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Abstract. Toric billiards with cylindric scatterers (briefly cylindric billiards) gener-
alize the class of Hamiltonian systems of elastic hard balls. In this paper a class of
cylindric billiards is considered where the cylinders are "orthogonal" or more exactly:
the constituent space of any cylindric scatterer is spanned by some of the (of course,
orthogonal) coordinate vectors adapted to the euclidean torus. It is shown that the
natural necessary condition for the K-property of such billiards is also sufficient.

1. Introduction. Cylindric Billiards

It is well-known that Hamiltonian systems of elastic hard balls are isomorphic to
certain billiards with cylindric scatterers (cf. [SCh-87], [KSSz-91]). Cylindric billiards,
i.e. toric billiards with cylinders as scatterers, belong to the class of semi-dispersing
billiards (cf. [SCh-87]). They deserve special attention for they are relatively simple.
Indeed, the first semi-dispersing but not dispersing billiard whose ergodicity was
shown was a cylindric billiard introduced in [KSSz-89] and the methods developed
there for establishing global ergodicity were quite instructive for more complicated
models as well.

Consider compact affine subspaces U : 1 < i < JV, JV > 1 in the d-torus Ύd

(with dimi? < d - 2), and denote Gi := {Q := (g 1 ; . . . ,qd) : dist(Q,L ι) < r*},
/ N \

1 < i < JV, where each r% > 0. Denote Q := Ύd \ ( (J CM and M := Q x Sd_x,

where Sd is the d-sphere. M — {x = (Q,V)} is the phase-space of the billiard
given in the domain Q with cylindric scatterers. The dynamical system (M, 5M, dμ),
where SR is the dynamics defined by uniform motion inside the domain and specular
reflections at its boundary (the scatterers!) and dμ is the Liouville measure, is called
a cylindric billiard. (As to notions and notations in connection with semi-dispersing
billiards we follow the work [KSSz-90].)
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In 1991 John Mather [M-91] asked whether a condition that, for instance, the
intersection of the constituent subspaces of these cylinders is trivial is sufficient
to ensure the ergodicity of the corresponding billiard (in connected components
of its phase space, of course). I expect that the answer is yes if, in addition, we
exclude the existence of trivial integrals of motion (a natural further assumption is, of
course, that the configuration space Q be connected since otherwise each connected
component should belong to different ergonents). To illustrate the appearance of
trivial integrals of motion, though the intersection of the constituent subspaces is
the zero-space, consider the billiard on the 4-torus with two cylindric scatterers:
Cι := {Q G T4 : (q2 + ψ'2 < r} and C2 := {Q e T4 : (q2 + q2

4)
ι/2 < r}. Here,

beside the total energy, υf + v\ and v2 + v\ are also conserved and the billiard is, of
course, not ergodic.

The conjecture in such a generality is very strong since it contains the statement
of the Boltzmann-Sinai ergodic hypothesis: the system of N > 2 billiard balls on Ύ",
v > 2 is ergodic on connected components of the submanifold of the phase space
specified by the trivial integrals of motion (energy, trajectory of the center of mass).
This hypothesis is still not settled in general; by recent beautiful results of Simanyi
[S-92] it is only established for the case v > N (beside the cases settled earlier:
(i) N = 2, v > 2, in [SCh-87] and also [S-70], [BS-73]; (ii) N = 3, v > 2, in
[KSSz-91]; (iii) N = 4, v > 3, in [KSSz-92]; we also note that the K-property of a
special Hamiltonian system of hard balls was obtained in [BLPS-92]).

Nevertheless we think that the class of cylindric billiards is interesting not only
because it contains hard ball systems. Semi-dispersing billiards in general, is too wide
and at the same time too wild a category whereas for cylindric billiards it is a realistic
aim to obtain transparent necessary and sufficient conditions. In this paper we consider
a special class of cylindric billiards: the constituent space of any cylindric scatterer
is spanned by some of the coordinate vectors adapted to the orthogonal coordinate
system where Ύd is given. We call these billiards orthogonal cylindric billiards. In
technical terms these billiards are given by a family CJ; : 1 < j < J of cylinders

ί ( λ 1 / 2 1
C-7 := σuj < (qγ ..., qd) : I Σ q2 J < rJ > on the d-torus where σu denotes the

shift with a vector u e Ύd. To concentrate to the essential part of our ideas we assume
that the cylinders are disjoint and later, at the end of Sect. 2, we will indicate how
this condition can be weakened.

Our main result (announced in [Sz-93]) is the following

Theorem. Assume that, for an orthogonal cylindric billiard with disjoint scatterers, Q
is a connected domain. Then the system is a K-system if and only if {K^ : 1 < j < J}
is a connected family of subsets of {\1..., d}.

The proof is based on the strategy formulated in [KSSz-89] and [KSSz-92]. Indeed,
in the spirit of the latter work, the proof of global ergodicity of a semi-dispersing
billiard should be based on a suitable definition of richness and then essentially consist
of three parts:

(1) geometric-algebraic part for treating neighbourhoods of rich points,
(2) dynamical-topological part for handling the subset of non-rich points,
(3) and, finally, separate arguments for singular trajectories (also settling the Chernov-
Sinai Ansatz).

Our concept of richness, in its spirit, is not very far from that used in [KSSz-92]
and in [S-92]. Nonetheless, our method for proving part 1 is novel and is, in fact,
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quite instructive: it makes really clear why the requirement of richness ensures the
necessary codimension two property of non-sufficient points. We hope that its idea can
be extended to a wider class of models as well. It is worth noting that in [KSSz-92]
and [S-92], where hard ball systems are discussed, this part of the proof requires the
unpleasant assumption that the dimension of the torus is not too small. In part 2, the
failure of the analogue of the theorem of the Appendix of [KSSz-92] requires a new
approach. Nevertheless, in the proof of Lemma 4.7, we strongly rely on the proof
given in [KSSz-92], and will only present the details where they are different. Finally,
the proof given in [KSSz-92] for part 3, in principle, also settles our case. Therefore
we omit the proof, and, at the end of Sect. 4, we just put down some calculations to
convince the reader that, in fact, this is the case.

The paper is organized as follows: in Sect. 2 we present the notion of richness,
formulate the main lemmas and indicate how they imply the theorem. Section 3 is
devoted to the geometric-algebraic part 1 by proving Main Lemma 2.2. Section 4
then settles the dynamical-topological part 2 by proving Main Lemma 2.3 and also
contains the necessary remarks as to part 3. According to the traditions, we also need
some facts from topological dimension theory, that are summarized in Appendix 1.
Appendix 2 is devoted to an elementary analysis of the trivial non-sufficient point of
some natural sub-billiards.

For brevity, our exposition relies heavily on earlier works: first of all on [KSSz-92]
and [KSSz-89] but also on [KSSz-90] and [KSSz-91]. To help the reader, however, we
everywhere provide precise references to the occurrence of the necessary definitions,
statements and arguments.

2. Notion of Richness, Main Lemmas and the Proof

Likewise as for hard ball systems, the proof is inductive but here induction is only
used for brevity of exposition. For d = 2, a billiard satisfying the conditions of
the theorem is necessarily dispersing and thus a K-system. Assume now that any
billiard in dimension d! < d fulfilling the requirements of the theorem possesses the
K-property. Under this condition we will show that the same holds true in dimension
d as well. (Though we will have several inductive arguments, the aforeformulated
inductive assumption will, in fact, be only used in the proof of Main Lemma 2.3.)

Similarly as in [KSSz-91], M* will denote the set of phase points whose orbits
contain an infinite number of collisions among which not more than one is singular.
M° c M* will be the subset of regular phase points, and M 1 := M* \M°. Moreover,
J^%+ will denote the collection of all phase points x E dM for which the reflection,
occurring at x, is singular (tangential or multiple) and, in the case of a multiple
collision, x is supplied with the outgoing velocity V+. We remind the reader that
a trajectory segment S[a>b]x is called regular (or non-singular) if it does not hit
singularities ( ^ x f l r f - 0; cf. [KSSz-92]).

Consider the regular trajectory segment S[a^x, -oo < a < b < oo, x e M.
Its symbolic collision sequence is the list of subsequent cylinders of collisions
( C J l , . . . ,CJk), 1 < k of the trajectory and can be described by the sequence
0Ί> >Λfe)' 1 5? 31 ^ J> 1 ^ ' — &• (if m e trajectory hits one or more singularities,
then, of course, there are a finite number of such sequences for any finite orbit.)

In the previous section we characterized a cylinder C by a triple (K, r, u) : K C
{!,...,</}, r eR+, ueΎd.
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Definition 2.1. We say that the trajectory segment S[a'b]x is connected if (Kjι,...,
K^k) is a connected cover of the set {1, . . . , d}. We say that the trajectory segment
g[a,b]χ j s rιcn if t h e r e e x i s t s a time t e [α, fr] (with Stx e dM also allowed) such that
both trajectory segments S[a^x and S[t>b]x are connected. If the trajectory segment
hits singularities, then the above properties are required for any trajectory branch.

Finally, the trajectory segment is poor if it is not rich.

Main Lemma 2.2. Assume that the trajectory segment S[a'b]x is regular, Sax,
Sbx φ dM and its trajectory segment is rich. Then there exist a neighbourhood
UcMofx, and a submanifold N such that

(1) codimiV> 2;
(2) for every y eU\N, S[aMy is sufficient.

(As to the definition of sufficiency cfi Definition 2.4 of [KSSz-92].)

The demonstration of Main Lemma 2.2 will be the content of Sect. 3.
Denote by M® the subset of poor phase points from M°. It would be nice to claim

that Mp is residual but there may exist some trivial one-codimensional submanifolds
of non-sufficient points for our billiard (and for some auxilliary sub-billiards used in
the proof as well). Therefore we should exclude a finite union of one-codimensional
submanifolds to obtain M # . Since the introduction of these submanifolds requires
some preparation, it is postponed to Appendix 2. Until then it may be instructive to
remark that this finite union necessarily contains all phase points whose trajectories
never collide in at least one non-trivial sub-billiard of our system. As such these
submanifolds are defined by linear conditions on the velocities. Thus we can only
claim

Main Lemma 2.3. M® Π M # is a residual subset,

whose demonstration can be found in Sect. 4.
The reader familiar with the technique of establishing global ergodicity of

semidispersing billiards already knows that the treatment corresponding to the
previous main lemmas for singular points, on one hand, and the verification of the
Chernov-Sinai Ansatz, on the other hand, follow from

Main Lemma 2.4. For every cell C of maximal dimension 2d — 3 in ^&&+, the set
C e d C C of all eventually disconnected phase points can be covered by a countable
family of closed zero-subsets (with respect to the surface measure μc in C) of C.

We say that a point x £ S&%^ is eventually disconnected if

(1) the semi-trajectory SR+x is regular;
(2) there is a number t0 > 0 such that the trajectory segment 5^°'°°^ is not
connected.

As stated earlier, Main Lemma 2.4 can be derived in almost exactly the same way
as Main Theorem 6.1 in [KSSz-92], and, for brevity, we are satisfied by giving some
indications at the end of Sect. 4.

Given Main Lemmas 2.2-2.4, the proof of our Theorem is straightforward. It is,
first of all, easy to see that the Transversal Fundamental Theorem (for simplicity
consider its form given in Theorem 3.4 of [KSSz-92]) is applicable. Indeed, by
Main Lemma 2.4, the Chernov-Sinai Ansatz 3.1 holds whereas the fulfillment of the
geometric conditions 3.2-3.3 can be seen by standard arguments. Further, our Main
Lemmas 2.2-2.4 are clearly the analogues of Main Theorems 4.3, 5.1 and 6.1 of
[KSSz-92]. Consequently, they provide the proof of the fact that every connected
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component Ωλ,..., Ωτ of the set M # introduced in Appendix 2 belongs to one
ergodic component. Indeed, this results in the same way as, in section 7 of [KSSz-92],
the aforementioned Main Theorems lead to the proof of the Main Theorem of that
work. These components, however, can be connected by bundles of orbits of positive
measure as is also explained in Appendix 2. This remark already gives the statement
of our theorem. D

At this point it is time to mention how the assumption on the disjointness of the
cylinders can be weakened. If we drop it, then, in principle, there may be trajectories
with an infinite number of collisions in a finite time interval. Therefore, as usual, we
put, first of all, the following condition (Condition 2.1 from [KSSz-90]): The set of
phase points in whose trajectories the moments of reflections accumulate in a finite
time interval is a residual subset.

Under this condition the proof of our theorem automatically provides that, in
general, the number of ergodic components is finite. Furthermore, the method
described in Appendix 2 for connecting different ergodic components definitely works
if we, in addition, require e.g. that

{KJ : Cj does not intersect any other cylinder}

is itself a connected cover of {1, . . . , d} or for any 1 < i < j < d\Kι Π K31^1.

3. Geometric-Algebraic Considerations: Proof of Main Lemma 2.2

Throughout the whole section we will only consider regular trajectory segments. Main
Lemma 2.2 will follow from the following

Lemma 3.1. Assume that the trajectory segment S^a^x is a regular, connected one
with Sax, Sbx ^ dM. Then there exists a neighbourhood U C M of x, and a
submanifold N such that

(1) codimiV > 1,
(2) for every y eU\N, S[aMy is sufficient.

Proof of Lemma 3.1. We start by characterizing the neutral subspaces of trajectory
segments with simple collision sequences. Assume first that 5 [ α'6 ]x, Sax, Sbx <£ dM
contains a single collision at time τ E (α, b) with the cylinder C := cru(B x A),

where B := ί(g : i e K) : ( £ q] ) < r\ and A := {(<?• : i e Kc)}. Now
I \ieκ J )

from the definition of the neutral subspace Wt(S{aMx) (cf. Def. 2.2 in [KSSz-92])
the following statement is obvious:

Sublemma 3.2. If the trajectory segment S[a^x, Sax, Sbx ^ dM contains a single
collison as above, then

Wτ±(S[aMx) = {aPκ(V±) + PKC(Z) :aeR, ZeRd}, (3.3)

where, in general, Pκ : M.d —> Rd denotes the orthogonal projection to the subspace
{Q = {qv . . . , qd) : q = 0 if i G Kc), and V± = p(Sr±x).

Remark 3.4. Clearly, for any W e Wτ±(S[a'b]x), the value of a := a(W) is uniquely
determined and a : Wτ±(S[a'b]x) —> R is a linear functional. Indeed, the uniqueness
of a is evident from (3.3) whenever Pχ(Y) φ 0. But Pχ(Y) = 0 is impossible since
then V^H-A and no collison occurs with the cylinder C.
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This functional is related to the notion of the advance of a collision introduced, in
general, for any collision of an arbitrary trajectory segment in [KSSz-92] and in [S-

92]. It is easy to see that, for the particular case of Lemma 3.1, a(W) = ^ a/\\\2 '

Next assume that, for some a < t < b, both trajectory segments 5 [ α ' ί ]x and
S[t>b]x with (Sax, Sfx, Sbx φ dM) contain exactly one collision in the times
a<τ<t<τ'<b with the cylinders C := σu(B x A) and C := σu,{B' x Al\
respectively. Now, if W e Wt(S[a>b]x), then for some α, β e R; Z, Z' e Rd

W = aPκ(Vt) + PKC{Z) = βPκ,(Vt) + P ( K/)c(Z').

This equation then leads to

(a - β)PKnK,(yt) + PK\K>{aVt - Zf) + Pκ,\K{-βVt + Z)

+ P(K\JK')C(Z — Z ) = 0.

From this relation one readily obtains

Sublemma 3.5. If the trajectory segment S^a^x contains exactly two collisions as
above, and Pκnκ'(Vt) φ 0, then a = β and

Wt = aPKuK,(Vt) + P{KΌK,μZ), (3.6)

where a G R, Z e Rd.

A similar argument provides the validity of

Sublemma 3.7. Consider a trajectory segment S^a'b^x with a collision sequence
( C Ί , . . . , ^ ) (C% e {Cj : 1 < j < J} : 1 < i < k) and collision times
a < τx < . . . < τk < b. Denote the non-trivial connected components of the
family {Ki : 1 < i < k} of subsets by Hι,...,Hm : | iJ | > 2 and let

m

Ho := {1, . . . , d} \ [j H{. Assume further that, for any 1 < i < k - 1 and any
1

1 < / < d, we have v^(τ%) φ 0. Then

Wb(S^x)=\f2a9PHg(Vb) + PHo(Z): ageR, ZeRd\. (3.8)

(A similar representation is true for Wa(S[a>b]x), too.)

An important particular case of this sublemma is

Corollary 3.9. In the setup of Sublemma 3.7, assume further that {Ki : 1 < i < k}
is a connected cover of {I,..., d}. Then the trajectory segment is sufficient.

Proof of Sublemma 3.7. We proceed by induction on k. The case k = 0 is trivial.
Assume that the statement is true for any kf < k and any interval [α, b]. Let
a < τx <,•••, < rk < b < τ f c + 1 < b\ By our inductive assumption, (3.8) holds

true. If W e Wb(Sίa>b']x), then, on one hand, it should be of the form (3.8) and, on
the other hand, of the form βPBk+ι (Vb) + P A f c + 1 (Zf). The argument of Sublemma 3.5

then gives ag — β whenever Hg Π Kk+ι φ 0. We obtain, moreover, Wb(S[a>b ]x) as

a sum analogous to (3.8), from where the required form of Wb,(S[a>b ]x) comes by
reflection with respect to Ck+ι. D
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Corollary 3.9 easily provides now the proof of Lemma 3.1. Indeed, we can assume
b = 0. In a small neighbourhood U of x the collision sequence of S^a^y is a constant.
For (x e)U sufficiently small, let N := {y : v^ir^ = 0 for some 1 < i < k — 1 and
some 1 < / < d}. By Sublemma 3.7, of course, every y E U\N is sufficient. On the
other hand, for any 1 < i < k - 1 and any 1 < I < d, codimjy : vf(τt) = 0} is 1
since, in a small neighbourhood, Sny is a diffeomorphism. Hence Lemma 3.1. D

We can next turn to the

Proof of Main Lemma 2.2. Assume, for simplicity, that a < 0 < 6, x G 9M°, and the
trajectory segments S^a^x and S®fb^x are connected. Denote their collision sequences
and collision times by (C_k-,..., C_1), (C{,..., Cfc+) and a < r_k- < ... < τ_λ —
0 = τγ < ... rk+ < b, respectively. Introduce, moreover, the notations

N~ := {y : vfir^ = 0 for some — k~ + I < ί < — 1 and some / e K z } ,

7V+ := {y : v^(τt) = 0 for some 1 < i < A;+ - 1 and some I e JRΓJ ,

and

ΛΓ := ΛΓ" Π iV+.

It is evident from the proof of Lemma 3.1, that, if y G U\N, then y is sufficient.
It remains to show that codim N > 2. This statement, however, will be a straight
consequence of

Lemma 3.10. Suppose that S^^x0 is a regular trajectory segment with a collision
k

sequence ( C 1 ? . . . , C k ) . Assume further that either lφ\yorifl — \, then 1 G \J Kt.
i=l

Under these conditions there exists a neighbourhood U of x° such that

coding{^(0) = 0,vz(δ) = 0} > 2. (3.11)

Proof of Lemma 3.10. The argument is again inductive. We assume that the claim
holds true in any dimension 2 < d! < d for any number fc(> 0) of collisions, and
also in dimension d if the number of collisions k' < k. Thus we can also suppose
that {Kt : 1 < i < k} is a cover of {l,...,cί}. If 1 and / belong to different
connected components of this cover, then the statement of the lemma is obvious
since then the dynamics is the product of two or more dynamics and the subset in
(3.10) is a product set of two, one-codimensional submanifolds in the phase spaces
of these noninteracting dynamical systems. Consequently, we can and do assume that
{Kt : 1 < i < k} is a connected cover of {1, . . . , d}.

The non-trivial case is, of course, υ®(0) — 0. Therefore we will consider a product

type neighborhood ΪJ = UQO X Uvo in the one-codimensional submanifold determined

by the condition vx(0) = 0 of a point x° := (Q°, V°) satisfying v?(0) = 0. (Here UQo

and Uvo belong to the configuration and the velocity spaces, respectively.) Denote

N := {y : v~j~(τx) — 0 for some 1 < i < k — 1 and some j G K^ .

By our inductive assumption and Lemma A. 1.1

codim^ N — 1.
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C o n s e q u e n t l y , b y L e m m a A . 1.2, t h e r e e x i s t s a Q G UQO s u c h t h a t

Now, by Corollary 3.9, if V e UVO\(N)Q, then 5 [ 0 'b ](Q, V) is a sufficient trajectory
segment. By sufficiency then, for these V, the map of the neighborhood of the origin
of R^"1, consisting of vectors {dQ\ (dQ, V) = 0}, into Sd_{ defined by

is a local diffeomorphism (following the traditions, p : M —> Sd_ι is defined by
p(Q, V) := V). Thus the inverse image of the one-codimensional submanifold of Sd_ι

defined by the equation υ^b) — 0 is also one-codimensional for every V G U\(N)Q.
Finally, by Lemma A. 1.3, we obtain that

codimu{y:Pl(Sby) = 0} = l,

and thus, by Lemma A. 1.4, we obtain the desired statement. D

4. Dynamical-Topological Part: Proof of Main Lemma 2.3

We need first a simple characterization of poor trajectory segments.

Lemma 4.1. If a regular orbit SRx is poor, then there exists a non-collision moment
τ such that neither of the trajectory segments S'(~oo'r)x and 6 f ( r'oo)x is connected.

Proof. Denote
T~ := sup{£ : 5 (~o o ' ί )α: is not connected},

T + := inf{£ : 5(t>oo)a; is not connected} .

The statement is trivial if any of T~ or T + is not finite. If T~ and T + are finite,
then they are necessarily collision times. It is easy to see that the orbit SRx is poor
if and only if T~ > T + , thus providing the statement of the lemma. D

For a poor regular orbit, the value of r figuring in the statement of Lemma 4.1
can be chosen to be rational. By Property 2.9 of [KSSz-91], it is sufficient to show
the validity of

Lemma 4.2.

Mnc := {xeM°\dM: S(-°°>0)x and 5(0>oo)a: are not connected}

is a residual subset.

Proof of Lemma 4.2. Let x e M. We will repeatedly use Lemma 2.14 of [KSSz-
91] ensuring that residuality be checked locally. Denote the partition into connected
components of the collision graphs of 5(~°°>0)x and of 5(0>oo)a; by

P - : = { # Γ , . . . , # - _ } and by P+ := { # + , . . . , i ί+ } (4.3)

respectively. We wish to separate the cases

(i) P~ Λ P + = ε, where ε denotes the trivial partition of {1,. . . , d}, and
(ii) P- Λ P + φ ε .

Let us start with the simpler case (ii). Here we can suppose that there exist
nonempty Hλ and H2 with H{ Π H2 = 0, Hγ U H2 = {1, . . , d} such that they are
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both P~- and P+-measurable. Under this condition, a variation of the ball-avoiding
argument leads us to our goal. Indeed, under the assumptions of the theorem, there
exists a j 0 such that Kjo intersects both H{ and H2. Suppose, for simplicity, that
{RJ : KJ c H{} is a connected cover of Hi for i = 1,2. Since we are considering
phase points where the dynamics

gt __ /gt gt \ (4 4)

is the product of two non-interacting evolutions, the quantities

2 = £ , , ί = l,2 (4.5)

are conserved. Fix the values of Eγ and E2 {Ex + E2 = 1) and restrict our
considerations to the submanifold Φ := MH E H E of M, where (4.5) holds. The
phase points of the aforementioned evolutions necessarily avoid the open subset

B:= ixeΦ: I

By the inductive assumption the systems (MH ^ ,S^.,μH., i= 1,2 are K (here
we assumed | | iJ || > 2; if HffJI = 1, then the adaptation of the ideas of [KSSz-89]
to our situation is even simpler). Their product (4.4) is consequently mixing and,
moreover, as it is easy to see, it is a hyperbolic system with singularitites. More
exactly, dimΦ = 2d — 2 and for the product dim7S ) U = d — 2, whereas dim7° = 2.
Now we claim that

Lemma 4.6. Consider the product of two ergodic semi-dispersing billiards, each
satisfying the conditions of the fundamental theorem (Theorem 3.4 from [KSSz-92]).
Let B be an open set in the phase space of the product system and H c M such that
infiJ = — oo, supi7 = oo and, moreover

AH(B) := {x e Φ : SHx Π B = 0} .

Then codimφ AH(B) > 2.

The proof of the lemma is completely analogous to that of Lemma 3 of [KSSz-89].
The only difference is that here we have two neutral directions corresponding to the
time advances of both factor-dynamics. The natural way out is to consider sections
in both factors.

By choosing H = R and applying Lemma 4.6 and then Lemma A. 1.7 we obtain
the statement of Lemma 4.2 in case (ii).

Turn now to case (i). First we formulate an important lemma. Denote

F := {y : SR*y is partitioned by Pτ}.

Lemma 4.7. Suppose that x e M # and the intervals I~ := [α,0] and I+ := [0,6],

(a < 0 < b) are chosen in such a way that S[a>b]x is regular and S1 x and SI

Hι x are

sufficient for every 1 < i < i~, and 1 < I < i + , where {H~,. ..,H~_}:= P(S[a>0]x)

and {ff+,..., H++} = P(S[0>b]x). Then there exists a neighbourhood U (x e U) such
that F ΠU is residual.

Proof of Lemma 4.7. For simplicity of notations, we restrict our attention to the case
i~ = i+ = 2. The proof is based on the arguments of [KSSz-92] and, for brevity of
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exposition, here we only present the basic calculations to convince the reader that the
situation is analogous. Denote df := \H^\, i = 1,2. The main tools of the arguments,
as usual, are the stable and unstable local manifolds j*>u(y) and, moreover, the neutral
manifolds %(y) possessing the maximal possible dimension in almost every point of
a sufficiently small neighborhood U of x. Denote

Ίs

H+(y) =CCy{z β U : qά(z) = qo(y) and Vj(z) = υ3(y) for j £ iϊ+and

dist(S^+z, Sϋ

H+y) —• 0 exponentially fast as t —> oo} ,

where CC denotes the operation of taking the arcwise connected component of a
set containing the point y, and

7£-(2/) :=CCy{z e U : Qj(z) = qά{y) and Vj(z) = vά(y) for j £ iff and

dist(5* z, Sf y) —> 0 exponentially fast as t —> — oc} ,

and, moreover,

Ίse(y) -= U ^ 2 + ω ,

If any element of any partition has just one element, then the previous definitions
just define the point y itself and this definition fits into our setup. The maximal
dimension of YH+(y) is, of course, dt — 1 and that of ηu _ (y) is d~ — 1. Consequently,

i i

the maximal dimensions of both jζ(y) and of η^iy) are identically d — 2. The neutral
manifolds are well-defined pieces of the affine neutral subspaces not terminating in
U. In fact,

={zeU : Q(z)-Q(y) = a.P^ipiy^-^a^ipiy)) and

p(z) = p(y)} ,

7o(2/) '•= {* e tf : Q(z) -Q(y) = βxPH-(p{y)) +β2PH-(p(y)) and

(4.9)

By definition, 70(y) is the affine subspace spanned by 7o(y) and ^(y). To calculate
the dimension of jo(y) we remark that the only solution of the equation

a2PH+(V) = βxPHAV) + β2PH-(V) (4.10)

is aλ = a2 = βι = β2 and, consequently, dim70(τ;) = 3.
Since 2(d - 2) + 3 = 2d - 1, the methods of [KSSz-92] are applicable assuming

we can ensure the transversality of the submanifolds 70, Ye and 7^. The situation is,
in fact, even simpler here since 2d — 1 is exactly equal to dim M.

Thus, for this case, the proof works if we establish

Sublemma 4.11. Under the assumptions formulated above
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We note that the statement makes sense and does hold independently of the
existence and dimensionality of the figuring submanifolds since the tangent planes
are, as usual, determined by the continued fractions.

Proof of Sublemma 4.11. The idea is close to the proof of Lemma 5.20 from [KSSz-
92] and we only sketch the main steps. The transversality of j*(y) and of 7 (̂2/)
easily follows from convexity arguments. Thus it is sufficient to prove the relation
^/7o(y) Π ί^yYe(y) + J£7e (2/)] = ° L e t a Perturbation Π = {(dq^ dvτ) : 1 < i < d}
be a common element of ^yjo(y) and of Sζps

e{y) + >Tyη^(y). The perturbation Π
can be split into the components Π~ — {(dq~,dv~) : 1 < ί < d} e ^^(y) and

77+ = {{dqf, dvt) :l<i<d}e ryΊ

s

e{y).
By convexity arguments

Σ dq dv- > 0 , J2 d^dv^ ^ ° : ^ = ! ' 2 > <4 12)

with a strict inequality in at least one of the first (and second) pair of relations if
IB?

Π~ φ 0 (Π+ φ 0, respectively). By conservation of energy of the subsystems S ~_y

and S^f+y, we also have

j d ^ = O ; j = 1,2. (4.13)

3

A consequence of Π G ̂ y%(y) is

dv~ + dv^ = 0 1 < i < d. (4.14)

Another consequence, as it is easy to see from (4.10), is that, with suitable α 1 ? α 2 ,
α 3 G M, we have i l = (dQ, 0) and

dQ = aiPτr-(V) + a?PH+(V) + a^V .

By (4.14), the second inequality of (4.12) is equivalent to

} dq^dv^ > 0 j — 1, 2 .

Consequently, whenever Π φ 0, (dQ,dV~) > 0. On the other hand, (4.13) trivially
implies {dQ,dV~) = 0, a contradiction. Hence Sublemma 4.11. D

To complete the proof of Lemma 4.7, we note that if either i~ or i+ φ 2, then
7 s and ηu can be defined by a natural generalization of (4.8) and their maximal
dimensions are

%~
- ^(d~ - 1) = d - f~ ,

d i m 7

s =
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Moreover, the generalization of the arguments around (4.10) easily provides that
dim 7° = i~ -f i + - 1. Lemma 4.11 holds true in this general case, too, and, since
(d - i~) + (d - i+) + (i~ + i+ - 1) = Id - 1, the methods of [KSSz-92] are again
applicable. Hence Lemma 4.7. D

Our final task is to argue that Lemma 4.7 implies the validity of Lemma 4.2 in
case (i). To that end we recall again Lemma 2.14 of [KSSz-91] saying that residuality
of a set A can be checked locally, i.e. in neighborhoods of points x G A. Fix a point
x G Mnc. There necessarily exist the limit partitions

p-°° := lim { ^
t-^ — O

and
P°° := lim

t—»oo

where P(S^a^x) denotes the partition into connected components of the collision
graph of S{aMx. In general, P~ ^ P'00 (and P + ^ P°°). By definition, there exist
finite rational intervals I~ := [ ΐ f , ΐ^] C R_ and 1+ := [ ί + , φ C M+ such that

P(SlΨx) = Pτ°° and, moreover, the collision graph of each S[ίl_~*2 '^(S** x) oθ9
ΓQ t+__-f.+ -\ + Hi i

1 < i < i~ and of SHΌ£ 1 (5*i x)Hoo, 1 < / < i + is rich with respect to
the corresponding subdynamics. In virtue of Main Lemma 2.2, by discarding a
suitable residual subset, we can assume that all aforementioned trajectory segments

are sufficient in the corresponding subdynamics. In case (i), if S^ jt^x does not
contain any collision, then, by Lemma 4.7, we are done. If it contains, then let
us assume that these collisions occur at times (t^ <)τλ < . . . τ m ( < ί|") with the
cylinders C 1 ? . . . , Cm. For all 1 < i < m consider the velocities υι(τi+) : I G K%

and, moreover, the velocities Vj(^~+) : 1 < / < d. By virtue of Lemma 2.10, apart
from a residual subset, at most one of all these velocities vanishes. Assume that it is
vι^ΓiJ[~) f° r s o m e 1 < i < m9 I £ Ki9 say. Then choose τi < I < τ 2 + 1 , and consider
the trajectory segment 5^i ^x. Now Lemma 4.7 can be applied to the trajectory

segments S[tι 'ΐ]x and 5 [ f ' ^ ]χ since, by Lemma 3.7, all the sub-billiard trajectories of
these trajectory segments are sufficient (the sub-billiard trajectories should, of course,
be taken on connected components of the collision graphs of S^i ftx and of 5f^)t2 J#).
This completes the discussion of case (i). Hence Lemma 4.2. D

Singular Orbits. To end this section we turn to some thoughts about the proof of
Main Lemma 2.4. Our subset C e d of eventually disconnected points is analogous to
the subset C e d of eventually decomposing points used in [KSSz-92]. For any t0 G R
and any partition P of {1, . . . , d} we can also introduce the subset

Ced(£0, P) := {x G C e d : the partition into the connected components

of the collision graph of S^tθyCθ)x is finer than P} .

Assume, for simplicity, that P = {HUH2} has two nontrivial elements. Now the
definitions of U(y0), F+9 Ff

+ are evidently the same as in [KSSz-92], whereas 7Q(.)
is given by (4.5), and further 7^ (.) : i — 1,2 will appear instead of the manifolds
7f 2(.) and 2/|4(.) The dimension*of

: Q(z) - Q(y) ± V(y)}
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is, of course, 1 and the dimension of

Ίs

e(y) =

is d — 2. That of the generate

7 > ) : = U %β<*> = U

is then d - 1. It is easy to see that, with these modifications in the definitions, the
proof of Main Theorem 6.1 can literally be copied.

Appendix 1. Some Facts from Topological Dimension Theory

In the proofs some additional facts are needed compared to those discussed in [KSSz-
92]. Here only these will be treated otherwise the reader is suggested to consult
the aforementioned paper or the monography [E-78]. Moreover, for simplicity of
exposition, we do not aim at the widest possible generality. In particular, we always
assume that our basic space M is a compact smooth manifold and, moreover, it is
the product M = M{ x M2 of smooth manifolds.

Denote, for any Ac M,

codimM A := dim M — dim A ,

where dim A is any of the three classical notions of dimension: the covering, the small
inductive or the large inductive dimension.

Lemma A.I.I. Assume that
(i) F_ is a subset of M with codimM F > 2; _

(ii) M is a submanifold in M with codimM M = 1.
Then codimM F > 1.

Lemma A.1.2. Assume F is a closed subset of M = Mλ x M2 with codimM F > 1.
Then there exists an x G Mx such that codimM Fx > 1, where Fx := {y : (x,y)
eF}.

Lemma A.1.3. Assume that A is an arbitrary subset of M — M{ x M 2 , and
(i) there exists an L C M2 satisfying codim M L > 1

(ii) for every y e M2\L we have codim M i Ay>l, where Ay : = {x : (x, y) e A}.
Then codim M A>\.

Lemma A.1.4. Assume
(i) U is a smooth submanifold in M with c o d i m M £ 7 = 1 ;

(ii) F CU is a subset such that codim^ F > 1.
Then codimM F > 2.

These lemmas are simple consequences of the following characterizations of one-
and two-codimensional subsets.

P r o p e r t y A.1 .5 . For every subset A c M, c o d i m M A>\ if and only if Int A = 0.
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Property A.1.6. For any closed subset F C M, the following three conditions are
equivalent:

(i) codimM F > 2;
(ii) F Φ M and, for every open connected set G C M, the difference set G\F is

also connected;
(iii) For every point x G M and for any neighborhood V of x in M there exists
a smaller neighborhood W C V of the point x such that, for every pair of points
y,z G W \ F, there is a continuous curve 7 in the set V \ F connecting the points y
and z and, moreover, Int F = 0.

Indeed, Lemmas A. 1.1 and A. 1.4 are trivial, Lemma A. 1.2 is a particular case of
Problem 1.9.C of [E-78] and finally for Lemma A. 1.3 we can argue as follows:

If codimM A = 0, then, by Property A. 1.5, A necessarily contains a subset B1xB2,
where Bγ c Mv B2 C M2 are ball-like subsets. If codimM L > 1, then, by the same
property, (M2 \ L) Π B2 φ 0. If y G (M2 \L)Π B2, then codimMi Ay > 1, resulting
in Int Ay = 0 contradicting the fact that for y G B2, B1 c Ay.

Finally, we formulate an additional useful property of codimension-two sets from
[KSSz-89] (Property 4 from Sect. 4):

Lemma A.1.7. Assume F is a closed subset ofM = M{xM2, and for every y G M2,
codimMi Fy > 2. Then codimM F > 2.

Appendix 2. Trivial Non-Sufficient Points of the Natural Sub-Billiards

For a nonempty subset Z c {1, . . . , J} consider the sub-billiard (MZ,S§, dμz) on
the d-torus Ύd with the cylinders {C 7 : j G Z} as scatterers.

Lemma A.2.1. The subset Mz of phase points from Mz whose orbits have no
ιz

collisions at all is contained in a finite union Mz := (J Eι of submanifolds such that
for every 1:1 <l <lz,

 ι=ι

(1) coάimMzEι > 1;

(2) Ef is compact.

The lemma is a direct consequence of

Lemma A.2.2. Let D cΎd be any set with a nonempty interior. There exists a finite
set of (unit) normal vectors in Rd such that if the trajectory SRx of a phase point
x = (Q5 V) never enters D, then V is orthogonal to at least one of the given normal
vectors.

Proof of Lemma A.2.2. (joint with N. Simanyi). Introduce the natural coordinates
in Ύd. We can assume that D is a small ball and Q = 0. The closure G =
{RV}cl := {z G Ύd : for some t e R z = tV}cl of the one-parameter subgroup
generated by V is a subtorus (connected closed subgroup) of Ύd. Furthermore it
coincides with Ύd whenever the coordinates of V are independent over the rationals.
Suppose that this is not the case. Consider the dynamical system (Td, ΓR, dx), where
Γtx := x + tV (moάZd). We want to find the invariant - say L2 - functions
of Γt : Γtf(x) := f(Γtx) by standard Fourier methods. To that end we expand
f(x) = Σan exp(2τπ(n, x)). If / is ΓR-invariant, then (n, V) φ 0 implies an = 0.

n

Now L := {n : (n, V) = 0} C Zd is a nontrivial subgroup and, in fact, by
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Pontryagin's duality, its dual L* is just the factor group Ύd/G. This duality also
asserts that the subtorus G is exactly the set of all points x e Ύd for which all
characters exp(2πi(n, x)) with n e L take on the value 1. Consider now the natural
projection π : Rd —> Ύd. The above characterization of G yields

π~ι(G) = {x G Rd : (n, a;) is an integer for every n e L} . (1)

Set the orthogonal direct sum Kd = W θ VF-1, where the subspace W is the closure
of all rational multiples of points from L. Of course dim W1- = dimG. We denote
the dimension of W (i.e. the dimension of Ύd/G) by k. It is clear that the group L
is a lattice (a discrete subgroup of maximum possible rank k) in the Euclidean space
W. The characterization (1) of π~ι(G) says precisely that π~1(G) = L ' θ l f 1 , where
the lattice Z/ in W is the so called dual lattice of L, that is

Lf = {x eW \ (n, #) is an integer for every n G L} . (2)

Let us denote by B one of the connected components of the inverse image π
Thus, by the assumptions, the set B is a ball of radius r which is disjoint from the set
T Γ - ^ G ) = V 0 W-1. Let us focus on the orthogonal projection Bx = PX(B) of the
ball B into the subspace W. By the disjointness just mentioned, we have that in the
^-dimensional Euclidean space W there is a ball Bx of radius r which is disjoint from
the lattice L' dual to the lattice L. We claim now that there exists a finite number
/(fc, r) (depending only on the dimension of the Euclidean space and the radius of
the ball) such that, under the mentioned circumstances, one can find a nonzero vector
n G L for which | |n| | < /(fc,r). By the appropriate scaling property of the lattices
(i.e. if we multiply L by a positive number a, the corresponding dual lattice V will be
multiplied by the reciprocal of a) we can easily see that the sharpest upper estimate
/(/c, r) has the form ak/r, where

ak = sup{||n[| : n is the shortest nonzero vector of a lattice L

whose dual lattice does not intersect some ball of radius one} .

The value ax is, of course, -. The questioned finiteness of the numbers ak is positively

answered by

Lemma A.2.3. For every integer k > 1,

< /- + - 2

Proof. Suppose the finiteness of the right-hand-side. Let L be a lattice in the k-
dimensional Euclidean space W in which the shortest nonzero vector n 0 is longer
than

1 4 2

4 + 3αfc-i'

and let B a (say open) ball of unit radius in W. We want to show that the dual lattice
L' intersects B. Consider the set

{x e W : (n0, x) is an integer } . (3)

This set is obviously a countable collection of equidistantly placed hyperplanes in
W, the distance between neighboring such hyperplanes being l/ | |n o | | . Let H be the
one among these hyperplanes that has the shortest distance from the center of the ball
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B, and let Ho be the other amongst these hyperplanes that contains the origin. Let,
moreover, L'o be the intersection of the dual lattice L1 with Ho. It is clear that L'o is
a lattice (of rank k — 1) in Ho and the intersection U Π H is a translated copy of L'o.
We denote the orthogonal projection of the original lattice L on the subspace Ho by
Lo. It is straightforward that Lo is a lattice in Ho and its dual lattice in the Euclidean
space Ho is just what we denoted by L'Q. Since every point in the projection Lo of
L is the projection of an appropriate point of L having distance from Ho not bigger

than — — , by the Pythagorean Theorem we get that the shortest nonzero vector of

the lattice Lo can not be shorter than —ll^oll' ΐ e * t s l e n g m *s greater than

1 4 2

By the definition of the number ak_x, the lattice Lf

0 must intersect every open ball of
radius

ak-ι

I 4 2

(4)

fc-l

However, by the choice of the hyperplane H and by the Pythagorean Theorem, the
intersection of the unit ball B with H has radius not less than

1

which number is greater than

\ 4f- + ±«*

Since this last number is exactly given by (4), the fact that V Π H is a translated
copy of LQ, immediately implies that the lattice V intersects the ball B.

Hence the lemma. D

Since M, Mz c Ίd x Sd_x(Z C {1, . . . , J}), it makes sense to consider the
connected components of the set

# :=M\\J (Mzf.

By Lemma A.2.1, their number is finite. Denote them by Ωv ..., Ωj (1 < / < oo).
The main body of the paper proves that each Ωλ,..., Ωj belongs to just one

ergodic component. Here we add that they can be connected by bundles of orbits of
positive measure. This will be clear from the elementary

Lemma A.2.3. Consider a billiard in Q := Td \ C, where C is a spherical scatterer.
Vary the configuration component Q of a phase point (Q,V~) by keeping its velocity
coordinate fixed. Then, as Q varies, p(τ+(Q,V~)) is a mapping with maximal rank
d — 1 (as usual, p(r + (Q, V~)) denotes the outgoing velocity after the first collision of
the phase point (Q,V~)).
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Indeed, each Ωi : 1 < i < I is defined by a finite number of linear inequalities
on the velocities. On the other hand, by Lemma A.2.3, for any C3 : 1 < j < J the
following statement is true: for any fixed values of v% : i £ K3 and for any pair
(v~ : i e K3) and (υf : i G K3) such that for some pair Q~~, Q+

x : = (Q ? [Vi % φ K3 vi :ie K 3 } ) e M # ,

where for some ε > 0 x+ — Sεx and S^0'^x contains exactly one collison, it is
true that suitable neighbourhoods of the phase points x~ and x+ can be connected
by bundles of orbits of positive measure.

It is also clear that, if for some j { and j 2 , K^λ Γ)K32 φ 0, then the aforeformulated
statement also holds for the union KJι UKJ2 instead of K°. Since KJ : 1 < j < J is a
connected cover, we also obtain by induction that, in fact, every connected component
of M # can be connected to any other by bundles of trajectories of positive measure.
Thus M # makes, indeed, just one ergodic component.
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