
Commun. Math. Phys. 161, 515-532 (1994) Communications IΠ

Mathematical
Physics

© Springer-Verlag 1994

Perturbative Renormalization of Massless φ\
with Flow Equations

Georg Keller1'*, Christoph Kopper2

1 Max-Planck-Institut fur Physik, Fohringer Ring 6, D-80805 Munchen, Germany
2 Institut fur theoretische Physik, Universitat Gόttingen, BunsenstraBe 9, D-37073 Gottingen,

Germany

Received: 16 February 1993 / in revised form: 27 September 1993

Abstract: Perturbative renormalizability proofs in the Wilson-Polchinski renormal-
ization group framework, based on flow equations, were so far restricted to massive
theories. Here we extend them to Euclidean massless φ\. As a by-product of the proof
we obtain bounds on the singularity of the Green functions at exceptional momenta
in terms of the exceptionality of the latter. These bounds seem to be new and are
quite sharp.

1. Introduction

In recent years the authors have discussed the renormalization problem of perturbative
field theory in a series of papers [1-5]. The method has been that of the renormal-
ization group of Wilson as applied to perturbation theory in the form of differential
flow equations by Polchinski [6]. We started by putting Polchinski's result on the
renormalizability of massive φ\ on a rigorous footing after simplifying the method of
proof and included general (physical) renormalization conditions. The next step was
to extend the method to QED [2] with a massive photon, where the main difficulty
came from the fact that the regularization in the flow equation approach necessarily
violates gauge invariance. (It is straightforward to convince oneself that the φ\ proof
works also for a general renormalizable (by power counting) massive Euclidean the-
ory as long as there is no additional constraint, not respected by the regularization.)
Furthermore we treated composite operator renormalization and the short distance
expansion [3,4], thus proving the method to be well-adapted also for more advanced
and intricate issues in the field. Finally it turned out particularly suited for studying
questions of convergence of the regularized theory to the renormalized one which go
under the name of Symanzik's improvement programme [5].

Any method has, of course, its specific advantages and difficulties. In our
framework we count among the latter that the regularization violates gauge invariance
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and also (more technically) that for a general theory the derivation of the flow
equations and their specific form are somewhat lengthy.1 In our opinion this is more
than compensated by the conceptual advantages of the method and by the fact that
all the difficult combinatorics of Feynman diagram types of proofs is completely
sidestepped. This combinatorics is sometimes involved to a degree that the proofs
in question are not written in detail, and the intellectual gaps to pass over remain
quite impressive and sometimes prohibitive to the reader. We think the flow equation
method has none of those difficulties in the sense that the proofs, if requiring careful
reading, are accessible to a line by line analysis without leaving any gap or appealing
to mathematical tools which are beyond standard graduate knowledge. Thus it seems
worth wile trying to extend it further to cover the physically relevant models of particle
physics and statistical mechanics. For a comprehensive renormalizability proof of the
standard model of particle physics we also have to be able to pass over to Minkowski
space, to cope with nonabelian gauge invariance and-as a prerequisite-to show how
to treat massless fields. This paper is devoted to the last problem.

We want to prove the perturbative renormalizability of massless Euclidean φ\,
symmetric under φ —* —φ, which is the simplest example of a strictly renormalizable
massless theory. Extension to more general theories of this kind will again be
straightforward, some indications will be given in the end. As is well-known, massless
theories with superrenormalizable couplings generally do not exist perturbatively. It
is easy to see that e.g. a 03-term leads to infinities at two-loop order which cannot be
cured by introducing a local counterterm (see e.g. [7]). The zero mass limit for QED
needs additional care due to gauge invariance and will be treated separately.

We shall start by shortly recapitulating some results presented in [1] and [3] on
the treatment of φ\ in the UV region. This part will be in complete analogy with
the massive case since, as long as we integrate out momenta above a certain positive
scale only, no infrared (IR) singularities will appear anyway. So we will first impose
general renormalization conditions (r.c.) at such a scale Λl and treat the UV limit as
in [1, 3]. Then we will single out the admissible renormalization conditions at scale
Λ = 0 (where all momenta have been integrated out), convince ourselves that these
are compatible with a subclass of the r.c. at Λl and show that the connected amputated
Green functions exist without IR cutoff for nonexceptional momenta, i.e. as long as
no partial sum of momenta vanishes. The proof also allows to deduce bounds on the
singularity of the Green functions at exceptional momenta as a function of the IR
cutoff going to zero. We did not find such (or essentially equivalent) bounds in the
literature. On inspection of examples the inverse power of the cutoff controlling this
singularity in our proof is optimal in many cases.

2. A Short Reminder on φ\ with IR Cutoff

The renormalization of massive φ\ has been treated in [1, 3]. The treatment of the
theory with vanishing bare mass is the same, as long as we keep a different IR cutoff,
namely integrate out only momenta larger than some scale Λl > 0. Thus the proofs
may be taken essentially from [1,3] for this case, and we will be rather short here.

We start from the UV-regularized theory, the cutoff being called Λ0. Momenta
between Λ0 and Λl will be integrated out with boundary conditions chosen such that

1 Note however that for the renormalizability proof only the general structure, not the detailed form
of the flow equation is important
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we may take the limit ΛQ — » oo in the end. We now introduce the objects of interest
and fix the notation.

The regularized free Euclidean propagator is

.P) - R(Λ,p)) , 0 < y l < Λ 0 < o o . (1)
2

The Fourier transform will also be denoted as CΛ°(p). In (1) we set

,P)^(0,0), (2)

and K satisfies

KeC°°[0,cx)), 0<K<1,

K(x) = 1 for x < 1 , K(x) = 0 for x > 4 . (3)

From (2, 3) we find R(Λ,p) G C°°(E+,R4). We also have for A > 0,

dwdΛR(Λ,p) = 0 for 0 < \p\ < Λ or 2Λ < \p\, (4)

where the multiindex w indicates momentum derivatives
w\ W4

for p = (P! , . . . , p4), w% G N0.
4

For smooth fields φ G ^(R4) we then define the following quantities:
I. The functional Laplace operator

with

2) = J
δφ(x)

II. The lowest order interaction Lagrangian plus its counterterms at Λ0 as a formal
power series

r>l

with

where the formal power series coefficients αr, 6r, cr will be determined as functions
of ΛQ9 R and the r.c. The expansion parameter g is for standard r.c. the renormalized
coupling.
III. The effective Lagrangian

is introduced as follows: We define SΛ'Λ° via

SA'A°) = exp(Δ(Λ, ΛQ)) exp(-/Λ°), where SΛΛ» = g
r>\
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Then we set

Here IΛ>Λo collects the terms in SΛ>Λ° which are independent of the field φ. (Note
that strictly speaking the volume has to be kept finite until these terms have been
subtracted.) The previous definitions imply

From III. we find that LΛ'Λ° satisfies the differential flow equation

dΛL
Λ'Λ° + field independent terms = (dΛΔ(Λ, Λ0))LΛ'Λ°

Γj ' Q^Λ^Λ°^ώL ' °) (5)

An important proposition states that:
LΛ,ΛO js ̂ e generating functional o/the order r > 1 perturbative amputated connected

Green functions of the Euclidean field theory defined by the propagator CΛ° and the

vertices from i f r . To obtain these Green functions themselves in momentum space
we may write

n (2π)4 (2π)4

n>2

Then = r̂,A ° is the rth order contribution to the connected amputated n-point
function. We have:

i. SZ^n ° πiay be assumed symmetric under permutations of plί... ,pn.

ii. 5§r,n ° Ξ θ i f n > 2 r H - 2 (connectedness !),
Λ Λ

to the symmetry φ —» -0).

iii. S§τ,n ° are invariant under (9(4) -transformations of the pτ.

iv. Jg^° is in C°°((0, Λ0] x R^-1)) as a function of Λ and pυ . . . ,pn_1 ? since for

any A > 0 the propagator CΛ° vanishes for \p\ < Λ.

We can rewrite the flow equation (5) for the expansion coefficients J?r,n ° (n > 2),

since φ G 5^ is arbitrary,

+ 2\ /

1 J J

(7)
sym
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Here we have directly written the equation where \w\ momentum derivatives have
been taken on both sides. As regards notation, we set

w € N ( n~1 } w = (w,... , ^ _ ) w = (w,.. .,w),

[ ] means symmetrization w.r.t. p 1 ? . . . ,pn,q' := —pl - ... — .pn/-ι

The r.h.s. of (7) is seemingly ill-defined for momentum configurations p l 5 . . . ,pn

such that one of the partial sums </' vanishes. More rigorously, the derivation of (7)
shows that [ . . . ] s m = 0 for such momenta, a fact which is a consequence of our

choice of regularization, specifically (4).
The renormalizability proof is performed by inductively estimating the r.h.s. of (7),

where the induction proceeds upwards in r and for given r downwards in n (see also
below, proof of Theorem 1). We shall need in particular an estimate of the derivatives
of R:

I
\dwR(Λ,p)\ dwdΛR(Λ,p)~ (8)

V

where c denotes some constant and Λ > 0. Both inequalities immediately follow from
(2)-(4), the second also holds for p2 — » 0 by continuity.

In this paper we do not intend to give bounds on the large momentum behaviour
of the Green functions. Therefore we will always assume that

\Pi\ < M , 1 < i < n- 1, (9)

where M is some arbitrary large but fixed constant, whenever we deal with Green

functions XΛAΛ°(Pι, . . ,Pn_ι), 0 < Λ < 1.
We want to estimate the solutions of the flow equation. To do so we need boundary

conditions (b.c.). For Λ — Λ0 these are fixed for nearly all w9 n by the structure of

lr° (see above). The values of the remaining terms are fixed by the b.c. (11) imposed
at Λ = Λl = 1:

Λ = yip : < 9 r θ ' Λ ° Ξ Ξ θ , i f n + ^ > 5 , (10)

!̂;4

Λo(Pι = kljP2 = k2,p3 = k3) = 4 . (11)

The αj., 6J., c\. are (real) coefficients independent of ΛQ. Due to O(4)-invariance
we have

and we defined dp dp^^r 2(k)\δ = A(k2). The momenta fe, fc1? fe2» ̂ 3 maY be freely

chosen at this stage. For later convenience we demand, however,

rC, Kγ , K'2'> 3' 1 ' 2' 1 3' 2 ~^~ 3' 1 "̂  2 3 / '

(e.g. A = (μ, 0, 0, 0) φ 0 , fct ^ = ̂ (4 .̂ - 1) ,

1 _^ it -j J _^ T" ^ IX/4 - i V l /VO *^3/ '
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For g to be the renormalized coupling in standard renormalization we have to demand

α } , 6 } = 0 , c} = i. (13)

The higher order contributions (i.e. αj., fej., cj. , r > 1) will be in one-to-one
correspondence to the r.c. which we impose at A = 0, in the next section. Therefore
it is important that the following inequalities hold for arbitrary given αj., δj., cj. in
(11) and uniformly for momenta (9):

(boundedness) \dw^^ \ < Λ*~n~\w\ P log Λ ,

(renormalizability} \dΛQdw^Λ0 1 < ^-2^5-n-H p log ̂  ? (14)

(1 - Λ j < Λ < Λ0 < oo) .

Plogyl is each time it appears a possibly new polynomial in logΛ with
nonnegative coefficients. So for A — > 1 it goes to a finite constant > 0. The bounds
(14) imply that the perturbative connected amputated Green functions of massless φ\
with fixed IR cutoff Λ>\ and without UV cutoff

exist and are C°° -functions of the momenta for arbitrary (finite) values of the latter.

3. The Infrared Limit

In this section we want to show that with certain standard restrictions on the r.c.
the IR limit A -» 0 can be taken. It is well-known and can be proven within
the framework of BPHZ renormalization [8] that the connected Green functions of
strictly renormalizable Euclidean massless field theories (i.e. those which contain only
dimension 0 couplings) exist in momentum space if
1. The external momenta are nonexceptional, i.e. no partial sum of the external
momenta vanishes.
2. The renormalization conditions are imposed such that

• the dimension 4 terms are arbitrarily fixed at some nonexceptional momenta
• the renormalized amputated Green functions of dimension < 4, i.e. in symmetric

04 the two point-function, vanish at 0 momentum.
When the external momenta become exceptional the Green functions will generally
be singular. The problem of characterizing the degree of this singularity in terms of
the exceptionality of the external momenta, as the mass goes to 0, can be rephrased as
the question on the asymptotic behaviour of the massive Green functions in the limit,
when certain momenta become large. This question has been extensively studied in
the literature and turned out to be of considerable technical difficulty, if treated in
the framework of renormalized Feynman diagrams on a rigorous level, see e.g. [9,
10]. For a recent overview with a lot of references, see [11]. Finally we note that the
treatment of perturbative massless φ\ using phase space expansions leads not only to
a BPHZ type proof of renormalizability, but also to (presumably essentially optimal)
factorial bounds on the large order behaviour of perturbation theory [12]. The object
of analysis in all these papers is the individual Feynman diagram. In the present
approach we want to prove directly the existence of the rth order Green functions
as a whole under the conditions 1,2 above. The method - though still restricted to
perturbation theory - is thus closer in spirit to constructive field theory. We would
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like to point out that in the framework of the latter the IR problem of φ\ could also
be solved nonperturbatively: There are nonperturbative existence proofs for massless
φ\ with UV-cutoff based on the IR asymptotic freedom of the model [13-15]. [14]
includes the statement that the perturbation series is Borel summable.

Our treatment will also yield an estimate on the degree of singularity of the
perturbative Green functions at exceptional momenta in terms of inverse powers and
logarithms of A for Λ — > 0. It is not hard to see how the question of exceptional
momenta arises in our framework:
a) the r.h.s. of (7) contains the Green function =2>

rn+2(p, — p,p1 ? . . . ,pn_1). This
momentum configuration is exceptional, even if p1? . .'. ,pn are not.
b) The second term on the r.h.s. of (7) may become singular if {p\, pn} is
exceptional since then the momentum qf may vanish. This tells us that

a) we have to deal with exceptional momenta, even if we are only interested in Green
functions at nonexceptional points,
b) Green functions at exceptional momenta will generally be singular.

The essential step in constructing the limit A — > 0 will thus consist in establishing
a relation between the singularity of the Green functions and the exceptionality of
momentum sets, which is compatible with inductively estimating solutions of the flow
equation.

This leads us to the following definitions:

Definition 1. A set of momenta 2 plf i = 1, . . . , n is called admissible fw.r.t. symmetric

Φ\)if
(i) n 6 2N , n>4,

The restriction to n > 4 is due to the special role of the two-point function. For
Pl C P, P2 = P - PI , with P an admissible set of momenta, we define

"- {p, -p} U P , P' = P, U {pf} , P" - P2 U {p"} (16)

ί where p' = - ̂ P;, p" = - ̂ ^ = ~p', Σ := 5̂  etc

Pi P2 P\

Definition 2. An admissible momentum set (a.m.s.) P is called exceptional, if there
exists Q C P, 0 ^ ( 3 τ ^ P such that Σpz = 0

Q

Definition 3. A partition Z(P) of an a.m.s. P /s a system of nonempty subsets
Ev C / P, z^ = 1 , . . . , N such that

N

(i) P =

(iii) 2 > p f = 0, (iv) \EV = 1 for at most one
£>,

2 We regard p% and p^ (i ^ j) as different entities, even if pτ = p3 as elements of R4, since they
belong to different fields or external lines. pi may be thought of as a mapping i ι-> pit we do not
develop this point explicitly, however
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For any partition Z(P) we define the subsets

A(Z) = {EveZ\ \EV >2}, B(Z) = {EV€Z\ \EV =2},
C(Z) = {£, e Z I \E, = 1} (17)

and the indices

d(Z) = \A(Z)\, e(Z) = \B(Z)\, f ( d ) = [3/2d], (18)

where [x] is the largest integer < x. In the following we will often omit the argument
Z.

Definition 4. The IR index of a partition Z(P) is defined as:

e + / (d- l) , if\C\ = l
fe(P)=> sup(0,e.

Definition 5. TTze IR-index of an a.m.s. P w defined to be

where §& is the set of all partitions Z of P.

So in particular g(P) = 0, if P is nonexceptional. If P is exceptional, #(P) will
bound the degree of singularity of the Green functions ^r

Λ

n(P) in terms of inverse

powers of A2 (see Theorem 1) as A — > 0. The following lemma is the key to our
subsequent estimates of the J^n(P) for A — » 0, since it allows to bound the IR
indices of the momentum sets occurring on the r.h.s. of the flow equation (7) in terms
of that on the l.h.s. with sufficient precision. We may state it as

Lemma 1. Let P be an a.m.s. Define P, P7, P" as in (16). Suppose that P' , P" are
also a.m.s.. Then we have

(a) g(P) < g(P) + 1 , if all pi vanish or, for sup |p > 0, if \p\ < η,

where η > 0 is defined as η(P) = | infj^j, and the inf is over all sets J with

J C^ {1, . . . ,n} such that \ ]Γ p.| =: ηj > 0.

(c) g(Pf) + g(P") + 1 < g(P) , if sup |p. - 0 or if \p'\ < η(P).

(d) <KP') + <?(P")<SGP). (19)

Remarks. The partitions of P, P7, P", P will be denoted as Z, Zf, Z" ', Z. Similarly
we will write A, A7 , . . . , d , cf , . . . for the respective sets and indices. The elements of
Z', Z", Z containing p f , p" and p, -p will be called Ef ', E", £1? S2. If ̂  = E2 we
write E1. The proof is by completely elementary but somewhat tedious case-by-case
analysis.
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Proof, (a), (b) Let Z be such that g := g(P) — #£(P) and without restriction we
assume g > 1. We have to distinguish various cases as regards the form of E or Ei.
For all cases we will then show that there exists a partition Z of P with gz(P)+\ > g
for (a) and with g%(P) + 2 > g for (b). For the indices of this partition we will write
for shortness g, d, e, /, for those of Z we write §, . . . (by slight abuse of notation).
For all the different cases appearing we shall write the form of E, E , the definition
of Z and the relations of the indices e, d, g. Sometimes we also have to distinguish
whether a partition has \C\ = I or \C\ = 0 (17).

(1) E = {p,-p}, Z = Z\{E}, e = e+ 1, d = d=>g = g+l.

(2) \E\ = 3.

(2i) E = fa-p,Pil}9 | C Ί = 0 , Z = (Z\{£})U{ f t i},

e = e, d = d + l = > § = e + /(d+l)-2 = e + /(d-l) + 1 = 0 + 1 .

(2ϋ) £ - {p, -p,p4l}, \C\ = 1, Z = (Z\ {E}) U {pvp,2}, where ̂  is such that

= e + f(d) -2+1 = 0+1.

(3) |jB| > 4. In this case the partition Z' generated from Z by subdividing E into
{p, — p} and its complement has g' > g. We therefore consider this partition instead,
which leads back to (1).

Now we go through the cases, where p and — p belong to different sets E}

and E2. Cases which differ only by interchange of p, -p are of course equivalent.
E, := El \ {p}, E2 := E2 \ {-p}.

(4) E2 = {—p} which implies p — 0.

(4i) El = {p,Pi} This case is equivalent to (1) on interchange of -p and pv

e = e-l, d = d+l, g = e-l + f(d) = e + f(d) - 2 + 1 = 0 + 1 .

(4iii) \Eλ\ > 4. Choose Z' instead of Z, where E'2 = {p, -p}, E( = E{ \ {p}. Then
g' > g and Zx is treated in (1).

(5) .E2

 = {PΪ ? ~P}- On interchange of p and pϊ} this leads back to (1).

(6) \E2\ = 3.

(6i) ^{p^pPiJ, Z - (Z \ {E^ E2})U{EλUE2} for case b),

e = e, d = d + l , § < 0 + 2 for |C| - 0 and \C\ = 1.

Under the additional restriction of (a) we must have pi} + p = 0 (which

implies p = 0) and equivalently for the momenta in E2. Therefore we set Z =

(Z \ {E^E2}) U {E^E2} for (a) and find e = e - 2, d = d + 2, g = g + 1 for
\C\ =0and |C| - 1.

(6ii) |̂ ! > 4. Choose Z for (b) as in (6i), e = e, d = d + 1, § < ^ + 2. Choose Z

for (a) as in (6i), e = e — I, d = d + 1, 0 < 0 + 1.

(7) !#} > 4, |̂ 2| > 4. Choose Z for (b) as in (6i), e = e, d = d + 1, g < g + 2.

Choose Z for (a) as in (6i), e = e, d = d, g = g.

(c): |p7| < ?7(P) and p; = — X]pz necessitates p' = 0 by definition of η. So

we assume p' = 0 in (c). Z, Z7 are supposed to be partitions of P, P' such that
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g' := g(p') = gz,(P') and similarly for g" . We write El = E'\{p'}9 E2 = E"\{p"}.
Without restriction g' > g". We go again through the cases and define always some
Z for P such that g := gz(P) fulfills the inequality of the lemma.

(1) g1 = g" = 0, set Z = {P^P2} =» e = 0, d = 2, |C| = 0, 0 = 1.

(2) g'> 1, g» = 0.

(2i) E' = {pi}, Z = (Zf \ {£'}) U {P2}, we have |C" - 1, |C| - 0 and
g' + l = e' + f(df) - 1 < e' + /(d7) = #, since e' = e, d' = d - 1.

(2ii) |E"| > 2; in this case we always assume |C7 =0. The case |C"| = 1 can
be reduced to (2i) by interchanging two momenta of modulus 0 (namely pf and the
one in C'(Z')). Then we set Z = (Zf \ {E'}) U {P2} U {£J and find for the cases
\E' =2,3 g = gf + 1 and for \E!\ > 4 0 > g' + 1.

(3) #',#" > 1 and without restriction |E'| > |£77 .

(3i) \E' , £77 = 1, set Z = (Z1 \ {£'}) U (Z" \ {£"}), \C\ = 0, e - e' + e",
d - d7 + d", </ + g" + 1 - e7 + e" + /(d7 - 1) + f(d" - 1) + 1 < e + /(d) - 2 = p.

(3ii) |£7 |>2, |£77| = l,sεtZ = (Zf\{E'})(J(Z"\{E"})(j{El}, |C ; |=0(see
(2ii)), \C" = 1; |C| = 1 for \E'\ = 2, |C| = 0 for \E'\ > 2. We again verify for
these cases g' + g" + 1 < .̂ From (3iii) to (3v) we assume \C'\ — \C"\ = 0 as in
(2ii) since otherwise interchanging momenta leads back to (2i), (3i) or (3ii).

(3iii) \E' = 2,

>3, |i

- 2, Z - (Z7 \ {E7}) U (Z77 \ {E77}) U {El U £2},
/(d7) + /(d77) - 3 < e -f /(d) - 2 = g.

= 2, Zasin(3ii i), 0' + 0" + l < g.
e" 4-

(3iv) |£7

(3v) |E7

(For IE'], |jE"| > 4 we even findV + #77 + 1 < p - 1.)

(d) The treatment is similar to (c). The notation is the same. Due to (c) we may
restrict to pf ^ 0. All cases where \E'\ = 1 or |E77| = 1 are then forbidden. The case
gr ,g" = 0 is now trivial. We assume w.r. g' > g".

(1) g' > 1, g" = 0, \E' , \E"\ > 2, Z = (Zf \ {E'}) U {P2 U jEJ, e = e' - 1,
d = d7 + 1 for \E'\ =2, e = e7, d-d 7 for \E'\ > 2, in both cases gr < g.

(2) g', g" > 1, |E7 , |E77 > 2, Z = (Z1 \ {E1}) U (Z" \ {E77}) U {El U E2}, if
l^7! + 1C77! < i, z = (Z1 \ ({E1} u {EQ})) u (Z" \ ({E"} u {Eft})) u {̂  u E2} u
{E'0 U E77} if \Cr + |C77| - 2, where £7 G Z7, E77 G Z77 and |£7| - |£77| - 1.

We consider in detail the case \E' , |E77| > 2:
i) |C7| - |C"| - 0: e = e' + e77, d - d7 + d77 - 1, #7 + #77 - e7 + e77 + /(d7) - 2 +

/(d77) - 2 < e + /(d) - 2 = p, where equality holds if d7 and d77 are even.

ii) \C'\ = 1, |C77| - 0 (\Cf = 0, |C77| - 1 is analogous): e = ef + e77,
d - d7 + d77 - 1, g' + g" = e' + e" + /(d7 - 1) + /(d77) - 2 < e + /(d - 1) = 0,
where equality holds if d7 is odd and d77 is even.

iii) \C'\ = \C" = i: e = e; + e" + 1, d - d7 + d77 - 1, g1 + </7 -
e7 + e77 + /(d7 - 1) + /(d77 - 1) < e + /(d) - 2 - 0, where equality holds if d7

and d77 are odd.

The cases where \E' = 2 or |E77| = 2 (or both) are less dangerous. Analogous
considerations always give gf 4- g" + 1 < 0. This finishes the proof of d) and of
Lemma 1. D
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We shall also need:

Lemma 2. For any a.m.s. P — {pl5 . . . ,pn} there exists ε(P) > 0 and a neighbour-
hood

Uε(P) = (g1? . . . ,O I foi "ft) < £ < * < ™ , *i = 0
^ i=ι

fAflί /0r any Q = (q^ . . . , qj with (qλ , . . . , gn) G ϊ/e(P): 0(Q) <

Proof. Take all the partitions of P. All subsets S C^ P which are not an element of
any Z(P) have Σ pi ^ 0. Take ε so small that all these inequalities still hold in

Pi£S

U£(P\e.g.ε=l-η(P) (19). D

As a last prerequisite we define the sets of nonexceptional momenta Mn, n G 2N
as subsets of R4(n-1}:

Mn := {(P!, . . . ,pn_!) e M4(n-1} | ̂ ^ ̂  0 for all J C^ {1, . . . , n}} (20)

^ iGJ ^
(as usual pn = -pl - . . . - pn_{)

The sets Mn are obviously open in R^n~l\
Now we are able to prove

Theorem 1.
(a) The (connected amputated) renormalized Green functions of perturbative massless

wί in C°°(Mn) (see (20)). For n = 2 we also have

J^2 G C°°(R4 \ {0}) n Cl(R4) . (22)

(b) They obey the boundary conditions (10) (where in (10) the limit ΛQ — > oo /m
έ)^β^ taken). The admissible renormalization conditions i.e. those for which (a) can be
shown to be true are as follows:

(i) J^r>2(0) = 0, (ii) dμdί,&rt2(k)\δμtv=2b?,

(iiί) ^4(^1,^2^3) = ̂  •

//ere 6^, cf ύsr^ arbitrary (real) numbers. Their choice together with (i) uniquely fixes
bl

r, c
l

r, a
l

r (11). The momenta k, (fc 1 ? /c2, fc3, fc4) are chosen nonexceptional.

(c) L^ P = {pl, . . . ,pn] be an a.m.s. (Def. 1).
(cl) If P is nonexceptional or, for n = 2, if p\ ^ 0 we have

cTJ^Cp,, ,pn_,) = Um^^^, . . . ,Pn_,) . (23)

(c2) J/ P w such that no partial sum over an odd number of momenta vanishes then

, 0<Λ<1, (24)

where Q = {q\, > )9n} E Uε(P). The coefficients in Plog depend on P, r, n, u>,
Z?wί ί/zβ statement is uniform in Uε(P), ε sufficiently small.
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(c3) Generally we have

(in the same sense as in (c2)).
(c4) For n = 2 α«d 0 < yl < 1 we have

(25)

1 (26)

/6>r u> > 2, and for \w\ < I if \p\ < 2Λ with coefficients depending on w, r.

Remarks. The symbol ε will always denote a positive number, chosen sufficiently
small case per case (we do not introduce ε' , ε" , . . .) such that the respective estimate
holds uniformly in U£ (...)• c always denotes some positive ^-independent constant.
As noted before, all independent momenta are restricted to be smaller than some
arbitrary, large, but finite constant M(9). For a given momentum set P — {pl , . . . , pn}
we denote by Q — {g l5 . . . , qn} a momentum set in Uε(P) and by P(p) or shortly P
the set {p,-p,p^...,pn}.

Proof. The technique of proof is the usual one in the flow equation framework: We
proceed inductively, upwards in r and for given r downwards in n using (6, ii). This
is the induction scheme appropriate to estimate the l.h.s. of (7) in terms of the r.h.s..
Note that the limit Λ0 —> oo has already been taken (15). Our induction hypothesis
are the statements (a)-(c) of the theorem for a given pair (r, n).

(A), r = 1 The only nonvanishing J^Λ

n are those with n = 4, 2 (6, ii). Using (7) we

find that J^/^ is independent of Λ, using (10) it is then also momentum independent

and given by (11) so that c\ = cf which may be chosen freely I e.g. — 1. For

(P) we now find from (?) ^ '

independently of pl. This implies (see (8))

Therefore for Λ > 0

i

Λ

Choosing J^2(0), i.e. a\ as
i

a\ = I dt^l2dt, (29)

o

where the r.h.s. is given by (27), we find

J2f12(0) = 0 , (p,) = J2?2(Pi) - α} - (30)

Since ^2(Pι) = o\ + 6}p? due to (10), (11) we obtain

Λ

= a(A) + b\p\ with a(Λ) =

o
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To resume we have found

J^M = cf = c\ independent of Λ,pl,p2,p3 , (31)

^2(Pι) = a(Λ) + b?pϊ , α(0) = 0 , &f = &} ,

J^Λ

n = 0 f or n > 6 .

This set of functions satisfies all assertions of Theorem 1 to order 1, in particular
A 2t

(30) uniquely fixes α} (29) and using (4), (8) we find \a(A)\ < cfdtft3~3dt < cΛ2

which is sufficient to verify (c4). ° *

(B), r > 1 We assume the theorem to hold for (r7, n f ) with r' < r, n1 £ N, and for
(r, n') with n' > n for some n G N. We want to prove it for (r, n). All statements
are trivial for n > 2r + 2. So we assume n < 2r + 2 and to start with

(Bl), n > 2 We apply the induction hypothesis to the r.h.s. of (7). Using Lemma 1,
Lemma 2 we find

1 (32)

for Q = {<?,-<?, <?1; . . , gn} € t/ε(P(p)), if |p| < η(P) (see (19)), and

|aw^n+2(g,-g, ?!,. . . , g^,)] <^-2^>-4-Hpiogyl-ι (33)

as in (32), but without restriction on |p|. Furthermore

J sym

in E/e(P(p)). (34)

Here we used (8) and Lemma l(c). Those contributions from the r.h.s. of (7) for which
the respective p' ^ 0 are bounded by η~29-l-\w\ P\ogη~l and may be absorbed in
Plogyl"1. Note that (34) also holds for n' = 2 or n" = 2 due to (c4).

The bounds (32),(33) hold for given p, P e f/e(P(p)). By a standard compactness
argument they thus hold uniformly in {(#, —q) \q\ < η} x Z7ε(P) (32) and
{to, -<?) I M < 2} x ?7e(P) (33) respectively.

We may now estimate the r.h.s. of (7). Using (4, 8, 32, 33) the momentum integral
is bounded by

ί dtt3Γ3(θ(Λ - η)η-29-4~M Plogη'1 +

, Q<Λ<1 (35)

(where the first term has been absorbed in the second by a (ry-dependent) redefinition
of the constants in Plog).

Using (34, 35) we may now estimate dw S$^n by integrating the r.h.s. of (7) from
1 to Λ:

'1 , (36)

which proves (25) and (c3).
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If P is restricted as in (c2), we find for any odd partial sum q'π of at least 3 and
at most n—\ momenta in Uε(P)9

q/2

7Γ>η\P)>0. (37)

Then the bound (34) may be replaced by

η-29-ι-\w\ piogη-i < const(P) (38)

(remember (4))
and the induction hypothesis allows to replace (32) by

\dw^rΛ

n+2^ -</,<7ι, - ,<?n-ι)l < A'2^'2 P log Λ~l (39)

with the same restrictions as in (32). This is true since the assumption (c2) follows
also for Q e Uε(P) if \p\ is such that Λ < \p\ < η. For the momentum integral on
the r.h.s. of (7) we now get the bound

2Λ

fdtt3t

A

<A-2g-lPlogA~l (40)

and integrating this bound and the bound (38) from 1 to Λ we arrive at (c2), (24) as
before at (c3), (25).

Now we assume P to be nonexceptional. (38) holds a fortiori as an estimate of
the second term on the r.h.s. of (7), with g = 0. We also have g(Q) = 0 for \p\ < η
and may therefore estimate

l^^n+2(^-9,9l,...,(7n-l)l < ^g^T1 (41)

in {(g, — q) \ \q\ < η} x Uε(P)9 using the same compactness argument as above. Thus
the r.h.s. of (7) is bounded by ΛPlogΛ~l -f c, uniformly in Uε(P)9 and integrating
over Λ shows for 0 < Λ, Ar < I

i. ^n-i)l < c\Λ - A'\ (42)

uniformly in Uε(P) for given w G (n~1}

This assures the smoothness of dw5§r n and yields

ίp,, . . . ,?„_!> (43)

which finishes the proof of (cl) and of (a) for n > 2. The last statement to verify for
n > 2 is (b) (iii). We have

k, , /C2, fc3) dt ,

where the last term is known by induction, independently of the choice of cl

r. Thus
c^ may be chosen freely and it uniquely fixes the choice of c[

r.

(B2), n = 2 For nonexceptional pl9 i.e. pl ^ 0 we verify (23) as before for
nonexceptional P (see (41)-(43)) and find

(44)
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Now we regard pl = 0, qλ £ I7e(p1). The inductive estimate of the r.h.s. of (7) gives
for 0 < A < 1,

2Λ

Itt3t~3~\w\ Plogt~l -f A4~3~\w\ FlogΛ~ l , (45)

Λ

since by induction and the definition of g(P) we get for the first term

(46)

uniformly in {(q, -q) \ \q\ < 2} x Uε(0) by the usual compactness argument. To

estimate the second term on the r.h.s. of (7) by Λ4~3~\w\ Plogyl"1 we used (c4)
(note r', r" < r in (7)).

Note again that this term vanishes for \q'\ < A, \q'\ > 2Λ (qf = qλ for n = 2) due
to (4). Integrating (45) over A yields

\w\ >2, Q<Λ< 1,

A1

. (47)

All estimates are uniform in f/ε(0) and therefore also uniform for |^| < 2, cf. (44).
The last one implies thus

d 2§r 2(0) - lim dμ^r

Λ

2(Q) = 0 (48)
r 5 Λ— >0 ^ '

(where we also used O(4)-invariance for A > 0)
and, using (44, 47) this implies

J^EC'OR4)- (49)

We have
i

2(0) dt . (50)

Choosing - (̂O) - 0 uniquely fixes αj. - ̂ 2(0) to be equal to / <9tJ^2(0)dt, and
the integrand is already known by induction from (7). °

We also have

μ9A&ϊ,2(V\δμ,vdt . (51)

0

Choosing freely 6^ thus fixes bl

r -uniquely, since the second term on the r.h.s. is known
by induction and independent of bl

r.
It remains to establish (c4) for w < 1. We know (47, 49)

w =2,0<Λ<l,
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From this we find with the aid of

i

0μ^2(P) = 9μ^2(0) + Pί/ 1 dvdμ&fa\p) dλ

o

and with the aid of (48) that

\dμ^r

Λ

2(p)\< \p\PlogA~1 (52)

uniformly for \p\ < 2. Now

implies

, (53)

since 3§r 2(0) = 0. Equations (52, 53) imply in particular (c4) for w\ < 1. D

The same technique of proof may be used to obtain sharper statements on the
behaviour of $%^n in momentum space near exceptional points. As an example we
join

Proposition 2. For an a.m.s. P — {p1? . . . ,pn} and nonempty Pl C {pλ, . . . ,pn_ι}

sup(C(Pj), yl). For g/v^n Pj we write dwι for a product of derivatives w.r.t. momenta
pi with pi e Pγ . For the 2§^n of Theorem 1 we assert:

P\ogΛ-lp-^(Pl,Λ), n>2,

Λ)Γlwl, n = 2,
The estimates are uniform in Uε(P).
(b) |Jg?r>2(p)| <p2Plog|p|-1, |δμJ^rj2(p)| < \p\Plog\p\~1.
The notations and assumptions are as in Theorem 1 .

Proof. We apply the same method of proof as previously for the theorem. So we will
be very short. We also use the same conventions and the same induction scheme. For
r = 1 (a), (b) are obvious from (31).

r > 1, (a): We use (7) to estimate dAd
w^^n. The r.h.s. of (7) is bounded by

induction through (see (32)-(35) for an analogous estimate)

2/1

. (54)

In the second term we used (4, 8) which assure that any derivative from dwι applied to

gives up to a A- and momenta-independent constant at most an additional

p~~l. The same holds obviously by induction for derivatives applied to Jzζί) n/, J2y, n / /.
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From (54) we find

(55)

as in Theorem 1 (35, 36).

r > 1, (b): We proceed as in Theorem 1. We have from the flow equation (7) and
(a) for w\ = 2,

\dΛd
w^r

Λ

2(p)\ < (Θ(\p\ - A)~ + θ(Λ - \p\)Λ-l)PlogΛ-1 (56)

(where constants of order 1 have been absorbed in Plog).
This implies on integrating from 1 to A

\9μd^r

Λ

2(p)\ < θ(\p\ -Λ)Plog\p\-1 + Θ(Λ- \p\)PlogΛ-1 (57)

Taylor-expanding dμ3?^2

 now giγes> instead of (52),

\dμ^rΛ2(PΪ\ < \P\(θ(\p\ -Λ) Plog \p\-[ +Θ(Λ- \p\) Plog yT1), (58)

and therefore, for Λ — > 0
\dμ&rι2(p)\< \p\Plog\p\-1. (59)

Taylor-expanding again (see (53)) now yields

\^2(p)\<p2Plog\P\'1, (60)

which proves (b). D

We think these statements show how the simple induction scheme applied to the
flow equations leads to straightforward proofs of IR-properties of massless φ\. The
necessary input is of course some intuition or information on the perturbative IR
behaviour to find a useful induction hypothesis. It should be clear now how to treat
other massless theories whose symmetries are respected by the momentum space
regularization. In a Yukawa-theory with Lagrangian

5S = ψidψ + l/2(dμφ)(dμφ) + Xrfψφ + X2φ
4 ,

one has to derive the flow equations as before and restrict the r.c. such that all terms
of dimension < 4, i.e.

ψψ, Φ, Φ2, Φ3

are fixed to vanish at 0 momentum. Then it is necessary to prove a statement
corresponding to Lemma 1, whereon estimates as in Theorem 1 are straightforward
by analogy. Even though one has to cope with an unfortunate bulk of notation in
this case, we hope that the reader is convinced of the generality of our method. As
regards gauge invariance, in particular QED, we refer to a future publication.
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Note added in proof. After submitting this paper we came across the paper: Perturbative renormal-
ization and infrared finiteness in the Wilson renormalization group: the massless scalar case, by M.
Bonini et al. which now appeared in Nucl. Phys. B409, 441-464 (1993). Unfortunately the proof
of IR-fimteness given in this paper is wrong: It is based on an inductive estimate of one-particle
irreducible functions and makes the induction hypothesis, that those are finite, if there are no pairs
q,—q of exceptional momenta (see Eq. (32a) of the paper). This assumption is obviously wrong
already at one loop (regard e.g. an eight point function where two partial sums of four external
momenta vanish). Such functions may be arbitrarily divergent. We call attention to the fact that
the mistake cannot be remedied without major changes: There seems to be no way of proving IR
finiteness with flow equations without having an analogue of our Lemma 1, which of course would
have to be adapted to the one particle irreducible case and which is completely missing in that paper.
This is because complete knowledge of the behaviour at exceptional momenta is required also for
the proof at nonexceptional momenta, since the flow equations (Eq. (11), (12b) in their paper) imply
integration over momenta as in our case.




