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Abstract: It is shown how the differential flow equation (or, equivalently, the contin-
uous renormalization group) method can be employed to give an astonishingly easy
proof of the local Borel summability of the renormalized perturbative Euclidean
massive Φl

1. Introduction

Understanding rigorously (sometimes even only part of) the large order behaviour
of perturbation theory in quantum field theory has proved to be quite a challenge
(see e.g. chapter II.6 in [R] for a general review and references). For instance, let
us consider the perturbative Euclidean massive Φ^.

For d G {2, 3} it is known since a few years that the renormalized perturbation
series for the connected Green functions is Borel summable and that the Borel
transform exhibits an instanton singularity precisely as predicted by the Lipatov
argument; the proof is based on constructive field theory techniques.

However, when d — 4, even the most sophisticated methods do not seem to be
sufficient to go beyond a proof of the local existence of the Borel transform. In more
detail, the combinatorially involved machinery of either elaborate BPHZ techniques
[dCR] or discrete renormalization group/GN tree expansion methods [GN] proved
adequate to establish local Borel summability, but without a good estimate of the
minimal radius of convergence of the Borel transform. It required the introduction of
multi-scale phase-space cluster expansion methods [MNRS, DFR] to obtain largely
improved estimates (in fact, the suspected best possible estimates) on the radius of
convergence. All attempts to prove the existence (or, less expected, the absence) of
instanton or renormalon singularities failed, so far.

The purpose of this paper is to demonstrate that, somewhat unexpectedly, there is
an easy and rather short proof of the local existence of the Borel transform for d = 4
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- yet, up to now, without a particularly good control over the radius of convergence
(at the moment it is not clear to what extent this control can be improved). The
method which is employed is the continuous renormalization group/differential flow
equation technique [P, KK1] which is elementary and in particular free of any
combinatorial troubles.

Outlining the contents of this paper, Sect. 2 begins with a brief summary of some
basic facts on the differential flow equation method; for more details the reader is
referred to [KK1]. Then we establish an improved version of the boundedness theo-
rem of [KK1]; accordingly, each connected amputated renormalized Green function
at scale A (i.e. when all (internal) momenta in the range [A, ΛQ] have been inte-
grated out, where ΛQ is the momentum space UV cutoff) can be bounded by a power
counting factor times a polynomial in log(Λ); also, and this is the important point
for our purposes here, one can give a rather accurate upper bound on the degrees
(of these polynomials) and one can compute recursive relations for the coefficients
(of these polynomials).

The main result of Sect. 3 is an upper bound on the coefficients of these poly-
nomials which implies local Borel summability. The technically very simple proof
of this bound is based on the recursive relations and on the knowledge of the upper
bounds on the degrees mentioned before. The proof (being recursive) also relies on
an educated guess of what kind of bounds might be compatible with the recursive
relations. No effort is made to produce optimal bounds; instead we will concentrate
on brevity and simplicity.

There is every reason to believe that the methods presented in this paper ex-
tend to massless Φ\ (see [KK2]) or to theories including fermions, for instance to
QED (see [KK3]). In view of the existing rigorous construction of (weakly cou-
pled) infrared Φ\, perturbative massless Φ\ is hardly more than a testing ground
for new methods. The situation for QED is quite different; note, however, that local
Borel summability of QED has already been proven in [FHRW] using the GN tree
expansion technique.

It is hoped that the differential flow equation method can be utilized to shed
some new light on the long standing problem concerning instantons/renormalons,
for instance in Φ\.

2. Perturbative Renormalizability Revisited

Let £rjn ° 0?ι, .. . ,/>«_ι) be the momentum space connected amputated #-point
Green function («^1), at perturbative order r^l, of the perturbative Euclidean
massive, and for the sake of simplicity even, Φ\ theory with UV-cutoff ΛQ, as intro-
duced in [KK1]; p\, .. .,pn_ι,pn(= —p\ — - — pn~\) are the external momenta,
and A is a scale parameter which varies continuously over the interval [0, ΛQ].
The indices Λ, ΛQ indicate that the internal momenta have been integrated out ap-

proximately over [Λ, ΛQ]. For more details concerning the definition of £^'/° see
[KK1].

Because £ '̂/° is a connected Green function one readily checks that [KK1]

£^/° ΞΞ 0, unless n G {2, 4, . . . ,2r + 2} . (2.1)

The £'s obey, by construction [KK1], the general renormalization conditions
(r.c.)
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c) £^(0) = cf , (2.2)

where the renormalization constants {α^, Z?f , cf : r^l} are a set of arbitrarily cho-
sen finite numbers; for reasons of simplicity we will assume that α^ , frf , c? do not
depend on ΛQ. (The renormalization conditions (2.2) could have been imposed as
well at arbitrary nonzero external momenta [KKS].) Next, Euclidean in variance of
our theory tells us that e.g.

dPμ^(0) = 0. (2.3)

Hence, the r.c. (2.2) and Eq. (2.3) control all the quantities d™ £^n

A° of dimension
n + M= 4 at A = 0 (and p = 0). On the other side, since the bare interaction of

the Φ\ theory contains only dimension ^4 vertices, all the objects 3^£ '̂/° of
dimension n + w > 4 are well under control at A = ΛQ:

° = 0, if n + |w| > 4 . (2.4)

It is convenient to measure the £'s by the norm ||( )II(2Λ,>?)> where [KK1]

max \dw

pL^(Pl, ... , Λ_,)| (2.5)
™x{2Λ,η},\&j^n-\ ^

w:\w\=z

here, η with 0 ̂  η < oo is arbitrary but fixed once and for all.
The £'s obey an infinite set of coupled differential flow equations [P, KK1].

Upon estimating these differential equations using the norm (2.5), one arrives at (cf.
(2.27), (2.28) in [KK1])

+/•"=/•/•+/•=/•

(2.6)

and at

Λ

/+/ι//=/ι+2

• Π l l^ ίH^,) . (2.7)
#='/' '
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The constant C\ ̂  1 in (2.6), (2.7) is independent of z (because we restricted z to the
range 0^z^3) and of r, n, A, AQ, η. (Notice that in order to simplify the formulae
in the present paper as much as possible, the scale parameter Λ\ in [KK1] has now
been fixed to Λ\ :— 1.)

Define the set S by

S:={(n,z): (n = 2 Λ O^z^S) V (n = 4 Λ 1 ̂ z^3)} , (2.8a)

and define, for n € {2, 4, ...} and Ogz^S,

Γ θ , (n,z)eS r7Rh,
8n>z - { 1, else . (2'8b)

The following is a more precise version of Theorem 3 in [KK1] and of Proposition
4' in [KKS].

Theorem 1. For any r.c. (2.2), for any fixed η (Q^η < oo), and for 0^z^3 the
connected amputated Green functions of the perturbatiυe Euclidean massive even
Φ% theory satisfy the bounds

where: a) Pr5^zlog(yl) is α polynomial in log (/I) of the form

(2.10)

n n Brι,ni,zι %r",n",z" (2.14)

(r + eB ( 2-«/2). (2.11)

b) Ar^nίZj (^0) and Br^n^z (^0) are independent of A, ΛQ. c) 77ze y4',s
ί/ze recursive equations (2.12)-(2.18) Z?efow.

Recursive equations for the A's and B's:

Case l)Ifn+z>4:

+ 2-, n n 2^ ^r',n',z',k' ' Ar",n",z" ,k"
rf+r"=r kf^O,k'f^Q

n!+n"=n+2 k'+k"^j

(k' + k")\ , . U uι i ^ ^
• rp^- (n + z - 4Y~k ~k ~l , (2.12)

BrtntZ = (r.h.S.(2.12))|7.o +fr,n,Z ,' (2.13)

w/zere
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Case 2) Ifn+z = 4: (i.e. n = 4, z = 0 or n = 2, z = 2)

315

(2.15)

,«,z,y = 5y,θ(ftι,2|&r| + 5,,,4kfl +/r,n,z)

Σ W / / 7 / / ' Σ

nf+n"=n+2 k'+k"=j-l

+ 4 max{2, η} Artn)Z+\j .

Case 3 ) I f n + z<4\ (i.e. w = 2, z = 0, 1)

(2.16)

(2.17)

fn + 2\
r,n,zj = <5/,θ(<5z,θMfl +fr,n,z) ~M 7 ) ^rtn+2tzj ' (4 — « — J

-f nn

k' ^0, k" ̂k'+k"=j

4 max{2, η} (2.18)

Proof of Theorem 1. The simple but somewhat lengthy proof follows the induction
scheme which is standard in the framework of the flow equation method [KK1].
Working out the details is left to the reader. Let me merely point out that one
makes use of (2.1)-(2.8) and, if (n +z) > 4, of

k

yΞo

^AQ and μ > 1:which shows that for l^

If (n -f z) = 4 one employs ^(lo
z) < 4 one estimates (for μ G 1R)

y=o 7 !

* = (k + I)-1 1 [(logjc)*+1], whereas for (n +

Remark. Equations (2.12)-(2.18) are but one (but, within the flow equation scheme,
a quite accurate) possibility to define recursively the coefficients A and B. Clearly,
less accurate recursion relations could be obtained from (2.12)-(2.18) by
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increasing (some of) the coefficients on the r.h.s. of (2.12)-(2.18), e.g. by replacing
(n + z — 4)J~k H-» 1 in (2.12), etc. In fact, in order to prove the local Borel summa-
bility we will not have to rely on the full structure of the r.h.s. of (2.12)-
(2.18); rather, our proof will be unaffected by e.g. replacing (n + z — 4)J~k ι-> 1
and (π+z - $)j~k'~k" \-> 1 in (2.12), j~l *-> I in (2.16), and by multiplying the
r.h.s of (2.12)-(2.18) by an r, n, z, ̂ -independent constant.

3. Local Borel Summability

In this section we are going to prove r!-type bounds, uniformly in ΛQ, on the

connected amputated Green functions Cr]n °
Obviously, such bounds could not be proven if the renormalization constants

αf , bζ and cf would grow too rapidly with r. Hence we make the necessary

Assumption. There exists €2 ̂  1 such that

(3.1)

Recall (from (2.1) and (2.11)) that, because the £^'/° are nontrivial (i.e. r^ l )
connected Green functions of the even Φ\ theory, A^n^zj and #r,«,z can only be
nonzero if the conditions r ̂  1, n G {2, 4, . . . , 2r + 2} and 0 ̂ j ^ r -\- εn,z — n/2 are
met. On these potentially nontrivial ΛΓs and 5's we now have the following bounds.

Theorem 2. Assume (3.1). Fix arbitrary real α > l , β > 2, y ^ O and K > 1.
Then, for all r^l, n G {2, 4, . . .,2r + 2}, Q^>z^3 and 0 ^j ^r + εn,z -n/2,
we find

Ar, n, zj ^ K4~z (K4)3r~n/2- l r~an-βκ-J

• (max{r + 2 - Λ/2, n}γ+ε^-nl2-j-1^ , (3.2)

(3.2)|^o. (3.3)

Here, K is an r, n, z, j-ίndependent constant which has to be chosen large enough',
for example, (3.2) and (3.3) hold if

max{2, ,} + K l + _ _ . (3.4), (g _

Remark. The bounds (3.2), (3.3) and (3.4) are by no means the optimal results
which could be achieved by the methods used in this paper. Even with a small effort
one could come up with much better bounds. However, since we don't attempt to
find the best possible estimates anyway, I chose to prove the bounds (3.2)-(3.4)
because of their attractively simple form.

Proof. The proof of Theorem 2 is, as usual, based on induction; and the induction
scheme is (again as usual) the standard one [KK1].

It is convenient to introduce the notation, for t G {12, 13, 15, 16, 17, 18},
(2.ί)iin resp. (2.0quad for that part on the r.h.s. of Eq. (2.t) which is 0th and 1st

order resp. 2nd order in A, B.
For given r, n, z,j in the range specified in Theorem 2 we know, according to

the induction hypothesis (within our standard induction scheme), that the potentially
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nontrivial ^4's and B's on the r.h.s. of Eq. (2.f) (where t G {12, 13} if n + z > 4,
etc.) do obey the bounds (3.2), (3.3); and the induction step consists in proving
(3.2), (3.3) for Ar>ntZj and Br,n,z by bounding the r.h.s. of the relevant (2.t).

Before getting into the details of the induction step, let me try to explain
the bound (3.2), (3.3) by outlining the role played by the various factors on
the r.h.s. of (3.2), (3.3) while bounding the r.h.s. of Eq. (2.t). First of all, the
factor (max{( )> ( )})('") is> on me one hand, used to annihilate the dangerous

factor ~ i f "+2 j ~ n in (2.ί)iίn» and on the other hand it nicely conspires with

k\lj\ (in (2.0iin) and with (k1 + k")\/j\ (in (2.ί)quad) to teπns which can be bounded
by const (max{r-h 2 - «/2, n}y+εn z~n/2~J'~l~y where const depends at most on
γ. Therefore, at this point, what remains to be done to complete the induc-
tion step is to control sums of the type Σk>j κ~k > Σr'+r"=/ (r/)~α(r//)~α anc*

n ^nf+nff=n+2nfn/f(n'^~^(n"^~β ^n a way which is consistent with the induction
hypothesis; the functions which are involved (i.e. κ~k, etc.) precisely do the job.

Carrying out the induction step is, once one knows how to proceed, almost a
triviality. However, due to the length of the detailed argument I decided to divide
it into several easy Lemmas (Lemmas 3-9 below).

Lemma 3. For all r^ 1, n e {2, 4, . . .,2r}, ε G {0, 1} and O^j^r + ε - n/2
one has

- *-*-'
l Jmax{r + 2 — n/2, n}

Let δ G IR; then, for all r and n as above

\ max{r -f 2 - /ι/2, 1̂}

Let us first check (3.5). a) if r + 1 - n/2^n + 2: Then r + 2-
and thus l.h.s.(3.5)^ 1. b) if r +1 - n/2 < n + 2: Since r + ε-n/2-j is al-

ways ^0 and ̂ max{( ), n}9 we have l.h.s.(3.5)g («±2)r+ε~w/2~7' ^ («±2)r+1-w/2

^(1 +2/w)w+1 ^2β2. - Inequality (3.6) is proven similarly by distinguishing the 3
cases r+ 1 -n/21^n + 2\ r+\-n/2<n^-2 and (5^0; r + 1 - n/2

Lemma 4. Assume (3.4) (αm/ /zewc^ we fcmw ίΛαί e.^f. AT8 ̂  C2 β(3+α+)))). Then,
for all r^l, Λ G {2, 4}, ε G {0, 1} and 0^z^3:

r \ (C2)
r ^ K^z~l (K4^-"'2-1 r-«n~β

• (max{r + 2 - n/2, ^j)^-"/2-1-^

.(C2.4^.e4(3+α+y)). (3.7)

Proof. It is evident that for the r, /?, ε's under consideration
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r !(C2y(£4r3r+"/2+1 r«nβ(max{r + 2 - n/2, n})-'-=+»/2+ι+r

(max{r + 1, 4})3+γ (Ci/^8/'1 C2r«4β

(r + 2 - n/2)r+2-"/2

(r + 3)3+α+5) (C2/K*γ-1 C24
β

^ C24
β . *

Lemmas 3 and 4 permit us now to prove

Lemma 5. For all t

(2.ί)iίn ̂  Λ:4"2"1 (A:4)3'-'1/2-1

 r-
Λn-βκ-J

• (max{r + 2 - n/2, n})r+%--«/2

- (C2 + max{2, η} + K) , (3.8)
~" L / K

where j := 0 z / / e {13, 15, 17}.

a) We begin with t = 12. If π = 2r -f- 2 then (2.12)ιin = 0 and hence does
satisfy (3.8); therefore we will assume from now on that n^2r. Due to the induction
hypothesis, and using K4~z ^K4 and (n -f z — 4J~k ^ 1, we see that

(» + 2Γ"

r+εn+2,z-n/2-l 7 f

Σ — (max{r + 1 - Λ/2, n
k=j J !

al) «^6: In this case εw+2,z = ε«)Z, and we continue by rewriting (3.9) as

r.h.s.(3.9) - (K^r~n'2-1 r-*ιΓβκ-J (max{r + 2 - Λ/2, fr}/+^--«/2^-

Γ(max{r+l-«/2, n + 2})~

n + 2 / n + z - 4

"+2£ " { [̂  (max{r + 1 - n/2, n + 2}rH

max{r -f 1 — «/2, n + ^

max{r + 2 - n/2, n}
(3.10)

Now apply Lemma 3, use the fact that βί O, y^O, K > 1, the bound (valid for all
k with y' ϊ k ̂ r + 1 — n/2 and so in particular for all & satisfying y'^ k :£> + εn+2 z -
n/2 - 1)

7Γ (maX{Γ + l - n/2> n + 2}Γk+J ^!(r + l- = ! '

and the estimate (valid for all n Ξ> 6)
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(max{r -f 1 - n/2, n + 2})"1 (n +

in order to arrive at (3.8).

a2) n^4: Then εw+2,z^εw,z -f 1 and we bound (3.9) accordingly by

,

Σ — (max{r + 1 - n/2, n + 2})r+ε^~'2/2-*-1^κ;-*;
*=y 7 ϊ

and now we proceed as before, the only difference being that instead of (3.11) we

cannot do better than bounding n+

l

z_4 (n^2) ^15 (because the ^-suppressing factor

(max{r -f 1 — w/2, n + 2})"1 isn't at our disposal any longer).
b) For all other ί's the proof of (3.8) works similarly. The renormalization

constants have already been bounded in a useful way in Lemma 4; and one ob-
serves that, for t E {15, 16}, we have εn+2,z = εn,z and ε^+i ^εn?2, whereas for
t G {17, 18} we have εn+2,z^£n,z + 1 and εn,z+\ = εΛtZ. *

As a result, Lemma 5 has shown that the 0th and 1st order part on the r.h.s. of
Eqs. (2.t) can be bounded in a way which is consistent with the induction hypothesis.
So we may turn our attention now towards the (2.ί)quad's.

Lemma 6. Let δ e R, δ > 1, and m' ', w" G N.

m'+m"=m

Proof. For x G 3R we denote by {jc} the largest integer which is smaller than or
equal to x. We have

~δ oo

m~ w " -w- 1 + fdx
m'=l V 1

As a Corollary to Lemma 6 we see that for α > 1, β > 2,

~ , ~ L-J v ) v ) (ft ) lw / ='* ^ * 77 ι \ s o o\ * \3 i j )

Lemma 7. Let r^l, n G {2, 4, .. .,2r + 2}, Q^z<*3 and Q^j^r + εn,z-n/2;
and similarly for r#, «#, z#, y# w/ίA # G {V }. Moreover, assume that r' + r" =
r, HX + ̂  = n + 2, zx + z" ̂ z. ΓAew, /or n + z Φ4
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( /'/+j/'//)! . (max{r7 + 2 - «7/2, Λ

/})Γ/+V,r'-»//2-/

. (max{r/7 + 2 - n/7/2, Λ" }/'^".z"-''''/2-/'

^(max{r + 2 - «/2, rt}y+e».*-»/2-./ (3.14)

Z?wί for n + z = 4 and / +/' =7 — 1:

(max{r7 + 2 - «7/2, n'}f+e^'t'n//2'jf

. (max{r" + 2 - /ι"/2, n"}f+e*" >"-n"/2-J"

^ (max{r + 2 - «/2, n})r+£n>2-n/2-j . (3.15)

/ Because (r# + 2 - n#/2) Ξ> 1 and (r7 + 2 - «7/2) + (r77 + 2 - w/7/2) = (r + 2 -
Λ/2) + 1, we see that (r# + 2 - n#/2)^(r + 2 - π/2); also, w# ̂ 2 and // -f- w" =
n + 2 imply n#^n; hence max{r# + 2 — «#/2, «#}^max{r + 2 — n/2, π}. There-
fore, since r# -h εn# z# — n#/2 — f ^0, it is now obvious that

This yields (3.15); in order to prove (3.14) we need the additional observation that
- n/2 ^max{r + 2 - n/2, w} . A

Lemma 8. (Notation as in Lemma 7) /br A: e NO

r'+l-n'/2 r;/ + l-n/;/2

μ(*):= Σ
jfc/=0

, /or α// y ̂ 0, α// r, n, r#, n#, A: :

Σ

max{r - , _

= ' ^ }

Proof. Define m# := max{r# + 2 — «#/2, «#}, and m+ := max{m7, m77}, m_ :=
min{w7, m77}. Notice that (3.16) implies that μ(k)<^r# + 2 - n#/2^m_. Further-
more, considering separately the cases r -f 2 — n/2 ^ n and < n, one readily verifies
that max{r + 2 — w/2, «} ̂ m7 + m" ^2m+.

We may restrict our attention to the case μ(&)^l; then

max{r -f 2 — w/2, n]

/w' /w" / \m- m+

Combining Lemmas 6-8 we arrive at
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Lemma 9. For all t

(2.0φ«d ̂  K4~z~l (K4γ^2~l . r-«n-V κ~J

• (max{r + 2 - Λ/2, n})r+e^-nl2-j-1"^

(3 18)
' ^

where j := 0 ί/ί G {13, 15, 17}.

As an illustration we prove (3.18) for t = 12. With #4-z^#4 and

(n-\-z — 4y~k ~k ^ 1 we have

(2.12)quad:g(/:4)3'-''/2-1 £ (rVVΓVy-V)1-"
r'+r"=r

4-4 k,=0

• (max{r' + 2 - n'/2, n'}/+V,

• (max{r" + 2 - «"/2, n"}/'

and upon making use of (3.14),

2 _ n/2, Λ}y^»,z

2 - «V2, n'} max{r" + 2 - n"/2, w;/

, k

r + 2 - n"2, w;/ /

Applying (3.17) and (3.13) leads to (3.18). 4

The proof of Theorem 2 is now completed by combining Lemmas 5 and 9. 4

As pointed out earlier, we did not worry too much about the quality of our lower
bound (3.4), and in fact it is far from being optimal. Nevertheless, given (3.4) one
can ask what values one should choose for α, β, y, κ\ a short calculation reveals
that in this case the values α = 5/4, β — 9/4, y = 0 and K = 2 might be sensible.

It has been proved in [KK1] that

C — lim ΓQ>ΛQ^r,n — mn ^r n
ΛQ-^OO

exists, for all r, n. Since Theorems 1 and 2 imply that
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H / O, y i n i i ^ //-ϊ <o\lr— n/2 _« n
•

with (since max{r -f- 2 — n/2, «} ̂ 2(r + 1))

^Γ given e.g. by (3.4), we infer the

Theorem 3. For any renormalizatίon conditions (2.2) subject to the bounds (3.1),
and for any η, Q^η < oo, the renormalίzed connected amputated Green functions,
£r,n, of the perturbatίve Euclidean massive even Φ\ theory obey

ll^nlk,) ̂  ! . (const/ (max{2, η})l2r , (3.19)

where "const" does not depend on r, n, η.

As a conclusion, the deCalan-Rivasseau bound (3.19) proves local Borel summabil-
ity: Define the Borel transform Bn of {£,-,« : r^l} by

tr

Bn(t)(pι, . . .9pn-ι) := Σ -;£r,n(p\, >/?/ι- 1), ^ G C .
r ^ l r !

Then, for |/?ι|, . . ., |/?«-ι| ^η, Bn is analytic in t at least within the disk |ί| <
(const (max{2, ^j)12)"1, where the "const" is the same as the one in (3.19).
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