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Abstract: Existence of maximal hypersurfaces and of foliations by maximal hyper-
surfaces is proven in two classes of asymptotically flat spacetimes which possess
a one parameter group of isometries whose orbits are timelike "near infinity." The
first class consists of strongly causal asymptotically flat spacetimes which contain no
"black hole or white hole" (but may contain "ergoregions" where the Killing orbits
fail to be timelike). The second class of spacetimes possess a black hole and a white
hole, with the black and white hole horizons intersecting in a compact 2-surf ace 5.

1. Introduction

The question of the existence of maximal slices (i.e., slices with vanishing trace,
K = Ka

a of extrinsic curvature, Kab) in asymptotically flat spacetimes has arisen
frequently in the analysis of many issues in general relativity. The main reason for
this is that the "kinetic term"

κabκab - κ2

in the Hamiltonian constraint equation is non-negative when K — 0, thereby
simplifying many arguments. Another reason is that the momentum constraint
becomes conformally invariant when K = 0.

The issue of the existence of maximal hypersurfaces arose again recently in an
analysis of solutions to the Einstein-Yang-Mills equation by Sudarsky and Wald [23].
In Theorems 3.3, 3.4, and the discussion following Theorem 3.4 of [23] two results
were proven, which may be roughly summarized as follows (cf. [23] for precise
statements of the asymptotic conditions assumed):
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1. Consider an asymptotically flat (with a single "end") solution to the Einstein-Yang-
Mills equations (on a trivial SU(2) principal bundle) with a Killing vector field X,
timelike at infinity, which has vanishing electric charge or asymptotically vanishing
electrostatic potential. Suppose there exists an asymptotically flat maximal slice Σ
with compact interior (i.e., a two-sphere in the asymptotic region bounds a compact
subset of Σ), such that X is asymptotically orthogonal to Σ (i.e. X —^r_>00 d/dt
in the asymptotically Minkowskian coordinates in which Σ c {t = 0}). Then the
solution is static (i.e., X is orthogonal to Σ) and has vanishing Yang-Mills electric
field on the static hypersurfaces.)

2. Consider an asymptotically flat solution to the Einstein-Yang-Mills equations (on
a trivial SU(2) principal bundle) which possesses a Killing vector field X which is
timelike at infinity and possesses a black and white hole, whose horizons comprise
a bifurcate Killing horizon with bifurcation surface S. Suppose that X is normal
to the horizon (i.e., suppose that the angular velocity of the horizon vanishes) and
suppose that the solution has vanishing electric charge or asymptotically vanishing
electrostatic potential. Suppose further that there exists an asymptotically flat maximal
hypersurface Σ with boundary 5, and compact interior such that X is asymptotically
orthogonal to Σ. Then the solution is static "in the exterior world" (i.e., X is
orthogonal to Σ1), with X strictly timelike outside of the black and white holes,
and has vanishing electric field on the static hypersurfaces. (In the Einstein-Maxwell
(on a trivial [7(1) principal bundle) case, the hypothesis that the electric charge or the
asymptotic electrostatic potential vanishes may be dropped, and it then can be shown
that the solution is static in the exterior world and has vanishing magnetic field on
the static hypersurfaces.)

Clearly, to obtain a more satisfactory picture one has to understand how restrictive
are the conditions of existence of maximal hypersurfaces made above. In the past
decade, some progress has been made in proving existence of maximal slices
in asymptotically flat spacetimes [2, 5]. In particular, it has been shown that
asymptotically flat maximal slices always exist in strictly stationary, asymptotically
flat spacetimes [5]. Unfortunately, this theorem requires that the Killing vector field
be timelike everywhere, not just "near infinity." Furthermore, this theorem does not
encompass the situation where one wishes the maximal hypersurface to pass through
a given 2-surface (e.g. the bifurcation 2-surface, 5, of the second result above).

The purpose of this paper is to extend the previous results on existence of maximal
hypersurfaces to encompass the situations considered by Sudarsky and Wald, and, in
fact, some more general situations as well. We will prove that in asymptotically
stationary spacetimes, there exist maximal hypersurfaces of the type needed in their
result 1 and 2 above. Indeed, our analysis will be more general in that

1. Einstein's equation will not be used (i.e., no energy conditions will be imposed),
and

2. We will assume weaker asymptotic conditions on our spacetimes than assumed in
[23].

In addition, in an appendix we shall generalize our results to "asymptotically
stationary-rotating spacetimes." Thus, under the conditions of this paper, the hy-
potheses of the existence of a maximal hypersurface can be removed from Theorems
3.3 and 3.4 of [23] (as well as from the discussion in [23] following Theorem 3.4).

Previous works [2, 3, 5] have established the existence and regularity of solutions
of the maximal surface equation, under the assumption of the existence of (global)
coordinates satisfying certain interior uniformity conditions and asymptotic decay
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conditions. The main work of this paper is in exploiting the stationary, the causal and
the topological assumptions (Defs. 2.1-2.3) to establish

1. compactness of domains of dependence of compact sets,

2. the existence of appropriate coordinate systems and

3. an a priori L°° bound.

Point 1 above is the key result here, as essentially all other constructions in
this paper depend upon this observation. The proof thereof turns out to be rather
involved, and proceeds through a series of lemmas describing global properties of
the dynamical system associated with the Killing vector field. Once the compactness
result and some global properties of the Killing orbits are established, the appropriate
coordinate systems are readily constructed. [Some extra care has to be taken in the
case when a black hole is present, due to a possible pathological behaviour of our
coordinates near the boundary of the domain where they are defined.] Moreover, the
compactness of domains of dependence of compact sets allows us (using the deep
and important results of [2, 3]) to construct a sequence of maximal hypersurfaces
with boundaries spanned on a family of spheres of radii tending to infinity. To extract
a converging subsequence we need appropriate a priori bounds - we prove an L°°
a priori bound via an "Alexandrov-type" method of moving the hypersurfaces with
the isometry group and using Bartnik's asymptotic estimates [2]; higher derivative
estimates follow from [2], which proves the existence of a converging subsequence
and allows us to establish the existence and asymptotic flatness of a complete maximal
hypersurface.

We refer the reader to Sect. 2 below for a precise specification of the classes
of spacetimes considered in our paper and we refer the reader to Sect. 4 for the
precise statement (and proof) of our existence theorems on maximal slices. However,
it is worth elucidating by some informal discussion and examples the nature of the
spacetimes to which our results apply - as well as those which are not treated by
our analysis. This will be done in the subsection that follows. In Sect. 2 we define
precisely the class of spacetimes we consider, and give some preliminary results.
Some theorems concerning the structure of these spacetimes are presented in Sect. 3;
in particular, relationship are obtained between "having no black holes and no white
holes" and compactness of domains of dependence of compact sets. Finally, Sect.
4 contains our theorems on the existence of maximal hypersurfaces. In Appendix A
we point out the existence of a generalization of our results to space-times which
are "stationary-rotating". In Appendix B we give an alternative proof of one of our
theorems under the additional hypothesis that the "timelike convergence condition"
holds.

LI. Some Stationary, Asymptotically Flat Space-Times

To begin, we emphasize that we restrict attention to strongly causal spacetimes
(M, gab) for which there exists a smooth, acausal hypersurface Σ c M (possibly
possessing a compact boundary S) with a finite number of asymptotically flat "ends,"
Σ{. Furthermore, we require (M, gab) to possess a one-parameter group of isometries
which has timelike orbits at each "end." (As mentioned above, a generalization to the
case where X is "stationary-rotating" (rather than timelike) at each end is given in
the appendix.) We shall denote the Killing field which generates these isometries as
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X and shall denote the isometry corresponding to parameter t by φ[X]t. The orbit
of Σi under φ[X]t will be denoted as Mτ. We emphasize that we do not impose any
conditions on the Killing orbits in the "interior portion" of the spacetime. In particular,
"ergoregions" where X is null or spacelike are permitted.

The general form of the spacetime metric in the spacetimes we consider can be
described in concrete terms as follows. In Sect. 4 we shall show that in the class of
spacetimes which we consider, there always exists a smooth, spacelike hypersurface
Σ" such that X is transverse to Σ" ', and the orbits of X passing through Σ" are
diffeomorphic to EL We define the set MΣ, = { p e M : 3 ί G E such that
φ[X]t(p) G '}. Then MΣι is an open submanifold of M diffeomorphic to Σf x EL
Furthermore, the hypersurface Σf is given by the equation t = 0, where t is the
function on MΣ, appearing in the definition of MΣ,. It follows that on MΣ, the
metric can be written in the form

gμι/ dxμ άxv = (\β\* - α) dt2

where a > 0 is a function on Σ' ,β is a one form on Σ", and 7 is a Riemannian
metric on Σ' . Furthermore, we have,

where * stands for =, > or <. It should be stressed that (1.1) defines a Lorentzian
metric regardless of the sign of gabX

aXb provided only that a > 0 and that 7 is

a Riemannian metric. When X is spacelike, then all the coordinate vectors - — ,F dx^
μ = 0, . . . , 3 are spacelike and one loses the a priori control of the slopes of the
light cones, which is at the origin of the following difficulty: From the point of
view of PDE theory, when considering existence of maximal hypersurfaces a natural
hypothesis is that of compactness of domains of dependence of compact sets. Given
a metric of the form (1.1) in which gabX

aXb is allowed to change sign, it seems far
from being a trivial exercise to determine whether or not compactness of domains of
dependence of compact sets holds. Nevertheless, in Sect. 3 we shall show that this
compactness property holds for the spacetimes we consider.

Since the spacetimes we consider possess a hypersurface Σ which extends to one
or more asymptotically flat "ends," Σi (with orbits Mτ under φ[X]t), the notions of
a "black hole" and a "white hole" can be introduced. In this paper, we define a black
hole region of the spacetime to consist of the events which do not lie in the past
of the union of the asymptotically flat regions, M^ The notion of black hole should
be sharply contrasted with the set of events which merely fail to lie in the past of a
particular region Mτ. (This set of events will be referred to as the black hole with
respect to Mi.) The notions of a white hole and a white hole with respect to Mi

are defined similarly, with "past" replaced by "future." Note that it is possible for a
spacetime to possess a black and/or white hole with respect to one or more individual
end, Mi9 and yet fail to have a black hole and/or white hole; indeed, the spacetime
composed of the union of blocks B, D and E of Fig. 1.1 provides an example of
such a spacetime. Note also that if more than one asymptotic region is present in the
spacetime, the definition of the black and white hole regions may depend upon the
choice of Σ, since only the asymptotic regions, Mi9 generated by ends, Σi of Σ enter
the definition. Thus, for example, in the spacetime of Fig. 1.1 below, the black hole
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Fig. 1.1. The Penrose diagram of a spacetime which illustrates some applications of our theorems.
Each point on this figure represents a two sphere. The arrows represent the direction and
character (spacelike or timelike) of Killing orbits. A spherically symmetric, asymptotically stationary
spacetime, not necessarily satisfying any reasonable field equations, with the global structure
displayed in this figure can be easily constructed using the methods of [25]

region for slice Σ is block F, but the black hole region for slice Σ' is the union of
blocks D, E, and F, and the black hole region for hypersurface Σ" is the union of
blocks C, A E, and F.

The spacetimes to which our theorems apply divide into the following two classes1:
(1) Σ1 is a slice (i.e., a closed hypersurface without boundary) whose "interior portion"
is compact, and no black hole or white hole is present. In this case Theorem 4.1
establishes existence of a maximal slice which is complete, asymptotically flat at
each end and is asymptotically orthogonal to X. (2) Σ is a hypersurface with compact
boundary S (which need not be connected) and the "interior portion" of Σ is compact.
The spacetime contains both a black hole and a white hole and their horizons intersect
at S. In this case, Theorem 4.2 establishes existence of a maximal hypersurface with
boundary 5, which is complete, asymptotically flat at the ends and is asymptotically
orthogonal to X.

It should be emphasized, that our results on existence of maximal surfaces are
sharp, in the following sense: There exist asymptotically flat space-times which
contain a black hole region, and a white hole region, and in which no complete,
asymptotically flat, maximal surfaces which are asymptotically orthogonal to the
Killing vector exist. An example2 of such a space-time is presented at the beginning
of Sect. 4.

We now give some examples of spacetimes which lie in these classes, as
well as some examples which do not. First, class (1) includes all asymptotically
flat spacetimes possessing an asymptotically flat slice, Σ1, with compact interior,

1 The reader should note that the classes of space-times (1) and (2) discussed here correspond to the
classes of space-times (a) and (b) defined in the main body of the paper with additional conditions
imposed upon the black and white hole regions of the spacetime
2 This example was suggested to us by Dieter Brill. We wish to thank him for useful discussions
concerning the question of sharpness of Theorem 4.1
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such that X is globally timelike. (Namely, if X is globally timelike, it is eas-
ily seen that no black hole or white hole can be present: The event horizon
of a black or white hole is a null surface which is mapped into itself by the
isometries, so if a black or white hole exists, X must be null or spacelike on
its horizon.) Numerous examples of such spacetimes are easily constructed us-
ing (1.1). Existence of maximal slices when X is globally timelike was previ-
ously proven in [5]. Thus, Theorem 4.1 may be viewed as a generalization of
this result to the case where an "ergoregion" (but no black or white hole) is
present.

An explicit example of a spacetime in class (1) which contains an ergoregion may
be constructed as follows. Let gab be a stationary, axisymmetric metric on R4 of the
form,

ds2 = -V dt2 + 2W at dφ + r2 sin2 θ dφ2 + r2 dθ2 + dr2 . (1.2)

Choose, rl9r2,θ{,θ2 G R with 0 < rl < r2 and 0 < θl < Θ2 < π. Choose
V = V(r, θ), W = W(r , θ) to be smooth functions of their arguments such that
(a) V = I and W = 0 whenever r £ (r l 5r2) or θ 0 (6> l76>2), (b) V(r^θQ) < 0 for

some r0 G (rt,r2) and 00 G (#1? 02), and (c) W2 > -Vr2sin2θ everywhere. Clearly,
the orbit of the asymptotically stationary Killing field d/dt at (r0,00) is spacelike.
However, no black hole or white hole is present in this spacetime, since at every
point there exists some linear combination of the Killing fields d/dt and d/dψ which
is timelike. (As already noted above, if a black hole were present, its event horizon
would be null and every Killing field would have to be tangent to it. Hence, no
Killing field could be timelike on the horizon.) Spacetimes with this character (i.e.,
possessing an "ergoregion" but no black or white hole) which are solutions to the
Einstein-perfect-fluid equations have been numerically constructed by Butterworth
and Ipser [7]. Theorem 4.1 is applicable to such spacetimes.

Another example of a spacetime containing an ergoregion for which our result for
case (1) is applicable is provided in Fig. 1.1. For the slice Σ shown there, there is
both a black hole (block F) and a white hole (block A), so this spacetime is not of
class (1). However, the union of the blocks B, D, and E - viewed as a spacetime
in its own right - is a spacetime of class (1) with respect to Σ1, despite the fact that
the Killing orbits are spacelike in block D. Thus, Theorem 4.1 guarantees existence
of a maximal slice extending from M1 to M2. On the other hand, it is worth noting
that for the slice Σ' of Fig. 1.1, the white hole region is block A, and the black hole
region includes block D. Thus, no subset of this spacetime is of class (1) for the
slice Σf (or for any other slice spanning the asymptotic regions Ml and M3). Thus,
Theorem 4.1 cannot be invoked to infer existence of a maximal slice extending from
M{ to M3.

Examples of spacetimes of class (2) include the standard "non-extremal" stationary
black hole solutions, such as the charged Kerr solutions with e2 + a2 < m2 or
the recently discovered "colored black hole" solutions to the Einstein-Yang-Mills
equations. (Here Σ can be taken to be any Cauchy surface for the domain of
outer communications of one asymptotically flat region.) Note that the charged Ken-
solutions with α 7^ 0 contain an ergoregion exterior to the black and white holes.
Note also that in the above examples, the intersection surface, 5, of the black and
white hole horizons has the topology of a sphere. However, using the methods
of [15] one can construct asymptotically stationary spacetimes (not necessarily
satisfying any reasonable field equations or energy inequalities) such that S has an
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arbitrary number of connected components, each of them having arbitrarily specifiable
topology3.

Another example of a spacetime of class (2) is provided by Fig. 1.1: The spacetime
shown there is of class (2) with respect to the hypersurface Σ"'. Thus, Theorem 4.2
guarantees that there exists a maximal hypersurface with end M{ and boundary S,
which is asymptotically flat at Ml and is asymptotically orthogonal to X.

We turn, now, to giving some examples of spacetimes for which our theorems do
not apply. A simple class of examples of asymptotically flat spacetimes with complete
Killing field, X, timelike at each end, which contain neither a black hole nor white
hole but fail to be of class (1) can be constructed by starting with any spacetime of
class (1) and removing a Killing orbit which passes through Σ. (The compactness
requirement on the "interior portion" of Σ then will not be satisfied.) Inextendible
spacetimes with similar properties also may easily be constructed. The Schwarzschild
solution with negative mass provides a good example of such a spacetime.

A spacetime containing a black hole with respect to one or more asymptotic can
fail to be in class (2) for a variety of reasons. The following are some examples
of spacetimes which fail to be in class (2) for any choice of Σ: (i) Any spacetime
which contains a black hole with respect to one or more asymptotic regions, but
not a white hole. The extended Schwarzschild spacetime with its white hole region
removed provides a simple example of such a spacetime. (ii) Any spacetime which
contains a black hole and white hole with respect to one or more ends, but the
black and white hole horizons do not intersect. The "extreme" charged Kerr solutions
(satisfying e2 + a2 = m2) and the Majumdar-Papapetrou black holes (cf. e.g. [17])
provide examples of such spacetimes. Additional examples can be constructed in
which the black hole horizon is a Killing horizon with non-constant surface gravity.
In that case, Racz and Wald [21] have recently shown that some of the generators of
the horizon terminate in a parallelly propagated curvature singularity, and thus cannot
intersect the generators of the horizon of any white hole that may be present, (iii)
Numerous further examples can be constructed by starting with a spacetime of class
(2) and removing suitable Killing orbits.

Although the above examples make clear that the assumptions made in case (2) are
rather restrictive from the mathematical point of view, the following considerations
indicate that these assumptions may not be very restrictive from the physical point
of view. First, if Einstein's equation holds with matter satisfying suitable hyperbolic
equations and energy conditions, and if both the matter fields and the spacetime
are analytic, then Hawking has argued (cf. Propositions 9.3.5 and 9.3.6 of [19])
that each connected component of the event horizon of a black hole must be a
Killing horizon. (This implies that either the asymptotically stationary Killing field
must be normal to the horizon, or there must exist an additional Killing field in the
spacetime.) Furthermore, if Einstein's equation with matter satisfying the dominant
energy condition holds, then the surface gravity, AC, must be constant over each
connected component of the horizon [4]: However, Racz and Wald [21] have recently
shown that if a spacetime possesses a one-parameter group of isometries with a Killing
horizon such that K is constant and K ^ 0, then a neighborhood of the horizon can
be smoothly extended (if necessary) so that the Killing horizon is a bifurcate horizon.
Thus, these combined results lend plausiblity to the idea that the only physically
relevant black holes are ones whose event horizon has K = 0 (i.e., the "extremal case")
3 The construction of "toroidal black holes" given on p. 682 of [15] is easily generalized to other
topologies. By construction the Killing orbits in "opposite" ends have opposite time orientation, and
the existence of black hole regions follows from Lemma 3.2 proved below
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and ones whose event horizon comprises a portion of a bifurcate Killing horizon. In
the latter case, a white hole must also be present, and, under additional, presumably
mild, assumptions, the spacetime should be of class (2).

2. Preliminary Definitions and Results on Asymptotically Stationary Spacetimes

Throughout this paper, we will assume that all manifolds are smooth, connected,
Hausdorff, and paracompact, and all spacetimes are time oriented. For simplicity,
unless otherwise specified, only smooth metrics will be considered, although all
the results presented below would hold under appropriate finite differentiability
conditions. Unless specified otherwise, our notation and conventions4 will follow
[24], with one exception: We shall define the domain of dependence &(Σ) of an
achronal set Σ as the set of all points p such that every inextendible timelike (as
opposed to causal) curve through p intersects Σ. (This agrees with the definition
given in [19] and corresponds when Σ is closed to the closure of the domain of

dependence as defined in [24].) We define $(Σ) = int^(JC), where intί? stands for
the interior of a set Ω.

We begin by defining the notion of asymptotic stationarity. First, recall that a
hyper surf ace is an embedded submanifold (without boundary) of codimension 1; a
hypersurface with boundary is an embedded submanifold of codimension 1 with
boundary; a slice is a closed, embedded submanifold without boundary.

Definition 2.1. A spacetime (M, gab) possessing an acausal hypersurface Σ (possibly
with boundary) expressed in the form of a disjoint union Σ = Σγ U Σ' will be called
(fc,α)— asymptotically stationary with respect to the "end" Σl if the following three
conditions hold:

1. Σl is diffeomorphic to R3 \ B(Rl), where B(RV) is a closed ball of radius R{.
There exists a coordinate system defined on some neighbourhood @[ of Σl in which
the coordinate components, g , of the spacetime metric satisfy, for some 0 < α < 1,
0 < λ < 1, k > 2,

9w<-C-\ \9μ,-ημ,\<Cr-a, (2.1)

3

VZ1 e M3 giάZ
%Zj > C~l Σ(Z1)2 , (2.2)

i=l

\9σ . - . | < C r — l < i < f c , (2.3)

< Cr-a~k~χ(\t - r\χ + x - y\χ) (2.4)

for all (t,x), (τ,y) G $[ such that \t — r < 1, \x - y\ < r(x)/2, and for some

constant C. (Here r = ( ]Γ xA 2) .)
V \ = / / /

2. dΣlf where Σ{ denotes the closure of 'Σl considered as a subset ofR3, is identified
with a connected component of ΘΣf by a diffeomorphism.

4 In particular, the indices α, 6, . . . etc. are abstract tensor indices, while latin indices i,j, ... etc.
are component indices and run from 1 to 3, and greek indices are component indices and run from
O t o 3
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3. On M, there exists a Killing vector field X, the orbits of which are complete
and which is uniformly timelike on Σl(gabX

aXb < —C~l). Furthermore, in the
coordinate system of point I we have as r — > oo,

Γ\ Γ\

X = (A + 0(r-a))— + 0(r-α)— (2.5)
at ox1

for some constant A(^= 0).

Remarks. 1. It is not too difficult to show from (2.1)-(2.4) and from

VμVvXa = RλμvaX
x (2.6)

(this last equation being a well known consequence of the Killing equations) that there
exist constants A ^ 0. Bτ such that any Killing vector which is uniformly timelike
for r > R2, for some R2 > -R1? necessarily satisfies, in the coordinate system of
definition (2.1),

X-A^-β<^τ = 0(r-α), (2.7)
at ox1

l<i<k dσ%... dσ.X
μ = O(r~a-*) , (2.8)

with an obvious weighted Holder condition satisfied by d . . . <9σfcX
μ. If \B\ < \A\

as must occur since X is uniformly timelike on Σ, the constants Bl can then be set
to zero by constructing a coordinate system similar to that of Proposition 2. 1 below,
and subsequently performing an appropriate Lorentz transformation ("boost"). Thus,
Eq. (2.5) involves no loss of generality if X is uniformly timelike5 on Σ{.

2. If (2.1) and (2.3) hold with 1 < i < k + 1, then (2.4) will hold as well (with any
0< λ < 1).

3. A generalization of this definition to asymptotically "stationary -rotating" space-
times is given in Appendix A.

4. The (rather restrictive) requirement of completeness of the orbits of X above
can be shown to be automatically satisfied when, e.g., (M, g) is vacuum and maximal
globally hyperbolic [11]. More generally, this will still be true when (M, g) is maximal
globally hyperbolic and the metric satisfies some well-posed of equations, like e.g.
Einstein-Yang-Mills-Higgs equations.

Let (M,gab) with Σ = Σl U Σ' be asymptotically stationary with respect to Σ\.
We define Ml by

M{= \J φίX^ΣJ, (2.9)
te(— 00,00)

where throughout this paper </>[VF]t denotes the one-parameter group of isometries
generated by a Killing vector field W. The following proposition, which gives
some insight into the structure of asymptotically stationary spacetimes, will be used
throughout (the coordinates the existence of which is claimed below will be referred
to as Killing coordinates based on Σ Π M{):

then X could asymptotically approach a null vector (so that
\B\ = \A\)9 in which case it could not be put in the form Eq. (2.5). An example of such a spacetime
is constructed in the remark following the proof of Proposition A. 1, Appendix A. We do not expect
there to exist any metrics with a timelike Killing vector asymptotically approaching a null vector,
and satisfying some reasonable field equations and/or energy inequalities; however, it might be of
some interest to analyze this question for vacuum spacetimes
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Proposition 2.1 (Killing time based on Σ Π MI). Let (M, gab) with Σ = Σl U Σ"
be asymptotically stationary will respect to Σl . Then there exists a global coordinate
system on Ml such that Ml w R x (R3 \ B(Rl)) with Σl = {x° = 0), and

9w<-C-\ =0, (2.10)

*)2 , (2.11)

/<9r some constant C; moreover, dσ . . . dσ gμv satisfy an obvious weighted Holder
condition.

A generalization of Proposition 2.1 (Proposition A.I) is stated and proven in
Appendix A. It should be noted that, as shown in the proof of Proposition A. 1 given
in Appendix A, one does not lose differentiability and/or uniform decay bounds of
the derivatives of the metric when going to the Killing coordinates.

We now define the two classes of spacetimes which will be analyzed in this
paper. These two classes correspond roughly to the two classes of Einstein- Yang-
Mills solutions considered in [23].

Definition 2.2 (Spacetimes of class (a)). (M.gab) is a strongly causal spacetime
which contains a connected, acausal slice Σ expressible as a disjoint union in the

I

form Σ = U Σi U JCint, where Σinl is compact (with boundary). On M there exists
i=l

a Killing vector field X such that (M, gab) is (fc, a) -asymptotic ally stationary with
respect to each Σi.

Let us emphasize that the hypersurface Σ above is closed and has no boundary
(as opposed to the case (b) defined below in which Σ has a boundary). It should be
stressed that we assume that X approaches (a multiple of) d/dt in all the asymptotic
ends Σ^ Thus, when more than one Killing vector and more than one end are
present, we do not allow for situations in which one combination of Killing vectors
is asymptotic to d/dt in one end, and a different combination of Killing vectors has
this property in another end. Note also that, under the conditions of Definition 2.2,
Σ is necessarily a complete Riemannian manifold with respect to the metric induced
from(M,#α6).

Definition 2.3 (Spacetimes of class (b)). (M,gab) is a strongly causal spacetime
which contains a connected, closed, acausal hypersurface Σ with boundary S, such

I

that Σ is expressible as a disjoint union in the form Σ = |J Σi U ΣiτΛ, where Σini
i=l

is compact (with boundary). On M there exists a Killing vector field X such that
(M, gab) is (fc, a)-asymptotically stationary with respect to each Σif and X is tangent
to S (so that the isometries, φ [ X ] t , map S into S).

Note that we do not assume that 5 is connected. Note also that under the conditions
of Definition 2.3 Σ is necessarily a complete Riemannian manifold with boundary S.

By a standard theorem (cf., e.g., [19, 23]), the future Cauchy horizon, H+, of any
closed, achronal set is generated by null geodesies which either are past inextendible
or have past endpoint on the edge of that set. For spacetimes of class (a), Σ is
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.tf

Fig. 2.1. A Penrose diagram of a spacetime in which 3@ is not the entire Cauchy horizon of Σ.
In this spacetime d&(Σ) has two connected components, 3$ = 3$+ U 3%_ and 3$'

edgeless. However, for spacetimes of class (b) the edge of Σ is 5. For spacetimes
of class (b), we define J^_ to consist of the portion of H+ which is generated by
null geodesies with past endpoint on S. Similarly, we define ĵ _ to consist of the
portion of the past Cauchy horizon, H~, of Σ generated by null geodesies with future
endpoint on S. Since I+(S) and /~(5) do not lie in &(Σ) and since the boundary,
d@(Σ), of @(Σ) is the entire Cauchy horizon, d^(Σ) = H = H+ U H~, (cf., e.g.,
[19, 24]), it follows that

5%_ = J-(S) n

We define

In our analysis of spacetimes of class (b) given in the next section, we will focus our
attention on the manifold with boundary,

M' = &(Σ) U 3% .

It should be stressed that 3@ may comprise only a portion of the boundary of
as illustrated in Fig. 2.1.

For spacetimes of class (a) and (b), we define

,, (2.13)
i=l

where Mi — \J 0[X]ί(Σ'ί) and we set

Note that by construction we have φ[X]t[MQXt for all t, whence φ[X]t[MiΐΛ] — [Mint].
In both cases (a) and (b), for an asymptotic end Mi we define "the black hole

region with respect to M4" by

JBi = M\Γ(Mi), (2.14)

with the "white hole region with respect to Mx" defined dually,

m~=M\I+(Mί). (2.15)
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Is is clear that (2.14)-(2.15) are equivalent to the standard definition6 using S? [24,
19], whenever j-7, understood as a conformal completion based on a Bondi coordinate
system, exists7.

We define the black hole region, 38, of the spacetime by,

, (2.16)
i=l

and similarly define the white hole region by,

/

<%T = M\ /+(Mext) = pi f̂ . (2. 17)
i=l

As already mentioned in the Introduction, it should be emphasized that it is possible
for spacetimes of class (a) to have JSi ^ 0. The union of blocks B, D, and E of
Fig. 1.1 provides an illustration of such a spacetime. On the other hand, in case (b),
since φ[X\[S} = 5, it follows from Corollary 3.2, proven in the next section, that
jg5, W φ 0, and, indeed, J+(5) C Jg>, J~(5) C W. Finally, it should be mentioned
that Proposition 3.3 below shows that ̂ i and S^fare independent of that arbitrariness
in the definition of Mext, which is related to the arbitrariness of separation of Σ into
Γext and Γint.

Since Mext is </>[^f]s invariant, so are /±(Mext), we thus have

r> = <%T . (2.18)

It follows immediately that the boundaries of JS and W - known as the event
horizons of 38 and W , respectively, are null surfaces which are invariant under
φ[X]t. As already mentioned in the Introduction, this implies that if the Killing field
X is strictly timelike in M, then 3d = W — 0. Furthermore, as shown explicitly
in the Introduction, in case (a), it is possible to have $) — W = 0 even though
X becomes spacelike in certain regions (called ergoregions) of M . Similarly, as
explicitly demonstrated by the example of the Kerr metric, in case (b), X may be

spacelike somewhere within ^(Σ) and yet have ^(Σ) ΓιJ9 = Φ, $(Σ) Π W = 0.
In this paper, we shall be concerned with the issue of the existence of asymptoti-

cally flat, maximal hypersurfaces and foliations by maximal hypersurfaces in space-
times of class (a) and (b). The notion of asymptotic flatness of a hypersurface is
defined as follows:

6 It is customary to define the black hole, respectively the white hole, with respect to the asymptotic
end Mi as M \ J~(.^+; M), respectively M \ J+(.7~\ M), where J±(Ω; M) denotes the causal
past and future of the set Ω in the conformally extended manifolds M
1 More generally, the equivalence of (2.14)-(2.15) with the standard definition can be established
whenever the manifold M, admits a .P satisfying the conditions of [16], and the Ricci tensor falls off
fast enough (in the sense of the note added in proof (3) of [1]) in the asymptotic end in question. The
advantage of (2.14)-(2.15) is, that one avoids all the issues related to the possible low differentiability
and/or incompleteness of J7. On the other hand the definition given here does not generalize in any
obvious way to non-stationary space-times. It should be mentioned that if Mi, is assumed to be
vacuum, then a smooth 17 satisfying the requirements of [16] necessarily exists (cf. [12 Appendix],
and also [6, 22, 20])
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Definition 2.4. Let M(, gab) be a space-time in which (2.1)-(2.4) hold. A hypersurface
Σ C M will be called asymptotically flat if Σ Π ̂  (̂  - as in point 1 of Definition
2.1) w a graph t — w(x) of a function u satisfying

-r)1+α, 0 < α < l

C(l+ln(l + r)), α = l

(together with an appropriate weighted Holder condition on dτ^ ... di u).

We adopt the common terminology that a maximal hypersurface is a strictly
spacelike hypersurface with vanishing trace of extrinsic curvature. Standard regularity
results from quasilinear elliptic PDEs imply that such a hypersurface is smooth. It
follows from results in [3] that such a surface is also a variational extremal, i.e.,
locally maximal for area.

Let t be a time function on M, i.e., a continuous function strictly increasing along
any future directed causal curve. We shall use the notation

Σs(t) = {p G M : t(p) — s}

for the level sets of t. The sets Σs(t) are closed, and if t G Ck(M), k > 1, with dt
non-vanishing on an open subset © of M, then Σs(t)Γ\& are Ck acausal submanifolds
of M.

Let Σt, t G /, where / C R, be a family of hypersurfaces. We shall say that Σt

foliates & if there exists a function t on @ such that Σs = Σ3(t). Note that this implies
in particular that & — \J Σt, and that the implication (t ̂  tf) =»• (ΣtΓ\Σt, = 0 holds.

tei
If Σt foliate ,̂ then the family Σt will be called a foliation (of &). The function t
will be said associated to the foliation Σt. If dt is nowhere vanishing on & and / is
connected, with 0 E /, then t induces a natural diffeomorphism φ : & —> I x Σ0

by setting φ(p) ~ (t(p),q(p)), where q(p) is the intersection of ΣΌ with the integral
curve of At through p.

We conclude this section by introducing some terminology to be used in the next
section (cf. [18, Chapter VII]).

Definition 2.5. Let M be a manifold, let ψt : M —> M denote a one-parameter
group of diffeomorphisms and let jp denote the orbit of ψt through p G M. The
a-limit set ap, of "γp is defined as the set of all q G M such that q can be expressed
as q— lim ψt^(p)for some tτ —> -co. The ω-limit set, ωp, of^p is defined similarly,

except that {tτ} is required to diverge to H-oo.

3. Causal Properties of Spacetimes of Classes (a) and (b)

In this section we establish some properties of the Spacetimes introduced in the
previous section. Since our results and proofs for case (b) are closely analogous
to those of case (a), in general, we will merely state the results for case (b) without
proof, or will simply indicate the modifications to the proof for case (a).

Our first result is the following:

Proposition 3.1. Let (M, gab) be a spacetime of class (a), with slice Σ. Then
contains complete Killing orbits, i.e., if p G &(Σ) then φ[X]t(p) E &(Σ) for all

t G R. Moreover φ[X]t(Σ) are Cauchy surfaces for ®(Σ),for all t G M.
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Proof. Let p G $(Σ) and define

Ip = {teR: φ[X]t(p) G ^(Σ)} . (3.1)

Ip is open by openness of &(Σ) and by continuity of φ[X]t(p)\ we wish to show
that Ip is also closed. Consider thus a sequence tτ G / such that ti —^ t for some
ί G R. Let 7 be any inextendible (in M) causal curve through φ[X]t(p), consider

the sequence of inextendible causal curves 7^ = φ[X]t _t(7) As φ[X]t (p) G J^(Σ),

there exists qi e Σ such that 7ΐ Π Σ1 = {qt}. From asymptotic flatness and from
7^ = 0[X]t ί.(τ7 ) it follows that there exists a compact set K such that qi G UΓ,

thus (passing to a subsequence if necessary) there exists q £ Σ such that <^ — » g. It
is easily seen that q £ 7, which implies that 7 (Ί Σ 7^ 0. We have thus shown that
for any inextendible causal curve 7 through φ[X]t(p) we have 7 Π Σ ^ 0, hence

φ[X]t(p) £ ^(Σ), consequently t £ Jp. It follows that Ip is closed, and /p = R

follows. We have thus shown that J^(Σ) is invariant under φ[X]t, and the result for

&(Σ) follows from the fact that &(Σ) is the closure of &(Σ).

From the fact that Σ is a Cauchy surface for &(Σ) it clearly follows that

φ[X]t(Σ) is a Cauchy surface for φ[X]t($(Σ)). But we have just shown that

φ[X]t(@(Σ)) = ^(Σ), and our remaining claim follows. D

By similar arguments, we obtain the following Proposition for case (b). (The
only modifications needed to the proof concerns analysis of the possibility that the
accumulation point q might lie on 5; in that case, the invariance of S under the
isometries should be used.)

Proposition 3.2. Let (M,gab) be a spacetime of class (b). Then for p £

respectively p G $(Σ), t G R, we have φ[X]t(p) G !$(Σ\ respectively φ[X]t(p) G

$(Σ). Moreover the hypersurfaces φ[X]t(Σ \ S) are Cauchy surfaces for
and &[φ[X]t(Σ)] =

As a corollary of Proposition 3.1 and 3.2 we have the following:

Corollary 3.1. Let (M,gab) be a spacetime of class (a) or (b). Then M \ &(Σ) C

. In particular, we have Mext C

Proof. Mext C (Σ) follows immediately from the definition of Mext and Propo-

sitions 3.1 and 3.2. Now, suppose that p ^ JS U W* and p <£ $(Σ\ Then there
exist q_,q+ G Mext such that p G I~(q+) Π I+(q_). Without loss of generality,

we may assume that q_ G I~[Σ] and q+ G /+[Σ]. Since p 0 ^(Σ), there exists

p7 G I~(q+) Π I+(q_) such that p7 ^ [̂Σ]. Let λ'_ be a future directed timelike
curve which connects q_ to p7, and let λ^ be a past directed timelike curve which
connects q+ to p' . Since Σ is achronal, λ7_ and λ^ cannot both intersect Σ. Suppose
that λ7_ fails to intersect Σ. Then since p1 ^ ̂ (Σ), there exists a future inextendible
timelike curve starting at p' which fails to intersect Σ. By adjoining this curve to
λ7_, we obtain a future inextendible timelike curve from q_ G I~[Σ] which fails to

intersect Σ. This contradicts the fact that q_ G Mext C &(Σ). A similar argument
yields a contradiction if \'+ fails to intersect Σ. D
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For some arguments it will be convenient to have global hyperbolicity of the objects
at hand (but it should be stressed that we are not assuming global hyperbolicity unless
indicated otherwise). The main significance of Proposition 3.1 is that it will have
the effect of allowing us to restrict consideration in case (a) to globally hyperbolic
spacetimes for which the hypersurface Σ is a Cauchy surface. Namely, in case (a),
since &(Σ) is invariant under the isometries φ[X]t, so is M1 = <$(Σ). Hence, the
spacetime (M',gab) also is of class (a) (with the same asymptotic regions) but is
globally hyperbolic with Cauchy surface Σ. Existence of a maximal hypersurface in
(Mx, gab) implies existence of a maximal hypersurface in (M, gab) and existence of a
maximal foliation of the spacetime (M;, gab) implies existence of a maximal foliation
of a subset of (M, gab) which covers the entire asymptotic region. Similarly, in case
(b) Proposition 3.2 will have the effect of allowing us to restrict consideration to

Most of the remainder of this section will be devoted to proving the equivalence
of a "no black or white hole" condition to a compactness condition. In preparation
for this, we prove the following lemmas:

Lemma 3.1. Let (M, gab) be a spacetime of class (a) or (b) and let Q C M be any
isometry invariant subset, i.e., φ[X}t[Q} = Q. Let Mi denote any "end" (cf. Eq.
(2.9)). Then either I+(Q) C M or I+(Q) n M - 0. Similarly either Γ(Q) C Mi

or I-(Q)ΠMl = 0.

Proof. Suppose I+(Q) Π Mi φ 0. Let x G I+(Q) Π M . Since φ[X]t[I+(Q)] =
I+[φ[X]t(Q)] = I+(Q) and φίX^MJ = M , it follows that φ[X]t(x) G /+(Q)nM
for all t G R, i.e., 7X C I+(Q) Π M^ where 7^ denotes the orbit of x under
φ[X]t. However, from the asymptotic form of the metric given by Proposition 2.1, it
follows that given any x, y G Mz, there exists a sufficiently large negative t such that
y G I+[φ[X]t(x)]. This implies that M C /+(7X) C /+(Q). Π

We note the following corollaries (cf. also [8, Corollary, p. 136]):

Corollary 3.2. Let (M, gab) be a space-time of class (a), let Q be a compact set such

that φ[X]t(Q) = Q, t e M. Then we have ,38^W φ§. If moreover Q C @(Σ) then

JS Π W is nonempty, with Q C 33 Π W. In particular if p G &(Σ) and X\p = 0,
then p^^ΐλW.

Proof. Suppose that Q C $(Σ) is globally hyperbolic and Q is also compact as a
subset of ^(Σ) the inclusions M C /+(Q), Mi C I~(Q) are not possible (cf. e.g.
[14]). Thus Lemma 3.1 gives M Π J+(Q) = Mτ Π I~(Q) = 0, i = 1, . . . , / , which

implies Q C J? Π W. If on the other hand Q £ &(Σ), then M \ &(Σ) ^ 0 and
^ U W* ^ 0 follows from Corollary 3.1. D

Corollary 3.3. Let (M,gab) be a spacetime of class (b). Then S C .

We have ψ[X]ί[Sf] = 5, but I+(S) Π Γext = /~(5) Π ̂ ext = 0 since Σ is
achronal. D

Before stating our final corollary of Lemma 3.1, we introduce the following
terminology:

Definition 3.1. For p G &(Σ) we shall say that an orbit 7p(ί) = φ[X]t(p) is future
oriented, respectively past oriented, if there exists an increasing sequence ti G R,
i G Z, with |ίj — ̂ |_>oo °° such that φ[X]t (p) G I + ( φ [ X ] t , ( p ) ) , respectively
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φ[X]t ι(p) G I~(φ[X]t , (p)). An orbit will be said to be time oriented if it is future
or past oriented.

If Xp is timelike future pointing, respectively past pointing, then jp(t) is clearly
future oriented, respectively past oriented. It should be noted, that if there exists p
and At G R such that φ[X]Ai(p) G /+(p), then the orbit 7p of φ[X] through p is

necessarily time oriented, for then for any q G 7p we have φ[X]Δt(q) G /+(g), and
the desired sequence is given by iΔ, i G Z.

Corollary 3.4. Let (M, gab) be a spacetime of class (a) or (b) such that the orbits
of X are future oriented at each "end" Mi. Let p 0 3^. Then, there exists T G R
such that for all t>T,we have φ[X]t[p] G /+[Σ*ext]. Similarly, ifp <£ JB, then there
exists T' G R such that for all t < T ', we have φ[X]t[p] G I~[ΣQXi]. Furthermore,
ifp $. ,9Θ U ̂ , ί/zew f/ze s£ί {t G R : 0[X]t(p) G Σ1} /s nonempty and compact.

Proof. If p & ,̂ then by Lemma 3.1, the past of the Killing orbit through p
must contain at least one "end," M^ Consequently, there exists T G R such that
φ[X]τ\p] G /+[I7ext]. The first claim of the corollary then follows immediately by
applying φ[X]t/ to this relation, for any t1 > 0, using the fact that for t' > 0, φ[X]tr
takes Σext into I+[Σext\. Similar arguments establish the second claim. Finally, if
p ^ JgΊJ ̂ ", then {t G R : φ[X]t(p) G Σ} is a closed subset of [T', T], and hence is
compact. To prove that this set is nonempty, we note that φ[X]t enters both I~[Σ]

and I+[Σ]. Furthermore, by Corollary 3.1, p G ̂ (Σ), and by Propositions 3.1 and

3.2, φ[X]t C ^(Σ). However, &(Σ) is globally hyperbolic, so it can be expressed

as the disjoint union &(Σ) = [I~[Σ] Π &(Σ)} U [Σ Π &(Σ)} U [I+[Σ] Π &(Σ)].

Hence, it follows that a continuous curve in &(Σ) which enters both I~[Σ] and
I~ [Σ] must intersect Σ. Π

The following proposition gives an invariant characterization of 38 τ and ̂ :

Proposition 3.3. L^ί (̂  be the connected component of the set {p G &(Σ): the
orbit 7p through p is time oriented} which contains Mτ. Then 38 i — M \

Proof. By definition Mz C ̂  thus M \ J~(^) C ̂ . Now d(M \ /~(Mt)) Π ̂  is
an achronal subset of ̂  which is invariant under φ[X]t by construction. Because all
the orbits of X in ̂  are time oriented, the only such subset of ̂ , is the empty set,
and the reverse inclusion follows. G

Lemma 3.2. Let (M, gab) be a spacetime of class (a) such that the orbits of φ[X]t

fail to have the same (past of future) orientation on all ends, i.e. suppose AiAJ < 0
for some ί and j, where Aί is the constant A of Definition 2.1 (cf. (2.5)) in the region
M^ Then 3$ U ̂  ̂  0, where J9 and W were defined by Eq. (2.16) and (2.17).
Moreover I+(MJ n Mj = 0, /'(M ) Π MJ = 0.

Remark. Note that the last part of Lemma 3.2 says, that two ends with different
Killing-time orientations cannot communicate with each other (in fact, the argument
here shows the stronger statement that if the orbit 7p has time orientation which is

opposite to that of the orbit 7^, then I+(p) (Ί I~(q) = /"(p) Π /+(<?) = 0), while the
first part says that, reversing time orientation if necessary, there exists a region which
cannot send a signal to any of the ends Mr
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Proof. Let M+ = (J M and let M_ = (J M . We show first that /+(M_) Π
Λ>0 Ai<Q

M+ = 0. Namely, suppose that x G M+ and y G M_ were such that x G
I+(y). By choosing t sufficiently large negative, we can ensure that φ[X]t(x) G
I~[Σ], φ[X]t(y) G I+[Σ]. However, by isometry invariance, we have φ[X]t(x) G
I+[φ[X]t(y)], which contradicts the achronality of Σ. Similarly, we have /~(M_)Π
M+ = 0 and the same relations with M+ and M_ interchanged.

Now, J+(M+) and /+(M_) are open sets. If their union failed to cover M, then
W ^ 0. If their union covers M, connectedness of M implies that they cannot be
disjoint. Let x G /+(M+) Π /+(M_). Then I+(x) c /+(M+) Π /+(M_) and hence
7+(x)ΠM_ = 0, J+(x)ΠM+ = 0. Thus, 7+(x)ΠMext = 0, i.e. x G 38, so Jg5 ̂  0. D

Similarly one proves:

Lemma 3.3. L^ (M, #α6) be a spacetime of class (b) such that the orbits of φ[X]t

fail to have the same (past of future) orientation on all ends. Then

( J 9 ( J W ) Γ ] &(Σ) ^ 0 .

Lemma 3.4. Let (M, gab) be a spacetime of class (a) or (b) with Ai > Ofor all i. Let

p G &(Σ) and let ωp, respectively ap, denote the ω-limit set, respectively the a-limit

set of the orbit φ[X}t(p). Then ωp C 38, ap C ̂ .

Proof. By duality it is sufficient to prove ωp C 33. It follows immediately from
Definition 2.5 that φ[X]t[ωp] = ωp. Hence, by Lemma 3.1 it suffices to show that

I+(ωp) ~0 Mext. However, since Ai > 0, for all t > 0 we have I+(p) Π Mext D

φ[X]t[I+(p)Γ]Mext] = J+[0[X]£(p)]ΠMext, from which it follows that /+(p)ΠMext D

/+(c^p)nMext. However, since p G ^(Σ1), J+(p) interests Σ compactly (cf. e.g. [14]),

so there exists y G ΣQXt C Mext such that y φ I+(p). Thus, I+(ωp) ^ Mext, as we
desired to show. D

Finally, in the course of proving the second half of Theorem 3.1, we shall appeal
to the following lemma:

Lemma 3.5. Let (M, gab) be a spacetime of class (a), and suppose that &(Σini) is

compact. Then &(Σint) C $

Proof. Clearly, &(Σint) C &(Σ), so we need only prove a contradiction with the
possibility that there exists p G &(Σ mt) with p G d^(Σ). However, we have
d@ϊ(Σ) = H+(Σ) U H~(Σ\ where H+ and H~ denote the future and past Cauchy
horizons. Without loss of generality, we may assume p G H+(Σ). Since Σ is edgeless,
p lies on a past inextendible null geodesic λ which remains in H+(Σ). However,
since p G &+(Σint) and λ does not intersect Σinv it follows that λ C &+(Σint). Since

) is compact, this violates strong causality (cf. e.g. Lemma 8.2.1 of [24]). D

Similarly, we have

Lemma 3.6. Let (M, gab) be a spacetime of class (b) and suppose that &(Σint) is

compact. Then &(Σ[nt) C

We now prove the main theorems of this section.
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Theorem 3.1. Let (M,gab) be a spacetime of class (a). Then

(33 U ̂ O Π &(Σ) = 0

// and only if

(i) AiAj > 0 for all ί, j, where the A^s are the constants A of Definition 2.1 (cf.

Eq. (2.5)) in the ith end, and

(ii) ^(Σint) is compact.

Remark. It is easily seen that compactness of domains and dependence of compact set
can hold even if black hole and white hole regions occur when Killing orbits having
different time orientations exist in (M, gab) - an example is given by e.g. the slice
Σ' in the space-time of Fig. 1.1 from which the blocks E and F have been removed.
(After these excisions the metric on this space-time can actually be taken to be that
of the Ie < m Reissner-Nordstrom space-time.)

Proof of (JS U ̂ O Π $(Σ) = 0 => (i), (ii). That property (i) holds follows

Lemma 3.2 applied to the spacetime M' = ^(Σ). We shall prove compactness

of &(Σint) Π $(Σ), from which it follows by elementary topology considerations

that J^(Σint) C $(Σ,\ and hence that J^(Σint) is compact. To prove compactness of

^(Σint) Π &(Σ), we consider a sequence {xj in &(Σint) Π $(Σ) and will show
existence of an accumulation point. By Corollary 3.4 the orbit through xi^i =

U φlX^Xj), must intersect Σ (possibly more than once). Let yτ denote an
ί£(-oo,oo)

intersection point of 7^ with Σ, and let ti be such that φ [ X ] t . ( y τ ) — xτ. It is easily

seen, e.g. using the coordinates of Proposition 2.1 that we have J^(Σint) Π Mext = 0,
which implies xi φ Mext, and hence yi e Σint. Since Σint is compact, there exists
a subsequence {yj which converges to y e Σint. Let {tJ denote the corresponding
sequence of numbers satisfying φ[X]f (y^ — x^

Now, by Lemma 3.1 the orbit, 7, through y satisfies /+(7) D Mj for some j. Let

t_ e E be such that I+[φ[X]t_(y)] Π Γext 7^ 0. Then I+[φ[X]t(y)] Π Σext ^ 0 for

all ί < ί_. However, I+[&(Σint)] Π Σ1^ - 0, so φ[X\(y) φ &(Σ[nt) for t < t_.
Similarly, there exists t+ G R such that 0[X]t(y) ^ ̂ (Σint) for all ί > ί+. However,
since 0[X]t~ (yj E ̂ (Σ1 )̂ it follows by continuity of φ[X]t(y) with respect to t and

y that limsup^ < ί^liminf^ > t_. Thus, {ίj is a bounded sequence and hence
has an accumulation point t. The point x — φ[X]t(y) is then an accumulation point
of the original sequence {x J. We have x e &(ΣirΛ) since J^(Σint) is closed, and we

have x E $(Σ) since all orbits in &(Σ) are complete (cf. Proposition 3.1 and the
discussion following Proposition 3.2). D

Proof of'(i) α«ί/ (ii) => (^U^)Π^(Σ) = 0. Given (i), by changing time orientation
if necessary we may assume without loss of generality that Ai > 0 for all i. We restrict

attention to the globally hyperbolic region Mf = &(Σ) which, by Proposition 3.1,
also is a spacetime of class (a). By Lemma 3.5 and condition (ii), we have that
&(Σint) C Mx, so ^(Σint) is compact as a subset of M'. Furthermore, JS Π M' is
precisely the black hole region of the spacetime Mx, and similarly for WΓ\M'. This
means that, without loss of generality, we may assume that M is globally hyperbolic
with Cauchy surface Σ, and we then must prove that ̂  U ̂  = 0.

Suppose, now, that W ^ 0. We note, first, that it follows straightforwardly
from the definition of JS and W that 35 C J+[^(Σint)] and W C J~[^(Σint)].
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Furthermore, J~ [9^} C W. Let x G W and consider a past inextendible causal curve
λ with future end point x. Clearly, we have λ C ̂  . Since M is globally hyperbolic,
λ must enter and remain in I~(Σ). However, if λ remained in the compact region
J^(J7int), we would violate strong causality. This implies that λ must enter I~ [Σext]
so that there exists a point p G W* Π /-[Σext]. Since /~[Σext] Π 38 = 0 we have
p φ 38. Choose any q G /~(p), and let TO > 0 denote the Lorentz distance, τ(q,p),
between q and p. Clearly, we also have q G W Π /~[Σext], and q φ 38.

Consider, now, the orbit, 7^, of q under the isometries. Since W is isometry

invariant, we have 7ς C W C J~[^(Σ'int)], so 7ς Π J+[Σext] = 0, i.e., for all

t G R we have φ[X]t(q) Π J+tΣ1^] = 0. On the other hand for each j such that
I+(Ίq)Γ\Mj φ 0, by Lemma 3.1, we have M C J+[7g]. Equivalently, for each j such

that /+(7g) Π Mj 7^ 0, J+(i?) intersects every orbit in MJ9 and in particular, J+(q)
intersects every orbit on dM . Since <9Σext has only a finite number of connected
components each of which is compact, it follows that there exists T G R such
that </>[X]T[J+(<7) Π <9Mext] C J+(Σ). This implies that for all t > T, we have
φ[X]t(q) Π J~[Ϊ7ext] = 0. Combined with the previous result, this shows that for
all t > T we have φ[X]t(q) G &(Σinί). Similarly, increasing T if necessary, for all
t > T we have φ[X]t(p) G &(Σint).

Now for n G N, consider the sequences {pn Ξ 0[X]n(p)}, {(/n[X]n(g)}. Since
p, q φ 38, we have pn,qn φ 3Θ for all n. Since {pn} enters and remains in
the compact subset ^(17int), there exists a subsequence {pn } which converges to

a point x G &(Σ[nt). Similarly, the corresponding subsequenc {qn.} has a sub-

subsequences {qn } converging to y G ̂ (Σini). By isometry invariance, we have
*j

r(#n iPn ) — τo ^y continuity of the Lorentz distance function r is a globally
%j %3

hyperbolic spacetime, we have τ(τ/, x) — r0 > 0. In particular this implies that
x G /+(y). However, since x is in the α -limit set of the orbit of p, and y is in the ω-
limit set of the orbit of q, by Lemma 3.4 we have x,y £. 33. Since <? , p φ 38, we

must have x, ?/ G cU?. However, 9^ is an achronal set, which contradicts x G I+(y).
The hypothesis that 38 ̂  0 leads to a contradiction in a similar manner. D

Before proving the analogous theorem for spacetimes of class (b), we shall need
the following lemma:

Lemma 3.7. Let (M, gab) be a spacetime of class (b) such that (J?L\W)Γ\&(Σ) = 0.
Then, for p G J$+, the a-lίmίt set, ap, of the orbit φ[X]t(p) is a nonempty subset of

S. Similarly for p G 3$_ , ωp is a nonempty subset of S.

Remark. Note that the proof below shows that the null geodesic generators of β&+

are actually future complete. [This follows from the fact that for each n G N the
minimum value of affine parameter on the cross-section φ[X]nt+[S+] is βnε.]

Proof. Since by Lemma 3.4, any α-limit set is contained in W, and since ̂ + \ S

is contained in I+[&(Σ)], it follows immediately that the α-limit set of any orbit on
J^+ must be a subset of 5. Thus, we need only prove that this subset is nonempty.
To do so, on 5, define ka = na + rα, where nα is the future-directed unit normal
to Σ and ra is the unit normal to S in Σ (pointing "towards Σ1"). Then ka is
tangent to the null geodesic generators of ,̂ +. [This can be seen as follows: Clearly,

I+[S] Π ̂ (Σ) is empty, so the null geodesic determined by ka can't lie in
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On the other hand, a simple local argument can be used to show that sufficiently near
5, this null geodesic lies in &(Σ).] Let λ denote the affine parameter along the null
generators of ^_ determined by ka. Consider the map, -0, defined perhaps only on
a sufficiently small neighbourhood, © C S x E+, of S x {0} which takes (p, λ) into
the point lying at affine parameter λ on the null generator of J^_ through p G S. By
decreasing & if necessary, we may assume that this map is a diffeomorphism of &
onto a neighbourhood of S in 3$+. Consequently, we may choose ε > 0 such that
ψ[S,ε] is a smooth cross-section, S+, of ^_. Decreasing ε if necessary, we may
assume that S+ C &(Σint).

Let p G S+. Then there exists q G &(Σ) such that q G /~(p). Since
^ Π $(Σ) = 0, by Corollary 3.4 there exists tq such that for s > tq we have

φ[X]s(q) € /+(^ext) Set i
P = tq* so that for a11 s > ίp we have <£[X]s(p) G /+(Γext).

Since /"^Σ^) is open, there exist open neighbourhoods ^p of </>[JΓ]2tp(p) satisfying

$άp C J+CΣ^). Set ̂  = φ[X]_2tp(^p) Π S+. It follows (passing to open subset

of % if necessary) that {^p}p^s+ *s a covermg of S+ by open set such that the
implication [q G &p => Ms > 2tp φ[X]a(q) G I+(Σext)] holds. By compactness of

S+ a finite covering {&„ }^λ can be chosen. Set £ , = 2max£w , define
fι T- ^ yτ

S+ = φ[X]t(S+).

By construction we have Sf+ C J+(Σ'ext). Let α be the minimum value of affine

parameter on 5 .̂ Then, clearly α > ε.
Now, for all t, φ[X]t maps affinely parametrized null geodesic generators of 3$+

into affinely parameterized null geodesic generators of 3$+. In particular, the above
argument shows that φ[X]t maps each null geodesic segment on Ĵ ?+ with past
endpoint on 5 and of affine length ε into a null geodesic segment on J^+ with past
endpoint on S and of affine length at least βε, where β = α/ε > 1. It follows that
φ[X]t+ maps any null geodesic segment on 3$+ starting at 5 and having affine length
λ into a similar null geodesic segment of affine length at least βλ. It then follows
immediately that φ[X]nt+ maps each such null geodesic segment of affine length λ
into a null geodesic segment of affine length at least βnX. Conversely, φ[X]_nt+

maps each such null geodesic segment of affine length λ into a similar null geodesic
segment of affine length no larger than β~~nX.

Now, let p G J^+. Consider the sequence φ[X]_nt+(p). Let {pn} G S denote
the intersection with S of the generator of ̂ + through φ[X]_nt+. Compactness of
5 implies existence of a subsequence which converges to q G S. It then follows
immediately that q is an α-limit set of the orbit through p, so the α-limit set of
φ[X]t(p) is nonempty, as we desired to show. D

The theorem for spacetimes of class (b) analogous to Theorem 3.1 is the following:

Theorem 3.2. Let (M,gαb) be α spαcetime of class (b). Then

Γ) Π &(Σ) = 0

if and only if
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(i) AiAJ > 0 for all i, j, where the Aτ' s are the constants A of Definition 2.1 cf.

Eq. (2.5)) in the ίth end, and

(ii) ^(Σint) is compact.

Remark. As shown in the first paragraph of the first part of the proof below, under the

hypothesis that (JgΌ^On^Σ) - 0, we have Jg'fW7 = 3%+ and ^ΠM; = 9%_.
This implies that 3$+ comprises (a portion of) the event horizon of the black hole,
3@_ comprises (a portion of) the white hole horizon, and that the intersection of the
black and white hole horizons is S. Thus, spacetimes of class (b) which satisfy the
hypothesis of Theorem 3.2 correspond to the spacetimes of "class (2)" discussed in
the Introduction.

Proof of (.39 U W) Π 0&(Σ) = 0 => (i), (ii). That property (i) holds follows from
Lemma 3.3. To prove (ii), we first note that by Corollary 3.3, we have S C (^Γ\W\
Since J+(. J>) C J?, we have 3%+ C 38. However, we must have (J^_ \ 5) Π ,3S = 0,

since otherwise we would have 35 Π <$(Σ) ^ 0. This implies that J$ Π M' = J^+,

where M' = &(Σ)(J 3%. Similarly, we have ̂  Π M1 = H_.
We shall prove compactness of &(ΣiΏί)Γ\M' from which it follows by elementary

topology that &(Σint) C M7 and hence that &(Σint) is compact. Let {xj be an
infinite sequence in &(Σϊnt) Π M7. We wish to show existence of an accumulation
point. Without loss of generality, we may assume that infinitely many of the xi lie in
^+(Γint) n M'.

Let X1 be a vector field on M which is transverse to Σ, (strictly) timelike on a
neighbourhood of Σ[nt and is such that X' = X in Mext, at least for r large enough.
Since Σint is compact, there exists ε > 0 such that the induced action φ[X'}t(Σ)
generated by X' for t G (— 2ε, 2ε) yields a spacelike foliation, such that M' Π @ is
a closed subset of the spacetime region & covered by this foliation and such that
X' is timelike in (J+(Σint) U I~(Σini)) Π @. We denote the hypersurface at t — ε

by Σ. Clearly Σ C I+(Σ), and the intersection of Σ with 3% yields a cross-section
of J?ί+ \ S. We denote by M the region covered by the foliation for t G [0,ε].
We denote by ^int C ^B the portion of ^8 connected to Σint by integral curves of

X' '. Finally, we write Σint = Σ Π ̂ gint and note that the construction ensures that

J"(Γmt) n ̂ +(Σ,J n M' C ̂ mt and ®(Σ^) n M' \ ̂ int C J+(Ant) n M'.
Now J^int is compact, since it has topology [0, ε] x Σ mί. Since both &+(Σint)

and M' Π ̂  are closed, ^)+(Σ'int) n M Π ^?int is compact. Hence, {x-} must have
an accumulation point unless all but finitely many elements of this sequence lie in
&+(Σint) Π M7 \ J^int. Hence, without loss of generality, we may assume that {x J

is a sequence in &+(Σ[nt) Π M' Π J+(Σϊnt). For each i, either x e ^(Σ1) Π J+(£int)

or x^ £ j^+. If xϊ G ̂ (Σ1), then by hypothesis xi ^ ̂  and by the same type of

argument as in Theorem 3.1, the half-orbit 7^ = U 0[X]t(xi) must intersect £
(-oo,0]

in the compact set Σ[ni Π M7. On the other hand, if xi £ ̂ +, using Lemma 3.7, it

follows immediately that the similar half-orbit 7i also intersects Σ in £intnM7. Since

W Π (£int Π M7) = 0, existence of an accumulation point for {x^} follows by an
argument similar to that used in the proof of the corresponding part of Theorem 3.1.

Proof of (i) and (ii) => (3B U ̂ ') n (Σ) = 0. By Lemma 3.6 we have &(Σ mt) C

^(Σ1) U ,^. As in the proof of Theorem 3.1, we assume that W Π $(Σ) ^ 0 and

obtain a contradiction. Let x G 3̂ * Π &(Σ) and let λ be a causal curve through x
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which is past inextendible in &(Σ). Then either λ is past inextendible in
or λ has a past endpoint on 3@_. In the latter case, we have x G /+(7), where 7
is a null geodesic generator of ĵ _ on which λ has a past endpoint. We then may

choose a causal curve λ' through x which lies in /+(7) Π I~(x) C ^(Σ) and is past
inextendible in M (cf. Lemma 8.1.4 of [24]). Thus, in either case, we obtain a causal
curve in &(Σ) which is past inextendible in ̂ (Σ^UJ^7. By strong causality, this curve
cannot lie entirely within &(Σ[nt), and we thereby obtain a point p G W Π &(Σ)
with p φ 3$. The remainder of the proof parallels the proof of the corresponding
portion of Theorem 3.1. D

We end this section with some additional results. First, for any set K C M (where
K is not necessarily achronal) we define the "effective domain of dependence" of K,
denoted &(K), to consist of all p £ M such that every (past and future) inextendible
timelike curve through p intersects K. We then have the following:

Corollary 3.5. Let (M, gab) be a space-time of class (a), suppose that

(35 U «O Π &(Σ) = 0 .

For any compact K C (Σ\ @)(K) is compact.

Proof. Suppose first that K c Σ. One can enlarge K or Σ mt or both so that K = Σ mi

holds, and compactness of &(K) — &(K) follows by Theorem 3.1.
In the general case, let p e K. By Corollary 3.4 there exists i^ such that

φ[X]t±(p) £ ^±(^eχt) Since ^(Σ^) is open, there exist open neighbourhoods 9£±

o f φ [ X ] t ± ( p ) satisfying $£* C /±(Σ'ext). Set θp = φ[X]_t±(^±)nK. It follows that

{&p}p£K is a covering of K by open sets satisfying [q e &p =>• φ[X]t±(q) G I±(Σ')];

by compactness of K a finite covering {^Pϊ}^Lι can be chosen. Let t± — max{— ̂ };

it follows that K c I*(φ[X]t±(Σ)). By Proposition 3.1 φ[X]t±(Σ) are Cauchy

surfaces, so that by [14] K± = J±(K) Π φ[X]t±(Σ) are compact. Now &(K) are

closed subsets of &±(K±), which have already been shown to be compact, and the
result follows. D

Corollary 3.6. Let (M, gab) be a space-time of class (b), suppose that

= 0 .

For any compact K C &(Σ) U 3$, &(K) is compact.

Proof. It suffices to prove compactness of J+(Σ)<Γ\^(K). Enlarging Σint if necessary
we may assume K Π Mext = 0. Let J8, Σ, etc., be as in the proof of Theorem 3.2, set
K0 = KΓ\^%, K+ = K Π J+(Σ). Arguing as in the proof of Corollary 3.5 there exists
t+ such that K+ c U φ[X]t(Σ). Replacing 3% by ̂  |J φ[X]t(Σ) and Σ by

t€[o,t+] ίe[θ,t+]
φ[X]t+(Σ) if necessary we may without loss of generality assume t+ = 0. Now the

argument of the proof of Theorem 3.2 shows that J^(^?int) is compact, and the result
follows since &(K) is a closed subset of ^(J^). D
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Let us remark that it follows immediately from the inclusion

proved in Corollary 3.1 that a space-time of class (a) in which 33 ̂ W — 0 is globally
hyperbolic. We shall end this section by proving a related result:

Proposition 3.4. Let (M , gab) be a space-time of class (a), and suppose that

(Jg\ U ̂ ) Π ̂ (Σ) = 0 , (3.2)

where 38 ̂  and ^^ are the black hole region and the white hole region with respect
to a given end M\. Then

M =

In other words, ^(Σ) is inextendible in the class of space-times of class (a).

Remarks. 1. If M has only one end, then clearly (3.2) is equivalent to (38 U W} Π

^(Σ) — 0. It is, however, possible to have (3.2) and more than one end, as is
e.g. shown by the metric — dt2 + g^ dx1 dx^ , where gτo dx1 dx^ is the space-part of
the "Schwarzschild wormhole" metric (two asymptotically flat ends connected by
a throat). Other examples of this kind (with an arbitrary number of ends) can be
constructed by appropriately gluing together along boundaries of world-tubes space-
times of class (a) in which the Killing vector is timelike everywhere.

2. The following example shows that the hypothesis of strong causality of the
potential extensions is necessary in general: Consider the space-time M' consisting
of blocks J3, D and E of Fig. 1.1, let t be a Killing time function on M as given
by Proposition 4.1 below, let Σ0 be the zero level set of ί; use t to identify M'
with R x Σ0. On ΣQ remove two balls Ba c Σ0 Π Mα, α = 1, 2, and identify
(£>Pι)>Pι £ 9Bl with (t,j?2)^2 ~ Φ(P\) £ 9B2, where φ is a smooth diffeomorphism
from dBγ to ΘB2. Smoothing out the metric near R x dBa, a = 1, 2 one obtains a
space-time M with a Killing vector field which has complete orbits. Note that t passes
from Mf to the quotient space-time M and therefore M is stably causal, thus M is a
space-time of class (a). Clearly M is extendible because Mr is, and the identifications
which lead to the construction of M are done only in the interior of M'.

3. Let us point out that neither the hypothesis of existence of Killing vectors in
the (potential) extended space-time, nor the hypothesis of stable causality of the
(potential) extended space-time are needed to show inextendibility of M when the
Killing vector is strictly timelike. For suppose that (M,gab) were extendible to a
space-time (M',g'ab) with a C2 metric g'ab, it follows from_Eq. (2.6) that X can be
extended to a continuous vector field defined on the closure M of M in M'. Now dM
is an achronal topological hypersurface, so that every timelike vector is necessarily
transverse to dM. Let p e dM, if X(p) were timelike the orbits of X could not
be complete in M, hence gabX

aXb(pi) must tend to zero on any sequence pi £ M
such that pi — » p. But the hypothesis that X is strictly timelike on M together with
asymptotic flatness imply that there exists ε > 0 such that gabX

aXb < -ε on M,
and the result follows.
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Proof. We note first that (Jg\ U ̂ ) Π $(Σ) = 0 implies that for each ί, we

have /~(MJ D J?(Σ), since by Lemma 3.1 we have /~(M^) D M1? and, hence,

/-(M.) D /"(Mj) D ̂ (Σ). Similarly, for each i we have J+(M*) D ̂ (Σ).

Suppose, now, that M 7^ ^(Σ). Then H ^ 0, where # denotes the Cauchy
horizon of Σ. Without loss of generality, we may assume that H+ ^ 0. Let p G H+.
By Theorem 3.1 and Lemma 3.5, we have p φ ^+(Σint), and, hence, p G /+(Σext).
Replacing Σ by φ[X]t(Σ) in this argument, we see that for all t G R we have
p G /+((/!>[X]t[Σext]). However, this implies that I~(p) D Mi for some i, and, hence,

Now, let ̂  be any open neighbourhood of p which does not intersect Mext, and
let 9^ be any open neighbourhood of p contained in @. Since p lies on the boundary

of J^(Σ), there exists q G ̂ (Σ) Π 9 .̂ Since g ^ 3Θ, there exists a future-directed
causal curve \ from g to a point r G Mext. Since I~(p) D ̂ (Σ), there exists a
future-directed causal curve λ2 from r to p. Clearly, the causal curve λ = λ1 U λ2

has more than one connected component in 9̂ * thus showing that strong causality is
violated at p. D

The above proof carries over immediately to spacetimes of class (b), in the
following sense:

Proposition 3.5. Let (M, gab) be a space-time of class (b), and suppose that

(jg\ u ̂ ) n ®(Σ) = 0 ,

where J5\ and ̂  are the black hole region and the white hole region with respect
to a given end Mγ. Then H = 3$, where H denotes the Cauchy horizon of Σ.

4. Maximal Slicings

The main results of this section, and indeed, of this paper, are the following:

Theorem 4.1. Let (M,gah) be a space-time of class (a) and suppose that

0. (4.1)

Then $(Σ) can be covered by a family of maximal (spacelike) asymptotically flat

slices Σs, 5 G R, which are Cauchy surfaces for ^(Σ), such that

φ[X]t(Σs) = Σs+t, and Σ * Σ, (4.2)

where ~ means udiffeomorphic to." If moreover X is tίmelike on &(Σ) or if the
timelike convergence condition holds,

RabZ
aZb > 0 for all timelike Za , (4.3)

then {ΣJteiR foliates &(Σ).

Theorem 4.2. Let (M, gab) be a space-time of class (b) and suppose that (4.1) holds.

Then &(Σ) can be covered by a family of maximal (spacelike) asymptotically flat
hypersurfaces Σs, s G R, with boundary ΘΣS = dΣ = S, such that (4.2) holds.

Moreover Σ2 \ S are Cauchy surfaces for &(Σ).

If moreover X is timelike on &(Σ) or if the timelike convergence condition (4.3)

holds, then {Σt \ S}teR foliates
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Remarks. 1. Theorem 4.1 generalizes a similar Theorem proved in [5], where strict
stationarity (the Killing vector timelike everywhere) is assumed.

2. As mentioned in Corollary 4.4 of [5], the existence of maximal slices restricts the
allowed topologies of Σ\ thus there exist no space-times satisfying the hypothesis of
Theorem 4.1 and the timelike convergence condition (4.3) for which Σ"s topology
satisfies a genericity condition.

3. It should be noted that, even though asymptotically flat, the maximal hypersurfaces
will in general not be asymptotic to the original t slicing of the exterior region. Even
if α = 1, where α is the fall-off rate of the metric in the asymptotic region, cf.
Definition 2.1, one will only have \u\ < C(l -f ln(l -f r)), where u is the "height

function" of Σ0 in Mext.

4. If the timelike convergence condition holds, one has uniqueness of {£t}t6M under
some supplementary rather weak conditions [5, Theorem 5.5]. Proposition 1 and
Theorem 1 of [10] can be used to remove the "boost-domain" condition of [5, Theorem
5.5] if, e.g., the metric satisfies some hyperbolic field equations for which the "boost
problem" (cf. [9]) is well posed.

Before passing to the proofs of our results, let us present in some detail an example

which shows that the hypothesis (38 U W} Π &(Σ) = 0 of Theorem 4.1 cannot be
removed without imposing some other conditions: Let (M,gab) be the maximally
analytically extended Schwarzschild space-time, with "stationary" Killing vector X.
Let Σ0 be the standard "Einstein-Rosen bridge" maximal surface extending from one

end M! to the other end M2. Let t denote the Killing time function based on Σ0,

defined in the ends Mα, α = 1, 2. Consider any complete, asymptotically flat, maximal

hypersurface Σ in M which is asymptotically orthogonal to the Killing vector. With

a little work one shows that there exist t 1 ?t 2 £ M. such that Σ is asymptotic to the

level sets t = ta in Mα, α = 1,2. This together with the uniqueness results in [5]

implies that Σ is necessarily spherically symmetric.
We let Ω consist of the union of the causal future of the "north pole" p e S =

{r G M\X(r) = 0} with the causal past of the "south pole" q £ S of the bifurcation

sphere S. Consider the space-time (M,gab) defined as M = M \ Ω,gab = gab\M.

As Ω is invariant under the flow of X in M, so is M, hence all the Killing orbits

in M are complete. "Pushing" ΣQ slightly to the future in a neighbourhood of q and
slightly to the past in a neighbourhood of p one obtains a complete asymptotically flat
hypersurface Σ0 in M, thus M is of class (a). Moreover M has both a black hole and
a white hole region, thus M does not satisfy the hypotheses of Theorem 4.1. Let Σ
be any complete, asymptotically flat, maximal surface in M which is asymptotically

orthogonal to X. It follows that such a surface is also a maximal surface in M
which enjoys the same properties. By what has been said above it follows that Σ
must be spherically symmetric. But it is clear from e.g. the Penrose diagram for the
maximally extended Schwarzschild space-time that there are no spherically symmetric
complete hypersurfaces in M. Consequently, there are no complete, asymptotically
flat, maximal surfaces in M which are asymptotically orthogonal to X, and sharpness
of Theorem 4.1 follows.

The proofs of Theorems 4.1 and 4.2 will largely run in parallel. The idea is to
construct some appropriate time functions (given in Proposition 4.1 and 4.2 below),
and to prove a height estimate by moving the surfaces by the isometry group. Higher
order a priori estimates follow then from Bartnik's work [2], and existence is obtained
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by standard arguments. Note that from Theorems 3.1 and 3.2, it follows that, without
loss of generality we may assume that for spacetimes of class (a) and (b) the Killing
orbits in Mext are future oriented.

If the Killing field X were timelike throughout M, the desired time functions for
cases (a) and (b) could be constructed very simply as the parameter along the integral
curves of X starting at Σ\ i.e. by solving 3Sxt — 1 with the initial condition t = 0 on
Σ. However, in case (a), X need not be timelike in Mint, so X need not transverse
to Σ1, in which case this simple construction does work. The situation is worse in
case (b), since the condition φ[X]t[S] = 5 implies that no time function t can
satisfy 5§χt = 1 throughout &(Σ). Nevertheless, we shall show that in case (a) an

asymptotically flat slice, Σf (which is a Cauchy surface for &(Σ)) can be constructed
which is everywhere transverse to X. Similarly, in case (b) an asymptotically flat
hypersurface, Σ' with boundary S can be constructed such that Σf \ 5 is transverse

to X and is a Cauchy surface for ^(Σ). These results will enable us to prove the
following propositions:

Proposition 4.1. Let (M, gab) be a space-time of class (a), suppose that

= 0 . (4.4)

Then there exists a time function T G C°°(&(Σ)) with asymptotically flat level sets
Σs(r) = {p : r(p) = s} (which are Cauchy surfaces for ^(Σ)) such that φ[X]t acts
by translations in r:

Σs+t(r). (4.5)

Proposition 4.2. Let (M, gab) be a space-time of class (b), suppose that (4.4) holds.

Then there exists a neighbourhood % of&(Σ)(Jβ& and a time function f G C
with asymptotically flat level sets Σ s ( f ) = {p : r(p) = s} such that

φ[X}t(Σ8(τ) Π ®(Σ)) = Σs+t(r) Π

for s > sQ, t > 0 and for s < —s0, t < 0, for some s0. Moreover, for all t, s G M,

φ[X]t(Σs(r ) Π Mext) = Σs+t(f) Π Mext .

Furthermore, ΣQ(f)Π&(Σ) is a Cauchy surface for $(Σ) and d{ΣQ(r)Γ\^(Σ)} =
S.

Remark. If the timelike convergence condition (4.3) holds, for spacetimes of class
(b), a somewhat shorter though certainly less elegant proof of Proposition 4.2 can be
given. The relevant argument is outlined in the proof of Theorem B.I, Appendix B.

Before beginning the proofs of Proposition 4.1 and 4.2, we introduce the following
notation. For any hypersurface Σ C M we set

A,ext =
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and

δ<o, 4ι5 = {peAnt:^fe9Γ i n t)>|ί |},
δ > 0, Σ0tS = Σ mt Uf=1 {p G Σi R, < r(p) < R0 + δ} ,

where d^(p^ <9Σint) is the Riemannian distance on Σ from p to $Σint, r(p) is the
coordinate radius function in the end under consideration, and the fL's are the

I

constants R{ of Definition 2.1 in the zth end. There exists ε0 > 0 such that for

δ > —ε0 the sets Σ"0 ^ are manifolds with smooth boundary.

Proof of Proposition 4.1. Let (t,x) be coordinates on Mext as given by Proposition
2.1, normalized so that A = 1 in all the ends, Mi? and so that g is asymptotically
conformal (with constant conformal factor) to the standard Minkowski metric. Let g
be any smooth Lorentzian metric on M, which coincides with g on Mint, and such
that

3

for all x such that r(x) > R, for some R > R^ i = 1, . . . , / , on all ends Mi. Let X
be any smooth vector field defined on a neighbourhood of Σ1, which is transverse to
Σ, and which coincides with X for r(x) > R. On Mext define

where D^ is the d'Alembertian of the metric g. Let ρ{ G C°°(M) be any function

satisfying ρl = ρ for r > .R. Define t{ G C^ί^ίΣ1)) as the unique solution of the
Cauchy problem,

(4.7)

Let @ C (Σ) be defined by ̂  = {p G (Σ1) : V^ is timelike}. Let & C @ be the

domain of dependence of Σ1 in the space-time (̂ , ̂ α6). Lie dragging along integral
curves of At^O' can be identified with {(£1?p) G R x Σ : ί~(p) < ^ < t+(p)} for
some functions t"11^) G R U {±oc}. Compactness of Σ02R implies that there exists

ε > 0 such that (— 4ε, 4ε) x Σ0 2# C < .̂ From uniqueness of solutions of the problem

(4.7) it follows that for (tl , x) G Ω — {r > β, |ί| < r—R} we have t j = t. Decreasing
ε if necessary we thus have ^ε C &, where ̂  = (—5, 5) x Σ = {p : \t{(p)\ < s}.
Further decreasing ε if necessary, we have tv = t at all points in < £̂, with r > 2R.

Next, we claim that for all p G $(Σ), the set {t E M : </>[X]t(p) G &2ε}
is nonempty and bounded. Namely, nonemptiness is an immediate consequence of
Corollary 3.4. To prove boundedness, we note that if the orbit of X through p
intersects Σ ar r > 2R in Σext, then boundedness follows immediately from the
fact that tλ = t at all points in &2ε with r > 2R. Hence, if φ[X]t(p) G &2ε for

an unbounded sequence {t^}, then infinitely many of these points lie in the compact
set [— 2ε,2ε] x ΣQ2R. Passing to a convergent subsequence, we obtain a nonempty
α-limit set or α -limit set (or both). However, this contradicts Lemma 3.4.
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The desired time function r may now be constructed as follows: Let t2 be the
Lipschitz continuous, piece wise smooth function defined on M by

r^ίp), pG^ 2 ε ,
t2(p) = J 2ε, p G /+(£) \ ̂ ε ,

1 -2ε, P G/-(Γ)\0 2 ε .

Let φ G C°°(R) be any function satisfying

' 0, x < -ε

1 γ ^> c

ψ'(x)\(-e,ε) > °' and

φ(x) — 2 — — (</?(—^) ~ 5) " (4-8)

Define

It follows that ί3 G C°°(M) with

and we also have

Ϊ7 ~f~ ~ i Ή i — <
timelike, past pointing,

For p G &(Σ) we define

o

r(p) - / t3(φ[X]s(p))ds + /(ί3 - l)(0[X]β(p))d5 . (4.11)

-oo 0

We now claim:

1) for p € ^(Σ1), |r(p)| < oc . (4.12)

Indeed let p £ ^(Σ1). Then, as shown above, there exists ί±, 1̂  < CXD, such that for
t>t+it holds that t3(φ[X]t(p)) = 1, and for ί < ί_ it holds that ί3(0[X]t(p)) - 0,
so that Eq. (4.11) reads

o t+

r(p) - Jt3(φ[X]a(p))ds + J(t3 - l)(φ[X]a(p))ds , (4.13)

t- o

which proves (4.12). Standard results about integrals with parameters and (4.13) imply

r G C

2) X ( τ ) = l . (4.14)

Namely, by a change of variables we have

t 00

/ t3(φ[X]s(p))ds + ί(t3 -
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so that

X(τ)\p = ^tr(φίX]t(p))\t=0 = I .

[Let us note, that (4.14) implies that for p e (Σ1), we have Xp ^ 0 (cf. also
Corollary 3.2)].

3) Vr istimelikeon &(Σ) . (4.15)

Namely, we have

Vτ(p)=

so that (4.15) follows from (4.10) and from the fact, that for any isometry ψ defined
on a connected set the tangent map ψ* maps timelike, consistently oriented vectors
to timelike, consistently oriented vectors.

4) the level sets of r are asymptotically flat. (4.16)

To prove (4.16), consider p = (t,x) G {r > R + ε, \t\ < r - R}, with
R, ε as at the beginning of the proof of this proposition. For such p we have
t3(φ[X]8(p)) = φ[X](s + t), so that dτ/dxi = 0, thus r = ρ(t). Equation (4.14)
gives r = t + TO for some constant TO. The symmetry condition (4.8) gives TO — 0,
so that in {r > R -f ε, \t\ < r — R} r coincides with the original Killing time t.

5) the level sets of r are Cauchy surfaces for &(Σ) . (4.17)

To prove (4.17), we note first that (4.15) implies that any level surface of r is achronal.
Consider the restriction of r to the original slice Σ. By the previous argument, we
have r Σ — 0 for all r > R, so r Σ can be nonvanishing only on a compact subset
of Σ, and, hence, there exists T G E such that |τ| < T on Σ. Applying φ[X]τ to
this result [using (4.14)], we see that r > 0 everywhere on Στ. Similarly, we have
r < 0 on Σ_τ. However, by Proposition 3.1, Στ and Σ_τ are Cauchy surfaces for

^(Σ\ Hence, every inextendible timelike curve in &(Σ) intersects Στ and Σ_τ,
and, thus, passes from positive to negative values of T. By continuity, every such
inextendible timelike curve intersects the level set r = 0, thus implying that this level

set is a Cauchy surfaces for &(Σ). That all the other level sets of T also are Cauchy

surfaces for &(Σ) then follows by application of Proposition 3.1.
The above results complete the proof of Proposition 4.1. D

In order to prove Proposition 4.2, we first shall need the following Lemma:

Lemma 4.1. Let (M, gαb) be α space-time of class (b) and suppose that (4.4) holds.
Then there exists a smooth spacelike hypersurface Σ0 with boundary S such that ΣQ

coincides with Σ outside of a compact set, Σ^Γ\^(Σ) is a Cauchy surface for
and X is everywhere transverse to Σ0\S.
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Proof. The idea of the proof is to construct a time function r in ^(Σ) in a way
somewhat similar to that in the proof of Proposition 4.1. Supplementary difficulties
arise because we need to ensure that the hypersurface ΣQ defined by r — 0 smoothly
intersects S and remains spacelike "up to boundary." Thus, the proof of the Lemma
will consist mainly of constructing a function tl [cf. Eq. (4.7)] near S so that ΣQ will
have the desired properties there.

Let TV denote the normal bundle of 5, i.e., a point of TV consists of a point p G S
together with a vector Va at p which is normal to 5. As in the proof of Lemma 3.7,
let na denote the future-directed unit normal field to Σ on 5, and let ra denote the
inward ("towards Σ1") pointing unit formal to S in Σ. Then at each p e 5, (nα, rα) is
a basis for normal vectors to 5 at p, so we can uniquely express each normal vector,
Fα, at p as Va = Tn + Zra. Thus, each x G TV is uniquely characterized by (p, Γ, Z)
with p G 5 and Γ, Z G R.

Consider the "wedge," J^>, of N defined by Z > \T\. It is convenient to introduce
"Rindler coordinates"^', z') in ̂  by,

ί/ = tanh"1(T/Z), (4.18)

z' - Λ/Z2 - Γ2 , (4.19)

so that z' is just the length of the normal vector to S. Now, since φ[X]t maps S
into 5 and maps vectors normal to S into vectors normal to 5, it induces an action
on TV, which we shall denote by φf[X]t. Since φ[X]t preserves the length of vectors
normal to S, it follows immediately that on 38, the action of φ'[X]t takes the form,

φ'[X]t<p, t', zf) = (φ[X\(p), t' + /t(p), *') (4.20)

for some function ft on S. Furthermore, it follows directly from the proof of Lemma
3.7 that there exists α > 0 such that we have ft+(p) > a for all p £ S, where t+

was defined in Lemma 3.7. Consequently, for all n E N we have fnt+(p) > na for
all p E 5, from which it follows that ft(p) — > oo as t — > oo and ft(p) — > -oo as
ί — > —ex). In other words, along every orbit, φ f [ X ] t , in J^, we have t' — > oo as
t — » oo and t' — > — oo as £ — >• — oo.

We now repeat the construction used to obtain the time function r of Proposition

4.1, replacing &(Σ) by J^, replacing φ[X]t by </>'[-X"]t and replacing the time function

tl (defined in a neighbourhood of Σ in $(Σ) by Eq. (4.7)) by the function tr (which
is globally well defined in J^?, so we choose an arbitrary ε > 0 to define the analog,
tr

2, of ί2). From what has been said at the end of the previous paragraph it follows
that the resulting function, denoted τf ', will be well defined smooth on ^B (although
it will be singular on the boundary of M). Furthermore, it follows directly from
the construction that throughout J^?, we have drf /dtf > 0 and dτf /dz' — 0, where
the partial derivatives are taken holding p fixed. (The first relation is the analog of
property (3) in Proposition 4.1, while the second relation follows from the fact that
both t1 and the action of φ'[X\ [cf. Eq. (4.20)] are independent of z'.) It follows
from the above properties of r' that in 3g, the level surface, Σ^, defined by r1 == 0
is given by an equation of the form t1 — g(p), where g is a smooth function on S.
However, returning to the original, globally nonsingular coordinates (T, Z) on TV, we
see immediately that any hypersurface of this form in ̂  can be smoothly extended
to a hypersurface ΣQ through 5, and the magnitude of the "slope" of ΣQ at S satisfies
\&Γ/dZ\ < 1.

Now, let ψ : N — > M be the map which takes each (p, Va) G TV to the point in
M lying at unit affine parameter along the geodesic in M determined by the initial
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conditions (p, Va). Then, by the same arguments as used for the ordinary exponential
map, it follows that ψ is a diffeomorphism from some open neighbourhood, ί& of S
in TV to an open neighbourhood, 9^ of S in M. In particular, the image, £0, under
ψ of, ΣQ is a smooth hypersurface through S in M. Furthermore, the above "slope"
condition implies that ΣQ is spacelike at S.

The pullback under ψ~l of the function t1 on M Π ̂  defines a smooth function,
t, on &(Σ) Π ̂  In ̂ (Σ1) n 9^9 we define the function ρ by

Note that from the definition of t', it follows immediately that in a neighbourhood
of 5 on Σ1, we have λ = nαVαί > 0, where na here denotes the unit normal to Σ;
indeed, we have λ — > oc in the limit as 5 is approached.

As in the proof of Proposition 4.1, let (t,x) be coordinates on Mext as given
by Proposition 2.1, normalized so that A — 1 in all the ends and so that gμv is
asymptotically conformal (with constant conformal factor) to the standard Minkowski
metric. Again, we let g be any smooth Lorentzian metric on M which, coincides with
g on Mint, and such that

3

§ = -dt2 + ̂ (dz*)2

i=l

for all x such that r(x) > R, for some R > R^ i = 1, . . . , / , on all ends M{. Let
X be any smooth vector field defined on a neighbourhood of Σ, which is transverse
to Σ, and which coincides with X for r(x) > R and which coincides with the unit
normal, nα, to Σ on a neighbourhood of S in Σ. Again, on Mext define

where D^ is the d'Alembertian of the metric g. Let ̂  G C°°(M) be any function

satisfying ρt = ρ for r > R and gj = ρ in the intersection of &(Σ) with some open
neighbourhood of S. Let \{ e C°°(Σ \ 5) be any function satisfying λl > 0, X{ = 1
for r > /^ and λ j = λ in the intersection of Σ \ S with some open neighbourhood of
S. Let &i G C°°(Σ\S) be any function satisfying σ j = 0 for r > R and σl = tin the

intersection of Σ \ 5 with some open neighbourhood of S. Define ΐλ G C
as the unique solution of the Cauchy problem

(4.21)

Then t j coincides with t in the intersection of ^(Σ) with some neighbourhood of 5.
On the neighbourhood ^ of S defined above we have two families of maps defined,
φt[X] and φ't[X], and we claim that these maps coincide, wherever this statement
makes sense. This follows from the fact that φt[X] maps geodesies starting at S to
geodesies starting at S, and preserves the geodesic distance along them. Conse'quently,
the corresponding function f in &(Σ) obtained by the construction of Proposition
4.1 will coincide in a sufficiently small neighbourhood of S with the pullback under
ψ~l of the function r' on TV constructed above. It then follows that the level surface
f = 0 can be smoothly extended to S so as to obtain a hypersurface with boundary
satisfying all of the conditions of the lemma. D
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Proof of Proposition 42. Let ΣQ be as in Lemma 4.1, and let £ be any smooth,
spacelike extension of ΣΌ through S. Let na denote the vector field - defined in a

neighbourhood, & of Σ - of tangents to the geodesies normal to Σ. In & U Mext,

define the vector field X by

Xa = χna + (1 - χ)Xa ,

where χ is any nonnegative, smooth function on M such that χ = 1 in Mint and
for r < Λ in Mext and \ — 0 for r > 2R, where .R is defined as in the proof of

Proposition 4.1. Then X is transverse to Σ1, and by the same arguments as in the
proof of the first part of Theorem 3.2, there exists ε > 0 such that the induced action
φ[X]f yields a spacelike foliation of an open neighbourhood of ΣQ for ΐ G (—2ε, 2ε).

By decreasing ε if necessary, we can ensure that the hypersurface Σ±ε, defined by
t = ±ε, intersect ̂  in cross-sections of β&+ and J^?_, respectively. By further

decreasing ε if necessary, we can ensure that Σ±ε ΠMint lies outside the causal future

of the portion of Σ with r > 2R.
We clain, now, that the hypersurfaces Σ±ε are transverse to X in an open

neighbourhood of &(Σ) = &(Σ0). Namely, in Mext, this is obvious because X

is timelike. In Mint, the vector field na is normal to Σ±ε. However, Xan
a is the

inner product of a Killing field with a geodesic tangent, and thus is constant along the
geodesies tangent to nα. For any point q G Σ±£ Π Mint the normal geodesic through

q is a timelike curve and, hence, must intersect Σ in ΣQ \ S. Since X is transverse
to Σ"0 \ 5, we have v^αn

α < 0 everywhere on ΣQ9 hence, Xan
a < 0 everywhere on

Σ±ε Π D( 0̂). This implies that X is transverse to Σ±ε in an open neighbourhood
of @ί(Σ).

It follows immediately that the action of φ[X]ΐ_ε on Σε for £ > ε yields
a foliation. As a consequence of Corollary 3.4 and Lemma 3.7, this foliation

covers an open region containing [I+(Σε)] Π [&(Σ) U J ]̂. On the other hand,

the transversality of X to Σε and the tangency of X to ̂  imply that no point

in [J~(Σεyi Π \$(Σ) U ̂ f] is covered by this foliation. Similarly, the action of

φ[X]f+ε on Σ_ε for t < — ε yields a foliation covering an open region containing

[Γ(Σ_ε)] Π [&(Σ) U ̂ ] but containing no point in [J+(Σ_ε)] Π [$(Σ) U ̂ ].

Consequently, by merging these foliations with the foliation defined by X for

t G [—ε,ε], we obtain a foliation covering an open region containing &(Σ) U 3%.
The time function, t, of this foliation is easily verified to satisfy all the properties
of this proposition with one exception: although t is continuous, it is only piecewise
smooth in that it need not be smooth on Σ±ε when r > 2R. However, since this

possible non-smoothness of t within &(Σ) occurs only on a set which intersects
&(Σ) compactly, we may smooth it (e.g., by convolution with localized Friedrich
mollifiers) to obtain a time function r satisfying all the conditions of the proposition.

D

Before proving Theorems 4.1 and 4.2 we prove the following lemma.

Lemma 4.2. Let (M,gab) be a space-time of class (a) or (b), let t be a time function
defined in a globally hyperbolic neighbourhood & of Σ, such that

1. Σ is a Cauchy surface for @, and
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2. there exist constants θ G [0, 1), T G R such that for all i = 1, . . . , / ,

& Π M. C f20> Λ.> τ = {r > A, |ί| < θ(r - R,) + T} ,

3. and t\^. nM coincides with the Killing time based on Σ Π Mext, <2S defined in
Proposition 2.1, for r > Rfor some R.

Let 8 Σ! C & be a smooth, embedded, acausal hypersurface which is a graph of
a function uλ over Σ:

Σl = {p£^:t(p) = uγ(q),qt Σ} .

If (M, gab) is of class (b), suppose moreover that uλ s — 0. Then Σl is a Cauchy

surface for ^(Σ).

Proof. We can identify & with {(£, q) : t_(q) < t < t+(q), q G Σ1}, for some
functions t± G R U {±00}, by dragging q G Σ along the integral curves of
Vt. Let λ be a piecewise differentiable inextendible causal curve in (̂ , gab), so
A : (5_,5+) 9 5 — > (5,7(5)) G @ for some piecewise differentiable curve
7 : (s_,s+) — » Σ. Since Σ1 is a Cauchy surface for @ we have λ Π Σ φ 0,
and hence 0 G (s_, s+). For any # G (0, 1) one can choose J%(θ) large enough such
that for p G Mi9 i = 1, . . . , i and r(p) > JB(Θ) the slopes of the light cones, in the

1 i Γ\ Q _ f\

coordinates of Proposition 2.1, lie between - and - , which easily implies

that there exists C such that 7(s_,s+) C ΣQC Consider a sequence si — > s_.
Compactness of Σ$ c implies that there exists q_ G ΣQ c and a subsequence, still
denoted by s^ such that 7(5^) — > ^_. Suppose that s_ ^ t_(q_). Then the timelike
curve (ί _(<?_), 5_) 3 s -̂  (s, g_) extends λ which is not possible; thus s_ — t_(q_).
By compactness of Σ0 c there exists ε > 0 such that (u — t_)\Σ > ε. We thus have

lim 1 (̂7(5 •)) = u(q_) > ε + t_(g_) = ε + s_. Set /(s) = s — 16(7(5)); continuity
st — >s_

of n(7(s)) implies that there exists 5j G (s_, 5+) such that /|(S_ ) S l ) < 0. One shows

similarly that there exists s2 G (s_,s+) such that /|(S2)S+) > 0, by continuity of /

there exits 50 G (s_, s+) such that /(50) = 0, so (s0,7(s0)) G Σ{ Π λ ^ 0, which is
what had to be established. D

Proof of Theorem 4.1. Let r be the time function as given by Proposition 4.1; we
want to show that Bartnik's interior condition ([2, Eq. (5.4)] or [5, Eq. (4.4)]) holds.
Set

Mδ=
te(-oo,oo)

where Σ^δ = ΣQ >(5(r), with Σ0 6(τ) defined by (4.6). Let q G dMδ, p G Mδ

where /(g) denotes the set of points causally related to q. By Corollary 3.4 there
exists t0 such that φ[X]tQ(q) G ̂ 0(r). We have

|r(p) - r(ρ)| - r((/>mto(p))| < sup |
p'€M6\I(φ[X]tQ(q))

< sup

8 The reader should be warned about a slight clash of notation here, due to the fact that we have
run out of reasonable symbols for denoting hypersurfaces: Σλ in this lemma is not the asymptotic
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For qf 6 dΣQ6 let Λ^ — d(Mδ \ I(q'))\ since Λ^ is null, uniform boundedness of
light-cone slopes in Mext implies the existence of a constant C = C(δ) such that we
have

It follows that Mδ \ I(q') c@( \J Σt λ which by Corollary 3.5 is a compact set,
\\t\<c ' /

and therefore there exists a constant C\ such that

r(p) - r(q) < C, ,

which had to be established. Existence of a maximal slice ΣQ follows by the
arguments of Proposition 4.3 and Theorem 4.1 of [5]. Σ0 is an asymptotically flat
graph by construction and thus a Cauchy surface by Lemma 4.2. The hypersurfaces
Σt — φ[X]t(Σo) cover $(Σ) by Corollary 3.4. If moreover the timelike convergence

condition holds, the family {Σt} forms a foliation of $(Σ) (cf. e.g. the arguments
of the proof of Theorem 5.4 of [5], and [3, Section 5]) which completes the proof of
Theorem 4.1. D

Proof of Theorem 42. Let r be the time function given by Proposition 4.2. By
Theorem 3.1 of [5] Σ"0(f) can be deformed outside of a compact set K C Σ0(τ),
dK D 5, to an asymptotically flat hypersurface Σ the mean extrinsic curvature of
which is compactly supported. By construction, Σ is an asymptotically flat f-graph
of a function ύ, with u\κ = 0, so that Σ is a Cauchy surface for &(Σ) by Lemma
4.2. Enlarging K if necessary the function r{ — r — u is a time function on a
neighbourhood % as given by Proposition 4.2, and τ^M&Λ is the Killing time based

on Σ, as described in Proposition 2.1. Let ρ be such that the hypersurfaces Σt are
maximal outside of Σt β, set 5ext = Σ \ ΣQ Q9 define

= \J d£
t>e.

Because the light cones in Mext — (J Σt ext have uniformly bounded slopes it
ί€(-oo,oo)

follows that there exists a constant K\ such that if Σ is a spacelike hypersurface then
we have the implication

Σ Π dM{ φ 0 => Σ Π 9Mext C 9MKι . (4.22)

By Theorem 4.2 of [2] and by Theorem 3.2 for i £ N there exists a maximal surface
Σ^ such that dΣi = 9£0>i.

For the set J? define

ί+(β) - supίfjCp) : p G β Π 9Mext} ,

t_(Ω) = infίfjίp) : p e

We have

thus there exists a constant ^ such that

t_(φ[X]t.(ΣJ) = I . (4.23)
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Set φ[X\ ΞΞ φ [ X ] t % . Equations (4.23) and (4.22) imply

and spacelikeness of Σi gives

U φ[X]t(£ ,
,t€[-Kι,K,]

where Mint — M \ Mext. K is compact by Corollary 3.6, thus

_ < C — sup |fι(p)|.
(ftXkCronMint pGκ

Suppose first that ί^ < 0. It follows that Tildφix^Σj — ®> an<^ we conclu^e from the
estimate (3.14) of [2, Theorem 3.1] that there exists a constant C such that the "tilt
function" vi — v(φ[X]i(Σi)) (cf. [2] for details) satisfies

Thus the argument of the proof of Theorem 5.3 of [2] applies to give

^ > -CΊ (4.24)

for some constant C{. Suppose now that tτ > Kγ H~ 1. It follows from (4.22)-(4.23)
that there exists 0 > si > —Kl — 1 such that

t+(<^[X]t.+βt(i:i)) = -l, (4.25)

and since tτ + si > 0 one can again conclude as above, from Theorem 3.1 and 5.3 of
[2], that

ti + sτ < C2 =» t i < C2 + K{ + 1 . (4.26)

Equation (4.26) together with (4.24) gives

\ti\<C3

for some constant C3, and from what has been said it follows that

From the estimate (3.10) of [2] we conclude that

and a standard method, together with barrier considerations using the barriers u± =

±Cr~a if α G (0, 1), w± + iCr"1 log r if α = 1 (cf. e.g. Lemma 2.2 of [5]) shows
that there exists a subsequence converging to an asymptotically flat maximal surface
Σ0. The hypersurfaces Σt are obtained by setting Σt = φ[X]t(ΣQ). By Corollary 3.4

for p G &(Σ) every orbit φ[X]t(p) intersects £0, so that the hypersurfaces {Σ'ί}ίeR

cover &(Σ). If the timelike convergence condition holds, then the hypersurfaces

Σt\S foliate &(Σ) and the proof is completed. D
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A. A Generalization - Stationary-Rotating Space-Times

It is an interesting feature of the causal structure theory presented in Sect. 3 that
several results follow from the fact that the orbits of the isometry group are time-
oriented "near spacelike infinity," so that timelikeness of the Killing vector is never
used. This leads to the following curious generalization of our results to space-times
which are asymptotically "stationary-rotating," in the following sense:

Definition A.I. A spacetime (M,gab) possessing an acausal slice Σ expressed in
the form Σ = Σλ U Σ' will be called (k,a)-asymptotically stationary-rotating with
respect to the "end" Σλ if conditions 1 and 2 of Definition 2.1 hold, moreover:

3. On M there exists a Killing vector field X the orbits of which are complete.
Furthermore, in the coordinate system of point 1 of Definition 2.1 we have as r —» oo,

X = (A + O(r~α))— + (ω]xj + O(r~α))—- (A.I)

for some constant A(=fc 0), and some constant coefficients matrix ω^ satisfying

ω\ — —ωlj. We moreover assume that the vector field

Y = X-X

is uniformly timelike on Σ{ (gμvY
μY" < —ε for some constant ε > 0), where

If' ω? φ 0 we shall moreover require that the metric satisfies

V 0 < \β\ + i < k

V i = /c, \x — y\ < r(x)/2

s\ < 2πA\ω\~l

<Cr —a—k—X

(A.2)

y\x, (A.3)

(A.4)

where β is a multi-index with space indices only, Rl(s) = expjsα;;?}, (R(s) — id))*

is the pull-back by the map R3

i(s)xl — α/7 and 5§^ is the Lie derivative. We shall also

assume, for ω\ ^ 0, that the vector field Y satisfies

V 0< \β\+i < k

V \β\ + i = /c, \x — y\ < r(x)/2

Ί ?/fcNι < /nf

r.-«—fc—λi^ 7/|λy ,y ) .^ ^i \χ ~ y\ i

i = k,Q < \s\ < 2πA\ω ~l

(A.6)

(A.7)
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Remarks. 1. If \ω\ = 0, then Definition A.I clearly reduces to Definition 2.1.

2. If X = ωj

jx
jdi is also a Killing vector field, such that [X, X] = 0, as occurs e.g.

in the case of the Kerr space-time, then (A.2)-(A.7) will clearly hold if (2.1)-(2.4)
are fulfilled.

3. If (A.2) and (A.5) hold with 1 < i < k + 1, then (A.3)-(A.4) and (A.6)-(A.7) will
hold as well (with any 0 < λ < 1).

Proposition A.I (Killing time based on Σ Π MI). Let (M, gab) with Σ = Σl U Σ"
be asymptotically stationary with respect to Σλ . Then there exists a global coordinate
system on M{ such that M{ « R x (R3 \ B(Rl))f Σl C {t = 0}, and

ί,a;ί), otherwise,

3

i 3VZ i 6 M3 g^Z3 > C-1 &Ϋ (A.9)
4=1

/6>r ^m^ constant C, w/Y/z |α;| = J^ (ω1^2; moreover, dσι . . . dσk9μl/ satisfy an
i<3 V

obvious weighted Holder condition.

Proof. Let xμ be the coordinates of point 1 of Definition 2.1, let </>[X]μ(s, y*) be the
unique solution of the problem

Let the new coordinates (yμ(xa)) = (As(xa),yi(xa)) be implicitly denned by the
equations

k). (A. 12)

Since the derivatives of X satisfy uniform decay conditions up to order fc, it follows
from (A.I 1) by standard ODE theory that the derivatives of φ[X]μ will satisfy uniform
decay conditions up to order fc, then by (A. 12) the derivatives of dxμ jdyυ will satisfy
uniform decay conditions up to order k — 1 it turns out, however, that decay conditions
for the derivatives of the metric hold at order k as well, which can be seen as follows;
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differentiating Eq. (A. 12) with respect to xμ one obtains:

ι _^!_ yθds ,
*• π f\ -**- /-\ . I

dyi dt '

dt dt dyk dt '

From (A. 11) and (A. 13) at s = 0 it follows that

s=0

at s=0

_

dxi

To avoid ambiguities let us write the metric in the form g = #x/

9y»y» dy»dy»\ we have X = Xx°d/dt + Xx'd/dxi = XyQd/dy0 +

Ad/dy®, and from (A. 14) one obtains

(A. 13)

(A. 14)

o xo(X x) 2 + gχkχιx
χxχ

(A. 17)

and for ω = 0 the asymptotic bounds readily follow from (2.1)-(2.5) and (2.8). If
ω φ 0 the coordinates {yμ} are, however, not asymptotically flat. This is easily cured
as follows: let Rl(s) = exp{su^'}; thus Ri(s) is a rotation by angle \ω\s around the

appropriately oriented axis el defined by ω\e% — 0, where \ω

Let new coordinate {zμ} be defined by

z =

one easily finds

+ 9xkχ0] (x° = 0, xi = Rl(-A-l

9z0z0(z°, /) = A-2[gxoχ0(Xx°)2 + 9χkχt(Xχk - ωk^)(Xχί - ωe

mxm)

+ 2gχkχ0X
x\Xχk - ω*aJ)](x° = O.a;* = βj.(-^-^
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We have, e.g.,

with X = ω^x^d^ and (A.S)-(A.IO) follow in a similar manner from (A.2)-(A.7).
D

Remark. Equations (A.15)-(A.17) provide a very effective way of constructing
stationary metrics of the form (1.1) with some "desirable" pathological properties
(not necessarily, however, satisfying some reasonable field equations and/or energy
inequalities): fix a three dimensional manifold Σ1, with a metric gxixj dxl dx^ , a
scalar field gxoxo, a one form gχίχodxl, a vector field Xτd/dxτ, and finally a
scalar field X° > 0; make sur that the matrix gxμx» has Lorentzian signature.
Then he manifold R x Σ with the metric gyμyv dyμ dy" , with gyμyv given by

(A.15)-(A.17), is a Lorentzian manifold with Killing vector Xμd/dxμ = d/dy°.
As an illustration, consider Σ = R3 with gχμχv(xί)dxμ dxv = -(dx°)2 + Σίda;*)2,
Xμ(xl)d/dxμ = φ(xl)d/dx° 4- dxl, where φ is any smooth radially symmetric
function satisfying

" = 2 , r < 103 ,

G [1 + 10-400,2], 103 <r < 104 ,

- l-fr" 1 0 0 , r>10 4 .

then Xμd/dxμ is timelike everywhere, asymptotically approaches the null vector
d/dxQ + d/dx\ and we have gyμyl, dyμ άyv = (1 - 02)(ch/°)2 + 2 dyΌ dyl + Σ W)2

Introducing z° = y°, z1 = ΐ/ 1 + y°, 2Λ = yΛ, A = 1, 2, one has gzμχV dzμ άzv =

-φ2(dzQ)2 + Σ(cZ^)2, with ̂ ) = ^(z1 - ^°,z2,z3), thus all the conditions of
Definition 2.1 are satisfied (with any 2 < k < 98, α = 99 - fc and λ = 1) except for
uniform timelikeness of X and for Eq. (2.5). Moreover it is clear that no coordinates
as in Proposition 2.1 exist for this metric.

We have the following

Theorem A.I. All the results of this paper hold with "stationary" replaced by
(ί stationary-rotating ' .

The reader who wishes to check the validity of this result will notice that essentially
all the proofs have been worded in a way which generalizes immediately to the
stationary -rotating case. Let us mention the following. First, it is easily seen from
Proposition A.I that for any p = (t,x) G Mext the orbits 7p(ί) are future or past
oriented, according to the sign of A (the sequence ti can be taken to be equal to
2πiA\ω\-1, ί G Z).

A property of the orbits of φ[X] which is often used is the following: let p, q G Mi9

then there exists T such that, changing the time orientation if necessary for all ί < T
we have φ[X]t(p) G I~(q). This can be seen as follows: joining points with curves
of the form (t + Bs, r + s) and (t + Bs, 7(5)), where ί, r refer to the coordinates of
Proposition A.I, B is a constant large enough, and 7(5) is either a constant curve
or, say, a geodesic arc in the standard round metric on the spheres r = const, one
finds that there exists a constant C = C(p, q) such that all points p' = (t(pf}, x(p'})
with t(pr) > max(ί(p),t(g)) + C, r0 = min(r(p),r(g)) < r(pf) < max(r(p),r(g))
satisfy p' G /+(p), and p' G I+(q)\ similarly if t(pf) < min(ί(p),ί(ςf)) - C and
r0 = min(r(p),r(#)) < r(p') < max(r(p), r(g)), then p; G I~(p), and p7 G /"(#). In
the Killing coordinates on Mί we have φ[X]s(t, x) = (t 4- As, Λ(s)x), where R(s) is
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a rotation (around an appropriate axis, cf. the proof of Proposition A.I), by an angle
ω\s, and setting T = -A~λ (max(|ί(p)|, \t(q\) + C), the result follows.

B. An Alternate Proof of Existence of a Maximal Foliation
for Spacetimes of Class (b) Satisfying the Strong Energy Condition

In this appendix we shall outline a somewhat simpler though certainly less elegant
proof of the theorems of existence of maximal slices for space- times of class (b)
when one assumes that the timelike convergence condition (4.3) holds:

Theorem B.I. Let (M,g) be a space-time of class (b), suppose that (4.1) holds and

that the timelike convergence condition (4.3) is satisfied. Then &(Σ) can be covered
by a family of maximal (spacelike) asymptotically flat hyper surf aces Σs , s G R, with
boundary OΣS = dΣ = S, such that

φ[X]t(Σ8) = Σ8+t, and ΣS^Σ.

Moreover ΣS\S are Cauchy surfaces for &(Σ\ and the hyper surf aces Σs \ S foliate

Proof. The idea of the proof is similar to that of the proof of Theorem 4.2, the essential
difference being how the appropriate time function is constructed. By [5] one can
deform Σ outside of a compact set so that, still denoting the deformed hypersurface
by Σ, Σ \ Σ^Q is maximal. By Theorem 4.1 of [3] there exists a maximal surface

Σ « Σ0 ρ such that dΣ = S U dΣQ ρ. By the gluing Lemma B.I which is proved

below the hypersurface Σ U (Σ \ Σ"0 ρ) can be smoothed out to a smooth hypersurface

Σ; by construction there exists ε such ΣQ ρ_ε and Σ \ ΣQ ρ+ε are maximal. We
can choose ε small enough so that dΣ0^ρ±ε are smooth coordinate spheres in Mext.
Because the slopes of the light cones in Mext are uniformly bounded, there exists a

constant Kl such that for any spacelike surface Σ we have the implication

where

Let Σl be a maximal surface such that dΣi — S U OΣQi. Let s be such that

. We then have φίXΣ Π C J . Set

It follows that 0[X]s(Σ'ί) Π Mint is a maximal surface with boundary included

in S U dΣt . Because φ[X]±κ (ΣQ ) are maximal, the comparison
ίe[-Kι,ΛΊ]

principle implies that φ[X]s(Σz)(~]M[nt is a subset of the compact set \J Σt .
te[-ΛΊKι] '

This observation allows one to carry out the remaining arguments of the proof as in
Theorem 4.2, by using any time function which coincides with the Killing time in
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Mext, and covers a neighbourhood of \J Σt +ε. (Such a time function
t€[-Kι-l,Kι + l] '

can be easily constructed spanning maximal surfaces on some timelike hypersurfaces
containing dΣ and on (J dΣt ρ+£, and appropriately "rounding off any

nondifferentiability if necessary.) D

Let us finally prove the "gluing lemma":

Lemma B.I. Let Σ be a Ck'a , k > 1, 0 < α < 1, spacelike embedded hyper surf ace
in a Lorentzian space-time (M,gab) with a Ck~l'a metric, suppose that Σ is a
Ck'a spacelike embedded hyper surf ace in M such that dΣ C Σ is a compact Ck'a

submanifold of Σ, and assume that Σ is the disjoint union of Σint, dΣ and ΣQXt, with
dΣint = dΣ = dΣext. Define the (Lipschitz) piecewise Ck>a hypersurface Σ by:

Σ = ΣUΣQX1. (B.I)

Let d(p) be the distance on Σ from p to dΣ. For every ε > 0 there exists a spacelike
embedded Ck'a hypersurface Σ£ - "a smoothed out deformation of Σ" - such that

p^Σ, pφΣε =» d(p)<ε edge Σε = edge Σ .

(In other words, Σ coincides with Σε except for points closer than ε to dΣ.)

Proof. Let t be any time function defined in a neighbourhood & of dΣ such that
Σ Π & ' = {t = 0}. [Such a function can e.g. be constructed as follows: let 9^ C Σ
be a conditionally compact neighbourhood of dΣ, let gab be any smooth Lorentzian

metric in a neighbourhood W C M of 9^ such that Σ Π W is spacelike with respect
to the metric gab, and such that in every tangent space the solid light cones of gab

are proper subsets of the solid light cones of gab. Let t e C°°(S(9r)) be a solution
of the problem

where Vμ is the covariant derivative of the metric gab, n
μ is a vector field transverse

to Wΐλ Σ and J^(90 is the domain of dependence of 2^ in the spacetime (W, gab).
Embeddedness of Σ implies that there exists an open neighbourhood & of dΣ such
that t is a time function for the metric gab on ̂ , and we have ΣΓ\& = {t = 0}.] Let
r be any C°° function on ̂  = Σ Π & such that \dr > 0, r\dg = 1. Let v be any
coordinates on dΣ, one can extend υ to %6 by Lie dragging along the integral curves
of Vr; r and v can be extended to & by Lie dragging along Vt. By compactness of
dΣ there exists 0 < <5 < - such that we have

(t, r, υ)eKδ = [-0, δ] x [1 - 6, 1 + <5] x dΣ C & .

Since edge Σ — dΣ C Σ, decreasing δ if necessary one can find a Ck^ function u
such that Σ Π Kδ is a graph:

Σ Π Kδ = {t = u(r, v), r e [1 - 5, 1], v G dΣ} .
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It follows that Σ, as defined by (B.I), is a graph of the following C0'1 function u:

(r,ϋ), r G [I -6,1]

By Whitney's extension Lemma (cf. e.g. [13]) there exists a function 3 G Ck^([l —

δ, I -f S] x 9Σ1) such that u\μ_δ ;1]x^ — ϋ. Let Σ1 be the graph of S, decreasing δ

if necessary we may assume that Σ is a spacelike hypersurface in Kδ. Let m be the

unit (spacelike) vector field proportional to — , define n to be the future oriented
or

timelike, unit vector field, orthogonal to — -, of the form a — -h 6— - we thus have
<9r at or

— = A(t, r, v)n + B(ί, r, v)m (\B\ < A), (B.3)

= C(t, r, v)m,

n - m — 0.

By compactness of Kδ it follows that there exists δl > 0 such that

n2 = —m2 = — 1,

(B.4)

(B.5)

(B.6)

d d
The vector field Y = Yμdu = ^- — -f — = A-— n + C + B-— m is tangent toμ or dt dr or \ or J

Σ, so that compactness of Kδ and spacelikeness of Σ imply that there exists <52 > 0
such that

v)
dr

(r,v)C(S(r, υ), r, υ) > L4(S(r, v), r, v) - sgn ( — -(r, v) } B(U(r, v), r,
L \9r J

where sgn( ) denotes the sign of . This together with continuity of A, B and C shows
that, decreasing 6 if necessary, there exists <53 > 0 such that for all (t, r, υ) G /ί5 one
has

C(t, r, v) > (
du
— (r,v) }B(t,r,v) (B.7)

Let ε be as described in the statement of this lemma, there exists a constant K > 0
such that for |r — 1| < Kε one has d(r,v) < ε, where d(p) is the geodesic distance
on Σ U Σ"ext from p = (r, v) to 9Σ1. Without loss of generality we may assume

f Kε Kε\
.et φε G C°°(R) be any function satisfying supp</>ε C 1——, 1 + — ,

0 < φ£
< 1, φε(x) = 1 for x G [1 - Kε/4, 1 + tfε/4]. Let ^ G C°°(E)

CXD

satisfying suppψ G [-1,1]. 0 < Ψ < 1, / ψ(x)dx = 1. For 0 < z/ < -fίε/2

set = -0 ( - 1 , define

oo

u^ε(r, v)= ψv(r - s)φε(s)u(s, v) ds -f (1 - φε(r))u(r, v) . (B.8)
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It follows from (B.8) that
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2. u^ε converges to u in C°>l([l - δ, 1 + δ] x dΣ) has v -> 0.

3. For r φ [1 - Kε, 1 + Kέ] we have uuε(r, v) = u(r,v)\ it follows that the

hypersurfaces Σv defined as those coinciding with Σ or Σ"ext outside of Kδ, and

defined as the graph of uv ε in Kδ, are Ck'a hypersurfaces.

4. For fixed r e [1 — <S, 1 +£] the functions uu ε(r, •) e Ck>a(d£) converge as v —> 0

to u(r, •) in Ck^(dΣ)\ in particular there exists z 0̂ > 0 such that for v < ^0 the vector
duvε d d

fieldS

vε

To show spacelikeness of Σv £ for v small enough it thus remains to show that the
'

du dj/εvector fields Ύ 1 J t f — ~ ' τr + TT are spacelike. This is equivalent to the inequality~
dv dt dv

r, v) - sgn

du,,
(B.9)

It follows form (B.7), (B.9) and compactness of Kδ that there exists 63 > 0 such that
if

du,, e

dr
< 26 4 Ύv ε is spacelike.

Set Ξ = {v e d£ : β(\,v) > 64}. There exists δ5 > 0 such that for

(duvε λ fduvε \
(r, v) e [1 - 05,1 -h <55] x H we have sgn I -^-(r, v) j = sgn I —^-(1, v) \. Let

66 = mm(δ5, Kε/%). For (r, v) G Ω = ([I - δ, I - 06] U [1 + δ6,1-f δ]) x 9Σ1 the
functions w^ ε converge in Ck>a C Cl to u, it follows that decreasing z/0 if necessary

spacelikeness of Ύv ε for z^ < z 0̂ < Kε/8 will hold on ίλ On [1 - <56,1 + 66] x 9Σ1

we have (recall that u = 0 for r > 1)

CO

/
(B.ll)

(since r < jFίε/8 and z/ > Kε/% we have 0ε(r) — 1, — s)φε(s) = — s)).
For v φ Ξ spacelikeness of Ύv £ has already been established; for ^ E Ξ the sign of
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. ,— - is constant along the curves υ — const, so that
dr

dr

and since Iv ε converges to ^'ε the inequality (B.9) follows from (B.7). D
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