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Abstract: The relations between the Faddeev functions and the functions of classical
scattering theory are found in the complex domain at fixed energy. For the three-
dimensional case (without assumption of "smallness" of the potential) it is proved
that the exponentially decreasing potential is uniquely determined by its scattering
amplitude at fixed energy.

Introduction

We consider the three-dimensional Schrδdinger equation at fixed positive energy with
a real exponentially decreasing potential,

= Eψ, £ G E , E > 0 . (0.1)

The potential v(x) is called exponentially decreasing if

υ(x) G L°°(R3) and 3α > 0, 3β > 0 such that υ(x)\ < βe-a\x\ . (0.2)

We consider the Faddeev functions G(x,fc), ψ(x,k), h(k,i),

(0.3)

G(x-y,k}v(y)ψ(y,k)dy, (0.4)

/ 1 V /*
fc,€) - ί — j / e~lixψ(x, k}v(x)dx, (0.5)

where fc, ^ G C3, I2 = k2 = E, Iml = Imfe φ 0.
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For the potential v(x) with the property (0.2) we weaken the condition Iml =
Imk φ 0 in the domain of definition of the function h(k,i) to | Imf — Imfc| < α,
I m f c ^ O .

We consider functions G+(x, \/Ϊ£), ^+(x, &), f(k,£) from the classical scattering
theory

G+ (£,
4π

, k) = eikx + G+(x - y, VE)v(y)ψ+(y, k)dy ,

(0.6)

(0.7)

(0.8)

where M e M3, ^2 = k2 = E.
Let be Mρ = {m | m 6 C3 , m2 = £ , | Imm|2 < ρ2}, ρ > 0. For the potential

with the property (0.2) we weaken the conditions k e 1R3, ί e R3, 12 = k2 = E in the
domains of definition of the functions ^+(x, k) and /(fc,ί) to k G Mα/2» ^ ^ Ma/2.
It is well known in this case that /(fc, £) is a holomorphic function on Mα/2 x Mα/2.

In this paper (Proposition 1) we have found the relation between the function
G(x,k) and the function G+(x,^/~E) in the form of the concrete realization of
the fundamental Euler-Ehrenpreis principle and as a generalization of the Faddeev
representation (1.16). (We reproduce in the introduction Propositions 1, 2, 3 and
Theorem 1 in the variant B.)

Proposition IB.

(0.9)

m<ER(k)

where

k EC 3, k2 = E > 0, Ίmk ^ 0; R(k) = R^k) U R2(k),

Rι(k) = {m m e C3,m2 = £7, Imm = 0, mlmfc > 0},

R2(k) = <m m eC 3 ,m 2 =E, 0 < |Imm| <

Imm Imfc Ί

|Imm| = | I m f c | J '

s(k,m)=πi for m e R^k),

s(k,m) — π for m G Λ2(fc);

σ(dπι) is a surface element on R(k).

Further, using (0.9) we have found the relation between functions ψ, h and
as a generalization of the Faddeev equations (1.17), (1.18).
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Proposition 2B. Suppose that the potential v(x) has the property (0.2). Then

φ(x, k) = ψ+(x, fc) + / /ι(fc, m)s(fe, ra)(|m|)~ V+0, m)σ(dm) , (0.10)

w/zere A:2 = E > 0, 0 < | Imfc| < a/2.

Theorem IB. Suppose that the potential v(x) has the property (0.2). Then the
following equation is valid:

h(k,t) = /(M) + / h(k,m)s(k,m)(\m\Γ1f(rrι,ί)σ(drn) , (0.11)

m£R(k)

where k2 = £ > 0, 0 < | I m f c j < α/2, £ € fl(fc)

Further, we have found the relation between the modified Fredholm determinants
Δ(k), Δ+(VE) of Eqs. (0.4), (0.7) and the Fredholm determinant Δ(k) of Eq. (0.11)
as a generalization of the Faddeev equation (1.21).

Proposition 3B. Suppose that the potential v(x) has the property (0.2). Then

A(k) = ϋ(o) / s(fc,m)(|ra|) lσ(dm) (0.12)

where k2 = E > 0, 0 < | Im k\ < a/2,

ϋ(p} = \ 7Γ

Theorem 1 and Propositions 1-4 are given in Sect. 2.
The results mentioned above were obtained for the purpose of their further

application to solving the inverse scattering problem at fixed energy. The statement
of this problem consists of the following.

Suppose that the potential υ(x) is not known, but we know corresponding to
this potential the scattering amplitude /(fc,ί) at fixed energy E > 0, i.e. under the
condition k,ί e M3, k2 = I2 = E > 0. The determination of the potential v(x)
through the function f ( k , l ) at fixed energy is called the inverse scattering problem
at fixed energy.

Theorem 2 (announced in [16]). Let a real-valued potential v(x) have the property
(0.2). Then the scattering amplitude f for Eq. (0.1) at fixed positive energy E uniquely
determines v(p) for any p £ M3. (There is no assumption about smallness of norm of
the potential v(x) in Theorem 2.)

Remarks. I. It is shown in [14] (Novikov, 1986) that an exponentially decreasing
potential for the two-dimensional Schrodinger equation is uniquely reconstructed
(under the assumption of smallness of norm of the potential) by scattering amplitude
at fixed energy (see, in addition, [17]). A similar result was obtained for the three-
dimensional case in [15a], (G.M. Henkin and R.G. Novikov, 1986) (see, in addition,
[15b]). The corresponding reconstruction procedures from [14, 15, 17] include an
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analytical extension of a real analytical function. (This real analytical function admits
certain estimates in the complex domain.)

In [16] for the potential with support in the fixed bounded domain D C Mn

the reconstruction procedures from [14] and [15] were fundamentally changed. In
particular, for the three-dimensional case the uniqueness of the reconstruction of such
a potential by the scattering amplitude at fixed energy was proved without assumptions
about smallness of norm of the potential. In addition, the reconstruction procedures
both for the two-dimensional and for the three-dimensional case are reduced to solving
linear integral equations of the different types.
II. The basic results of [16] were presented in the survey [15b] (see in [15b], Sect. 5.2
and Note at the Proofreading) which had appeared in the May-June (1987) number
of Uspekhi Mat. Nauk. The basis of our paper [16] (submitted June 10, 1987) is
a constructive solution of the problem of the determination of the potential for the
multidimensional Schrδdinger equation through the Wigner operator (see [7]) at fixed
energy. Actually, the same constructive solution to this problem was given later by
A.I. Nachmann in [12], (submitted November 2, 1987).

The problem of the determination of the potential for the multidimensional
Schrodinger equation by the Wigner operator at fixed energy can be called the GeΓfand
problem at fixed energy or the Calderόn problem for the Schrodinger equation or an
inverse boundary value problem and so on.

In the class of piecewise real analytical functions the uniqueness theorem in such
a problem was first given in [22].

In the three-dimensional case in the class of infinitely differentiable functions the
global theorem of uniqueness in such a problem was first given in [20].

In the three-dimensional case in the class of bounded measurable functions such
a result was given almost simultaneously in [16] and [10].

A suitable historical survey and the survey of results on this problem is given in
[16, 21].
III. The inverse scattering problem at fixed energy is well investigated for the three-
dimensional Schrodinger equation with a spherically symmetric potential (see [2, 13]).
But we have not discovered, however, the "spherically symmetric" particular case of
Theorem 2 in the papers of this series.

Theorem 1, Propositions 3, 4, results of Sect. 3 and results of [15] give, in
particular, more constructive proofs of Theorem 2 than the one sketched in [16].

For proving Theorem 2 we use in Sect. 3 the secondary extensions of the scattering
data to the complex domain. Earlier the idea of the secondary extension of scattering
data to the complex domain was used in [14-17].

The main new ideas of the present paper appeared for the first time in the recent
Note of the author [18].

1. Initial Results

We consider the three-dimensional Schrodinger equation with an exponentially
decreasing potential

-Δψ + υ(x)ψ = Eψ, xeE3. (1.1)

The real-valued function v(x) is called exponentially decreasing potential if v(x) £
L°°(R3) and 3a > 0, 3β > 0 such that

v(x)\ </3e-α | x |. (1.2)
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We consider the Faddeev functions G(x,k), ψ(x,k)9 h(k,£) Δ(k)9 G7(x, fc),

ψΊ(x, fc), /ι7(fc,ί), ΔΊ(k], ΔΊ(k). These functions are defined by formulas and Eqs.
(1.3H1.5), (1.8), (1.9), (1.20)

(L3)

ψ(x,k) = eίkx+ I G(x-y,k)υ(y)ψ(y,k')dy, (1.4)
J

where x E M3, fc E C3, Im k ̂  0,

/ 1 \ ^ Γ

p ^ l i l t T l(i\f)UΓΓ]/~l'~Γ I 1 ^i^ (jJ \.Jϋ ^ Γ\j j U \Jϋ i (JLJU ^ \-L.UI

where fe,ί e C3, Imfc = Imi ^ 0, fc2 = £2. Under the condition (1.2) the restriction
Im fc = Im ί ̂  0 in the domain of the definition of the function h admits weakening
to \ Im k — Im£| < α, Imfc ^ 0. Here G(x, k) is the Green function of the operator
Δ -h A:2, ψ(x,k) is a solution of Eq. (1.1) with E1 = k2, h(k,£) is a generalized
scattering amplitude.

It is convenient to transform Eq. (1.4) to the form (1.6) and further to the form
(1-7),

/ g(x-y,k)v(y)μ(y,k)dy, (1.6)

yGM3

where ψ(x, k) = μ(x, k)elkx, Im k ̂  0;

(/-β(fcMx,A;) = Vrφ)ϊ, (1.7)

where / is the identity operator, B(k) is an integral operator with the kernel

B(x, y , k) = VΊΦM* - y, fc)«(y)(|w(ι/)l)-1/2 ,
φ(x, k) = ^\v(x)\μ(x, fc) , Im fc ̂  0 .

Lemma 1 (see [6, 1, 15]). x\g(x, k) is a bounded continuous function on (R3 \ 0) x

Under the condition (1.2) due to Lemma 1 the following statement is valid: (1.6) is
the linear integral Fredholm equation of the second type with respect to μ in L°°

and (1.7) is the linear integral Fredholm equation of the second type with respect to
φ in L2(IR3). (It holds under conditions much weaker than (1.2) but we do not want
to be distracted from the case of exponentially decreasing potential in this article).

Remark 1. As \x — > oo the functions G(x, k) and ψ ( χ , k) increase exponentially in
the direction forming acute angle with the vector — Im k (and decrease exponentially
in the direction forming acute angle with the vector Im k). In the paper [4] ψ(x,k)
were called the exponentially increasing solutions of the Schrodinger equation.
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The modified Fredholm determinant Δ(k) of the operator / — B(k), Imk ^ 0 is
defined by the formula

In Δ(k) = Tr(ln(7 - B(k)) + B(k)) (1.8)

(see [8] for an informal sense of such a definition).
There exist the following limits:

GΊ(x, k) = G(x, k + ^07), ψΊ(x, k) = ψ(x, k

hΊ(k,£) = h(k + iOΊ,t + iθ7), ΔΊ(k) = Δ(k +

where fe, £, 7 E E3, A;2 = f2, 72 = 1.
In addition

(1.11)

(1.12)

Z\7(A:) is the modified Fredholm determinant of the operator I - BΊ(k], where BΊ(k)
is an integral operator with the kernel

BΊ(x, 2/; Λ) - ̂ (x)\GΊ(x - y, k)υ(y)(\v(y)\

Besides,

G+xk = G x f c + ^ ^ = z , f c ) ,
( l.lo )

where k, I e K3.
Here /(fc, £) (fc2 = £2 = £) is a scattering amplitude of the Schrδdinger equation

(1-1),

, fc) is a solution of the equation

ι eiVE\x\

G+(x,k) = : , VE = \/P > o ,v J 4π i- '

(1.15)
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Δ+(k) is the modified Fredholm determinant of Eq. (1.15). The following equations
[5] (Faddeev, 1966) are valid:

(1.16)

, (1.17)

J hΊ(k,ξ}θ((ξ-k)Ί}δ(e-k2}f(ξ,t)dξ, (1.18)

where

/
φ(m)δ(m2 — k2)dm — —— I φ(m)σ(dm) ,

2 |A) | J

0[ί] is the Heaviside function.
It is supposed in Eqs. (1.17) and (1.18) that k and 7 are fixed and Δ (k) Φ 0.
We consider (1.18) as an equation for definition of the function hΊ through the

function /. We can rewrite this equation in the form

), (1.19)

where P7(fc) is a linear integral operator with the kernel

7Γ?

PΊ(l, m k) = —θ\(m - fe)7]/(m, ΐ) , m\ = |£| = \k\ ,

acting in the space of functions on the sphere of the radius \k\. The Fredholm
determinant Δ (k) of the operator / — PΊ(k) is defined by the formula

(1.20)

The determinants Δ (k) and Δ (k) are connected by the equation ([6])

Δ ( k ) = Δ+(k)ΔJk) exp [ΰ(0)2πi / θ[(m - k)~/]δ(k2 - m2)dm\ , (1.21)
I J \

mGR3

where

/ i \ 3 r
v(p) = — / elpxv(x)dx, p e M3. (1.22)

\2π/ J

In view of unique solvability of the integral Lippman-Swinger equation for the
real-valued potential, Δ+(k) φ 0, for k2 > 0. Thus [6]

Δ (k) = 0 iff Δ (k) = 0, where | fc | > 0. (1.23)
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In the complex domain the functions G(x, fc), μ(x,&), h(k,ί), A(k) satisfy d-
equations (1.24)-(1.27) and have the properties (1.28)-(1.31) (see [15]).

pikx

/

.

Jβ >

Q [ ' P i

:, (1-26)

(1.27)
dkj

where H(k, p) = /ι(fc, fe - p), p 6 M3, p2 = 2fcp, Im fc ̂  0,

Equations (1.25), (1 26) are considered outside the set of zeros of the determinant
Δ(k)9

G(x,k + ξ} = G(x,k], where ξ e M3 , £2 + 2/c£ = 0, I m Λ ^ O . (1.28)

Let be V = {k \ k e C3 A:2 = E}9 then for any fixed x,p e M3 the following
formulas are valid:

μ(x,A;)->l for k G V , | f c | - » o o ; (1.29)

H(k,p)-*v(p) for fcGFp, | f c | - * o o , (1.30)

where ΰ(p) is defined by (1.22), Vp - {A; | k e F , p2 - 2/φ};

^ l for fc G F , | f c | - * o o . (1.31)

Historical Remarks. "The part" of 9-equations (1.24)-(1.27) (together with bounded-
ness conditions at the infinity) was first discovered by L.D. Faddeev as the following
properties of functions g, μ, h, Δ, GΊ, ψΊ, hΊ, ΔΊ.

I) Let fixed x, 7, k±, l± G R3 be such that 72 = 1, 7^j_ = 7^ = 0, fc^. = ^1- Tnen

with respect to s for s G C, Ims > 0, g(x, 57 -f fcj_), μ(x, 57 -f kA_}A(s^ -4- fcj_),
4- &_L,S7 + ίj_)Z\(s7 -f k±} are holomoφhic functions bounded at infinity;
+ fcj_) is a holomoφhic function tending to 1 at infinity.

II) Let be 7 G R3, hΊ = 1; r/ e R3, \η\ = 1, 7/7 = 0;
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Let be ω (k,ξ) = 2πiη(ξ - k)δ(ξ2 - k2)δ((ξ - k)Ί). Then

, fc) - ~ ωΊ>η(k, ξ)e^dξ , (1.32)

(1.34)

- -Λ/fc) (hΊ&$-v(0))ωΊtη(k,ζ)dξ. (1.35)

Equations (1.33), (1.34) are considered outside the set of zeros of the determinant
Λ/fc).

<9-equations (1.24), (1.25), (1.26) were first obtained in [1]. The multidimensional
<9-equations of the type (1.24)-(1.26) were first discovered in [11] and [1]. (In [15a]
^-equations (1.24)-(1.26) were obtained under influence of [11] but independently of

mx
9-equation (1.27) was first obtained in [15] (and no 9-equation of that type was

known before).
The formula (1.29) (for £7 = 0) was first noted and used in [1].
The formula (1.30) was first found in [15a]. It is important in particular, in this

formula that \/p G R3 Vp is not empty and is unbounded. (For the two-dimensional
case only VQ has such a property.) First, the formula of the type (1.30) was given
(formally) in [11] for the equation

Γ\

— + Δ-υ(t,

The proof of the formulas (1.29), (1.30) and of the formula of the type (1.31) for

v(x) G ci4)(M3) is given in [15].
The formulas (1.29)-(1.31) are also valid for the case υ ( x ) ( l + \x\)3+ε G L°°(R3),

where ε > 0 is fixed. It had been already paid attention to this fact (see [16]). These
formulas are the consequences of the uniform estimates for the Green function g ( x , k )
(see Sect. 8).

2. The Extension of the Faddeev Equations (1.16), (1.17), (1.18), (1.21)
to the Complex Domain A

Consider the two-dimensional complex manifold

Mρ = { m | m G C 3 , m2 = E, |Imm| 2 < ρ2}, £ > 0 , £» 0 . (2.1)

Lemma 2. 9Mρ « SO(S) and diffeomorphism is given by the formula

[(£ + £2)-1 / 2Rera, ρ"llmm, ρ~l(E + ^2)~1/2 Rem x Imm] = g ,

where m G dM , g G SO (3), Rera x Imm is a vector product.



578 R.G. Novikov

Proposition 1A.

r

I
(here 0 < ρ, 0 < r, G(x,k) is defined by (1.3), σ(dπί) is an element of volume on
dMr), where
a) if Q < r then χ(k,m) is a continuously differentiate function on (the direct product)
dMQ x dMr.

b) ifρ — r then χ(k, πί) is a continuously differentiate function on (dMQ x dMρ}\SQ,
where

Sρ = {(fc,m) (fc,ra) G <9Mρ x cλM^ , Imfc = Imm}

and at fixed k χ(k,nί) G Ll(dMQ).
c) if @ > r then for fixed k the second term in the right-hand side of (2.2) has the
sense of the expression (2π)~3χk(eτmx), where e'ιrnx is a function on dMr. χk is a

linear bounded functional on the space 0(Mρ)|aMr (holomorphίc functions in M ρ

restricted to dMr) such that

Xk(f} = J X(k,rn)φm(f}σ(dm) , where φm(f) = /(m) .

For Q < r the function χ(fc,m) is defined up to a function χf(k,m) (with the
properties a, b) such that

/ χ'(k, m)f(m)σ(dm) = 0 , k G <9M

for any function /(m) admitting an extension to the holomorphic function in Mr.

x~x + x'
The method of finding a concrete function x is given in Sect. 4.
It is possible to consider this method and Proposition 1 as a constructive version

of the Ehrenpreis fundamental principle [3] in the concrete situation.

Proposition 2A. Suppose, that the potential v(x) has the property (1.2) then

I
J

(2.3)

where 0 < ρ < a/2, 0 < r < a/2.

Theorem 1A. Suppose, that the potential v(x) has the property (1.2). Then the
following equation is valid:

h(k, I) = /(fe, ί) + I h(k, m)χ(k, m)/(m, t)σ(dm), (2.4)

where 0 < | Im fc| < a/2, 0 < r < a/2.

In (2.3) and (2.4) the function ψ(x,k) is the exponentially increasing Fad-
deev solution of (1.1); the function ^+(x,/c) is the solution of (1.15) such that
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•^\v(x)\ψ+(x,k) G L2(R3); h(k,t) is defined on Ma/2 x Ma/2 by (1.5); χ is a

function from Proposition 1A; f ( k , l ) is defined on Mα/2 x Ms /2 as me holomor-

phic extension from S2 x 52 of the scattering amplitude (here S2 — {m \ m £
C3, m2 = E, Imra = 0}).

It is supposed in Eqs. (2.3) and (2.4) that k is fixed and Δ(k) ^ 0 [where Z\(fc)
is defined by (1.8)].

We shall consider (2.4) as an equation for determining the function h through the
function /. This equation can be rewritten in the form

(/-p(fc,r))Λ(M) = /(M), eedMr, (2.5)
where 0 < | Im k\ < a/2, 0 < r < α/2. P(&, r) is a linear integral operator with the
kernel

P(l, m; fc, r) - χ(fc, m)/(m, ί) , ^ m <Ξ 3Mr ,

acting in the space of functions on dMr.
For | I m f c | < r, P(£, ra;fc,r) is a continuously differentiable function on

<9Mr x <9Mr, for | Im k\ —r P(k, r) is a linear compact operator in C(dMr).

The Fredholm determinant Δ(k) of the operator / - P(fe,r) is defined by the
formula

lnZ(fe)=Trln(/-P(A;,r)) , where 0 < I m / c | < r . (2.6)

Lemma 3. Δ(k) defined by (2.6) does not depend on r.

Proposition 3A. Suppose, that the potential v(x) has the property (1.2) then

A(k) = Δ+(k)Δ(k) exp l"υ(0) / χ(fe, m)σ(dm)l , (2.7)
v/L ™e<9Mr

 J

w/z^re 0 < I Im k\ < r < α/2, Δ+(k) depends only on E = k2 (and it is the same as
in (1.21).

Proposition 4A. Let f be a scattering amplitude of the potential v(x] with the property
(1.2); 0 < I Im fc| < r; k is fixed; Δ(k) is defined by the formula (1.8). Then Eq. (2.4) is
uniquely solvable with respect to h in C(dMr) iff Δ(k) ^ 0. (For 0 < r < ρ = \ Im k\
(2.4) is uniquely solvable in the space 0(Mρ)|aMr defined in Proposition 1A iff

Δ(k) £ 0).

The Extension of the Faddeev Equations (1.16), (1 17), (1.18), (1.21)
to the Complex Domain B

Let k G C3, k2 = E > 0, Imfc ^ 0. Consider in C3 the two-dimensional real
manifold R(k) depending on k:

R(k) = Λ 1 ( f c ) u A 2 ( J b ) , (2.8)

where

R1(k) = {m m e C3 , m2 =£?, lmm = 0,mlmk > 0} , (2.9)

| m e C 3 , m2 = E, 0< |Imm| <

Imm Imfc=

| Imm| | I m f c | J '
V ' ;
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Let el = Refc/ |Refc | , e2 = Imfc/ | ImA; | , e3 = Re& x Imfc/( |Refc | | Im&|). Let D
be a disk of the radius \fE + | Im fc| with the polar coordinates r and φ.

Lemma 4. R(k) « D, and the homeomorphίsm is given by the formulas (2. 11), (2. 12)

Re m — Y E — (\fE — r)2 (cos φel -f sin φe%) -f (\/E — r)e2 , f 9 i Ή

Imra = 0

/# r 0 < r <

Re m = y E + (r - Λ/E)2 (cos φel + sin <pe3) , ^ _

Imra = (r — x/E)e2

I Im fc|.

Let σ(dm) be a surface element on Λ(fc). Then

σ(dπι) — ^fEdτάφ for m G -R^

σ(dm) = JE + 2(r - ^/E)2 dr dφ for m e R2(k).

In addition, m = \/E for m e R^k), \m\ = y E -f- 2(r - \/E)2 for m G ̂ (fc).

Let s(k,m) = πί for m G R^k), s(k,m) = π for m G R2(k).

Proposition IB.

_ eή/E|z| ι /«
G(x, fe) = + —-3 / ^fc.mJdmD-^^σίdm) , (2.13)

<t7Γ|X| V^71"/ J

where Im fc ̂  0.

Proposition 2B. Suppose, that the potential v(x] has the property (1.2),

, ik) + / h(fc, m)s(fc, m)(|ra|)-V+(z> m)σ(dm) , (2.14), fc) =

0 < |Im/c | < α/2.

Theorem IB. Suppose, that the potential v(x) has the property (1.2). TTien the
following equation is valid

/ (2.15)

0 < I Im k\ < α/2, ί G

The functions G, ,̂ V^+, ft, / in (2.13), (2.14), (2.15) are the same as in (2.2),
(2.3), (2.4). It is supposed in Eqs. (2.14) and (2.15) that k is fixed and Δ(k) ^ 0
(where Δ(k) is defined by (1.8)). We shall consider (2.15) as the equation for the
determination of the function h through the function /. This equation can be rewritten
in the following form:
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where P(k) is a linear integral operator with the kernel

\k} = s(k,m)(\m\)-lf(m,£}, l,mE R(k) ,

acting in the space of functions on R(k).
The Fredholm determinant Δ(k) of the operator I — P(k) is defined by the formula

InZ(fc) - Trln(J - P(fc)) , (2.16)

where Im k / 0.

Lemma 5. Δ(k) defined by (2.16) coincides with Δ(k) defined by (2.6).

Proposition 3B. Suppose, that the potential v(x) has the property (1.2), then

s(k,m)(\m\)-lσ(dm (2.17)

where 0 < | Imfc| < α/2; Z\+(/c) depends only on E = k2 and it is the same as in
(1.21).

Proposition 4B. Let f be a scattering amplitude of the real-valued potential v(x) with
the property (1.2); 0 < | Im fe| < a/2; let Δ(k) be defined by the formula (1.8). Then
Eq. (2.15) is uniquely solvable with respect to h in C(R(k}) iff Δ(k) ^ 0.

Theorem 1 and Propositions 3, 4 bring to the following scheme of the reconstruc-
tion of the (three-dimensional) potential decreasing more rapidly than any exponent
through its scattering amplitude at fixed energy.

I II III
/(M) - > MM) - > « ( P )

analytical fc,£ec3 (2 4) or (2.15) fc,£ec3 (1.30) or
extension k2=ι2=E k2=ι2=E other methods

from [15]

3. The Double Extension to the Complex Domain
and the Global Uniqueness Theorem

Theorem 2. Let the real-valued potential v(x) have the property (1.2). Then the
scattering amplitude f for Eq. (1.1) at fixed positive energy E uniquely determines
v(p) for any p E M3.

(There is no assumption about smallness of norm of the potential υ(x) in
Theorem 2.)

The result of Theorem 2 remains valid if we replace the condition for the potential
to be real- valued by the condition Z\+ ^ 0 at fixed E. Here Δ+ is the Fredholm
modified determinant of Eq. (1.15).

It is sufficient to prove the result of Theorem 2 for all p such that p2 < 4£λ Besides,
it is sufficient to carry out the proof for the case p — (0, 0, r), where 0 < r < 2\/ΐλ

Consider a complex curve in C3, k2 = E, p2 = 2kp, k <E C3. Introduce on this
curve coordinate λ,

where Eτ =E- -. (3.1)
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Let, further, |λ| > 1. Consider the functions g(x,λ,λ) = g(x,k(X)), Z\(λ,λ) =
Z\(A:,(λ)), ft(λ,_λ) = ft(fc(λ),^(λ)), where ^(λ) = k(λ] -p and fe(λ,λ) =
Zi(λ, λ) x /ι(λ, λ). At fixed x the function g(x, λ, ζ) is a single- valued holomorphic
function in the domain

| λ | > l , | C | > 1 , Re(λC)>0. (3.2)

Besides,

!<?(*, λ,C) - 0(*,λ,λ)| < C\ζ - λ| exp(D|C - λ||x|) , (3.3)

where C and D are constants depending on E. As a consequence, for the potential
with the property (1.2), Δ(\, ζ) and ft,(λ, C) are holomorphic functions in the domain

| λ | > l , | C | > 1 , Re(λC)>0, |ξ-λ|<^. (3.4)

On the other hand, Z\(λ, λ) -> 1 for |λ| -> oo,

ft(λ, λ) -> v(p) for |λ| -» oo . (3.5)

If

0 < |λ| - 1< — %= (3.6)- ' ' }

then I Im fe(λ)| < a/2. Thus, under the condition (3.6) the equation (2.4) for k = fc(λ)
holds. If, in addition, Z\(λ, λ) 7^ 0 then this equation is uniquely solvable and
the function /ι(&(λ),f), |Im4 = |Imfe(λ) | is uniquely defined by the scattering
amplitude at fixed energy.

Thus, the scattering amplitude at fixed energy determines uniquely the function
/ι(λ, λ) for all λ in the ring (3.6), where Δ(X, λ) ^ 0.

Note, that a set of such λ is open and everywhere dense in this ring.
In order to complete the proof of Theorem 2 it remains to note that the meromorphic

function /ι(λ,λ) is uniquely extended from such a set (and, in general, from the
neighborhood of any point λ0 (where Z\(λ0,λ0) Φ 0) in this ring) to all domain
3.4. Taking into account (3.5) we obtain that the scattering amplitude at fixed energy
uniquely determines v(p).

4. The Proof of Proposition 1

We shall use the following results:

1) The initial formula (1.16) will be necessary.

2) Let E be a fixed real number, then (see [15])

dG

> ; (4.1)
-i v- , , , , τ j (42)
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where

Re k x Im k
2 ,

π

^x^k) — I (cosφ — l)exp(iη(k,φ)x)dφ,

— π

π

72(x,/c) — / (sin (/?) exp(^?7(fc, (/?)#)(&/?,

— π

/ \ T^ 7 Re /c x Im fc
77(fc ? φ) = cos (/? Re k -f- sin y? — — — — -- h 1 1m /c

, Λ Λ N(4.2a)

(4.2b)

I im /c j

-f

-16τr2 |Im/e|

/ . \
(4.2c)

(4.3)

3) Let β(C) be a real smooth function on Cn; D = {ζ \ ζ G Cn, R(ζ) < 0} be a
convex domain; s ( ζ ) be a holomoφhic function on Cn; V = {ζ ζ G Cn, s ( ζ ) —
0 , Λ(C) < 0} be an intersection of the convex domain with the hypersurface; F(ζ) be
a holomorphic function on V. Then the following formula of the Cauchy-Fantappie-
Leray type is valid (see [9, 19]):

n-2

av
(4.4)

where

- s(ζ) = - ry) ,

We shall use formula (4.4) for the case V = Mρ. If Mρ is defined by (2.1) then
(4.4) takes the form

" C' ] . (4.5)

The proof of Proposition 1A is based on the following scheme of calculation of
the function χ ( k f , ζ): Let k' be a fixed point in dMQ. Then

where

Q

/ dG(x,

+o

I Imfc'I '

(4.6)

,
(4.7)
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The following formulas are valid:

(4.8)
<±Vl p \*H )~ J

?7eM3

where y — Imk'/\ ImΛ/| ;

+0 +0

7r ρ

= ̂  Re / /
-7Γ 0

7Γ ρ

= 8^2 / / exP(^(r)>^)x)drc^, (4.9)
-π 0

where eιηx in (4.8), (4.9) admits such a representation

rn(η,ζ)σ(dζ)

- ' ( }

σ(dζ} is an element of the volume on <9Mr, 771(77, 0 is a linear function of 77 such
that

idet[η + ReC,ImC, ^C](C3^Cι Λ dζ2 + Cι^C2 A ^C3

(4.11)

Substituting (4.8), (4.9), (4.10) in (4.6) we obtain (2.2) together with the following
formula for χ(k',ζ):

;_ y

-π 0

where kf e dMQ, ζ e dMr, 0 < ρ < r; ??(&, φ\ fe(r), 771(77, C) are defined by (4.2c),

(4.7), (4.11). ((C-C)(C~^))~2 is a continuously differentiable function on dMr x MQ

for ρ < r. It leads to the continuous differentiability of χ(kf', ζ") on 9M^ x 9Mr for
ρ < r.

For the case ρ = r χ(k',ζ) is a continuously differentiable function on
(<9M^ x dMρ) \ 5 ,̂ where 5^ - {(&', C) (^x, C) £ dM^ x 9Mρ , Imfe' =

and at fixed A/ χ(A:7,C) € Ll(dMρ).
The result of Proposition IB follows from (4.6), (4.8), (4.9).



Inverse Scattering Problem 585

5. The Proof of Proposition 2 and of Theorem 1

Suppose that Proposition 2A is proved. Then the proof of Theorem 1A consists of
the following. We multiply the right-hand side and the left-hand side of (2.3) by
(2π)~3e~z£xv(x) and integrate it with respect to x. As a result we obtain (2.4).

The proof of Proposition 2A, using (2.2), is carried out according to the same
scheme that the proof of (1.18), using (1.16), in [5, 6].

We substitute in (1.4) instead of G its representation (2.2). Then (1.4) takes the
form

1 r f ( _ \
ψ(x, k) = eικx + -—-7Γ / / eιrn(x y)x(k, m}

(2π)d J J ^

/

eiVE\x-y\
—— v(y)ψ(y, k)dy , (5.1)
—4τr|£ — y\

where k2 = E, ^fE > 0. In addition, the two first terms in the right-hand side of
(5.1) can be rewritten in the form

/ Q+(k,m)eirnxσ(dm),
J

where
Q (k, m) = δ(k — m) -h χ(fc, m)h(k, m)

Thus,

iVE\x-y\

Ψ
/

r i E \ x ~ y \
Q+(k,m)eιmxσ(dm)+ J χ _ v(y)ψ(y, k)dy . (5.2)

medMr yGR3

Comparing Eq. (5.2) for ^(x, k) and Eq. (1.15) for ψ+(x, k} we obtain

ψ(x,k)= I QJr(k,m)ψ+(x,m)σ(dm). (5.3)

The proof of Proposition 2B and of Theorem IB is carried out in a similar way.
In proving Proposition 2B we use (2.13) instead of (2.2).

6. The Proof of Proposition 3.

Proof of Lemma 3. Let α be a fixed positive number such that 0 < | Imfc| = ρ < a.
Let f(m,l] be a holomorphic function on Ma x Ma. We shall prove that Δ(k)
defined by (2.6) does not depend on r, where ρ < r < a. We shall use the following
equality

/ χ(k,rn)F(m)σ(dm) = I χ(k,m)F(m)σ(dm) (6.1)

|Imra|=rι |Imm|=r2

for any F(m) from 0(Mα), where ρ < r1? r2 < α.
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If F(m) = eίrnx then (6.1) is a consequence of (2.2). In the general case it is
necessary to take into account the additional fact that any function from 0(Mα)
admits an approximation by a linear combination of eιrnx ', x E R3.

Let /(m, ί) be a fixed holomoφhic function on Mα x Mα. Then Zi(/c, λ) defined
by (2.6) for fx(m,£) = λ/(ra,f) is a holomoφhic function of λ.

Using this property of A (and standard arguments) it is sufficient to carry out the
proof of Lemma 3 under the condition that ||/||c(<9MαxdMα) *s sufficiently small for

the convergence of the series - ^ — . ' to ln(J — P(fe, r)).
j=ι .7

Now it is sufficient to prove that trPi(k,r) does not depend on r

tτPj(k,r) = I . . . j χ(k,mj)f(mj,mj_l) . . .

x σ(dml)...σ(dmj). (6.2)

Applying (6.1) to (6.2) with respect to each raz, i = l , . . . , j we obtain that
tτPi(k,r) does not depend on r. Thus, Lemma 3 is proved.

Lemma 6. Lef /(m, ί) Z?e a holomorphic function on Mr x Mr and A(k) be defined
by (2.6). Then

dkΛ(k) - 2πA(k) (ξdk)h(k + ξ,k + ξ)δ(ξ2 + 2kξ)dξ (6.3)
Mr

h(k,i) is determined by (2.4) (where I 6 Mrj.

It is sufficient to carry out the proof of Lemma 6 under the condition that A(k) ^ 0.
In this proof all (0, 1) -forms are considered to be restricted to Mr.

We shall use that

dk i χ ( k , m)F(m)σ(dm) = -2π ί (ξdk)δ(ξ2 + 2kξ)F(k + ξ)dξ (6.4)
j j

for any F(πι) from 0(Mr).
If F(m) = eιπιx then (6.4) is a consequence of <9-equation for G(x, fc) and of

representation of (2.2). It is necessary, injhe general case, to take into account an
additional fact that any function from 0(Mr) admits an approximation by a linear
combination of eiπιx, x e R3.

From (2.6) we obtain

dklnΔ(k) =Ύr((I-P(k,r)Γ1dkP(k,r)), \lmk\ <r. (6.5)

Denote by δ(ζ-η)+R(ζ, η\ k, r) the kernel of the integral operator (I—P(k, r}}~1 .
The function f ( k , f ) is a holomoφhic function on Mr x Mr. As a consequence,
R(l,η-,k,r) and h(k,£) are holomoφhic functions on Mr with respect to ί. So, in
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(6.6) we can use (6.4),

=' - 2π

~ / dkχ(k,m)f(m,m)σ(dm)

I I R(m, 77; fc, r}dkχ(k, m)/(m, η}σ(dη)σ(dm)

f ~ 2

J

Due to (1.28)

R(ί, 77; k + ξ, r) = Λ(ί, 77; fc, r), where ξ G IR3 , ξ2 -f 2/cξ = 0 . (6.7)

Due to (2.4) and (6.7),

where ξ e M3, ξ2 + 2fcξ = 0.
From (6.6) using (6.8) with i — k + ξ we obtain

. (6.9)

From (6.5), (6.9) we obtain (6.3).

Proof of Proposition 3A. The Proof is based on the equalities (1.21), (1.27), Lemma
3 and Lemma 6. Let a be a fixed positive number. Let the norm of the potential v(x)
be an infimum of β such that (1.2) is held. Let r be an arbitrary fixed positive number
such that r < α/2. It is sufficient to prove the equality (2.7) for fixed a and r and
under the condition that the norm of the potential is sufficiently small in order that
the following inequalities would be valid:

| 4 ( f c ) - l | < l / 2 , \Δ(k)-l < l/2 on Mr \ S2 , (*)

where S2 = {k k G Mr , Imfe = 0}.
In fact, suppose that for this case the equality (2.7) is proved. Consider an arbitrary

real potential v(x) with the property (1.2). Consider functions in the right-hand side
and in the left-hand side of (2.7) for the family of the potentials \v(x), where

λ 6 C. The functions Δ(k,\\ Δ+(k,X], exp ίλί)(0) / χ(k,m)σ(dm) are

entire functions of λ. The function Δ(k, λ) is an analytical function of λ outside
the set of zeros of Δ+(k, λ). For λ suffciently small in modulus the norm of \v(x)
becomes sufficiently small in order that (2.7) would be held by the assumption. It
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follows from analyticity with respect to λ of the functions in the right-hand side and
in the left-hand side of (2.7) that (2.7) is held for all λ (where Z\+(&,λ) ^ 0) and,
in particular, for the original potential v(x).

Now it is sufficient to prove the equality (2.7) under condition (*). Due to this
condition and due to Theorem 1A the function h determined according to (1.5), (1.4)
coincides with the function h determined according to (2.4).

Denote by Δ'(k) the right-hand side of (2.7). Using (1.27), (6.3), (6.4) (with
F(πί) = 1) we obtain

= ψΛ\M, φ = Δ,Δ', (6.10)

where A\M is the same (0, l)-form for A and A1 '.
Our following aim is to obtain (6.16). Let

(6.11)

where r G R, k and 7 are arbitrary fixed vectors such that

/ c , 7 G M 3 , k2 = E, 72 = 1, fc7 = 0. (6.12)

(It follows from (6.11), (6.12) that £(τ, £,7) G Mr for |τ| < r). Due to (1.9) we have
the equality

(6.13)

In addition (see Lemma 3 and its proof) the following equality is valid:

Z7(fe) = 4(C(+0,fc,7)), (6.14)

where AΊ and A are defined by (1.20), (2.6) respectively;

2πi θ((m-k}^}δ(k2 -m1)dπι = ί χ(C(+0, fc,7),ra)σ(dm) . (6.15)

From (1.21), (6.13), (6.14), (6.15) we obtain

, fc, 7)) = Δ'(ζ(+Q, k, 7)) (6.16)

The final part of the proof of Proposition 3 A consists of the following: Let k1 be a
fixed point in Mr, Im k' ^ 0. Let be n — Re k' x Im k' . We consider one-dimensional
complex manifold

V = {k k G Mr , kn = 0 , det[Re fc, Im fc, n] > 0} .

(It is obvious that k1 G V .) V is isomorphic to the ring in the complex plane
0V = Sl U 52, where Sλ G 52 = {k \ k G Mr , Imfc = 0}.

In view of (6.16) we have

(A(k)\v)\Sl = (Δ'(kϊ\v)\Sι. (6.17)

Under restriction to V, ^4 is (0, l)-form with the continuous coefficient.
Due to (6.17) and in view of Eq. (6.10) restricted, in addition, to V, we obtain

A(k)\γ = A'(k}\v and, in particular, A(k'} = A'(k').
The proof of Proposition 3A is fulfilled.
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The proof of Lemma 5 is similar to the proof of Lemma 3. In this proof, instead
of (6.1) we use that

/ s(k,m)(\m\)-lF(πι)σ(dm) = ί χ(k,m)F(m)σ(dm) (6.18)

for any F(m) from 0(M0), where 0 < | Im/c| < r < α. (In the left-hand side
of (6.18) σ(dm) is a surface element, in the right-hand side of (6.18) σ(dπί) is an
element of the volume).

Proposition 3B is a consequence of Proposition 3A, Lemma 5 and the equality
(6.18) (for F(m) = 1).

Propositions 4A and 4B are consequences of Propositions 3A and 3B [and of
elementary properties of Eqs. (2.4), (2.15)].

7. Appendix to the Proof of Theorem 2

The aim of this appendix is to prove the estimate (3.3).
Let fe(λ) be defined by (3.1), then the formulas (7.1)-(7.4) are valid:

dkl = ——^—^ dλ , dk2 —

Re kΛ = ^—

Re fc3 = -

4λλ z 4iλλ / ? 2 Λ

Imfci = -*—^ r^ i , Imfc2 =4fλλ ^ -4λλ
(7.3)

ImA;3 = 0; \Imk\ = v r' —-, for |λ| > 1.
2Vλλ

(Re fe x Im fc)x _ r(λ + λ) (Re k x Im fc)2 __ r(λ - λ)

4>/λλ ' . . , x

,— - (7-4)
( R e f c x l m f c ) o λ/-EL(l + λλ)

^ - v -, for |λ|> 1.

Using the formula

M*,B = *-aa*kG\lfl=ίB (7-5)

and formulas (4.2), (7.1)-(7.4) we obtain

/ P ~ Γ λ " λ - 4 - Ί ^ >τ-\
1

; (7.6)
λvλλ
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where fe(λ) is defined by (3.1), |λ| > 1,

T
—

ΐ i f ι \ ( 0 7 , Re & x Im & λ/1 — I (cos φ — 1) exp I cos φ Re kx + sin </?—: :— x \ aφ ,

— 7Γ

7Γ

/

, x / ^ i Re fc x Im A; \ 7(sin φ) exp I cos φ Re /ex 4- sin y?————— x \ dφ .
V | ImA; | /

— π

Replace λ in (7.2), (7.4) by an independent complex variable ζ. Then (Re fcj)(λ, C),
/ (Re A: x Im fc) v

, I T L I ) are holomoφhic functions in the domain (3.2). In this
V
domain the imaginary part of each of these functions admits the estimate

|ImF(λ,C)| < const- |C - λ| . (7.7)

First of all, we shall prove (7.7) for F = (| Im /c|~1(Re/ί: x Im fc)3). In this case

it is sufficient to prove (7.7) for F(λ,C) = (λC)±1/2 Let λ = re*α, ζ = Reίβ,
ψ = a -f /3, A = rR, where in view of (3.2) r>l,R>l, -π/2 < α 4- β < π/2.
The needed estimate is a consequence of the following sequence of equalities and of
inequalities:

|Im(λCΓ1/2| = |A- ί/2sin(^/2)| < |Im(λC)1/2 | -

f r2 -ZRrcosψ = \ζ - X \ .

For -F = (I Im A;|~1(Re k xlmk)-^ (7.7) is a consequence of the formula

(C-λ)
Im

K~λ | <3|C-λ|.

The case of F = (| Imfc|~ 1(Refc x Im/c)2) is similar to the previous case.
For F = (Refcj) (7.7) is a consequence of the formula

Im I m ( λ + λ + ( C - A ) + ̂ A±f^
^c

The case F = (Rek2) is similar to the previous case.
For the case F = (Re&3) the estimate (7.7) is obvious.
In the domain (3.2) the function g ( x , X , ζ ) is defined by the formula

g(x, A, C) = g(x, A, λ) + j d^x, A, η). (7.8)

λ

Using (7.8), (7.6) and the estimates given above we obtain (3.3).
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8. The Uniform Estimate of the Green Function g(x, k)
at Fixed k2 = E for | fe | -> oo

Let E e R be fixed. Let η and 7 be fixed such that 7, η e R3, 72 = η2 = 1, 77? = 0.
Let

£>(7,ε) = {x I x eR 3 , |arγ| >ε, |x - 7(2:7) | > ε} for ε > 0. (8.1)

Consider a real curve

" > 0 , f°r -° (8.2)
> ^E for E < 0. v '

We have fc(r) C M - {A: | jfe G C3 , k2 = E}.

Lemma 7. For any ε > 0,

max q(x, k(r}} —> 0 for r —> oo .
T-V / \ * - ^ ^ ^ ^^

Let be v ( x ) ( l -f x|)3+ε G L°°(R3), then from Lemma 1 and Lemma 7 it follows
that

max / \g(x — y,k)v(y}\dy — > 0 for k2 = E , \k\ — » oo ,
xeR3 J

(*)

for k2 = E, \k\-+oo, (

where B(x,y, k) is a kernel of the integral operator β(fc) from (1.7). The formulas
(1.29), (1.30) follow from (*). The formula (1.31) follows from (**).

We shall give a proof of Lemma 7 at E > 0. It is sufficient to carry out the proof
of Lemma 7 for

7 =(0,1,0). (8.3)

We shall carry out some calculations:

eiξxdξ

(ξ + Re k)2 - (Re fe)2 + 1i Im fcξ

= / -̂

= e—- / ^ Zilmkξ-k2 - (Imk}2

ξeR3

= e~iRekxJ(x,k). (8.4)

Due to (8.2), (8.3) we have further

, fc) = ex^x*}I(^ξ3,x2, E, r)d^ dξ3 , (8.5)
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where

The equation

has the following roots with respect to ξ2 e C:

The following proof of Lemma 7 [under the condition (8.3)] splits into two cases:
x2 > 0 and x2 < 0.

A) Let x2 > 0, then

for £ + ξ$ < E + τ2 ,

for E + τ2 < ξl +

Thus

Γ ί

= ττe 2 ^ e

7Γ +OO

/ ' ί

= πe™»jfe—" y ^

π +00

— 7ΓPT:E2 / P

irβCOSψ I \ _-πe ye y exp [

7Γ

_ τα.2 ?2 y
— 7Γ

+ C

= πerx<2 I e~SX2 I exp [i\/s2 + E/Jcos < ]̂ dφ ds.

• r drdφ

+00

I e~SX2dsdφ

From here we obtain

+ 00

I 7| <^ ^"^2 / —5^2μ | < e y e

r

where ρ = \Jx\ + x|.

const

+ ρVs2+ E
:^5 <

const
(8.7)
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B) Let be x2 < 0, then

exp [ - τ x2 - i^E - ξ% - ξf x2|]

exp - τ x 2 |

for #

exp [ - r x2 + Λ/ίi + £3 ~ E \X2

exp - rx2 - - E x

for E < £f + ξ| < E + τ2 ,

exp I — r

thus

where

for E + r2 < ξ^

— "1 ~r c/2 Ί" "Q ^

= -2πe τ|:

< const e-τ|s21 ΓrfΓ

2 = const

7Γ V ^ '

/ ί

r JE

7Γ

/exp
J

- X

= —πe

ίes\x

0

r

'^2' / exp [i\/s2 + E Qcos 99] dcp ds

0 -π

593

(8.8)

(8.9)
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|J2

const

Λ/l + QVs2 + E

e- ,|g2|

V

const ? ,,,,, const

< const

= const I exp [(A/Γ —

J3 = πe •*-' //

7Γ

r
= m-™ J ,

+00

rdr dφ

+ 00

/•
IJ31 < const

Thus, under our assumption (8.3) the result of Lemma 7 follows from (8.4), (8.7) for
x2 > 0 and from (8.4), (8.8), (8.9), (8.10), (8.11) for x2 < 0.
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