in the variables x,x'. The
expression above can be simplified essentially, in fact we will prove that the
expression in the curly brackets is equal to 0. Consider again more generally
a function S(φ, vh) which is defined and analytic on some complex neighborhood of
the constant configurations euveγ. The function may be defined on configurations
on the whole lattice Z d , or restricted to some subset X. Assume that the function is
invariant with respect to the orthogonal group, i.e. we have S'iRψ.vRh) = S{\jj,vh)
for ReO(N). Take a one-parameter subgroup exp,L4, A is an antisymmetric
matrix, and differentiate the identity with respect to λ at λ = 0. This yields

^rA(φ,vh),Aψ\ + C^- A(ψ,vh) vAh = 0 . (3.122)

This is a basic identity, the Ward-Takahashi identity for the global 0(JV)-sym-
metry. We can obtain a whole sequence of identities differentiating the above one.
One differentiation with respect to ^(x) yields

Σ ( * l ( ? L ,, A(<A>vh)'ΛΨ(χf) - Λ(T7TT A(Φ,
^\dxl/(x)dφ(x/) J \δψ(x) J

d(vh)dφ(xγ
(φ,vh)-vAh . (3.123)

Take the constant configuration ψ = ex, h = eγ, and anti-symmetric matrix A with
the only non-zero elements A2,i = — Aίt2 = 1, then the above identity yields

(vh2)dφ2(x)
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We apply it to the function SU){y\ ψ, Vjh) in the thermodynamic limit, and we obtain
an identity which implies immediately that the expression in the curly brackets in
(3.121) is equal to 0. Thus in the formula (3.121) only the first sum on the right-hand
side remains. We transform it further using the translation invariance. The vari-
ables x, x', y are replaced by x — xf, 0, y — x', then the summation over x allows us
to write x instead of x — x', and the summation over x' can be replaced by
a summation over y, and y — x' can be replaced by y. The summation over y can be
applied directly to the functions SU)(y\ and it yields the whole effective action ${j\
More precisely we have

= -h Σ
la

i) = 0 , (3.125)

by (H.7), where vu^\p) = Σχez"e~ip'XυiLcc)(χ) i s t h e Fourier transform of the
function vij' ^K This is the most convenient formulation of the inductive hypothesis,
in particular the last expression is a basis of calculations in the future.

Finally we combine together all the results obtained in this subsection in the
following proposition.

Proposition 3.10. Consider an effective action ${ί) (ψ,Vjh) satisfying the inductive
assumptions (H.2)-(H.7). For any σ,ε satisfying the conditions ε ̂  ε0 = sj + l9

& = σ2 = {^dKιLM)~ιa it has the representation

υ\r(ψ(y), vjh) \{dφ,(v^ - υ\j'p)

+ Σ Σ ^-irrefoX
yeT(j) XeΘy.yeX

holding on the space Ψj(σ, ε). The functions in this representation have analytic
extensions onto the space ΨCj{o, ε), and the extended functions satisfy the bounds
(3.47), (3.118) and (3.105) correspondingly.

Let us make a few comments on the above proposition. Notice that now all the
terms on the right-hand side of (3.126) are irrelevant, and there is no need to
distinguish between them. The first two terms are sums over ye Tij) of local
expressions. For each y we take the cube • from the cover π,- which contains the
point y in the central large cube of •, and we assign the local expression to
$\σ,ε)-irrei(y> Π' Ά> vjn) We obtain the representation (3.126) with only the last sum
on the right-hand side. Terms of this sum are modified for the corresponding
X = Π, but it follows from the bounds (3.47), (3.118) that they satisfy the bound
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(3.105) with an additional factor Ko. For the future reference let us write the
representation explicitly:

*lΛ(Ψ,Vjh)= Σ Σ *\t>-irre,iy>X >Ψ>Vjh) (3.127)
yeTίJ) Xe@y.yeX

on Ψj(σ, ε), and the functions on the right-hand side have analytic extensions onto
the space ΨCj(σ,ε). Notice again that this defines an analytic extension of effective
action on the left-hand side, which may be different from the originally assumed
extension.

Consider the effective action on configurations φ = φ[J). By Lemma 3.2 the
function φk

j) maps the space Ξc

k(l,εk) into ΨCj(C0L
jη,εk) with C o ^ 3. The last

space satisfies the conditions of Proposition 3.10 if C0L
jη^ ^ σ2, i.e. if

k — j ^ Wj. Thus we can formulate the following conclusions.

Corollary 3.11. Let the effective actions S^\φ,Vjh) satisfy the assumptions of Prop-
osition 3.10. Then for σ,ε as in this proposition they have the representations (3.127)
with the terms which are analytic on ΨCj(σ,ε) and satisfy the bound (3.105) with an
additional factor Ko. Substituting the function φ[j) instead of φ we obtain that the
terms of (3Λ27) are analytic Ξc

k(l,εk)for k — j ^ n l 5 and they satisfy the bound

l^L^j^rrrAy^ ΦΪ'Wh + ft')) I < κ^χuηf^.

•Eoexp(-(κ-l)dj(X)), (3.128)

where α 3 = 2(γ0 — γ) — α l 5 and

^UlOdCoK^ M ĵI . (3.129)

This bound and the representation (3.127) imply

\<?U)(Ψ[3)(Ψ + Ψ',vk(h + h')),vj(h + h'))\ < K^χLJη)ά + *>E0K0\T\»\ (3.130)

\ik(Ψ + Φ',h + h')\ < kf K * β l ( L V + β'£oKo|T<Λ|

j = k-nt + l I — L.

o±-K^ + IKoUdCoK.υ^M^jλE^T^ , (3.131)

where the last inequality follows from the definition ofnγ.

The bound (3.131) is the fundamental uniform bound for the effective actions $k, i.e.
uniform in the rescaled volume |Tf } | . It is a basis of the renormalization group
method, and the reason for the renormalization procedure and conditions.
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