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Abstract: Scaling models of random N x N hermitian matrices and passing to the
limit N -» oo leads to integral operators whose Fredholm determinants describe
the statistics of the spacing of the eigenvalues of hermitian matrices of large order.
For the Gaussian Unitary Ensemble, and for many others' as well, the kernel one
obtains by scaling in the "bulk" of the spectrum is the "sine kernel"

— - - — . Rescaling the GUE at the "edge" of the spectrum leads to the kernel
π(x - y)

M(x)M'(y) - A . . f A . f .
, where Ai is the Airy function. In previous work we

x-y
found several analogies between properties of this "Airy kernel" and known
properties of the sine kernel: a system of partial differential equations associated
with the logarithmic differential of the Fredholm determinant when the underlying
domain is a union of intervals; a representation of the Fredholm determinant in
terms of a Painleve transcendent in the case of a single interval; and, also in this
case, asymptotic expansions for these determinants and related quantities, achieved
with the help of a differential operator which commutes with the integral operator.
In this paper we show that there are completely analogous properties for a class of
kernels which arise when one rescales the Laguerre or Jacobi ensembles at the edge
of the spectrum, namely

2(x - y)

where Jα(z) is the Bessel function of order α. In the cases α = +? these become,
after a variable change, the kernels which arise when taking scaling limits in the
bulk of the spectrum for the Gaussian orthogonal and symplectic ensembles. In
particular, an asymptotic expansion we derive will generalize ones found by Dyson
for the Fredholm determinants of these kernels.
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1. Introduction and Statement of Results

A. Introduction. Scaling models of random N x N hermitian matrices and passing
to the limit N -+ oo leads to integral operators whose Fredholm determinants
describe the statistics of the spacing of the eigenvalues of hermitian matrices of
large order [18, 25]. Which integral operators (or, more precisely, which kernels of
integral operators) result depends on the matrix model one starts with and at which
location in the spectrum the scaling takes place.

For the simplest model, the Gaussian Unitary Ensemble (GUE), and for many
others as well (see, e.g., [16,17,23,24]), the kernel one obtains by scaling in the
"bulk" of the spectrum is the "sine kernel"

sinπ(x — y)

π(x - y)

Precisely, this comes about as follows. If {φk(x)}^=0 is the sequence obtained by
orthonormalizing the sequence {xke~χ2/2} over ( — oo, oo) and if

then in the GUE the probability density that n of the eigenvalues (irrespective of
order) lie in infinitesimal intervals about x1 ? . . . , xn is equal to

The density of eigenvalues at a fixed point z is RI(Z), and this is ~ ^/2N/π as
N -> oo . Rescaling at z leads to the sine kernel because of the relation.

π / πx πy \ sinπ(x — y)

N™X/2ΪV N\ +

 X/2ΪV' Z + JΪNj~ n(x-y)

Rescaling the GUE at the "edge" of the spectrum, however, leads to a different
/ -

kernel. The edge corresponds to z ~ Λ/2ΛΓ, at which point the density is
and we have there the scaling limit [3, 11,22],

lim - K , , 2 N + - - , +
22JV6 22JV6 22JV6

_ Ai(x)Ai'(y) - Ai'(x)Ai(y)

where Ai is the Airy function. In previous work [28] we found several analogies
between properties of this "Airy kernel" and known properties of the sine kernel:
a system of partial differential equations associated with the logarithmic differential
of the Fredholm determinant when the underlying domain is a union of intervals
[15]; a representation of the Fredholm determinant in terms of a Painleve tran-
scendent in the case of a single interval [15]; and, also in this case, asymptotic
expansions for these determinants and related quantities [5,2,29,6, 20], achieved
with the help of a differential operator which commutes with the integral operator.
(See [27] for further discussion of these properties of the sine kernel.)
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In this paper we show that there are completely analogous properties for a class
of kernels which arise when one rescales the Laguerre or Jacobi ensembles at the
edge of the spectrum. For the Laguerre ensemble the analogue of the sequence of
functions {φk(x)} in (1.1) is obtained by orthonormalizing the sequence

{xkx«/2e-χ/2}

over (0, oo) (here α > — 1), whereas for Jacobi one orthonormalizes

(xk(l - x)α/2(l +x)β'2}

over ( — 1, 1). (Here ot,β > — 1.) In the Laguerre ensemble of (positive) hermitian
N x N matrices the eigenvalue density satisfies [4,23], for a fixed x < 1,

This limiting law is to be contrasted with the well-known Wigner semi-circle law in
the GUE. The new feature here is the "hard edge" for x ~ 0. At this edge we have
the scaling limit [11]:

where Jα(z) is the Bessel function of order α. Both limits follow from the asymptotic
formulas for the generalized Laguerre polynomials. (Scaling in the bulk will just
lead to the sine kernel and scaling at the "soft edge," x ~ 1, will lead to the Airy
kernel.) The same kernel arises when scaling the Jacobi ensemble at — 1 or 1.
(Recall that in the Jacobi ensemble both + 1 are hard edges; see e.g. [23].)

For later convenience we introduce now a parameter λ and define our "Bessel
kernel" by

κ(x,y) -.= > t (xφyh (L2a)2(x - y)

= j(
Before stating our results, we mention that in the cases α = +2 we have, when

1=1,

(1.3),
π(x - y) π(x + y)

which are kernels which arise when taking scaling limits in the bulk of the spectrum
for the Gaussian orthogonal and symplectic ensembles [18]. In particular, an
asymptotic expansion we derive will generalize ones found by Dyson [5] for the
Fredholm determinants of these kernels.

We now state the results we have obtained.

B. The System of Partial Differential Equations. We set

m

J:= \J (a2J-lta2J) (aj^O) (1.4)
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and write D(J;λ) for the Fredholm determinant of K (the operator with kernel
K(x,y)) acting on J. If we think of this as a function of a = (α1? . . . , a2m\ then

<ΠogD(J;λ) = - f ( - ^R(aj9aj)daj , (1.5)
j=ι

where R(x, y) is the kernel of K(I — K)"1. We introduce the notations

φ(x) := v/I/β(v^), Ψ(x) := xφ'M (1-6)

and the quantities

qj:=(I-K)-lφ(aj)9 Pj:=(I-K)-iψ(aj)9 (j = 1, . . . , 2m) , (1.7)

κ:=(ψ,(/-KΓV), ϋ:=(0,(/-K)~V), (1.8)

where the inner products refer to the domain J. The differential equations are

ϋ φ j k ) > (L9)

U Φ Λ ) , (1.10)
a,. - ak

(1.12)

(L13)

(1.14)

Moreover the quantities R(aJ9aj) appearing in (1.5) are given by

(1.15)

These equations are quite similar to Eqs. (1.4)-(1.9) of [28], as is their derivation.

C. The Ordinary Differential Equation. For the special case J = (0, s) the above
equations can be used to show that q(s;λ\ the quantity q of the last section
corresponding to the endpoint s, satisfies

s(q2 — I)(s0')' = q(sq')2 + -(s — u,2)q + -sq3(q2 —2) I ' = — 1 (1.16)
4 4 \ as/

with boundary condition

^λ)~—^—s^, 5->0. (1.17)
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This equation is reducible to a special case of the Pv differential equation;1

explicitly, if q(s) = (1 + y(x))/(ί — y(x)) with s = x2, then y(x) satisfies Pv with
α' = — β' = α2/8, y' = 0 and δ' = — 2. (We have primed the usual Pv parameters to
avoid confusion with the α in our kernel. We mention that this special Pv can be
expressed algebraically in terms of a third Painleve transcendent and its first
derivative [13]. We mention also that an argument can be given that (1.16) must be
reducible to one of the 50 canonical types of differential equations found by
Painleve, without an explicit verification being necessary. This will be discussed at
the end of Sect. II B.) It is sometimes convenient to transform (1.16) by making the
substitution

q(s) = cosψ(s),

so that ψ satisfies

r s 85

The Fredholm determinant is expressible in terms of q by the formula

D(J;/l) = exp --\\og-q(t)2dt } . (1.19)
V 4o ί /

Denoting by R(s) minus the logarithmic derivative of D( J λ) with respect to s, we
have also the representation

1 9 ΛM\2 α2 ,
R(s) = -COS2ψ(s) + S1— - — Cθt2lA(s) (1.20)

4 \ as) 4s

Furthermore, jR(s) itself satisfies a differential equation which in the Jimbo-
Miwa-Okamoto σ notation for Painleve III (see, in particular, (3.13) in [14]) is

(sσ")2 + σ'(σ - sσ')(4σ' - 1) - α2(σ')2 = 0 , (1.21)

where σ(s) = sR(s)ι it has small s expansion

1 3 + 2α . 1

16(l + α)(2 + α)(3 + α)

3 + 2α Ί

2(2+ α)2^ J

1 + •] + , (1.22)

where
λ 1

22α + 2Γ(l + α)Γ(2 + α)

1 The Painleve V differential equation is

d2y / I 1 \/dy\2 lay (y - I)2 / , β'\ y'y δ'y(y + 1)
T ---r(2y y-lj\dxj xdx x2 \ " y J x y-1

where α', β', y', and δ' are constants.
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We mention that in the special case α = 0 and λ = 1 we have D( J\ 1) = e~s/4,
q(sι 1) = 1, ψ(s, 1) = 0, and σ(s, 1) = s/4 exactly [7, 8,11].

D. Asymptotics. Again we take J = (0, s) and consider asymptotics as s -> oo .
From the random matrix point of view the interesting quantities are

A)| λ = 1 . (1.23)

This is the probability that exactly n eigenvalues lie in J. The asymptotics of
E(0,s) = D(J; 1) are obtained from (1.19) using the asymptotics of q(sι 1) or
equivalently σ(s; 1) obtained from (1.16) or (1.21), respectively. (Our derivation is
heuristic since as far as we are aware the corresponding Painleve connection
problem has not been rigorously solved.) We find that as s-> oo,

α _i 9α^ _ 1 /3α 51α3\ _ι

8S 2 + Ϊ28S +VΪ28+Ϊ024/ 5

75α2 1275α4\ _ 2

where τα is a constant which cannot be determined from the asymptotics of q (or σ)
alone. However, as we mentioned above, when α = ίi this expansion must agree
with those obtained from formulas (12.2.6) of [18] (see also (12.6.17)-(12.6.19) in
[18]) after replacing s by π2ί2. This leads to the conjecture

_ G(l + α)
T α~ (2π)α/2 '

where G is the Barnes G-function [1]. This conjecture is further supported by
numerical work similar to that described for the analogous conjecture in [28].

As in [28], there are two approaches to the asymptotics of E(n\ s) for general n.
We use the notation

In the first approach (see also [2,27]) one differentiates (1.21) successively with
respect to λ. Using the known asymptotics of σ(s; 1) and the differential equation
(1.21) satisfied by σ(s;λ) for all Λ,, one can find asymptotic expansions for the
quantities

., dnσ

and these in turn can be used to find expansions for the r(n;s). This approach is
inherently incomplete since yet another undetermined constant enters the picture.
And there are also computational problems since when one expresses the r(n, s) in
terms of the σn(s) a large amount of cancellation occurs, with the result that even
the first-order asymptotics of r(n; s) are out of reach by this method when n is large.
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The second approach uses the easily-established identity

where A0 > ̂  > are the eigenvalues of the integral operator K with λ = 1
acting on (0,5). It turns out that this operator, rescaled so that it acts on (0,1),
commutes with the differential operator & defined by

/α2 sx\
= (x(l - x)f (x))' - — + - f(x) ,

with appropriate boundary conditions on / Applying the WKB method to the
equation, and a simple relationship between the eigenvalues of K (as functions of s)
and its eigenfunctions, we are able to derive the following asymptotic formula for
the eigenvalues as s -> oo :

nΓ(α +

From this and (1.26) we deduce

(1.27)

-«2- n ( 2 " + 2 α + 1 ) s-- n e 2 n ^ . (1.28)

For the special case α = 0, the quantity r(l s) can be expressed exactly in terms
of Bessel functions (see (2.30) below).

II. Differential Equations

A. Derivation of the System of Equations. We shall use two representations for our
kernel. The first is just our definition (1.2a) using the notation (1.6),

The second is the integral representation

(2.2)
o

This follows from the differentiation formula

zJ'Λ(z) = αJα(z) - zJα+1(z)

which gives the alternative representation

2(χ - y)
for K(x,y), and the Christoffel-Darboux type formula (7.14.1(9)) of [9].

Our derivation will use, several times, the commutator identity

(2.3)
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which holds for arbitrary operators K and L, and the differentiation formula

±(I-K)-ι=(I-K)-ι*£(I-K)-ι, (2.4)
da da

which holds for an arbitrary operator depending smoothly on a parameter α. We
shall also use the notations

M = multiplication by the independent variable, D = differentiation,

and a subscript on an operator indicates the variable on which it acts.
It will be convenient to think of our operator K as acting, not on J, but on

(0, oo) and to have kernel

K ( x 9 y ) χ j ( y ) 9

where χj is the characteristic function of J. We continue to denote the resolvent
kernel of K by jR(x, y) and note that it is smooth in x but discontinuous at y = α/.
The quantities R(aJ9aj) appearing in (1.5) are interpreted to mean

limR(ahy) ,
y-*<*j
yeJ

and similarly for PJ and qj in formulas (1.7). The definitions (1.8) of u and υ must be
modified to read

u = (φχj, (I - KΓ 1 φ)9 v = (φχjy (I-KΓ1Ψ), (2.5)

where now the inner products are taken over (0, oo). Notice that since

for any function ξ9 this agrees with the original definitions (1.8) of u and v.
We have, by (2.2),

((MD)X + (MD)y)K(x9y) = ]t-(φ(xt}φ(yt}}dt = φ(x)φ(y) - K(x9y) .

But it is easy to see that

[MD, L] = ((MD)X + (MD\ + I)L(x9 y) (2.6)

for any operator L with kernel L(x9y)9 where " = " means "has kernel." Taking

9y) = K(x9y)χj(y) gives

y) - Σ( - l)kakK(x,ak)δ(y - ak) .

(Recall the form (1.4) of J.) It follows from this and (2.3) that

[MD9(I - KΓl-\ = \Q(x)(I - Krlljφ(y] ~ Σ( ~ l)kakR(x,ak)p(ak,y) , (2.7)

where Q(x), and an analogous function P(x), are defined by

lφ, P(x):=(/-KΓV, (2.8)
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where p(x,y) = R(x,y) + δ(x — y) is the distributional kernel of (/ — K)"1, and
where K* is the transpose of the operator K. (Note that K takes smooth functions
to smooth functions while its transpose takes distributions to distributions.) Ob-
serve that

Next we consider commutators with M and use the first representation (2.1) of
K(x, y). We have immediately

[M,X] = (φ(χ)ψ(y) - ψ(χ)Φ(y))χj(y) ,

and so, by (2.3) again,

Notice that since

(I-KtΓ^ij = (I-KY^ = P o n J ,

and similarly for φ, Q, we deduce

eaίω^
x-y

In particular we have

ϋ φ f c ) , (2.10)
a} - ak

R(x,x) = Q'(x)P(x)-P'(x)Q(x) (xeJ). (2.11)

In order to compute R(α; ,α7 ), and also the derivatives in (1.11) and (1.12), we
must find Q'(x) and P'(x). We begin with the obvious

xQ'(x) = MD(i - K)~^(X) = (i- K
Using (2.7), and recalling (1.6) and (2.5), we find that

xQ'(x) = P(x) + -Q(x)u - Σ( - l)fcαfcΛ(x,αfc)^ . (2.12)

Similarly, replacing φ by ^ in this derivation gives

xPf(x) = (I- κrlMDψ(x) + l-Q(x)v - X( - l)kakR(x,ak)pk . (2.13)

To evaluate the first term on the right side we use the fact that φ satisfies the
differential equation

x2φ"(x) + xφ'(x) + i(x - α2)0(x) = 0 , (2.14)

which may be rewritten MDψ(x) = ^(α2 — x)φ. Hence

= ^Q(x) - i(/ - KΓ1Mφ(x)
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But we find, using (2.9), that

[M,(/ - KΓ^Φ(x) = Q(x)v - P(x)u ,

and combining this with (2.13) and (2.15) gives

xP'(x) = (α2 - x)Q(x) + -Q(x}υ - P(x)u - £( - l)kakR(x,ak)pk . (2.16)

It follows from (2.11), (2.12) and (2.16) that for x e J,

ajR(aj9aj) = pf - -(α2 - a} + 2v)qf + -pj qjU + £ akR(aj,ak)(qjpk

^ z

In view of (2.10) this is Eq. (1.15).
We now derive the differential equations (1.9)-(1.14). First, we have the easy

fact that

AK ώ ( _!)*£(
oak

and so by (2.4),

-^(/ - KΓ1 = ( - l)kR(x,ak)p(y,ak) . (2.17)
dak

At this point we use the notations Q(x,α), P(x,α) for P(x) and Q(x) to remind
ourselves that they are functions of a as well as x. We deduce immediately from
(2.17) and (2.8) that

-β(x,α) = ( - ΐfR(x9ak)qh9 P(x,a) = ( - \)kR(x,ak)Pk . (2.18)
dak dak

Since ̂  = β(αj,α) and PJ = P(aJ9a) this gives

^ = ( - l)fcR(α,, αfc)gk, ^ = ( - 1)* Λ(^, fl*)p*, U Φ k)

In view of (2.10) again, these are Eqs. (1.9) and (1.10). Moreover

x = α.

Equations (1.11) and (1.12) follow from this, (2.18), (2.12), (2.16) and (2.10).
Finally, using the definition of u in (2.5), the fact

and (2.17) we find that

But

,αj)) = $R(x9aj)φ(x)dx = \R(aJ9x)φ(x)dx ,
j j
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since R(x, y) = R(y, x) for x, y e J. Since R(y, x) = 0 for x φ J the last integral equals

OO

J R(aj9x)φ(x)dx = q} - φ(aj) .
o

This gives (1.13), and (1.14) is completely analogous.
We end this section with two relationships (analogues of (2.18) and (2.19) of

[28]) which would allow us to express u and v in terms of the q 3 and PJ if we wished
to do so. (They will also be needed in the next section.) These are

(2.19)

M = X( - iy(4p? - (α2 - aj + 2v)qf + 2pΛu) . (2.20)
j

To obtain the first of these observe that (1.9) and (1.11) imply

while from (1.13) and (1.14),

If we multiply both sides of the previous formula by ( — iXfl/^/ and sum over j what
we obtain may be written

or equivalently

It follows that the two sides of (2.19) differ by a function of (al9 . . . , a2m) which is
invariant under scalar multiplication. Since, as is easily seen, both sides vanish
when all aj = 0 their difference must vanish identically.

To deduce (2.20) we multiply (2.17) by ak and sum over k and then add the result
to (2.7), recalling (2.6), to obtain

for x, y E J. This gives

If we multiply both sides of this by ( — I)7 and sum over j we deduce, by an
argument similar to one just used, that

aj) = u. (2.21)
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Substituting for ajR(aJ9aj) here the right side of (1.15) we see that the resulting
double sum vanishes, and (2.20) results.

B. The Ordinary Differential Equation. In this section we specialize to the case
J = (0,5) and derive (among other things) the differential equation (1.16) and the
representation (1.19). In the notation of the last section m =!,#! = 0, a2 = s. We
shall write q(s\ p(s), R(s) for q2, p2, R(s,s\ respectively. Equations (1.11)-(1.14)
become

sq' = p + -qu, (2.22)

sp' = ~(α

2 - s)q + -qv - -pu , (2.23)

ii' = q2 , (2.24)

v' = pq. (2.25)

It is immediate from (2.21) and (2.24) that

(sR(s))' = ^q(s)2 , (2.26)

and since

(see (1.5)), we obtain the representation (1.19).

To obtain the differential equation (1.16) we apply s— to both sides of (2.22)
as

and use (2.22), (2.23) and (2.24). What results is

s(sq'Y = J(α2 - s)q + — (u2 + Sυ)q + ̂ sq* . (2.27)

But (2.19) in this case is

u2 + 8t> = 4sq2 - 4u ,

and so the above can be written

s(sq')' = J(α2 - s)q - \uq + \*<f . (2.28)

Next, we square both sides of (2.22) and use (2.20), which now says

u = 4p2 - (α2 - s + 2v)q2 + 2pqu ,

and find that

(sq')2 =l_u+ I ( α2 _ S)q2 + I_q2(u2 + Sv}

Combining this with (2.27) gives
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and combining this with (2.28) gives the desired Eq. (1.16). The boundary condition
(1.17) follows from the Neumann expansion of the defining expression (1.7) for q.

Using (1.18) one easily verifies that

fdψ\2 α2

 2 , c
5-τ- —CSCψ + -

\ds / 4s s

_α^ c / α2

4s

satisfies (2.26), where c is a constant of integration. That this constant is equal to
α2/4 follows from the small s expansion of R(s). (Use the fact that for s->0,
R(s) ~ K(s, s) and that, as follows from (1.2b), there is no simple pole in s.) Equation
(1.21) follows from (1.20) and (1.18).

Here is the argument why (1.16) must be reducible to some Painleve equation
(or one of the other simpler differential equations on Painleve's list). The derivation
of (1.16) used only the facts that the Bessel kernel had both forms (2.1) and (2.2) and
that the function φ satisfied the differential equation (2.14). (Of course ψ in (2.1)
must be defined as MDφ.) This equation has a 2-complex-parameter family
solution and this gives a 2-complex-parameter family of kernels defined by (2.1).
They can be shown to satisfy (2.2). We replace the kernels K(x, y) by sK(sx, sy) and
have them act on (0,1) rather than (0,5). These operators on (0,1) depend analyti-
cally on the complex variable s (except for a branch point at s = 0) and the
corresponding q(s) can have, aside from a branch point at s = 0, only poles which
occur at the values of s for which λ = 1 is an eigenvalue of the operator. (The
resolvent of an analytic family of compact operators has a pole whenever λ = 1 is
an eigenvalue.) Thus the general solution (i.e., 2-complex-parameter family of
solutions) of (1.16) has only poles as moveable singularities. Since the equation is of
the form q" = rational function of q f and q, it must be reducible to one of the
Painleve types.

We mention that this argument requires | α | < 1 since it is only then that
all solutions of (2.14) give compact, or even bounded, operators on L2 For
other α it may be that we just have to replace L2 by an appropriate space of
distributions.

C. r(l;s)/or α = 0. If we set α = 0 and make the change of variables s = x2, the
differential equation for ψ (recall (1.18)) becomes

ψ" + -\i/' = -sin(2ψ), (2.29)
x 2

and we want the solutions holomorphic at the origin. The linearization of this
differential equation is the modified Bessel equation and all solutions of the linear
equation are linear combinations of 70(x) and K0(x). Flaschka and Newell [10]
have shown, using methods of monodromy preserving deformations and singular
integral equations, that the general 2-parameter solution to (2.29) can be viewed as
a "perturbation" of this linear solution. (Precisely, they derive a singular integral
equation whose Neumann expansion in a particular limit gives ψ(x) - the first term
in this expansion is a linear combination of Bessel functions.) The one-parameter
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family of solutions to (2.29) that are holomorphic at the origin has the representa-
tion [10]

μ3 μ5

ψ(x;μ) = AuMx) + ^ψ3(x) + ξy^M*) + ' ' ' ,

where ψ 1 ( χ ) = /0(x), and μ2 = 1 — λ. Note that we are using the slightly confusing
notation ψ(x;μ) to denote the function ψ of (1.18) after the change of variables
s = x2 and μ2 = 1 — λ. Multiple integral representations (obtained from
a Neumann expansion) for the higher ψj's can be easily derived from [10].

The resolvent kernel R(s\ s = x2, is given in this special case by

Thus (recall (1.23) and (1.25))

r(l;s)= - fR 1 ( ί )Λ= -2$
o o

where

λ=1

Therefore

= - J x(I0(x)2 - I2(x))dx

(2.30)

The last equality follows from (5.542) of [12].
We point out the curious fact that (after letting ψ -> ill/) the same differential

equation (2.29) and closely related τ-function arise in the 2D Ising model
[30,21,26] except that here the boundary condition is ψ(x) ~ μKQ(x) as x-> oo.

III. Asymptotics

A. Asymptotics of the σ-Equation. In the case of the finite N ensemble and α = 0,
Edelman [7,8] and Forrester [11] (by a direct evaluation of the integrals defining
the probability £#(0; s)) have shown that £(0; s) is exactly equal to e~s/4. From this
it follows, for α = 0 and λ = 1, that σ(s; 1) = s/4. For general α and λ = 1 it is
therefore reasonable to assume an asymptotic expansion of the form:

σ(s; 1) = CiS + C2s
1/2 H- c3 4- c4s~1/2 + - , s -»• oo .

Substituting this into the differential equation (1.21) results in equations that

uniquely determine the coefficients Cj once a choice in the square root ^/u2 is made.
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Since for α = ίi our asymptotic expansion of E(O s) must agree with those of
Dyson (recall 1.3)), we see that we must choose the square root — α. A calculation
then gives

5 α 1 / 2 α2 α 1 / 2 α2

4 - 2 S / + T + Ϊ6S / + Ϊ 6 S

7l256 64

8α
4
 + 720α

2
 + 225)s~

5/2
 + s -> oo , (3.1)

from which (1.24) follows.

#. Asymptotics Via the Commuting Differential Operator. Throughout this section
we take λ= I. The operator K, when rescaled to act on (0, 1) instead of (0,s), has
kernel sK(sx,sy). By (2.2) this is equal to

s 1

-$φ(sxt)φ(syt)dt ,
4 o

and so K (rescaled, as it will be throughout this section), is the square of the
operator on (0, 1) with kernel

This function satisfies the differential equation

X " xx i XJ x "τ~ I j 7 " )«/ == v/ . (3..Z)
\4 4}

The operator J will commute with a differential operator

} d x ~

if α(0) = α(l) = 0andi f

α(y)Jy>, 4- α'(y)Jy + β(y)J = a(x)Jxx + %'(x)Jx + β(x)J .

If we use (3.2) we see that this will be satisfied if

fw «2 M / , x+ 1 ' 1 I I / v ' / v l I I Γίί v l I
I 7 / 1 " ' " V /" X > P V"*v ̂
\4x 4x ) \

= the same expression with x and y interchanged.

Equating the terms involving the first derivatives of J gives

But x Jx = yJy, so the above will hold if
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This is satisfied if α(x) is a quadratic without constant term and, of course, we
choose

α(x) = x(l — x).

What is required of β, then, is seen to be

«*-*-*$-£)-«»-><>-*(?,-$>)•
which is satisfied by

α2 sx

We write the differential equation, for which the eigenfunctions /(x) are the
eigenfunctions of J, as

α2 sx
(x(l - x)/'(x))' + μs - — - - /(x) = 0 . (3.3)

\ 4-X <4 /

The boundary conditions are that /(x) be bounded as x -» 1 and that /(x) be
asymptotic to a constant times xα/2 as x -> 0. The reason we wrote the eigenvalues
as we did is that for each i the μ corresponding to the ith largest eigenvalue is
bounded as s -> oo. This is easily seen by an oscillation argument. So we assume i is
fixed and proceed to find the asymptotics of the corresponding eigenfunction/(x)
as 5 -> oo. We assume it normalized so that

/(x) - xα/2 as x -> 0 . (3.4)

1. The Region x <^ 1. The approximating equation is

c 4 4
The solution of this equation which satisfies (3.4) is

α,

where Φ is the confluent hypergeometric function [9]. We deduce that when x <^ 1,

/(x) ~ χ«/2e-v^/2 φ (^ - μ? 1 + α, V^x V (3.5)

2. The Region x <^ 1, ̂ /sx > 1.

Case 1. μ Φ i H -- - — (i = 0, 1, . . .). Then from the known asymptotics of Φ as its

argument tends to oo (6.13(3) of [9]) we deduce that

-^ . (3.6)
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1 + α
Case 2. μ = i H -- - — . Then

Φ( - U +

where Lf is the generalized Laguerre polynomial (6.9(36) of [9]). So we find that in
this case

/(x) ~ ( -

3. 77ιe Region ^/sx >!,(!— x)s>l. Here we use the standard WKB approxima-

tion for the solutions of a differential equation (pf)' + qf= 0 given by e±y/(pqj*9

where y = $ ^/q/p. In the case of our Eq. (3.3), the range of validity of the
approximation is as indicated in the heading of this section. To be definite, we take

It is easy to compute that for the range in question we have

y = — v^λ/1 ~x — μlogx + 2μlog(l + ̂ /l - x) + 0(1) .

Also, in this case pq is asymptotically — s/4 times x2(l — x). Hence

/(x) - (fl(φr"(l + yi-x^e-^v^

+ ί>(s)xμ(l + χ/Γ^x)"2μ^v/Γ^) , (3.9)

where a(s) and fo(s) are constants depending on 5.

4. The Region x-> 1. Letting y = 1 — x, /(x) = g(y) gives the approximating
equation

The general solution of this is a constant times IQ(^y\ where 70 is the modified
Bessel function. Thus we deduce that as x -> 1,

(3.10)

for some c(s).

5. Determination of a(s\ b(s) and c(s). From the asymptotics of/ 0 at infinity and
(3.10) we deduce that

f ( x ) » "'"' "̂  *
(1 - x)ϊ

when x -» 1 and s(l — x) -> oo. Comparing this with (3.9) shows that α(s) = 0 and
that

~ 1 . (3.11)
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And now comparing (3.9) with (3.6) and (3.8) in their overlapping range of validity
we see that we must be in Case 2 and that

fo(5)~(~ι)(2B+a+1<rv/; (3 12)

What we shall need from all this is, first, the asymptotics of /(I). This follows
immediately from (3.10), (3.11), (3.12), and the fact that /0(0) = 1:

±si^e-^2^+^. (3.13)

We shall also need the asymptotics of J/(x)2dx. It follows from the asymptotics we
have derived that the main contribution to this integral comes from an arbitrarily
small neighborhood of x = 0. It follows from (3.5), (3.7) and the fact

that

We put these two relations together to get what we really want, which is

β/(x)2rfx Γ(α + ί+l) ί !

6. The asymptotics ofλt. Since & commutes with our integral operator K, rescaled
to act on (0, 1), the set {ft } of eigenfunctions corresponding to the eigenvalues
μ0 < μ! < . . . of f̂ is the set of eigenfunctions of K corresponding to its eigen-
values, in some order.

Lemma 1. The eigenvalues of K are simple.

Proof. Since the eigenvalues of K are the squares of the eigenvalues of J what we
have to show is that if/ι(x) and /2(x) are eigenfunctions of £? (they need not
correspond to any particular μ here) and if for some v we have either

or
i i

$Jχ(\/sχy )fι(y)dy = v/ι(x), \Ja(\/sxy )/2(y)dy = — v/2(x),
0 0

then fι and /2 are linearly dependent. We shall assume them normalized so that
they both have the value 1 at x = 1.

Notice first that v φ 0 for otherwise if we expand the/! equation near x = 0 we
would find that

and /! would be identically 0.
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Next we define

H(x) = e~*l2JΛ(^~x\ gt(x) = e^Me'*),

make the obvious variable changes, and find that our relations become

J H(x + y)gt(y)dy = vgt(x)9 (i = 1,2), (3.15)
o

J H(x + y)gι(y)dy = vgι(x), ] H(x + y)g2(y)dy = - vg2(x). (3.16)
0 0

What comes now is almost identical to the proof of Lemma 1 of [28]. Assuming
first that (3.15) holds, we differentiate twice this relation with i = 1 and then
integrate by parts twice to obtain

vgι(x) = - H'(x) + H(x)gί(0) + J H(x + y)g^(y)dy .
o

If we multiply both sides by g2(x) and integrate, using (3.15) and its differentiated
version, we obtain (recall that gt(0) = 1)

00 00

v f gί(χ)g2(χ)dχ = - vg'2(Q) + vg'^O) + v f g2(y)gί(y)dy .
0 0

Thus, since v φ 0, we have g((Q) = g'2(ΰ). Equivalently,/j(l) = /2'(l). But since also
/χ(l) =/2(l), it follows from Eq. (2) that the corresponding eigenvalues μ must be
the same, and so the eigenfunctions are the same.

Next, assume (3.16) holds. Differentiating both sides of the first relation once
and integrating by parts give

vgί(x) = - H(x) -]H(X + y)g[(y)dy .
o

Multiplying both sides of this by g2(x) and integrating, using the second part of
(3.16), we obtain

00 00

v J gί(χ)g2(χ)dχ = - v + v J g2(y}gΊ(y)dy,
0 0

contradicting v Φ 0.

Now that we know the eigenvalues λt of K are simple; we can order them so
that λQ > λι > . . . . There is a permutation σ of N such that the eigenvalue
corresponding to ft is λσ(i). This permutation is independent of s since the eigen-
values μf and λt both vary continuously with s. The next lemma allows us to
compute dλt/ds for each ί.

Lemma 2. Let λ be a simple eigenvalue of an integral operator on (0,1) with
symmetric kernel of the form sK(sx, sy)9 where K(x,y) is smooth and symmetric. Let
f be a corresponding eigenfunction. Then

dλ λ /(I)2

ds s tif(x)2dx '
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Proof. We may assume / normalized so that JJ/(x)2dx = 1. Then according to
Lemma 3 of [28] we have

^ = } } |- (sK(sx, sy))f(y)f(x)dy dx .
ds J

QQds

(This holds no matter what the form of the kernel.) In the case at hand the first
factor in the integrand equals

K(sx, sy) + i x — + y — JK(sx, sy) ,

and we easily deduce from this that the integral itself equals

- } f(x)2dx + } x f ' ( x ) f(x)dx + \yf'(y) f(y)dy
S 0 0 0

and integration by parts shows that the expression in parentheses equals /(I)2.

•
Remark. It is easily seen that the conclusion of the lemma holds when the kernel
has a mild singularity at 0 such as our Bessel kernel has when α < 0.

Lemma 3. For each ί we have λt -> 1 as s -> oo .

Proof. The Hankel transform, when rescaled by the variable change xh->N/x, is the

integral operator H on (0, oo) with kernel \ J^^fxy] and so our operator K on (0, s)
may be thought of as PSHPSHPS, where Ps denotes the projection from L2(0, oo) to
L2(0,s). Since, as is well-known, H2 = /, the minimax characterization of the
eigenvalues shows that for each i the eigenvalue of PSHPS with ιth largest absolute
value tends to ± 1 as s -> oo . Since our operator is the square of this one, the
statement of the lemma follows.

We can now deduce the asymptotic formula (15) for the eigenvalues λ{. We
apply Lemma 2 to the eigenvalue λσ(ϊ) associated with the eigenfunction//(x) of (3.3)
and use (3.14) to deduce

ds Γ(α + i + l)i!

Recalling Lemma 3 we see that we can integrate from s to oo and we obtain

gLJL

It remains to show that σ(i) = i for all i. But it is clear from the above formula
that i<j implies that λσ(i) > λσ(j) for large s (and so for all s) and therefore
σ(i) < σ(j). Since σ: N -> N is onto, we must have σ(i) = i for all i.
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