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Abstract: We use the lattice models to determine the obstructions to the flatness of
the orbifold connections in some finite depth subfactors.

0. The motivation of the present work is the question raised in [1]. In [1], the
author applied orbifold construction, first used in [2], to the subfactors coming
from the Hecke algebra. The key notion is the flatness of the connection in [3].
A connection is an assignment of a complex number to cells, and flatness is
a condition on the connection. A more detailed description is included in the
appendix. To prove the flatness, one needs certain identities involving a large
number of quantities determined by the connection. For SU(N), N odd, and
subfactors corresponding to vector representations of SU(N\ the flatness of the
orbifolding subfactors can be derived from (See [1]):

A0 -+ -. -> Aj

I ϊ
* * = cδμJW.ηδn>η. (1)

ί T

AQ -> ••• -> Aj

Here c is a constant. (By using simple argument one can show c = 1.) The symbol
on the right-hand side is the notation for the connections, see [1, 2, 3] or the
appendix for the precise definitions. In [1], (1) is proved under certain assumptions
by using the flatness of Jones projections. It seems to be hard to use this method
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without these assumptions. In this paper, we use integrable lattice models of [12],
also used in subfactors setting in [4], to prove the following results:

(a): (1) holds for any ΛΓ;
(b): When N is even, the flatness holds iff 2N\K;

The case N = 2 is proved in [2].
It turns out that the same method applies to the more general case.
Let G be a connected, simply connected, compact simple Lie group with

nontrival center, i.e. G - SU(N), SO(2N + 1), SO(2N), SP(2N\ £6, £7. Let Z be
a non-trivial subgroup of the center Z(G) of G. Let θz denote the set of fundamental
weights of G associated to Z. Let M be the least natural number such that:

l/2M(0r,0z)eZ V0zeθz. (2)

Let φ be a finite dimensional representation of G. K e N is a fixed integer (level). In
[4], a coupling system associated to Gκ Wess-Zumino-Witten model and field φ is
constructed, denoted by (gφ(K\ hφ(K), B, τ). Here gφ(K) is the principal graph
constructed out of the fusion graph of φ, hφ(K) is its dual.

If K is such that:
r7ί(\\ _ ,,even ^_ f-even /o\Z(0)Ggφ nhφ . (3)

One can apply the orbifold with respect to Z to this coupling system as in [1] and
[2].

Theorem. Let K be as in (2). The connection of the orbifold subfactor is flat iffM\K.

The following examples are applications of the theorem:

e.g. 1: Let G = SU(N), φ the vector representation of G. Z = Zt is a subgroup
of the center group ZN. It is possible to do the orbifold construction if t\K; the
theorem says the connection of the orbifold is flat iff t\K when t is odd and 2t\K if
ί is even. This answers one of the main questions in [1] completely.

e.g. 2: Let G = SU(2)9 φ the spin 1 representation. Then (2) says K e 2Z and (3)
says K e 4Z.

e.g. 3: Let G = SO(2N + l)(N ^ 2), φ the vector representation of G. Then (2)
and (3) says K G ΊTL.

Remark, [a]: A Chern-Simon gauge theory based on G/Z exists at level K iff (2)
holds, see (8). This is actually how (3) comes from.

[b]: The condition (3) is the first necessary condition when one is using the
orbifold in a string algebra construction as in [1]. The reason is that one needs the
following strings:

o A . . . - > . < - . . . £ z(0).

Here the length of α is equal to that of β. Since g, h are bipartiegraphs, Z(0) must
have the same color as 0 for any z e Z. (See [3] for the definitions).

The content of the paper is as follows: In Sect. 1, we describe some of the results
of [4,12 and 7] which we will need to fix the notations. In Sect. 2, we apply the
orbifold method [1] and [2] to the coupling system described in Sect. 1.
Lemma 2.17 answered the motivating question in the introduction. Lemma 2.21
deals with the SU(N) case when N is even. We also include an appendix on part of
the general theory of subfactors for the convenience of the reader.
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1. Integrable Lattice Models and Coupling System
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The material of this is contained in [4, 5 and 7]. Let's begin by assigning numbers
to the following pictures:

R Γm "1H' *_Γ )=X (1.1)

Γr

i* (1.2)

These B, F (for simplicity, we omit the labels or assume Λfy = 1,0 for the time
being) are the so-called braiding and fusion matrices respectively in conformal field
theory. There are special fusion matrices:

(1.3)

They are nonzero numbers. These matrices satisfy the Yang-Baxter equation
and braiding-fusion relations as described by the following pictures:

(1.4)

(1.5)

More precisely these pictures should be framed. It's conventional to choose the
blackboard framing, i.e. the normal vector points out to the reader. The change of
framing is given by:

= exp( ± 2π//?t ) i . (1.6)

Here -f or — depends on the convention, and /?/ is the conformal dimension.
There's another ingredient, so-called S-matrix, or the modular transformation
matrix in conformal field theory besides B and F. The matrix elements of S is
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denoted by Stj in the following. Here / e IJ e / (see (b) for the definition of /). Let
Xί = -SΌi/Soo- It's proved in [5 and 7] that one can make a "good" gauge choice
such that:

(1.8)

(1.9)

(1.10)

B
Γm n

{t k
(1.11)

Now let's turn to the integrable lattice models. Integrable lattice models are
devised be Witten to given a lattice field theory approach to Chern-Simons gauge
theory. To explain the rules, we have to explain the following notions:

(a) One choose a plane where all trivalent graphs (in a generic position) in S3 are
projected onto. On this plane where one must choose a time direction. The
projection must be generic in the sense that the equal time slice will intersect the
projected graphs with a finite number of points.
(b) Painting the projected graphs with colors. In RCFT there's a finite index set /.
There's a finite dimensional algebra A9 called Verlinde's fusion algebra, with basis
(/)/e/ and multiplications. ίx./ = £ Ny. Hence ΛΓ^ e Z ^ 0 J they're called fusion
coefficients. The algebra A is also endowed with an involution τ : A -> A and there
is a distinguished element 0 e A (so-called vacuum) such that τ(0) = 0 and N® = 1,
Nj

0i = δij. The coupling space, denoted by VfJ9 has dimension JV*7 . A choice of basis
in this coupling space is called a gauge choice. We always assume we make
a "good" gauge choice as in [5 and 7]. A basis of the coupling space is denoted by
εί9. . .,εα with a = ΛΓ^ . They are sometimes called spin variables. The index set is
called a set of colors. Colors (i9j; k) are called admissible if Nk

tj ^ 1.
fc) Critical points. They are 4 kinds of critical points as seen from the following
pictures:

(1.15)
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We use the following example to explain the above rules:
The diagram consists of two concentric circles.

(1-16)

One chooses a time direction and equal time slices t = ί0> ίι> t2, £3? ^4 such that
between t t and ti+ { there's only one critical point. Each line is endowed with an
element of the index set /, and so is each region separated by the lines. The line
separating two regions is endowed with a spin variable. For example,

where ε e K . So it's necessary to have (1,7; k) admissible, i.e., Ny ^ 1. The spin
variable is always omitted in the following for simplicity. One should bear in mind
that it is possible to include them at each stage. After painting, one assigns numbers
of (1.1), (1.2) and (1.3) to the critical points of (1.15), take their produce and sum
over all the closed regions to get the partition function of the projected graph. It's
proved in [5] that it's a topological invariant by showing its invariance under
Redemster moves of type two and three. (So more precisely, it's an invariant of
framed graphs.)

Let's use the graph (1.16) to illustrate that its value is topologically invariant.
The reader may find that in the case of topological field theory coming from the
quantum at roots of unity, this fact is equivalent to the truncated Weyl character
formula for the tensor product of two restricted representations / and j.

Example: One finds in (1.16):

1/2

= Σ

Finally, we describe the coupling system following [4], referring to the defini-
tion in [3]. See also the appendix.

In [4], a coupling system is constructed for an RCFT and a primary field φ.
One first makes a graph by taking 2N vertices if N is the number of primary fields
in the theory, and label them by φi and φ'j9 where *, j runs from 1 to N. Next we
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draw Njφi edges from φt to 0}. Let g be the connected component of the graph
containing the distingushed element 0. Let *^ = 0. Also let h be the connected
component containing 0' and let *Λ = 0\ We see that g is the graph obtained by
alternatively fusing withA φ and its dual φ, and h is obtained by the same process,
starting however with φ. The eigenvalues for the Perron-Frobenius eigenvector
are given by \\Λg\\ = \\Ah\\ = SOΦ/S00. The contragradient map is defined by
τ(φι) = φi. The definition of the connection W for the coupling system is a little bit
more involved. Roughly speaking, it's suitably normalized braiding matrices men-
tioned earlier. We refer to [4] for details to. (g, /?, W9 τ) gives a coupling system in
the sense of Oceanu. This is also proved in [4]. We give some examples following
this construction.

Example 1. Takes SO(2n)2 Wess-Zumino-Witten model and the primary field
corresponding to the vector representation of SO(2n). The g is given by D(

n

l) and
h = g. This gives us a subfactor of index 4.

Example 2. Take SO(2p + 1)2 WZW model, let p ^ 3. The fundamental weights of
chiral SO(2p 4- 1) (stands for the affine algebra associated to SO(2p + 1)) are given
by ω0,ω!. . .ωp: here ωp corresponds to the spin representation. Any dominant
weight is given by λQωQ + λ{ω{ + . . . + λpωp, where λt g: 0 are integers. If the
level is 2, then λ0 + λλ + 2λ2 + 2λ3 + . . . + 2λp- { + λp = 2. There are p + 2 pri-
mary fields of level 2, given by: 2ω0, ω0 + ω l 5 ω2,. . .ω p_ 1 ?

ω0 + ωp, ωp = α>!, 2α>!, 2ωp. Let 0 be the primary field associated to ω0 H- ωp, the
spin field. According to the methods of [9], the fusion rules are calculated:
(ωp + ω0) x (ωp + α>0) = (ωv + ω0) + ω2 + . . . + ωp_ t -h 2ωp + 2ω0.

(ωp -h ω0) x 2ωp = (ωp -f ω0) x ω2 = . . .

= (ωp 4- ω0) x (oh 4- ω0)

= (ωp 4- ω0) 4- (ωj 4- ωp),

(ω
p
 4- ω

0
) x 2ω

0
 = ω

0
 + ω

p
 ,

(ω! 4- ω
p
) x (ω

0
 -f ω

p
) = 2ω

{
 4- 2ω

2
 -f . . . 4- ω

p
-ι = 2ω

p
 ,

2ωι x (ω
0
 + ω

p
) = α>! 4- ω

p
 .

These fusion rules are sufficient to determine the Bratelli diagrams of certain
inclusions of finite dimensional algebras, it is exactly the same as in [10], p. 12, with
N = 2p + 1. Hence the metaplectic invariants of links with N = 2p + 1 an odd
prime is the same as link invariants coming from Chern-Simons gauge theory with
gauge group SO(2p + 1), level 2 and with the link colored by spin representation of
S0(2p + 1).

2. Orbifold Construction in Subfactors

Let G be a compact, connected, simply connected and simple Lie group. Let Z be
a nontrival subgroup of the center Z(G) of G. The following is a list of all the
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possible cases: (with Z(G) nontrival):

A:SU(N),(N ^ 2),Z(SU(N)) = ZN, Z = Zt ^ ZN, t\N , (2.1)

B : S0(2n -f 1), (n ̂  2), Z(SO(2n + 1)) = Z2, Z = Z2 , (2.2)

C:SP(2π)(fl ^ 2), Z(SP(2n}) = Z2, Z = Z2 , (2.3)

D : S0(2n)(n ^ 2), Z(SO(2n)) - Z2 x Z2 or Z4, Z = Z2, Z4 or Z2 x Z2 , (2.4)

Z3, Z = Z 3, (2.5)

Z2, Z = Z 2 , (2.6)

Orbifold construction in subfactors in first used in [2] to prove the nonexistence of
Dodd as a principal graph and realizes Deven as the principal graph. We refer the
detail to [1 and 2]. Let K be a natural number, called level. Let φ be an irreducible
representation of G. Let (g, /?, w, τ) be the coupling system associated to Gk WZW
model and primary field φ. Our intention is to apply the orbifold method with
respect to Z (a subgroup of Z(G)) to (#, /?, w, τ). We use a slightly different notation
for connection (for the definition, see appendix) from that of [1 and 2]. i.e.,

The arrows on RHS of the (2.7) will be determined from the positions of α, b, c
and dong and /?, the same as in [4]. The following identities will be crucial for our
purposes: (See [9])

(2.8)

(2.9)

In particular, in (2.8), let μ = 0, we get:

(2.10)

Here Z(μ) means the action of the central elements z on the weights μ. μ, 7, α are
within the truncated Weyl chamber determined by the level X. To apply the
orbifold constructions to the double string algebra construction. We need two
conditions:

1. K must be such that Z(0) 6 #evenn/7even Vz 6 Z. The reason is explained in remark
[b] of the introduction. (2.11)
2. The connection is invariant under the action of Z. (2.12).

To prove (2.12), let us notice the following simple fact: (It's also used in [7]).

Lemma 2.13. Let g0 be a closed graph with the outer region colored by 0 and gt be
the same graph but with the outer region colored by i E /. Then the partition function
°fdo (denoted by Z(g0)) is equal to that ofg^denoted by Z(gi)).

Proof. One introduces a large circle colored by i (the outer region of the circle is
colored by 0) whose interior contains g.
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Then:
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where the second identity follows from the topological invariance. Hence
Z(#t ) = Z(<7o) Apply Lemma 2.13 to the following picture with / = z(0), z e
Z. Z < Z(GlZ, Z ̂  Z(G\

We get:

2(o)

(2.14)

where we use the fact Z(0) x a = Z(a\ from which one can assign only one color to
the closed region in order to have admissible colors. See Sect. 1.1 (c) for the
definition of admissible colors.



Orbifold Construction in Subfactors 245

By (1.11):

a ->>

c ->

z(ά)

From (2.14) and (2.15),

a -> b z(ά) -» z(6)
x \ 1/2 V ' V '

I l = (-^J l l

c -* d z(c) -» z(d)

By (2.9), χz(a} = χα, thus we get (2.12).
Now let X be as in (2.11). We can apply the orbifold method since (2.12) holds.

The question is whether the connection coming out of the orbifold is flat or not. In
our case, the connection is flat iff (see [2]):

0 A . . . - * . «- ... ίl zk(0)

: ! = 1 . (2.16)

zJ(z) zJ(a') ^

Here z e Z, Z ^ Z(G), /c, j are integers. The length of the string α is equal to that of
α'. Let's denote the left-hand side of (2.16) by μ(zk, zj).

We will find the necessary and sufficient condition of (2.16). First we prove the
following lemma:

0 A ... -» zk(0)

where c is a number whose absolute value is 1.

Proof. By using our convention for the connection as of (2.7), up to nonzero
numbers depending only on the boundary terms, the left-hand side of the above
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expression is equal to the following diagrams: (The partition function associated to
the diagram is defined as in Sect, one.)

zk(0)

zj(0)
zk+j(0)

(2.18)

The reason is because the boundary terms of the above picture are simply the
product of special fusion matrix elements which are nonzero by (1.3), (1.8), (1.9) and
(1.10). By using the YBE (1.4) and braiding-fusing relation (1.5) of Sect, one, we get:

zk(0)

«̂ " '

. . .

zk(0)

β

--*— ̂ ^ o
"""""X^

γ

*

z'(0) ^^^^^
zk+'(0)

It's easy to see from the picture that one can get a nonzero number only if
(z*(0), β; γ) is admissible (see (c) of Sect. one). By (2.10), z*(0) x β = zk(β). Hence it is
nonzero only if zk(β) = y, otherwise it's 0. So:

i
z>(0)

In the same way

z"(0)
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Hence

0 Λ ... -» zk(0) « - . . . £ 0

"I I"
k ι 2 = .

I I
z>(0) -- > z"+''(0) -» z*+''(0) «- ••• < - z'(0)

z/(α) z>(α)

It follows that |c|2 = 1 by the flatness of the original connection as in [1 and 2].
Next we show μ(z*, z j ) is independent of α and α'. By renomalization rule,

z*(0)

Hence:

1 / 7 /^7 f c zΛ — II ,(7k 7j}\2

IA*α,α \z ? z / A*7,y V z ? z / I

0 _ > . . . - » z*(0)

z''(0) ^ ••• -» z*(0)

where the last step follows from Lemma 2.17.
So in order to prove the lemma, we need to show:

0 A ... -> 0

n i"
(2.19)

4
z;(0) *J? ... _

Let us use our notation for the connection to write (2.19).
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We have:

- Ύ7 4χ

Z'ίo}

The above identity follows obviously from the topological invariance. This
finishes the proof of (2.19).

Lemma 2.20. For fixed zj,μ( ,zj) is a homomorphism from the cyclic subgroup
generated by z of Z to the unit circle.

Proof. For example:

o A

"I

z*(0)

0

"I

4' z2*+' (0)

z*(0) z*(0)

i

z>(0) -̂ l -

= μ(zfc,zJXzk,z^).

z/(α)
(0)

Here the first identity follows from the independence of μ( , •) on the paths, and
the second follows from Lemma 2.17 and (2.12).

By Lemma 2.20 and 2.1 to 2.6, where it's listed that Z may be a cyclic group or
Z2 x Z2, it's easy to see that μ(zfc, z') = 1 Vk, j iff μ(zk, z~k) = IVk.

For example, if Z = Z,, ί ̂  2, choose z = z0 to be the generator. Then
μ(z\ zj) = (μ(z°, z°))kj by (2.20). Hence (2.21) holds. The case when Z = Z2 x Z2 is
similar.

Let Λz-ι(0) be the conformal dimension of the weight z"1^).
We have:

Lemma 2.21: μ(z, z'1) = exp( ± 2πihz-1(0)).
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Proof. Since μ(z. z"l) is independent of the path, one may set:

0 A ••• -> z(0)

249

1

Here /?, /? are paths on h and α, α are paths on
By using (4.15) of [4] (our χφ is F0 in [4]):

'(Q)Vl I I

I
(0)

(0)

__ -

(V

= exp(±2πίΛ z-ι ( 0 )),

where the fourth identity follows from (1.6).
By (2.16), (2.20) and (2.21), we have proved the following theorem:

Theorem. Let K be as in (2.11). Then the connection of the orbifold is flat iff
Λz(0) e TL Vz e Z.
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Remark. Let Oz be the set of fundamental weights of G associated to Z, let M be the
least number such that 1/2M(θz, Oz) e % Vz e Z. Then /72(0) e 2£ Vz e Z is equivalent
to M|K. This is noted in [8], where it's found that a Chern-Simons gauge theory
based on G/Z exists at level K iff

Appendix

We include here an appendix on the part of the general theory of subfactors for the
convenience of the reader. For more details, the reader is encouraged to consult the
excellent expositions [11 and 3].

Let N c= M be type 77 { factors. V. Jones determined the possible value of the
index for a subfactor of a 77 { factor and constructed a series of subfactors with
indices (4 cos2(£))u[4, oo](w ^ 3). A subfactor N a M is called irreducible if
ATOM = C. The problem of classifying irreducible subfactors of the hyperfinite 77 j
factor is a big open question in operator algebra.

Starting with an inclusion of hyperfinite Π{ factors with index [M JV] ^ oo,
one can construct the associated Jones tower of factors N c M c
M! c= M2 c . . . , where M/+ 1 is the factor obtained from the Jones basic construc-
tion for MI- i d M! (see [11]). The centralizer algebras (M inM7-)/^7- are finite
dimensional C* algebras. The following sequences of inclusions of algebras:

u u

is an invariant for the inclusion N a M, called paragroup (or the coupling system
in [3]). They satisfy certain symmetry conditions, forming what's called a commu-
ting square (see [11]).

The paragroups the underlying set of a group is replaced by a graph, the group
elements are substituted by strings on the graph and a geometrical connection
stands for the composition law. The harmonic analysis is similar to the computa-
tion of the partition function in statistical mechanics.

Let R be the Murray- Von Neuman hyperfinite Πl factor. An important class of
subfactors of R are the finite depth subfactors, the finite depth refers to the
condition supfc dim Z(M'nMfc) g oo, where Z(M'nMfc) denotes the center of
M'nMfc. The finite depth subfactors of R are classified by the paragroup.

Oceanu axiomatized the paragroup for subfactors N c M with finite depth. It
consists of the following ingredients: Let g{ , g2,g3, 9* be four finite graphs with the
following properties:

(1) Each graph is bipartite, i.e., the vertices are divided into even and odd ones.
(2) Perron-Frobenius eigenvalues of the adjacent matrices coincide for g2 and

04 and for gλ and g3.
(3) Even vertices of g2 and gv coincide, odd vertices of g2 and #3 coincide

vertices of g3 and g4 coincide, and odd vertices of g4 and g{ coincide.
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Take a diagram:
C2 ,

a -> b

"i !ζ"3,
C4 ,

c -» α

where f/s satisfy one of the following: ξl e gl9 ξ2 e 02, £2 e #3, ξ4 e 04,

orξ j e #! , £2 e 04, ξ2 6 03, £4 e 04,
or<^ e 03, ξ2 G #4, £2 e 0ι, £4 e g2,

and a = s(ξ2\ b = r({2) = s«3λ c = r^) = s(ξ4), d - r(ξ3) = r«4) (Here s(ξj) and
r(^) mean the starting point and the ending point of the edge ξjm) Such a diagram is
called a cell. A connection is an assignment of a complex number to each cell, and
we write:

6 ( C .

In the string algebra construction which is based on the four finite graphs
gι,g2, #3> 04> the connection is used to embed a small string algebra naturally into
a big one. The resulting sequences of inclusions of algebras are supposed to be the
inclusions of algebras coming from the subfactors at the beginning of this appendix,
so they form commuting squares, hence we have some restrictions on the connec-
tions. For example, we require the following renormalization rule:

a -> c

where ξj means the edge with its orientation reversed and μ( ) denotes an entry of
the Perron-Frobenius eigenvector of the adjacent matrix of each graph. We also
require the biunitarity condition:

The above conditions are local conditions. There's an important global condi-
tion, called flatness condition, which will guarantee that the graphs (with connec-
tions on it) we used to construct subfactors will be the principal graph (and its dual)
of the subfactors. To describe this flatness condition, choose two distinguished
points ® among the even vertices of gv and #3 respectively. The connection is flat
iff it satisfies the following condition for the double string algebra sequences and
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that with gl and g3 interchanged:

* u . . . _ » . «_ ... 4. *
"I lβ>

I

Here CΛ > r, depends only on α, y which are strings on gλ and #3 (see [1]).
It has been noticed for some time that the conditions on the connections,

namely the symmetry (the renormalization rules), the biunitarity and the flatness
conditions and very similar to various conditions on Boltzmann weights of re-
stricted lattice in RCFT satisfy all the axioms of the paragroup (or coupling
system). For e.g., using our notation (2.7) for the connection (and omitting the spin
variables as usual), the biunitarity condition follows from:

I

which is evident topologically.
We end up this appendix with the following correspondences between the

theory of finite depth subfactors and that of RCFT:

Irreducible subfactors of finite depth RCFT
Finite depth condition Rationality
Connections Suitably normalized braiding matrices
Principal graphs and its dual Fusion graphs of primary field and its dual
Flatness Topological invariance (e.g., YBE, braiding-fusion relations).
The symmetries in subfactors coming from the commuting square condition,

but in RCFT they come from the polynomial equations of Moore and Seiberg. Of
course, one needs to take the above correspondences with a grain of salt. For e.g.,
the principal graphs and its dual are always isomorphic for those subfactors
coming from RCFT. But we know that there are interesting subfactors (exclude
those coming from finite group action whose structures are well-known) with finite
depth with principal graph (as an unlabelled graph) different from its dual. It's an
interesting question to seen if one can find a corresponding construction in RCFT.
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