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Abstract: We consider a general finitely ramified fractal set called a nested fractal
which is determined by N number of similitudes. Basic properties of the integrated
density of states ^K(x) for the discrete Laplacian on the associated nested pre-
fractal are investigated. In particular djV is shown to be purely discontinuous if
M<N, where M is the number of branches of the inverse of the rational function
involved in the spectral decimation method due to Rammal-Toulouse. Sierpinski
gaskets and the modified Koch curve are special examples.

1. Introduction

The integrated density of states (IDS in abbreviation) is defined as the limit of the
normalized distribution function of the eigenvalues of — A when the size of the
underlying space is made to expand to infinity. If the underlying space is a domain
of the Euclidean space Rd or a finite subset of the lattice Zd, then the IDS is known
to be absolutely continuous and behave like Cxd/2 as X JO. The present paper will
concern the cases where the underlying spaces are in a general class of finitely
ramified fractal sets called nested fractals by Lindstr0m [7]. The discrete Laplacian
(a certain difference operator) on the nested pre-fractal and the Laplacian A on the
nested fractal are now well defined objects [2, 6, 7].

The Sierpinski gasket is a typical example of the nested fractal. Rammal [10]
considered the discrete Laplacian on the Sierpinski pre-gasket located in .R ,̂ d ̂  2,
and discovered that its IDS is purely discontinuous. Fukshima-Shima [4] proved
the same property of IDS of the Laplacian on the Sierpinski gasket in Rd, d ̂  2. In
both cases, the IDS can be described explicitly owing to the spectral decimation
method due to Rammal-Toulouse [11], which relates eigenvalues of the succes-
sive pre-gaskets by the inverse function of a certain quadratic function. Recently
Malozemov [8, 9] found that the modified Koch curve also admits the spectral
decimation with respect to a certain rational function and that the IDS for the
corresponding discrete Laplacian is purely discontinuous.

In this paper we consider a general nested fractal and study the IDS ^Γ(x) of
the discrete Laplacian on the corresponding nested pre-fractal (rather than the
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Laplacian on the nested fractal itself). Let the nested fractal be decided by
N number of α-similitudes (α> 1). We first clarify under what circumstances dΛf
becomes discontinuous. To this end, we assume that the nested fractal admits the
spectral decimation with respect to a rational function Φ(x). Let M be the number
of branches of the inverse function of Φ. In the next section, we show that M g N in
general. We further prove the following:

1. If M<N9 then dJf is purely discontinuous.
2. If M = N and Φ is a polynomial, then άJf is the Brolin measure [1], namely,

the logarithmic equilibrium measure of the Julia set of the transformation
Φ on the complex plane.

The Sierpinski gasket on Rd with d ̂  2 and the modified Koch curve studied by
Malozemov are certainly examples of case 1. The one-dimensional interval can be
viewed as a Sierpinski gasket and the corresponding (infinite) pre-gasket is identi-
fied with Z1. This turns out to be an example of case 2. The corresponding Julia set
is a real interval on the complex plane and we recover the well known absolutely
continuous IDS of the discrete Laplacian on Z1 as the logarithmic equilibrium
measure for this Julia set.

In Sect. 3, we shall prove that the IDS J^(x) behaves like Cxds/2 as x JO, where
ds is the spectral dimension. This has been shown in Fukushima [2] for the IDS
for the nested fractal, which was easier to handle than the present pre-fractal
case because a simpler scaling property of the Dirichlet norm was available. See
Malozemov [9] for a finer tail behaviour of IDS for the discrete Laplacian in case
of the modified Koch graph.

2. Discontinuity of IDS for the Nested Pre-fractal

Let Φ be a rational function with real coefficients and M be the number of branches
of the inverse Φ~ 1. For x, yeR, x is called an nih predecessor of y if y = Φn(x). We
denote by P<π) the set of all nth predecessors of y. We let P}0) = { y}. We say that yeR
is proper for Φ if *Pjπ) = Mn, n= 1, 2, ____

For α>l, a mapping Ψ from Rd to Rd is said to be an a-similίtude if
Ψx^oL'^Ux + β, xeRd, for some unitary map U and βeRd. Given a collection
ψ = {Ψι, Ψ2, . . . , ΨN} of α-similitudes, we let

Ψ(A)=(j Ψt(A\ Ac^Rd.
i = l

There exists then a unique compact set EcRd such that Ψ(E) = E. The pair (Ψ, E)
is called a self similar fractal.

For A c Rd and integer n ̂  1, we let

A(n) = yooμ) = (J A^...iιt9 A
(Q) = A .

l^iί,...,in^N

We denote by F the set of all essential fixed points of Ψ([7]). $F^N.
Lindstr0m [7] calls a self similar fractal (Ψ, E) a nested fractal if three axioms
(axioms of connectivity, symmetry and nesting) and the open set condition are
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fulfilled and #F^2. We refer the readers to [7] for details but we note that the
nesting axiom requires

£fl . . . innEh ...jn = Ftl . . . ί.nF^ . ..;„(*!, . . , OΦOΊ, - - Jn)

which expresses the finite ramifiedness.
For a nested fractal (Ψ, E) as above, we assume without loss of generality that

OeF and Ψ1 = a~1x9 xeRd. E equals the closure in Rd of the countable set

jρ
(oo) = (J™= 0 F(fc). In this paper however, we identify the finite set F(k) with its similar

one F(k} = akF(k\ Thus, rather than the bounded set F(co), we are thinking of the
unbounded set

f(co) = Q f(k)9 (1)

fc = 0

which will be called the nested pre-fractal associated with the nested fractal E.
Denote by Nk the cardinality of the set F(k)\F. It is known that

for some constants c1? c2.
Let P^ be the transition probability of Lindstr0m random walk on F(k\ ~F(k))

absorbed at the boundary F( ~ αfcF), cf. [7]. Its generator Hk (which we may call the
discrete Laplacian) is defined by

Hku(ξ)= £ Pfη(u(η)-u(ξ)), ξeF(k}\F (2)

with the boundary condition

u = 0 on F .

Denote by

^/c= {7l,72, . - ,jNk]

the collection of eigenvalues of —Hk with the same value being repeated according
to its multiplicity and let

vfc~ ~Γ~ Σ ^v v=l im vk . (3)

The limiting probability measure v exists as we shall see in the next section. The
non-decreasing function J^(x) = v([0, x]), xeR is called the integrated density of
states (IDS) for the nested pre-practical F(co).

Let (Ψ, E) and Φ be a nested fractal and a rational function as above. We say
that (Ψ, E) admits a spectral decimation with respect to Φ if the counting measures
vfe of j/fc, fe = 1,2,. . . , can be described as

v J_ Y V r? Σ < 5 X , (4)
IV T I T ^_j ^_j J ^j Λ •) \ /

XeP(λp ^

under the assumption of the existence of the following three objects:

non-negative numbers Λ l 5 A 2 , . . . , ̂  ,
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which are distinct and proper for Φ,

non-negative integers r j 9 r], . . . , r'j9j= 1,2, . . . ,

and

a subset P[j) of P(

λ

j\ 1 <p<S ,
Ap Ap - Γ -

such that the cardinality MpJ of P(

λ

j} satisfies

for some constant c3 > 0.
We call the members of the set P[j} in the above the allowed Jih predecessors of

λp. The expression (4) means that, for each p, 1 ̂ p<Λ λp is a distinguished value
appearing in the set j/,- in each stepy but with multiplicity rj, whose allowed y' th

predecessors keep appearing in the successive sets j/j+j'J' = l,2,. . . ,with the
same multiplicity rj, and that the eigenvalues are exhausted in this way. At the end
of this section, we shall give three examples in which this spectral decimation
works.

It is convenient to rewrite the measure vk as follows:

j**-", (5)
lVkp=lj=l

where

the normalized counting measure of the set P(

λ

j} of the allowed yth predecessors
of λp.

Theorem 1. Assume that (Ψ, E) admits a spectral decimation with respect to Φ.

(i) M^N.
(ii) Suppose M<N, then for any non-negative Borel function f on R,

cl p = l

where

In particular, ocp>0for some p, 1 ̂ /?^/, and the measure v is concentrated on the
countable set 1J^=1 UΓ=ι ^^ Furthermore> if the limits

Nk r£
lim —τ = c0, lim —- = α p,l:gz?^
fc->ooΛf fc^oo Nfc

exist, then
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(iii) Suppose M = N,Φisa polynomial and P[j} = P[j\ Vp,\/j,then v equals the Brolin
measure for Φ.

Proof. First note that (5) implies the identity

Nk= £ Σ rξ-jMptj= £ £ rJM^.j (8)
p=ίj=0 P= 1 . 7 = 1

holding for all k.
(i) Suppose M>N. We see from N1 = Σ' = 1

 rιMp, 1 that at least one of rf 's, say r\ is
positive and

N. iM^i 1c3M
f c-1

N*-1"**""-1 jvfe '
which tends to infinity as fc-»oo, a contradiction.
(ii) Suppose M<N. For any ε > 0, there then exists L 0 such that for any k and
I with k>L>L0,

(9)

In fact, the left side of (9) equals

Λ t k — L \j Λ £ k — L Λ/Γi Vfc-L i M

V ^Λ/fLrJMP*-J-
p>k~J

Ci N c3

which can be made arbitrarily small for large L.
For any continuous function/ on R such that O^/ ̂  1, we get from (5) and (9),

<W>^ Σ LΣ r
^k p=l j=0

It is enough to let /c -» oo , L ->• oo , ε [ 0 in this order to get the inequality (6). The latter
assertion of (ii) can be proved similarly.
(iii) Under the stated assumption, Mpj = Nj and v [ j ) = v (

λ

j ) the normalized counting
measure of the /h predecessors of λp. Note that the" set P[j} exhausts all jth

(complex) predecessors of λp with respect to the Nth order polynomial Φ considered
as a transformation on the extended complex plane. Hence the Julia set J(c C) of
Φ in the sense of Brolin coincides with the set of all accumulation points of
(J?L l P[j} for each p (see Theorem 2.5 of [1]; λps are different from the exceptional
values in^the statement of Theorem 2.5 of [1] because, otherwise, It P[j)=ί in view
of the proof of Lemma 2.2 of [1]). In particular, J must be a subset of the real line.

Denote by v* the logarithmic equilibrium measure for the Julia set J. We call v*
the Brolin measure for Φ. On account of Theorem 16.1 of [1], the measure
vj

λ converges as j-+ao to v* for each p.



466 M. Fukushima, T. Shima

Let us put 0 = ̂  = 1 TJ. We have from (8) the bound

^>^= y IL
Cl=Nk £ΊNJ9

and the infinite sum of — ̂  is covergent. In particular

lim^ = 0. (10)
k^oo Nk

For any continuous function on £ with H/H^l, we let as

p=(v(

λ

j\fy and
0* = <v*,/>. For any ε>0, there exists L such that, for anyj^L, \aj

p— α*|<ε. We
then have by (5),

>-α*|^ Σ Σ tf-jMp.X-α*!
^k p=l 7 = 0

^ £ LZV,.MPJ + SMk p=ί 7 = 0

(10) then implies |<v,/>-α*| <ε.

Example 1 (Sierpinski gasket). Let (!P, E) be the Sierpinski gasket in RN~ l (N ̂  3).
N

Ψ consists of JV-number of 2-similitudes. Nk=— (Nk—l). Hk is given by

where Fkf ξ denotes the 2(N—ί) neighbours of ξ. As was proven by Shima [12], the
spectral decimation works with the quadratic function

Hence M = 2( < N) and the IDS of the Sierpinski pre-gasket is purely discontinuous
in accordance with Theorem 1 (ii).

[12] provides us with more explicit data:

! N+2 N

2(JV-1)' 3 N-Γ

but, as for the allowed predecessors of A3,

1 N
= Pϋ~υ

2(Λ?-1)

so that
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Further

Therefore

ΛΓ-2 ΛΓ-2
«1=0,

*2~ N2 ' ^ ΛΓ '

and according to Theorem 1 (ii)

ΛΓ-2 £ / 2 V ,„ ΛΓ-2
v=- Y _ v<

The above expression has appeared already in Fukushima-Shima [4, (6.1)].

Example 2 (modified Koch curve). In this case, N = 5: Ψ consists of 5 number of

3-similitudes. Nk = - (5k — 1). By virtue of Molozemov [8], the spectral decimation

works with

2x(3x-4)(3x-5)(x-l)
Ψ(x)=-

2x-3

so that M = 4(<5) and, according to Theorem 1 (ii), the IDS of the Laplacian on
pre-fractal associated with this modified Koch curve is purely discontinuous.
Moreover we know from [8] that

j ^2=^, A 3=-
6 ' ~3'

and
pU)=p(j) \/[ , — ΛJ n — 1 ? 3 7 = 1 21 λp Ap ' J V 1 P,J~^' F ~ 1 5 Z ' ? J ? J 1, ̂ , . . . .

This case is simpler than the preceding example in that no prohibited predecessor
of λp exists. We get by Theorem 1 (ii) that

v 1 3 °° / 4 V=— y y ί - 1 v (/ }.1 c LΛ Li \ c / vλp
10 p=ίj = 0 \D /

Example 3 (a real interval as a gasket). The interval E = [Q, 1] can be viewed as
a gasket for the 2-similitudes Φ = (^1? \l/2\ where
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Denote by α, 6, c, d, e the values of a function u at the points 0, 1, i, i, |, respective-
ly. The equation λu= —H2u now reads

2λd = 2d-a-c, 2λe = 2e-c-b, 2λc = 2c-d-e .

Solving the first two equations in d and e and substituting them into the third
equation, we get

from which we see that the spectral decimation works with

Φ(x) = 2x(2-x).

We easily see that

ΛΊ = IJ rk = l j ^fc+i^i + Φ"1^*) (disjoint sum).

Therefore the conditions of Theorem 1 (iii) are fulfilled with N = M = 2 and
v equals the Brolin measure for Φ. The Julia set of Φ is

because Φ is sent by the Mobius transform x= — -+ 1 into the polynomial z2 — z

which is known to possess the interval [ — 2, 2] as its Julia set (Theorem 12.1 of
[1]). Accordingly

(11)

Indeed the logarithmic equilibrium measure of J is characterized as a unique
probability measure μ concentrated on J such that

Uμ(x) = C q.e.xeJ, Uμ(x) ^ C VxeR2 ,

for some constant C, where Uμ(x) = JR 2log- - - dμ(y) the logarithmic potential
\χ —y\

of μ. In this way, we recover the IDS

for the discrete Laplacian Hu(k)=%u(k — l)+?u(k + l) — u(k) on Z.

3. Tail Behaviours of IDS for the Nested Pre-fractal

We denote by H'k the generator of Lindstr0m random walk on F(k} (~ F ( k ) ) reflected
at the boundary F(~akF). That is

Hίu(ξ)= Σ p$>(u(η)-u(ξ))9 ξeFM. (12)
ηeFM

Define v'k in the same way as vk. For vk and v'k, let ^Γfc(x) = vfc([0,x]), and
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Using the min-max principle in the same way as [3], we can easily get the
following inequalities: Let Nk be the cardinality of the set F(k\

(13)

(14)

(15)

By iterating (14) and (15), we are then led to,

Thus < —£ Λ^fc(x) > ( resp. < —^ Λ^(x) > I increases (resp. decreases) as fcf. Noting

that Nk = (Nk-ί)N1/(N-l), Nk = Nk + Nf

0,

^(fc)£ lim ^,(x)^ lim
N! N k^a> k^ao N! N

Furthermore by (13),

and the above limits must coincide. The right continuous modification of the
limiting function is the IDS ^Γ(x). Indeed, at any continuous point,

from which follows limx-,00Λ
r(x)= 1. We summarize those facts as follows:

Lemma 1. vk and v'k converge as fe-> oo to a same probability measure v. Furthermore,
we have for ^V(x) = v([09 x]\

^W ^ί(x) (16)

for all L

Let c be the probability for the Lindstr0m random walk on F(ί} of starting at
a boundary point and returning to it before reaching other boundary points, and
let μk be the discrete measure on F(k) such as

Clearly μk(F(k)) = N'0N
k. We then define the constant C as follows:

C = inf{(l— c)~k( — H'kf9f)k'9f is any real valued function on F(k}

such as max{|/(x)-/(j;)|2;x,3;eF(k)}-l, k= 1,2, . . . . } ,

where ( , )k stands for the inner product weighted by μk. It was shown in [6] that
C is finite and strictly positive.
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Lemma 2. Let λk be the first eigenvalue of —Hk and λ'k the second eigenvalue of
-H'k. Then,

and there exist k0 and a constant C > 0 such that

Cf for all k^kQ . (18)

Proof. Let Lk be the orthogonal complement to the eigenspace of the first eigen-
value of — Hk. It is then easy to see that Lk is the totality of the real valued function
on F(k) such that \F(k)fdμk = ΰ. For any/eL f c, it hence holds that

(/>/)* = ί \Wni ί (f(*)-f(y))μk(dy)}2 μk(dx)
F(k) ^£\QjM F(k) j

^N'0N
k max {\f(χ)-f(y)\2

X,yeF™

In view of the definition of C,

;;/ei,
\L~C) (. \J>J )k

from which (17) follows.
Consider the nested fractal E corresponding to the nested pre-fractal F°°. Let

μ be the log N/log α-dimensional normalized Hausdorff measured on E. We denote
by (<?, &($)) the Dirichlet form on L2 (E; dμ) defined in [6], where it was shown that
2(<£) is a subspace of the space of continuous functions on E, and that
{(l-cΓk(-H'kf\Fm9f\F<»)k} increases as fc|oo to S ( f J ) for all/e^(<f). We thus
get that, for a fixed fe2(<$) vanishing at the boundary and not identically zero,

Since μk/N'0N
k^>μ, N~fe(/|Fw,/|Fw)fc > c0 > 0 for any fe greater than some /c0 and we

arrive at (18).

Theorem 2.

Λ r - ,^M/r ^W0<lιm inf . ... <lιm sup , „ < oo .
dj2 ~ ds/2

For any xel 0, 1 - 1 C' 1, let k>k0 be the positive integer such as

k

C'.
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We then have ^Γk(x)^ ί/Nk by (18). By virtue of the inequality (16), we get that

Since the spectral dimension ds of the nested fractal E is equal to 21ogN/
(logΛΓ — log(l — c)) (see [2, 7]), we are led to

Similarly we get the following upper estimate from (17): that is, for xe
l-cx
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