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Abstract: The Cauchy problem for the Yang-Mills equations in the Coulomb gauge
is studied on a compact, connected and simply connected Riemannian manifold
with boundary. An existence and uniqueness theorem for the evolution equations
is proven for fields with Cauchy data in an appropriate Sobolev space. The proof is
based the Hodge decomposition of the Yang-Mills fields and the theory of non-linear
semigroups.

1. Introduction

Quantum theory is usually formulated in a way which depends on the global structure
of space. On the other hand it is supposed to describe phenomena in the atomic and
subatomic scale. Hence, it is of interest to study the quantum theory of systems of
finite spatial extension, and the role played by the boundary conditions.

Yang-Mills theory is a non-linear generalization of electrodynamics. Yang-Mills
fields are connections in a right principal fibre bundle ίP over the space time manifold
X = M x R with structure group G describing the internal symmetries of the theory.
The canonical variables in the Yang-Mills theory can be described as a pair of Q-
valued, time dependent 1-forms A = A^x1 and E = E^x1 on a typical 3 dimensional
Cauchy surface M, where Q is the Lie algebra of the structure group. We assume that
0 is equipped with an ad-invariant metric.

The Yang-Mills equations split into the evolution equations and the constraint
equations. The constraint equation is

6E + [A ,E] = 0, (1.1)

where δ denotes the co-differential with respect to a given Riemannian metric g on
M, [ , •] denotes the Lie bracket in g, and the dot denotes the scalar product of forms,
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that is [A , E] = g^[A^ E ]. The evolution equations can be written in the form

A = E + dφ-[φ,A], (1.2)

E = - * dB - *[A Λ B] - [φ, E] , (1.3)

where d denotes the exterior derivative, * denotes the Hodge star operator on M and
Λ denotes the wedge product so that *[A Λ B] = ε^fA^ Bk]dxl. Furthermore φ is
the scalar potential and

] (1.4)

is the dual of the curvature form of the connection defined by A.
There are no evolution equations for the scalar potential. Its arbitrariness reflects

the gauge degrees of freedom of the theory. In order to obtain uniqueness of the
solutions of the Cauchy problem for the evolution equations we have to assume a
gauge condition determining the scalar potential.

The existence of solutions of the Cauchy problem for the evolution part of
Yang-Mills equations in Minkowski space-time has been studied by several authors,
[1-3], who used the temporal gauge condition φ — 0. The aim of this paper is to
extend their results to the situation when the Cauchy surface M is a connected and
simply connected compact 3 -manifold with smooth boundary dM, and the Cauchy
data are supplemented by boundary conditions requiring the vanishing of the normal
component nA of A, the normal component nE of E, and the tangential component
tB of B. These conditions have physical singificance as they describe the boundary
behavior of the gauge fields in the MIT bag model [4]. We find that the temporal
gauge condition φ — 0 is inadequate for this problem and use an analogoue of the
Coulomb gauge.

The differentiability conditions on the fields involved can be expressed in terms
of the Sobolev spaces Hk consisting of ^-valued 1 -forms on M which are square
ίntegrable together with their derivatives up to order fc, where the scalar product is
defined in terms of the metric g on M and the ad-invariant metric on 0. In this setting
we consider

D = {(A, E) £ H2 x Hl I nA = 0, ndA = 0,nE = 0} (1.5)

as the phase space for the Yang-Mills fields with the bag boundary conditions.
One should remark that the prescribed boundary conditions for (A, E) are in fact
independent of the Riemannian metric on M. The results of this paper are summarized
in the following:

Main Theorem. Assume that M is a smooth, compact, connected and simply con-
nected Riemannian 3-manίfold with smooth boundary dM. Then, for every (A0, EQ) G
D, there exists T > 0 and a unique continuous differentiate curve [0, T) — > D . t ι— >
(A(t),E(t)) satisfying the Yang-Mills evolution equations (1.2), (1.3), where φ is a
solution of the Neumann problem

Δφ = -δE and ndφ = 0 , (1.6)

and the initial conditions A(0) = AQ, E(Q) = EQ. If the Cauchy data (A0, EQ) satisfy
the constraint equation (1.1), then the solution (A(t),E(t)) satisfies the constraint
equation for all t e [0, T).



Existence and Uniqueness of Solutions of Yang-Mills Equations 595

Yang-Mills equations are invariant under conformal rescalings of the Lorentzian
metric in M x R,

dt2 - gijdxidxj \-> ρ2(dt2 - Qijdxidy?} , (1.7)

accompanied by the transformation of the fields (A,E) ι-> (A,ρ~lE), where the
conformal factor ρ is a positive function on M x R. Allowing conformal factors to
vanish on the boundary corresponds to the conformal compactification of unbounded
Cauchy surfaces, followed by attaching the sphere of directions at spatial infinity [5].
In this way one can transform the Yang-Mills equations in Minkowski space into the
Yang-Mills equations in spatially bounded domains. In particular, our theorem gives
rise to a corresponding existence and uniqueness result in Minkowski space. This
approach yields results in weighted Sobolev spaces over R3 with the weight factor
determined by the conformal factors.

The proof of this theorem is based on the theory of non-linear semigroups, [6].
In Sect. 2 we review elements of the Hodge decomposition and apply it to the Yang-
Mills equations. The existence and uniqueness of solutions of the linearized evolution
equations is studied in Sect. 3. The full non-linear evolution equations are discussed
in Sect. 4. In Sect. 5 the conservation of the constraint equation is studied. Proofs are
given in the Appendix.

The authors would like to thank Jacek Tafel for many interesting and helpful
discussions, and Larry Bates, Paul Binding, Bogdan Lawruk and Wolf von Wahl for
their interest in this work.

2. Hodge Decomposition

The Hodge decomposition of the space L2 of square integrable 1 -forms on M is

L 2 =rΘ^Θ^, where W = {*du \ u 6 H\ tu = 0} ,

®={df\feHl,f\dM=0}, (2.1)

3% = {u e L2 I du = 0, 6u = 0} ,

are the spaces of exact 1 -forms, of co-exact 1 -forms, and of harmonic fields,
respectively. The decomposition (2.1) is orthogonal in the L2 scalar product. We
remark that nv = 0 for all υ £ W . Similarly, we have a direct sum decomposition,

Hl = (W Π Hl) Θ (& Π Hl) Θ (Jfif Π Hl) , (2.2)

cf. [7]. It is convenient to combine exact and harmonic fields together and obtain what
is called the Helmholtz decomposition [8] for any 1-form υ £ L2 into its longitudinal
and transverse component,

v = VL + vτ , where υL e ® θ 3% and vτ e W . (2.3)

Observing that *dB £ W, since tB = 0 by the boundary conditions for A and by
(1.4), and that dφ is L2 -orthogonal to W, we can decompose the evolution part of the
Yang-Mills equations this way to obtain

AL = EL + dφ-[φ,A]L,

Άτ = Eτ-[φ,A]τ,
(24)

EL = -(*[A^B})L-[φ,E]L,

Eτ = - * dB - (*[AΛ, B]f - [φ, E]τ .
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The scalar potential φ we choose as the unique solution of the Neumann problem

Aφ = -δE and ndφ = 0, (2 5)

which is L2-orthogonal to harmonic functions on M. Since M is connected and
simply connected these functions are just the constants, so the last condition becomes

φdV = 0, (2.6)

M

and this choice of φ together with the boundary condition nE = 0 yields

EL = -dφ. (2.7)

Since the operator δd coincides on W with the Laplacian Δ and *d* = 5, we can
rewrite the evolution equations as

,
T T (2 8)])L-[φ,E]L,

Eτ = -ΔAT - \ δ[A/\, A] - (*[AΛ, B])τ - [φ, E]τ .

3. Linearized Equations

Linearizing the evolution equations given by (2.8) we obtain

AL = 0 and EL = 0,

Aτ = Eτ and Eτ = -ΔAT .

To study the linearized dynamics we introduce the Hubert space

H = {(A, E) G Hl x L2 I AL G H2, EL G if1; nAL = nEL = 0} , (3.2)

endowed with the scalar product

((A, E), (A, E))H = (AL,ΆL}H2 + (*cL4T, *dAT)L2

and show:

Proposition 1. Equations (3.1) define an operator ^, given by

which is skew adjoint in H and has as its domain

D = {(A, E) G H Aτ G H2, Eτ G if1; ndA = 0} . (3.5)

The group exp(t5^) of unitary transformations in H, generated by 5^, induces a group
of transformations in D, which acts continuously with respect to the graph norm

||(A, E)\\2/ = ||(Λ, E)\\2

H + ||J/%4, E)|β . (3.6)
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By definition the longitudinal components of .9*(A, E) vanish. To make this more
explicit we can write

S*(A, E) = (0L + Eτ, 0L - ΔAT). (3.7)

The operator 5? maps to D to H, and its domain D coincides with the phase space for
the Yang-Mills equations given by (1.5). Moreover, the corresponding graph norm on
D is equivalent to the norm

ί . (3.8)

4. Non-Linear Evolution

In terms of the generator 5* corresponding to the linearized Eq. (3.1), we can rewrite
the full evolution equations (2.8) for curves \(t) = (A(t), E(t)) in D as

(4.1)

where the non-linear term is given by

J(x) = J(A E} = ([φ, A], \ δ[A/\, A] - *[AΛ, B] - [φ, E]) , (4.2)

with B given by Eq. (1.4) and φ uniquely determined by Eqs. (2.5) and (2.6). In order
to apply the general theory on the existence and uniqueness of solutions of non-linear
equations of the form (4.1) to the case of Yang-Mills equations we show:

Proposition 2. The function J, given by Eq. (4.2), maps D to D, and is of class C°°
with respect to the graph norm in D given by Eq. (3.6).

Since exp(l5^) acts as a group of continuous transformations in D endowed with
the graph norm || ||^, we can rewrite Eq. (4.1) together with the initial condition
x(0) = χ0, in the integral form

t

/ exp((ί - s)^)j(x(s)) ds . (4.3)

J restricted to D is a continuous and smooth function from D to D, and so we can
use the theory of non-linear semigroups [6]: For every x0 G D there exists T > 0 and a
unique curve x(ί), defined for t E [0, T), satisfying the integral equation (4.3) and also
the differential equation (4.1) with the initial condition x(0) = x0. In fact it suffices to
show that J is Lipschitz in order to obtain this result [9]. With ̂ (x) = (Eτ ', -ΔAT),
the following is obvious:

Corollary. For every (^40,^0) E D, there exists T > 0, and a unique continuously
dίjferentiable curve (A(t), E(t)) in D, defined for t £ [0, T), satisfying the Yang-
Mills evolution equations, given by Eqs. (2.8), and the initial condition (A(0), ̂ (0)) =
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5. Constraint Equation

Let (A(t), E(t)) be a curve in D satisfying the evolution equations. The Lie algebra
valued 1-form Aidxτ + φdt, where φ is determined by Eq. (2.5), define a connection
in the pull-back of £P to M x [0, T). The left-hand side of the constraint equation
(1.1) is the covariant, with respect to this connection, co-differential of E, denoted
by

;E]. (5.1)

Thus, the constraint equation reads

6AE = 0. (5.2)

One can show by direct computation that the evolution equations (1.2), (1.3) imply
the vanishing of the covariant time derivative of δΛE,

Since the scalar product in g used in the definition of the Hubert space structures is
ad-invariant, it follows that

=0. (5.4)

Hence ||<5AJ5||^2 is a constant of motion. In particular, the evolution preserves the
constraint equation (1.1).

Appendix

For the proof of the existence and uniqueness result for the Yang-Mills system the
knowledge about the ellipticity of a Neumann problem for 1 -forms and scalar functions
is crucial:

Proposition A.I. Let M be a smooth Riemannian 3 -manifold with smooth boundary.
(i) On M the boundary value problem given by

Δv — f with nv = 0 and ndv = 0 (A.I)

is elliptic, where v is a I -form. Especially, for v £ H2, obeying the given boundary
conditions, one can estimate

(A.2)

(ii) For w £ H 1 and nw = 0 the Neumann problem on M given by

= —6w with ndψ — 0 (A. 3)

is elliptic and has a unique solution ψ in the space of functions L1 -orthogonal to
constants, ψ is of class H2 and the following estimate holds:

\\Φ\\ιfl < #2 Nisi (A.4)

Proof. For (i) we need to show that the boundary value problem (A.I) satisfies the
Lopatinskii-Sapiro condition [II].1 Therefore, let p G dM be a boundary point

See also [10] for a more explicit version of that condition
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and choose ^-orthogonal coordinates (xl,x2,x3) in the tangent space TpM at this
point such that (0,0, 1) is the inward pointing normal vector. Fourier-transforming
the homogeneous problem corresponding to (A.I) at p with respect to the (xl,x2)-
coordinates yields

ξ2,z3) = 0, (A.5)

where \ξ\2 = ξ2 + ξ2

 and v = vldxl. The boundary conditions turn into

03(£ι,f2,o) = o,
^3(£ι^2> °) - 9X3v2(^ξ2, 0) = 0 , (A.6)

^2«3(Cι^2»0)-ax3i)1(ξι,ξ2J0) = 0.

As the solution set for the (ordinary) differential equation (A.5) we get

<%+ = {tJexp((|ξ|z3) ϋ e C3} (A.7)

so that the linear system corresponding to (A. 6) is bijective on ^+. Hence the
boundary value problem (A.I) is elliptic and defines a Fredholm operator [11]. Using
a general argument about Fredholm operators on Banach space [10, Theorem 12.12]
we then get the estimate (A.2).

Considering (ii) the ellipticity of the Neumann problem (A. 3) can be shown in the
same way as for (A.I). The existence of a unique solution under the given conditions
as a well established fact [10]. Hence one concludes from ellipticity that ψ is in H2

forw G Hl. Therefore one then obtains

2 < K3\\δw\\L2, (A.8)

which yields (A.4) by using the continuity of the operator δ:Hl —> L2. D

In order to study the linearized Yang-Mills equations, given in Sect. 3, we need:

Lemma A.2. The operator Δ = 6d on & with domain

V = {v e ̂  Π H2 I ndυ = 0} (A.9)

is self-adjoint with respect to the L2-product.

Proof Clearly Δ maps V to ^, and is symmetric on V, since by Stoke's theorem

/ (w δdv)dV = (*dw - *dυ)dV + I tw/\*ndv, (A.10)

M M dM

and the boundary term vanishes for v G v. Furthermore nv = 0 by definition of V. In
order to prove that Δ is self-adjoint in %? one has to show [12, Theorem 5.19] that
range (I + Δ) = ^. Therefore let W = &Γ\Hl, and a(v, w) be the bilinear form on
W given by

α(?;, w) = (υ, w)L2 + (*ύfa;, *dw)L2. (A.I 1)

Clearly a(υ,w) is continuous and symmetric on W. Since for all w e H1, which are
L2-orthogonal to the harmonic fields, there is a constant C > 0 such that Friedrichs
inequality

(||*diϋ|| r o -f l l^ l l r?) ^ CΊItt l l r r i (A.12)
Ml I I J^^ \\ >\ J_j ' I I M J 7

[7, Theorem 7.7.9] holds, this implies that a(v,v) > CH^II^! for v G W. Hence the

Lax-Milgram lemma [13] implies the existence of an isomorphism A: W —> W* such
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that a(v, w) = (A.v \w} for all ΊJ, w G W. Given g G W*, the equation Av — f means
that

(w - υ)dV + (*dw - *dv)dV = ( f \ w ) (A. 13)

M M

for each w G W. By applying formally Stokes' theorem (A. 10) this yields (l+Δ)υ = f
in the sense of distributions on M and ndv = 0 weakly on <9M.

It remains to show that for each / G ̂  C W*, the equation Aυ = f implies that
v G H2, and ndv = 0 strongly on 9M. The boundary value problem

(I + Δ)υ = f with nυ = 0 and ncfo = 0 (A. 14)

is elliptic by Proposition A.I. Thus the corresponding regularity result2 in [14]
guarantees that any solution of (A. 14) is in H2 for / G L2. This proves that Δ
is self-adjoint in .̂ D

In Sect. 3 the Yang-Mills equations have been formulated on the Hubert space

H: ={(A,E)eHl xL2 AL G H2, EL G H1, nAL = nEL = 0} , (A.15)

endowed with a scalar product

((A, E\ (A, E))u = (A

Furthermore we had the subspace

D- {(A,E)£H\AT eH2, Eτ G F1; ndA = 0} , (A.17)

equipped with the graph norm || || ̂  of the operator J ,̂ which can be written as

\& = \\(A,E)\\2

H + \\ΔAT\\\2 + \\*dET\\2^ . (A.18)

Lemma A.3. (i) The scalar product (A. 16) defines on Ha norm ||(A, £")||H, equivalent
to the norm

|||(A£)||i2 = \\AL\\2

H2 + \\AT\\2

Hl + \\EL\\2

H, + \\ET\\2

L2 . (A.19)

(ii) The graph norm \\(A, E)\\^ on D is equivalent to the norm on H2 x H1, given by

11(^^)11^x^ = 11̂  + 11*1- (A 2°)
Proof To show (i) we need to estimate

Cι\\*dAτ\\v < \\AT\\H< < C2\\*dAτ\\Lι . (A.21)

The left-hand side is obvious by the continuity of *d:Hl — » L2. For the right-hand
side we observe that Aτ G H1 Π ̂  is L2 -orthogonal to the space 3$ and δAτ = 0,
such that Friedrichs' inequality (A. 12) yields the required estimate for ||Aτ||#ι in
terms of ||*cίAτ||^2.

For (ii) e use the same argument for the term l^dE^II^ It remains to show that

C3\\AT\\2

H2 > (\\ΔAT\\2

L2 + \\AT\\2

Hl) > C4\\AT\\2

H2 . (A.22)

2 For scalar functions this can also be found in [10]
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Since A, considered as a mapping from H2 to L2 is continuous, the left-hand estimate
is obvious. On the other side we are led to consider for Aτ £ £PlΊ H2, the boundary
value problem

ΔAT = / with nAT = 0 and ndAT = 0 . (A.23)

As shown in Proposition A. 1 this problem is elliptic, so that we can read off the
required estimate from Eq. (A.2). D

Writing the linearized evolution equations (3.1) for the Yang-Mills fields in the
terms of the operator S*9 given by (3.4) as

(AL + Άτ, EL + Eτ) = 3*(A, E) = (0L + Eτ, 0L - AAT} , (A.24)

Proposition 1 can be reformulated as follows.

Proposition A.4. The operator S^ , given by Eq. (A.24), with domain D given by
Eq. (A. 17), generates a group exp(l?0 of unitary transformations in the Hubert space
H. This induces a group of transformations in D, which are continuous with respect
to the graph norm

. (A.25)

Proof. In order to prove that ̂  with domain D generates a 1 -parameter group of
unitary transformations in H we have to show that 5^ is skew adjoint, that is S^ is
skew-symmetric and range (1 + ̂ ) = H, cf. [12]. If (A,E) and (Ά,E) belong to
D, then Aτ and Aτ belong to V, the domain of A given by Eq. (A.9). The skew-
symmetry of 3* is proven by using (A. 10):

),(A,E))H. (A.26)

To show that range (I + S^) = H, consider the corresponding system of equations
given by

AL = f , (Aτ + Eτ) = g , EL = h , and (Eτ - AAT) = k , (A.27)

with (/, g, h, k) G ((& Θ 3%) Π H2) x (gf Π H1) x ((& Θ 3%) Π H1) x W arbitrary.
The solvability of the longitudinal equations is obvious. Eliminating Eτ we get

(I + A)AT = (g-k) with (g - k) G W arbitrary . (A.28)

This equation is always solvable in H2 as shown in Lemma A.2. For Eτ = (g—AT) G
W Π H1 we end up with a pair (A, E) G D satisfying Eq. (A.27).

The 1 -parameter group exp(t^) of unitary transformations in H generated by 5^
commutes with J^ and preserves the domain D, [15, p. 239]. Hence one gets for every
(A, E) in D and every t G R,

|| exp(^) (A, E)\\2s = || exp(t^) (A, E)\\2

H + || exp(tWU, E)\\*

= \\(A, E)\\2

H + ||^(A, E)\\2

H = ||(A, ̂ )||2^ , (A.29)

which shows that operators exp(t^) are bounded on D. The group property of
exp(l^) in D follow from its group property in H. Moreover, the same arguments,
as used above, yield

|| exp(^) (A, E) - (A, E)\\^= \\ exp(ί^) (A, E) - (A, E)\\H

, E) - 5?(A, E)\\Ά — > 0 , (A.30)
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which implies that exp(l5Ό is a continuous group of operators in D. D

To estimate the non-linear terms of the Yang-Mills evolution we need further:

Proposition A.5. Let M be a compact ^-manifold with boundary, then the following
holds for l-forms and functions of the indicated Sobolev classes, respectively:

v.weH2 ^v w(ΞH2 and \\v w\\H2 < Kλ\\v\\H2\\w\\H2 , (A.31)

veH2,w £Hl ^vw^H1 and \\v w\\Hι < K2\\υ\\H2\\w\\Hι . (A.32)

If v and w are 1 -forms the dot-product stands for any algebraic product.

Proof. For functions (A.31) reflects the Banach algebra property of the space H2 over
the 3-manifold M, cf. [16]; for l-forms the estimate follows from that property.

To show (A.32) we observe from the Sobolev embedding theorem that u and w
are in L4 if they are in H1. Hence we get from that theorem and Holder's inequality

H ? / Ίiλ\2 < \\n\\2 \\in\\2 < C \\n\\2 l l ? / ; l l 2 f A λλ">||" w\\^2 -̂  || "ΊI/,4 || UJ]\ι/4 _^ ^i || a \ \ f f l || w \\ffi - {f\.jj)

On the compact 3-manifold M, any v E H2 is continuous, hence sup \v < C2\\v\\H2
and

\\v - u\\2

L2 < (sup |^|)21 \u\2dV < C3\\v\\2

H2\\u\\2

L2. (A.34)

M

Using these two estimates we see from

I \\V ' W\\2

Hl < \\DV ' W\\2

L2 + \\V ^^||^2 + \\V ' W\\2

L2

+ C} \\v\\2 ! l l ^ l l 2 i , (A.35)

that (v w) is of class H1 and obeys the estimate (A.32), stated above. D

Using this proposition, we now can show that the non-linear term J(x) in the
Yang-Mills evolution equations is of class C°°.

Proposition A.6. Let the Hilbert spaces H and D be given by Eqs. (3.2) and

D = {(A, E) E H2 x H1 \ nA = nE = 0, ndA = 0} , (A.36)

respectively. The non-linear operator

J:D-»H,
i (A.37)

(A, E) ̂  ([φ, A], i δ[AΛ, A] - *[AΛ, B] - [φ, E ] ) ,

where φ is a solution of the Neumann problem

Aφ = -δE and ndφ = 0, (A.38)

and B = *dA+ ^ * [-AΛ, A], has its range in D and J. D —> D is bounded, continuous

and smooth with respect to the graph norm \\ \\(/f ofΌ.

Proof. For the range of J we observe from Proposition A.I that φ is of Sobolev class
PI2 such that [φ, A] also is in H2 by (A.31). Similarly we find *[AΛ, A] in H2, hence
B and *d[AΛ, A] are of class H1

9 and from (A.32) we get *[AΛ, B] in H1.
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With respect to the boundary conditions we immediately see from (A.36) and
(A.38) that

nd[φ, A] = n[dφΛ, A] + [φ, ndA] = 0 ,
( '

n(*[A/\, B} - [φ, E]) = *[L4Λ, tB] - [φ, nE] = 0 .

Hence the operator J maps D to D. In order check continuity it suffices by Lemma A.3
to estimate

%% = \\[φ,A] - [φ,A\\2

H2 + \ \\δ[A/\,A]-δ[AΛ,A]\\2

Hί ,

%l = || * [A/\, B] - *[A/\, B]\\2

H] and (A.40)

8* = \\[φ,E]-[φ,E}\\2

Hl,

for || A - A\\H2 and for \\E — E\\H\ sufficiently small. For the first expression we get
from (A. 31), the elliptic estimate (A.4) for ||<^>|| #2, and the continuity of the operator

, \\A - A\\2

H2 + (1 + \\A\\2

H2)\\E - E\\2

H,

+ (\ + \\A\\2

H2)\\A-A\\2

H2). (A.41)

Considering (?B we obtain by using the same arguments,

\\B\\Hι < C2(\\A\\H2 + \\A\\2

H2)

and (A.42)

\\B-B\\Hl<C,\\A-A\\H2(l + \ \ A \ \ H 2 ) .

From these estimates and the argument (A.32) we obtain

Zi<C4\\A-Ά\\2

H2(l + \\A\\H2f. (A.43)

Finally we see from (A.32) and (A.4) that

8*<C5\\E-E\\2

Hl(l + \\E\\Hl)
2. (A.44)

Putting these terms together we end up with the required estimate

\\J(A,E)- J(A,E)\\2

/ <C6(\ + \\E\\Hι + \\A\\H2)
4\\(A,E)-(A,E)\\2s, (A.45)

which proves the continuity of J:D — •> D. With respect to the differentiability of J
write y = (α, e) for an arbitrary element y G D. Then

D J(A, E) (α, e) = ([ψ, A] + [0, α], fi[ΛΛ, α] - *[αΛ, B]

where Δψ — — δe, ndψ — 0 and b — *<iα + *[ΛΛ, α] . (A.46)

Observing that α, e, ψ and b are of the same Sobolev classes as A, E, φ and B, all
the estimates used to prove continuity of J also can be applied here. Hence one
shows, literally as above, that dJ(A, E) (α, e) is continuous. Analogous arguments
also hold for the higher derivatives of J. Actually, derivatives of J of order > 4
vanish identically. D

This result proves Proposition 2, and completes the proof of the Main Theorem.
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