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Abstract: It is shown that the square of a super-derivation can never be a generator
(without taking its closure) if it is unbounded and self-adjoint.

1. Introduction

The notion of a quantum algebra has been introduced by A. Jaίfe et al. [5-7] in
connection with entire cyclic cohomology (cf. [3, 4, 8]). A key ingredient to this
notion is a super-derivation, defined on a graded C*-algebra, whose square is or
extends to the generator of a one-parameter group of *-automorphisms. In this
note we study the relationship between the super-derivation and the generator to
seek the right definition of a quantum algebra and obtain among others the result
stated in the abstract, i.e., if the square of a self-adjoint super-derivation is
a generator then it is bounded.

We will state the main results in Sect. 2 and give their proofs in Sects. 3-6.
Finally we will give a spatial example based on the algebra of bounded operators
on a Hubert space. One of the authors (A.K.) is grateful to CJ. K. Batty for many
discussions.

In the rest of this section we will state the definition of a super-derivation and
give some basic properties.

Let (A9γ) be a graded C*-algebra; i.e., A is a C*-algebra and y is a *-auto-
morphism of A of period two. Let

Ae = {aεA\y(a) = a}, A0 = {aeA\y(a)= -a} .

Then it follows that Ae is a sub-C*-algebra of A and that AeA0^A0, A* = A0> and
A0A0c:Ae. The C*-algebra A is the direct sum of Ae and A0 as a Banach space.

Let d be a super-derivation of A\ i.e., its domain D(d) is a (dense) y-invariant
subalgebra of A and d is a linear map of D(d\ into A such that

d(ab) = da b + y(a) db,a,beD(d),

and y°d = — d°γ. In particular
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and d maps D(d) n Ae into Ao and D(rf) n 4 0 into y4β.
Let B be the crossed product AxyZ2 of A by γ, and let ί/ be the canonical

unitary of B implementing y. Define a linear map δ of D (d) c A a B into A U a B by

Then since δ(ab) = Ud(ab) =U-da b+ Uγ(a) db = δ(a)b + aδ(b), δ is a deri-
vation. In particular if D(d) = A, then d is automatically bounded since the
corresponding δ is bounded (see e.g. [2]).

Define a linear map d+ on D(d+) = D(d)* by

Then d+, called the adjoint of d, is again a super-derivation.
An example of super-derivations is an inner one; if qe Ao, the linear map

defined by

δq = qa-y(a)q, as A

is a super-derivation. Note that (δq)
+ = δq*. Hence if y is properly outer or freely

acting (i.e., has no inner part [9]), δq being self-adjoint (i.e., δq = δq) is equivalent
to q being self-adjoint.

If y is implemented by a unitary ue D(d\ then it follows that d is inner. To see
this apply d to the equality ux = y(x)u for x e D(d). Since u e Ae9 it follows that

du x + u dx = —y(dx)u + xdu ,

which implies that d = δq with

q = —~u*'du .

If d is self-adjoint, then so is q, which follows from

0 = d(\) = d(u*u) = du* u + u*du .

If d is a super-derivation, then d2 is a derivation satisfying d2 ° y = 7 ° d2. If d is self-
adjoint in addition, then d2 is self-adjoint, i.e., (d 2)* = d2, where (d 2)* is defined by

(d2)* = -d 2 (x*)* , x G D((d2)*) = D(d 2)* .

(Note that (d 2)* is normally defined by the above equality without minus sign. See
[1,2,12].) If d = δq with q e Ao, then d2 = δqi, where for h = q2 e Ae9 δh is defined by

δh(x) = hx — xh .

If h = /**, which follows from, but does not imply, q — q*, then i (5Λ generates
a one-parameter group α of *-automorρhisms of A with αt ° y = y ° αf. We note that
our one-parameter groups of *-automorphisms always preserve the grading (or
commutes with γ).

2. Main Results

We call a linear operator L on the C*-algebra A a generator if ίL generates
a strongly continuous one-parameter group α of *-automorphisms of A9 where the
strong continuity is defined by:

| | α ί ( x ) - x | | -»0, a s ί - ^ 0 , f o r x G ^ .
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Note that if L is a generator, then L is a closed self-adjoint derivation.
Given a one-parameter automorphism group α of A and given an open subset

U of R, we denote by Aa(U) the spectral subspace defined as the closure of

{<xf(x)\xeA9 supp/cί/}

where, for a continuous / e L ^ R ) and x e A, cc/{x) is defined by

and / is defined by

For x e i , the α-spectrum Spα(x) of x is defined by

It follows that x G ̂ 4α( t/) satisfies Spα(x) c L7 and that any x e i with α-spectrum in
1/ belongs to Aa(U). Let L be the generator of α. If 1/ is bounded, then
Aa(U)czD(L). The union (J f c>o^α( ~Kk)9 which is a dense *-subalgebra of A, is
a core for L. See [10] for details.

Theorem 1. Let (A9γ) be a graded C*-algebra, and let dbe a closed super-derivation
of A and a a strongly continuous one-parameter group of '*-automorphisms of A with
α°y = y°α. Suppose that d°oct = at° dfor all t e R, that D(d2)is dense in A, and that
d2 is a restriction of the generator L of α. Let Ao = [Jk>0A

c*(—k,k). Then the
following hold:

(i) D(d) nA0 is a core for d and D(d2) n Ao is a core for d2.
(ii) D(d2)nA0 is contained in f)™=1D(dk) and is invariant under d, and the

closure of d2 is L.
(iii) If D(d2) is a core for d, then D(d)r\A0 is contained in f^=1D(dk) and is

invariant under d.

Remark 1. In the situation of the above theorem let dx be the closure of d\D(d2).
Then dι commutes with α, and since D(d2)n A0czD(d2), the closure of d\ is L.
Moreover D(d2) is a core for d1 because D(d2)n Ao is a core for dx.

We do not know in general whether the commutativity that d ° αt = αt ° d, t e R,
can be derived from the other conditions in the above theorem. But it can if we
assume that α is uniformly continuous or L is bounded, as the following theorem
shows:

Theorem 2. Let (A, y) be a graded C*-algebra, and let dbe a closed super-derivation
such that D(d2) is a core for d and d2 is a restriction of an everywhere defined
self-adjoint derivation L. Then d commutes with the strongly continuous one-para-
meter group α of *-automorphisms generated by iL.

The following result concerns the problem of whether we have to take the
closure of d2 to get the generator L when d is unbounded. We have to restrict
ourselves to self-adjoint super-derivations to prove:

Theorem 3. Let (A,γ) be a graded C*-algebra, and let d be a self-adjoint super-
derivation of A and α a strongly continuous one-parameter group of*-automorphisms
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of A with oc°y = γ°ot. Suppose that d2aL, where L is the generator of a. Then the
following conditions are equivalent:

(i) d2 = L.
(ii) d is everywhere defined {and hence bounded).
(iii) d is closed, D(d2) is dense, d°at = at°dfor all ί e R , and D(d)^Aa( — ε,ε)

for some ε > 0.

Hence we should not expect in general that D(d) contains the entire analytic
elements with respect to α (cf. [6, 7]),

Remark 2. Under the situation of the above theorem, if the super-derivation d is
unbounded, the range of λ 1 + d is not the whole A for any λ e (C, and in particular
the spectrum of d is the whole complex plane.

This may be proved as follows. Suppose that for some λe<E,(λ + d)D(d) = A.
By applying γ one obtains that (λ - d)D{d) = A and then (λ2 - d2)D(d2) = A. By
the above theorem d2 cannot be the generator L; there must be a non-zero x e D(L)
such that

(λ2-L)(x) = 0.

Then, since oct(x) = eitL(x) = ei)?ix, it follows that λ2 e R. Since (λ2 - L)D(L) =
A, there is y e D(L) such that

x = (λ2~L)y.

Since α ĵ;) satisfies

χo(y) = y> jt

at{y) =

it follows that

oct(y) = eiχ2χy - iteiχ2tx .

Since ||αt(j;)|| = ||j; | | and x + 0, this is a contradiction.
If we further assume the situation of Theorem 1, the second part of the remark

also follows from a general result (presented to us by C.J.K. Batty): If d is a closed
operator with Sp d + (C, then d2 is closed. The proof of this goes as follows. Let
{xn} be a sequence in D(d2) such that

||xw-x||^0, μ^-yii-o

for some y. If λ φ Sp d is non-zero,

d((λ -dΓ1- λ^)xn = (λ - dy1λ~1d2xn

converges to (λ — d)~x λ~ 1y. Since ((λ — d)~~x — λ~ ι)xn converges to
((λ — d)~γ - λ~1)x and d is closed, it follows that x e D{d) and

((λ - d)'1 - λ'^dx = {λ~ dy'λ-'y .

Hence dx e D(d) and d2x = y. If 0 φ Sp d, we just have to note that dxn converges to
d~xy. Hence xeD(d) and dx = d~ιy, i.e., xeD(d2) and d2x = y.
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Our final result concerns inner perturbations of a self-adjoint super-derivation
d, which is used in [7]. Let g be a self-adjoint element of D(d) π Λo, and let

dq = d + δq

which is again a super-derivation with D(dq) = D(d). Then D(d2) = D(d2) and

where Ω = dq + q2 is a self-adjoint element of Ae. Thus if d2 is a generator, then d2

is also a generator as being just an inner perturbation of d2. Since Ω e Ae9 the

one-parameter group α? generated by i(d^)2 preserves the grading (i.e., commutes

with γ).

Theorem 4. Let (A,y) be α graded C*-algebra, and let d be a closed self-adjoint
super-derivation of A and α a strongly continuous one-parameter group of ̂ -automor-
phisms of A with oct°y = y°α t. Suppose that

(i) d ° α, = α, ° d for all t e IR,
(ii) D(d2) is α core /or d, and
(iii) d2czL,

where L is the generator of a (hence d2 = L due to Theorem 1).
If q is a self-adjoint element of D(d)nA0, then the pair of the super-derivation

dq = d + δq and the generator Lq = L + δΩ with Ω = dq + d2 satisfies the same
conditions (i), (ii), (iii) as for the pair of d and L.

3. Proof of Theorem 1

Let / be a continuous function in Z/(1R) and xeD(d). Then it follows that
<xf(x)eD(d) and

d(af{x)) = (xf(dx).

Suppose that supp / is compact with /(0) = 1 and let fn(t) =f(nt)n for
n = 1,2, . . . Then

ocfn(x) -> x, d(α / n(x)) = ocfn(dx) -• dx .

Since d is closed and

Spα(α / n(x))c:supp fn = rc supp / ,

this implies that D(d)nA0 is a core for d. By repeating this procedure
once more one obtains that D(d2)nA0 is a core for d2. Thus we have shown
Theorem l(i).

Lemma 1. For xeD(d), it follows that Spα(dx)cSpα(x).

Proof This is immediate since ccf(x) = 0 implies ocf(dx) = 0.

Lemma 2. D(d2)n A"( —k,k) is dense in Aa( —k,k)for any k > 0.

Proofs Let x e Acc( — k, k) and ε > 0. Then there is a non-zero / e l ^ R ) with
supp/cz( — fc,k) and ye,4 such that ||x — α/(j;)|| < ε/3. Since D(d2) is dense,
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there is zeD(d2) with \\y - z\\ <ε/2 | | / | | 1 . Then af(z)e D(d2)nA«(-k,k) and
\\af(z)-x\\ <ε.

Let x e D(d2) n Ao. Then dx e D(d) n Ao and d'dx = Lx. Hence to prove that
d(D(d2) n ^lo) c : ^ ) (^ 2 ) >̂ -4o? we only have to show that Lx e D(d) n AQ. By letting
t -> 0 in the equality

( ( d ) d )

we obtain that Lxe D(d) and

= Ldx .

Hence it follows that D(d2)nA0 is contained in f]^=ί D(dk) and is invariant
under d.

Since d2 is bounded on D(d2) n Ά*( -k, fc), it follows that

Thus D(d2)=5^40 and hence d2 = L because Ao is a core for L and d2 is a restriction
of L, which completes the proof of Theorem l(ii).

Theorem l(iii) follows from Lemma 1 and the following:

Lemma 3. Under the assumption of Theorem l(iii) it follows that D(d)nD(L)
aD{d2).

Proof Let x e D{d) n D{L). We have to show that

(dx,Lx)eG(d) = {(a,da)\ae D(d)} .

Since G(d) is a closed subspace of A® A as being the graph of the closed operator d,
if {dx,Lx) φ G{d\ there is a (φ,ψ) e A*®A* such that

φ(a) + φ(da) = 0, aεD(d),

φ(dx) + φ(Lx) Φ 0 .

Let fe LX(K) be such that supp / is compact with /(0) = 1, and let fn(t) =f(nt)n
as before. Since d and L commutes with α / n , (φ ° α / n , φ <> α / n) vanishes on G(d) and

lim{φoafn(dx) + φoafn(Lx)} = φ(rfx) + φ(Lx) .

Thus φ o α / n and ^ o ccfn in place of φ and φ respectively still satisfies the above
condition for a sufficiently large n. In particular we may suppose that φ ° L (on
D(L)) extends to a bounded functional on A, which we denote by φ°L.

For α e D(d2) one has

φ(da) + φ{d2a) = 0

which implies that φ o d\D(d2) is bounded. Since D(d2) is a core for d, it follows that
φ o d is also bounded, and

φ°d + φ°L = 0 .

Hence φ°d(x) + φ°L(x) = 0, which is a contradiction.
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4. Proof of Theorem 2 (Commutativity)

It suffices to prove that there is a dense subalgebra si of D(d) such that si is a core
for d and d(si)asi. Because then it follows that L = d2 on si and

N γ N γ

d Y —(itLf = y —{itLYd

on si for any N, which implies that doat = oit°d on J / , by taking the limit of
N -> oo (cf. [6]). We can take D(d) as <$/ by the following:

Lemma 4. D(d) = D(d2).

Proof This can be proved as Lemma 3, where we needed the commutativity that
doαf = at°d to make ψ°L bounded, which is automatic in the present case.

5. Proof of Theorem 3 (Self-Adjoint Super-Derivation)

We have already remarked that if a super-derivation is everywhere defined then it is
automatically bounded. Hence the implications (ii)=>(i) and (ii)=>(iii) follow
immediately.

To prove (i)=>(ii) we first note:

Lemma 5. IfD(d)^>D(L), d\D(L) is relatively bounded with respect to L.

Proof Remember that δ defined by

δ{a)= Ud{a), aeD{d)

as a map of D(d) into A x γ Έ2 is a derivation, where U is the canonical unitary
implementing γ. Note that || δ(a) || = || d(a) || for a e D(d). For the two derivations
δ and L oϊD(L) into A x y Z 2 , we adopt the same arguments as in [1] and conclude
that δ is relatively bounded with respect to L. Hence the conclusion follows.

Suppose that d2 = L. Since D(d)^D(L), it follows by the above lemma that
d\Ά*( — k,k) is bounded for any k > 0. Since L leaves A*( — fc, k) invariant, the left
side of

on A"(— k,k) converges to d°oίt as N-> oo, and hence the right side should
converge to αf°d. Thus we obtain that d°oct = (xt°d on Ao, and also that
d ° tXf = oίf o d on AQ for any continuous fe L1 (R). Since for an open bounded set
U of HI, d is bounded on Ax( U), and Aa( U) is a closed span of af(x) with supp fa U
and Spα(x) compact, it follows that d leaves Aa(U) invariant. Then by Lemma 7
below it follows that L is bounded, which implies that d is everywhere defined. Thus
we obtain that (i) implies (ii).

To show the lemma referred to above we first prove:

Lemma 6. There is a constant c > 0 such that for any l e R , s > 0, and xe
A«(λ-ε,λ + ε),

| | L x - λx|| ^ c ε | | x | | .
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Proof. Let fe L X (R) be a C00-function such that f(p) = 1 for p e [ - 1 , 1 ] . Let

= e-iλtf(εt)ε.

Then for any g e L 1 with supp gcz(λ — ε9λ + ε), it follows that hg = g, since
M ) =f(ε~1(P — ̂ )) Hence for x e 4̂α(/ί — ε,λ + ε), one has αΛ(x) = x and

x) = \h(t)-at{x)dt = iλ\h{t)at{x)dt - εje-ίλtf(εt)ott(x)εdt .

Thus one obtains

where

c = j\f'(t)\dt.

This concludes the proof.

Lemma 7. Suppose (i) or (iii) of Theorem 3. Γferc L is bounded.

Proof Suppose that L is unbounded. Then, since Sp α = — Sp α, there is a sequence
{!„} in Spa n(0, oo) such that λn -> oo .

Fix ε o > 0 such that d\A*( -2ε o ,2ε o ) is bounded. Note that D(d2)
n^ α (/l π — εθ9λn + ε0) is dense in Λa(λn — εθ9λn + ε0) and is 7-invariant. Since

Aa(λn — εo,λn -h ε o )πy4 e Φ {0}, there is a non-zero element x of D(d2)n
A*{λn - ε0,λn + ε0) n ^ie and let

y = x H d

Since x = (^ -f y(y))/2 one has | |x| | ^ | | j ; | | ; in particular y Φ 0. Since

dy — sjλny = dx -\—γ=d2x — y/λnx — dx
/ λ

-{d2x - λnx),

it follows by Lemma 6 that

\\dy-

Since dy* — γ(dy)*, it follows that

cε0

Hence, since

d(yy*) = dyy* + γ(y)dy*

+
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we obtain

Since yy* e Aa( —2εo,2εo), it follows that

2cε0

As λn -> oo , this implies that d is unbounded on A*( — 2ε0,2ε0), which is a contra-
diction.

Suppose (iii). Then by Lemma 7 it follows that L is bounded. Now we have to
show that it follows then d is bounded.

Let ε0 > 0 be such that D(d)^A(t{ -3ε o ,3ε o ) and let

M = ||dMα(-3εo,3εo)ll < oo .

We shall show that d\D(d2) n A\λ - εo,λ + ε0) is bounded (by M + | |L | | 1 / 2 ) for
any λ From this the conclusion follows by the following lemma:

Lemma 8. Let {A1?A2, . .,λw} fce α ^m'ίe sequence in R swc/i ί/zαί
U; = 1 (A, - ε 0 Λ + εo)^Spα. Then X ; = 0 D(d 2 )nA a (^ - ε 0 ? ^ + ε0) = D(d2).

Proof. If xeD(d2), then for any continuous / e L x ( R ) one has αj(x)eD(ίί2)
immediately. The rest is easy (see [10]).

Let x e D(d2) n Aa(λ -εo,λ + ε0) be such that || x \\ = 1 and dx φ 0, and let

y = dx/\\dx\\ .

Then y e D(d) and

d(y{y*)x) = y*dx - γ(dy*)x =

which implies that

Since y e A"(λ — 2εo,λ + 2ε0) and γ(y*)x e Act( —3εo,38o), one obtains

\\dx\\2-M\\dx\\-\\L\\^0.

Hence

< — /lILII — <M= 2 \J 4 =

6. Proof of Theorem 4 (Inner Perturbations)

Since d2 = d2 + δΩ with Ω = dq + q2 and L = d2, it is immediate that (ii)
D{d2) = D(d2) is a core for dq = d + δq and that (iii) d2 czLq = L + δΩ. We only
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have to show that (i) dq°oct

q = at

q°dqi where otq is the one-parameter group of
^-automorphisms generated by iLq.

Define a family ut of unitaries of A (adjoined by a unit if it is not unital) by

00

«,= £ ' " f atι(Ω)at2(Ω)...atn(Ω)dh...dtn.

for ίelR. Then ut is differentiable in t e R and satisfies

M0 = 1,

d
— ut = ίutcct{Ω),

at

q(x) = utoct(x)uf, xeA .

Lemma 9. If A?U then D(d)3l and d(ί) = 0.

Proof. Note that the δ = Ud defined in the proof of Lemma 5 is a closed derivation.
Hence this can be proved as for the derivations (see [2, 11]).

Supose that q e D(d2). Then Ω e D(d) and it easily follows that ut e D(d). (If A is
adjoined by a unit we can set d( 1) = 0.) To prove that dq ° at

q = <xt

q °dq,we have to
show:

utoct(dx + δq(x))u? = {d + δq){utat{x)uf)

for x G D(d), which, by computation, follows from the following equality:

utcct(q)uf = d{ut)u* + q9 t e R .

When t = 0, this is correct. Now compute:

— utat(q)u* = ίutat(Ω)ιχt(q)uf + iutoct(d2q)u* - iutat{q)at{Ω)uf
at

= iutoct(Ωq + d2q - qΩ)u*

= iut0Lt(dq q + d2q - qdq)uf

= utat{dΩ)uf

and

jt{d{ut)uf) = ίd(utat(Ω))u* - id{ut)at{Ω)uf

= ιutoit{dΩ)uf ,

where the first equality is easily justified by using the infinite series expansion of ut.
Hence

— utat(q)u* =—d(ut)u* .

Thus one obtains that dq ° at

q = oct

q ° dq for q e D(d2). For a general qe D(d), since
D(d2) is a core for d, we may choose a sequence {#„} in D(d2) such that qn -• f̂, and
d<7n -• ί/̂ f. Then since dqn(x) -*rf€(x) for x 6Z)(d) and αfM(α) ->αf(α) for α e i , one
obtains the conclusion.
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7. An Example

Let J f be an infinite-dimensional Hubert space and let U be a self-adjoint unitary
on 2tf such that both (1 -I- U)/2 and (1 — U)/2 are infinite-dimensional projec-
tions. Let β be an unbounded self-adjoint operator on J f such that UQU = — β.
We can define a self-adjoint super-derivation δQ on the graded C*-algebra
(B(je), Ad £/) as follows: D(δQ) consists of x e £ p f ) such that xD(Q)aD(Q) and
βx — Adl/(x)β is bounded on D(Q\ and (5Q(x) is the bounded extension of
Qx - Ad U{x)Q for x e D(δQ).

Proposition 1. δQ is a (not densely defined) closed-adjoint super-derivation on
(B(JtT)9 Ad U).

Proof. Since UQU = - β , it follows that £/D(β) = £ ( β ) , which implies that

(7(βx - Ad U(x)Q)U = -QAd I7(x) + x β

is well-defined on D(Q). Hence one obtains that if x e D(δQ) then Ad U(x) e D(δQ)
and Ad U{δQ{x)) = -δQ(Aά U(x)).

Let x e D(δQ) and ξ, ly e D{Q). Since

= ((Adl/(δQ(x)) + AdU{x*)Q)ξ,η),

It follows that x*ξ G D(β), and

(βx* - AdU{x*)Q)ξ = AdU(δQ(x))*ξ .

Hence it follows that x* e D(δQ) and

= AdU(δQ(x))*.

The closedness of δQ easily follows from the closedness of β. We omit the rest of the
proof.

Let H = β 2 , which is a self-adjoint operator with UHU = H. We define
a closed self-adjoint derivation δH in a similar way to δQ. (Remember that δH(x) is
formally defined by Hx — xH and satisfies that Ad U ° δH = δH ° Ad I/.) Let £ be
the set of x e £ ( J f ) such that t -* eίtHxe~itH is continuous in norm. Then B is a C*-
algebra on which βt — Ade ί ί H acts as a strongly continuous one-parameter group
of *-automorρhisms of B, and δH is a generator of β. Note also that δQ commutes
withAdeίtH.

Lemma 10. δQ

2czδH.

Proof. Let x e D(δQ

2) and ξ e D(H). Then it easily follows that

δQ

2(x) = (QδQ(x)-AdUδQ(x)Q)ξ

= ( β 2 x - x β 2 K ,

which concludes the proof.
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Lemma 11. D(δQ)nD{δH) = D{δQ

2).

Proof. We only have to show that D(δQ) n D(δH)aD(δQ

2). Let x e D(δQ) n D(δH)
and let ξ e D(Q). Since D(H) is a core for Q, there is a sequence {<!;„} in /)(#) such
that

Since δQ(x)ξn = (Qx - Ad U(x)Q)ξn e £ ( β ) , it follows that

{QδQ(x) - Ad I/(5 Q (x))e}^ = (Q2x - x β 2 K Λ

is well-defined, and converges to δH(x)ξ. On the other hand Ad U(δQ(x))Qξn

converges to Ad U(δQ(x))Qξ, and hence QδQ(x)ξn converges. Thus δQ(x)ξ e D(Q)
and

(QδQ(x)ξ - Ad U(δQ(x))Q)ξ = δH(x)ξ .

Since ξ is an arbitrary vector in D(Q), this implies that δQ(x) e D(δQ).

Proposition 2. D(δQ

2) is a core for δQ.

Proof Since D(δQ) n D(δH) is a core for δQ, which may be shown as Theorem l(i),
this follows from the above lemma.

Lemma 12. U φ D(δQ) where the bar denotes the norm closure.

Proof We shall show that

x - 171| < ί}nD(δQ) = φ .

Let E+ = (1 + ί/)/2 and £_ = (1 - t7)/2. Since Q is unbounded and
UQU = - β , it follows that Q 2£+ = E+Q2 is also unbounded. Hence there is
a sequence {£„} in D(Q2)nE+ ffi and {^} in (l,oo) such that ||ξM | | = 1 and

Let ^ = QξJWQξJeE-Jf and compute for xeD(<5Q),

{δQ(x)ξn9ηn) - y/h(xξn>ξn) + yfin(xrin,*ln)

H, (Q2ξJ\\Qξn\\ - Jλnξn)) - (Qξn -

Since || Qξn \\ — ̂ /λn -> 0, the right side converges to zero. Hence if | |x — U \\ < 1,
then \\E+xE+ - E+ || < 1 and \\E-xE-. + £_ || < 1 and thus

\{δQ{x)ξH9ηn)\ Z 2^/λn - y/λn(\\E+xE+ - E+ \\ + \\E.xE. + £_ ||)

should hold as n -> oo. This is a contradiction since the left side is bounded.
Let A be the closure of D(δQ). Then 4 is a ^-invariant proper C*-subalgebra of

B. Let α = /?|;4, and L the generator of α, and let y = Adl7 |A Note that
5Q(D(^Q))C:^1 since D(δQ

2) is a core for δQ. Thus <i = δQ is a well-defined super-
derivation on A. Now we sum up the result obtained:

Proposition 3. The super-derivation d and the one-parameter group α of *-automor-
phisms defined on the graded C*-algebra (A, y) as above satisfies that d°oct = (xt

o dfor
all ίelR, D(d2) is a core for d, and d2 = L, where L is the generator of a.
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