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Abstract: It is shown that the square of a super-derivation can never be a generator
(without taking its closure) if it is unbounded and self-adjoint.

1. Introduction

The notion of a quantum algebra has been introduced by A. Jaffe et al. [5-7] in
connection with entire cyclic cohomology (cf. [3, 4, 8]). A key ingredient to this
notion is a super-derivation, defined on a graded C*-algebra, whose square is or
extends to the generator of a one-parameter group of *-automorphisms. In this
note we study the relationship between the super-derivation and the generator to
seek the right definition of a quantum algebra and obtain among others the result
stated in the abstract, i.e., if the square of a self-adjoint super-derivation is
a generator then it is bounded.

We will state the main results in Sect. 2 and give their proofs in Sects. 3—6.
Finally we will give a spatial example based on the algebra of bounded operators
on a Hilbert space. One of the authors (A.K.) is grateful to C.J. K. Batty for many
discussions.

In the rest of this section we will state the definition of a super-derivation and
give some basic properties.

Let (4,y) be a graded C*-algebra; ie., A is a C*-algebra and y is a *-auto-
morphism of A of period two. Let

A,={aeAly(a)=a}, A, = {ae Aly(a) = —a} .
Then it follows that A4, is a sub-C*-algebra of 4 and that 4,4,54,, A¥ = A,, and
A,A, <= A,. The C*-algebra A is the direct sum of A, and A4, as a Banach space.

Let d be a super-derivation of 4; i.e., its domain D(d) is a (dense) y-invariant
subalgebra of A and d is a linear map of D(d) into A such that

d(ab) =da*b + y(a)*db, a,be D(d) ,
and yod = —dey. In particular
D(d)=D(d)n A, + D(d)n A4,
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and d maps D(d)n A, into 4, and D(d) N A4, into A,.
Let B be the crossed product A x,Z, of A by y, and let U be the canonical
unitary of B implementing y. Define a linear map 6 of D(d)= A< B into AU = B by

d(a) =Ud(a).

Then since d(ab) = Ud(ab) = U-da*b + Uy(a)-db = 6(a)b + ad(b), o is a deri-
vation. In particular if D(d) = A, then d is automatically bounded since the
corresponding é is bounded (see e.g. [2]).

Define a linear map d* on D(d*) = D(d)* by

d*(a) = y(da*)* .

Then d™, called the adjoint of d, is again a super-derivation.
An example of super-derivations is an inner one; if g € A,, the linear map
defined by

0, =qa—y(a)q, ac4

is a super-derivation. Note that (6,)* = ,-. Hence if y is properly outer or freely
acting (i.e., has no inner part [9]), 4, being self-adjoint (i.e, §; = J,) is equivalent
to g being self-adjoint.

If y is implemented by a unitary u € D(d), then it follows that d is inner. To see
this apply d to the equality ux = y(x)u for x € D(d). Since u € 4., it follows that

du*x +u+dx = —y(dx)u + xdu ,
which implies that d = ¢, with

1
q= —Eu*'du.

If d is self-adjoint, then so is g, which follows from
0=4d(1) =d(u*u) = du* u + u*du .

If d is a super-derivation, then d? is a derivation satisfying d? oy =y o d. If d is self-
adjoint in addition, then d? is self-adjoint, i.e., (d)* = d?, where (d?)* is defined by

(d*)* = —d*(x*)*, xeD((d*)*) = D(d*)*.

(Note that (d?)* is normally defined by the above equality without minus sign. See
[1,2,12].)Ifd = §, with g € 4,, then d* = >, where for h = ¢* € A,, 3 is defined by
On(x) =hx — xh.

If h = h*, which follows from, but does not imply, g = ¢*, then i‘J, generates
a one-parameter group o of *-automorphisms of 4 with o, oy = y o o,. We note that

our one-parameter groups of *-automorphisms always preserve the grading (or
commutes with 7).

2. Main Results

We call a linear operator L on the C*-algebra 4 a generator if iL generates
a strongly continuous one-parameter group « of *-automorphisms of 4, where the
strong continuity is defined by:

fo(x) — x| >0, ast—0, forxed.
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Note that if L is a generator, then L is a closed self-adjoint derivation.
Given a one-parameter automorphism group a of 4 and given an open subset
U of R, we denote by A*(U) the spectral subspace defined as the closure of

{op(x)|x € A, supp f< U}

where, for a continuous fe L' (IR) and x € A4, a,(x) is defined by

os(x) = [f(t)ou(x)dt
and f is defined by

J(p) = [ f()e™dr.
For x € A, the a-spectrum Sp,(x) of x is defined by

N{{pIf(p)=0}las(x) =0} .

It follows that x € A*(U ) satisfies Sp,(x)< U and that any x € A with a-spectrum in
U belongs to A*(U). Let L be the generator of . If U is bounded, then
A*(U)e D(L). The union Uk>0 A*( —k, k), which is a dense *-subalgebra of 4, is
a core for L. See [10] for details.

Theorem 1. Let (A,7y) be a graded C*-algebra, and let d be a closed super-derivation
of A and o a strongly continuous one-parameter group of *-automorphisms of A with
ooy = yoo. Suppose that do o, = a,°d for all t € R, that D(d?) is dense in A, and that
d? is a restriction of the generator L of o. Let Ag = |Ji>oA*(—k,k). Then the
following hold:

(i) D(d) Ay is a core for d and D(d?*) N A, is a core for d>.

(ii) D(d*)n Ao is contained in (,_, D(d*) and is invariant under d, and the
closure of d* is L.

(iii) If D(d?) is a core for d, then D(d) N Ao is contained in (,_, D(d*) and is
invariant under d.

Remark 1. In the situation of the above theorem let d; be the closure of d|D(d?).
Then d; commutes with «, and since D(d?) N Ao=D(d?), the closure of d? is L.
Moreover D(d?) is a core for d; because D(d?)n A, is a core for d;.

We do not know in general whether the commutativity that do o, = a,0d, t € R,
can be derived from the other conditions in the above theorem. But it can if we
assume that « is uniformly continuous or L is bounded, as the following theorem
shows:

Theorem 2. Let (A,7y) be a graded C*-algebra, and let d be a closed super-derivation
such that D(d?) is a core for d and d* is a restriction of an everywhere defined
self-adjoint derivation L. Then d commutes with the strongly continuous one-para-
meter group o of *-automorphisms generated by iL.

The following result concerns the problem of whether we have to take the
closure of d? to get the generator L when d is unbounded. We have to restrict
ourselves to self-adjoint super-derivations to prove:

Theorem 3. Let (A,y) be a graded C*-algebra, and let d be a self-adjoint super-
derivation of A and o a strongly continuous one-parameter group of *-automorphisms
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of A with ooy = yoo. Suppose that d> < L, where L is the generator of o. Then the
Jollowing conditions are equivalent:

(i) d* = L.

(ii) d is everywhere defined (and hence bounded).

(iii) d is closed, D(d?) is dense, doa, = a,od for all t e R, and D(d)> A*( —¢,¢)
for some ¢ > 0.

Hence we should not expect in general that D(d) contains the entire analytic
elements with respect to « (cf. [6, 7]),

Remark 2. Under the situation of the above theorem, if the super-derivation d is
unbounded, the range of A+ 1 + d is not the whole A for any 4 € C, and in particular
the spectrum of d is the whole complex plane.

This may be proved as follows. Suppose that for some 1 e C, (1 + d) D(d) = A.
By applying y one obtains that (1 — d) D(d) = 4 and then (4> — d?)D(d?) = A. By
the above theorem d? cannot be the generator L; there must be a non-zero x € D(L)
such that

(A2~ L)(x)=0.

Then, since o,(x) = e*L(x) = e*"'x, it follows that A2 € R. Since (A2 — L)D(L) =
A, there is y € D(L) such that

x=(—=L)y.

Since «,(y) satisfies

d
ao(y) =y, 'd‘iat(y) = o(iLy) = ilz“t()’) —io(x),

it follows that

o (y) = e*ty —itei*ix

Since |, (y)|| = |yl and x = 0, this is a contradiction.

If we further assume the situation of Theorem 1, the second part of the remark
also follows from a general result (presented to us by C.J.K. Batty): If d is a closed
operator with Spd # C, then d? is closed. The proof of this goes as follows. Let
{x,} be a sequence in D(d?) such that

%, — x| =0, l|ld*x, — y]| >0
for some y. If A ¢ Sp d is non-zero,
d((A—d)y P =21 YHx, =(A—d) A7 d?x,

converges to (A—d)"'i7'y. Since ((A—d)"!'—1"1')x, converges to
((A—d)™* — A7 Y)x and d is closed, it follows that x € D(d) and

(A—d) ' = A Ndx=(A—-d)y A ty.

Hence dx € D(d) and d*x = y. If 0 ¢ Sp d, we just have to note that dx, converges to
d~'y. Hence x e D(d) and dx = d™ 'y, ie., x € D(d?) and d°x = y.
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Our final result concerns inner perturbations of a self-adjoint super-derivation
d, which is used in [7]. Let g be a self-adjoint element of D(d) n A4,, and let

d,=d+3,
which is again a super-derivation with D(d,) = D(d). Then D(d2) = D(d*) and
dg = d2 + 59,

where Q = dq + ¢ is a self-adjoint element of 4,. Thus if a2 is a generator, then d—f
is also a generator as being just an inner perturbation of d2. Since Qe 4., the

one-parameter group «f generated by i(d,)* preserves the grading (i.e., commutes
with ).

Theorem 4. Let (A,y) be a graded C*-algebra, and let d be a closed self-adjoint
super-derivation of A and o a strongly continuous one-parameter group of *-automor-
phisms of A with a,°y = y°a,. Suppose that

(i) doa, = aod for all te R,
(ii) D(d?)is a core for d, and
(i) > L,

where L is the generator of o (hence d* = L due to Theorem 1).

If q is a self-adjoint element of D(d) n Ay, then the pair of the super-derivation
d,=d + 9, and the generator L, = L + 6, with Q = dq + d* satisfies the same
conditions (1), (i1), (i) as for the pair of d and L.

3. Proof of Theorem 1

Let f be a continuous function in L'(R) and x e D(d). Then it follows that
os(x) e D(d) and

d(os(x)) = ap(dx) .

Suppose that supp f is compact with f(0)=1 and let f,(t)=f(nt)n for
n=1,2,... Then

ap(x) = x, d(ay,(x)) = ay, (dx) - dx .
Since d is closed and
SPalty,(x))=supp f, = n-supp f,

this implies that D(d)n A4, is a core for d. By repeating this procedure
once more one obtains that D(d?)n A, is a core for d2. Thus we have shown
Theorem 1(i).

Lemma 1. For x € D(d), it follows that Sp ,(dx)<=Sp,(x).
Proof. This is immediate since ay(x) = 0 implies a,(dx) = 0.
Lemma 2. D(d?)n A%( —k,k) is dense in A*( —k, k) for any k > 0.

Proof, Let x € A*(—k,k) and & > 0. Then there is a non-zero fe L*(R) with
suppfc(—k,k) and ye A such that |x —ay(y)| <e/3. Since D(d?) is dense,
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there is z e D(d?) with ||y — z|| < &/2| f|l;. Then «;(z) € D(d*) " A*( —k, k) and
leg(z) — x| <e.

Let x € D(d*) n A,. Then dx € D(d) N Ao and d - dx = Lx. Hence to prove that
d(D(d*) N Ag)=D(d?) N Ag, we only have to show that Lx € D(d) n A,. By letting
t — 0 in the equality

d<%(<xr(X) - x)) = (o(dx) — d)

we obtain that Lx € D(d) and
dLx = Ldx .

Hence it follows that D(d*)n A, is contained in (),_, D(d*) and is invariant
under d.
Since d? is bounded on D(d?) n A*( —k, k), it follows that

D(d*)> A% —k,k) .

Thus D(E) > Ao and hence d? = L because Ay is a core for L and d? is a restriction
of L, which completes the proof of Theorem 1(ii).
Theorem 1(iii) follows from Lemma 1 and the following:

Lemma 3. Under the assumption of Theorem 1(iii) it follows that D(d) D(L)
=D(d?).

Proof. Let x € D(d) n D(L). We have to show that
(dx,Lx)e G(d) = {(a,da)lae D(d)} .

Since G(d) is a closed subspace of A@ A as being the graph of the closed operator d,
if (dx, Lx) ¢ G(d), there is a (¢, ) € A*P A* such that

¢(a) +Y(da)=0, aeD(d),
o(dx)+ Y(Lx)£0.

Let fe L'(R) be such that supp f is compact with f(O) = 1, and let f,(t) =f(nt)n
as before. Since d and L commutes with a, (@ oay,, @ ooy, ) vanishes on G(d) and

lim{¢oay,(dx) + Yoo, (Lx)} = @(dx) + ¥ (Lx) .

Thus @oa,, and Yoo, in place of ¢ and y respectively still satisfies the above
condition for a sufficiently large n. In particular we may suppose that o L (on

D(L)) extends to a bounded functional on A4, which we denote by Yo L.
For a e D(d?) one has

o(da) + y(d*a) =0

which implies that ¢ o d| D(d?) is bounded. Since D(d?) s a core for d, it follows that
@od is also bounded, and

@od+YoL=0.

Hence ¢ ~d(x) + ¥ o L(x) = 0, which is a contradiction.
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4. Proof of Theorem 2 (Commutativity)

It suffices to prove that there is a dense subalgebra 7 of D(d) such that </ is a core
for d and d(=/)< /. Because then it follows that L = d? on &/ and

d s Ly =3 L "d
ngo'n—!(ltL) = ”gon—!(ltL)
on &/ for any N, which implies that dea, = o,od on &/, by taking the limit of
N — o (cf. [6]). We can take D(d) as o/ by the following:

Lemma 4. D(d) = D(d?) .

Proof. This can be proved as Lemma 3, where we needed the commutativity that
dea, = o, od to make ¥ o L bounded, which is automatic in the present case.

5. Proof of Theorem 3 (Self-Adjoint Super-Derivation)

We have already remarked that if a super-derivation is everywhere defined then it is
automatically bounded. Hence the implications (ii)=-(i) and (ii)=>(iii) follow
immediately.

To prove (i) = (ii) we first note:

Lemma 5. If D(d)>D(L), d|D(L) is relatively bounded with respect to L.
Proof. Remember that § defined by
6(a)=Ud(a), aeD(d)

as a map of D(d) into A x, Z, is a derivation, where U is the canonical unitary
implementing y. Note that ||d(a)| = ||d(a)]| for a € D(d). For the two derivations
dand L of D(L)into A x ,Z,, we adopt the same arguments as in [1] and conclude
that ¢ is relatively bounded with respect to L. Hence the conclusion follows.

Suppose that d*> = L. Since D(d)>D(L), it follows by the above lemma that
d|A*( —k, k) is bounded for any k > 0. Since L leaves A*( —k, k) invariant, the left
side of

N 1 . N 1 .
dngon!(ltL) = ngo n!(ltL) d
on A*( —k,k) converges to doa, as N — oo, and hence the right side should
converge to a,od. Thus we obtain that doo, = a,od on A,, and also that
doay = ogod on A, for any continuous fe L'(IR). Since for an open bounded set
U of R, dis bounded on A*(U), and A*(U)1is a closed span of a;(x) with supp fc U
and Sp ,(x) compact, it follows that d leaves A*(U) invariant. Then by Lemma 7
below it follows that L is bounded, which implies that d is everywhere defined. Thus
we obtain that (i) implies (ii).
To show the lemma referred to above we first prove:

Lemma 6. There is a constant ¢ > 0 such that for any AeR, ¢ >0, and x€
A* (A — e A+ ¢),

I Lx — Ax|| < cell x| .
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Proof. Let fe L'(IR) be a C®-function such that f(p) =1forpe[ —1,1]. Let
h(t) =e *f(et)e .
Then for any ge L' with supp g=(4 — &4 + &), it follows that hg = g, since
h(p) = f(s Y(p — A)). Hence for x € A*(4 — &, A + &), one has a,(x) = x and
iLoy(x) = jh(t)aa,(x)dt = iA[h(t)o,(x)dt — e[ e f" (et)a(x)edt .

Thus one obtains
ILx — Ax|| < cellx]| ,
where
c=[lf(t)de.
This concludes the proof.
Lemma 7. Suppose (i) or (iii) of Theorem 3. Then L is bounded.

Proof. Suppose that L is unbounded. Then, since Sp « = —Sp «, there is a sequence
{A,} in Spa N (0, o0) such that 4, —» 0.

Fix g >0 such that d|A4%(—2eo,2¢,) is bounded. Note that D(d?)
N A*(A, — €9,y + &) is dense in A*(A, — &9, 4, + &) and is y-invariant. Since
A*(An — €0, An + €0) " A, + {0}, there is a non-zero element x of D(d*)n
A*( Ay — €9, Ay + 89) N A, and let

1
y—x+\/—l—n

Since x = (y + y(¥))/2 one has | x|| < ||y|l; in particular y =% 0. Since

dy—\/}:,y=dx+ﬁd2x—\/l_,:x——dx

dx .

1
=——(d*x — 1,x),
\/Z( )

it follows by Lemma 6 that

ldy — /4nyll £

Since dy* = y(dy)*, it follows that

ldy* — /(3 | = Ip(dy — /T p)*1 < \/_nyu

\/— x|l <\/—|IyI|

Hence, since
d(yy*) = dy-y* + y(y)dy*

= (dy = /2))V* + S Ayy*
+ (D) (@dy* — /A7) + Sy () 7(*) 5
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we obtain

2ceq
1dy*) | Z /Il yy* + 90y — % Iy

;ﬁl<1-2f°)||yu2.

Since yy* € A*( —2¢y, 2¢4), it follows that

1] A*( =280, 2¢0) | 2 \/17(1 - 2jg°> .

As A, — oo, this implies that d is unbounded on A*( —2¢,, 2¢,), which is a contra-
diction.

Suppose (iii). Then by Lemma 7 it follows that L is bounded. Now we have to
show that it follows then d is bounded.

Let ¢o > 0 be such that D(d)> A*( — 3¢y, 3¢0) and let

M = ||d]A%( —3&0,3e0) || < 0 .

We shall show that d|D(d?) N A*(A — &g, A + &) is bounded (by M + | L||*/?) for
any A. From this the conclusion follows by the following lemma:

Lemma 8. Let {A{,,,...,4,} be a finite sequence in R such that
U:‘=1 (i, — &g, /q‘i + 80):>Sp0(. Then ZfzoD(dZ)ﬂ Aa(li — 80,/1i + 80) = D(dZ)

Proof. If x € D(d*), then for any continuous fe L'(R) one has «;(x)e D(d?)
immediately. The rest is easy (see [10]).
Let x € D(d?) N A%*(A — &g, A + &) be such that || x| = 1 and dx #+ 0, and let

y=dx/|dx] .
Then y € D(d) and

B PN (.  (. J P
d(y(y*)x) = y*dx — y(dy*)x = Tax] (dy)*x

which implies that
ld(y(y*)x)ll = ldx || — | Lx [l | x[I/ldx] .
Since y € A*(A — 2¢9,4 + 2¢0) and y(y*)x € A*( —3e0,3¢p), one obtains
ldx|? — Mlldx| — | LI £0.

M M?
lax| 5+ [ LI+~ <M+ L]

6. Proof of Theorem 4 (Inner Perturbations)

Hence

Since d2 =d* + 3, with Q=dq+4¢> and L= 42, it is immediate that (ii)
D(d,*) = D(d?)is a core for d, = d + J, and that (iii) d,> <L, = L + 6o. We only
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have to show that (i) djoo? = o?0od,, where a? is the one-parameter group of
*-automorphisms generated by iL,.
Define a family u, of unitaries of A (adjoined by a unit if it is not unital) by

u =y i [} 0, (Q) 0, (). . .oy, (Q)dty . . .dL, .
n=0

0st1 £...5th St

for t € R. Then u, is differentiable in ¢ € R and satisfies

u0=1>

d .
;1‘;“: = iu,0,(2) ,

o d(x) = ya(x)u¥, xeAd.
Lemma 9. If A>1, then D(d)>1 and d(1) = 0.

Proof. Note that the 6 = Ud defined in the proof of Lemma 5 is a closed derivation.
Hence this can be proved as for the derivations (see [2, 11]).

Supose that g € D(d?). Then Q € D(d) and it easily follows that u, € D(d). (If A is
adjoined by a unit we can set d(1) = 0.) To prove that d, o o,? = a7 d,, we have to
show:

ute(dx + 0q(x))uff = (d + d) (wor(x)uf)
for x € D(d), which, by computation, follows from the following equality:
u o (q)uf = d(uuf +q, te R

When t = 0, this is correct. Now compute:

d
Eutat(q)ut* = iu,0,(Q) o (q)u + iu,cx,(dzq)u,* — iu,0,(q) o (Q)uf

= iu,0,(Qq + d*q — qQ)u}
= iu,0,(dq- q + d*q — qdq)u
= u,0,(dQ)uff

and

& () = idu (@) — () ( @)
= iu 0, (dQ)us ,

where the first equality is easily justified by using the infinite series expansion of u,.
Hence

d d
o to(@ut = Ed(ut)ui" :
Thus one obtains that d o «? = a,7°d, for g e D(d*). For a general g € D(d), since
D(d?)is a core for d, we may choose a sequence {g,} in D(d?) such that g, — ¢, and
dg, — dq. Then since d,, (x) — d,(x) for x € D(d) and af"(a) — «f(a) for a € A, one
obtains the conclusion.
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7. An Example

Let # be an infinite-dimensional Hilbert space and let U be a self-adjoint unitary
on 4 such that both (1 + U)/2 and (1 — U)/2 are infinite-dimensional projec-
tions. Let Q be an unbounded self-adjoint operator on # such that UQU = —Q.
We can define a self-adjoint super-derivation d, on the graded C*-algebra
(B(#),Ad U) as follows: D(d,) consists of x € B(s#) such that xD(Q)< D(Q) and
Ox — AdU(x)Q is bounded on D(Q), and dy(x) is the bounded extension of
0Ox — AdU(x)Q for x € D(dg).

Proposition 1. 6, is a (not densely defined) closed-adjoint super-derivation on
(B(s#£), AdU).

Proof. Since UQU = —Q, it follows that UD(Q) = D(Q), which implies that
U@x —AdU(x)Q)U = —QAd U(x) + xQ
is well-defined on D(Q). Hence one obtains that if x € D(J,) then Ad U(x) € D(dp)

and Ad U(6¢(x)) = —0o(Ad U(x)).
Let x € D(J¢) and &, n € D(Q). Since

(x*&, Qn) = (¢, xQn) = ({,(Ad U(do(x)) + QAd U(x))n)
= ((AdU(dg(x))* + AU (x*)Q)Em)
It follows that x*& e D(Q), and
(Qx* — AdU(x*)Q)¢ = Ad U(do(x))*¢ .
Hence it follows that x* € D(6p) and
do(x*) = Ad U (o(x))* .

The closedness of J,, easily follows from the closedness of Q. We omit the rest of the
proof.

Let H = Q2 which is a self-adjoint operator with UHU = H. We define
a closed self-adjoint derivation dy in a similar way to . (Remember that d4(x) is
formally defined by Hx — xH and satisfies that Ad U >4 = 6o Ad U.) Let B be
the set of x € B(s) such that t — ¢ xe ™" is continuous in norm. Then Bis a C*-
algebra on which B, = Ad ¢*¥ acts as a strongly continuous one-parameter group
of *-automorphisms of B, and Jy is a generator of . Note also that §, commutez:
with Ad e"H.

Lemma 10. 6,><dy.
Proof. Let x € D(84) and & € D(H). Then it easily follows that
8¢°(x) = (Qdg(x) — Ad Udg(x)Q)¢
=(Q*x —xQ*)¢,

which concludes the proof.
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Lemma 11. D(6g) N D(8y) = D(84%).

Proof. We only have to show that D(d4) N D(55)<D(84?). Let x € D(d9) N D(Jy)
and let ¢ e D(Q). Since D(H) is a core for Q, there is a sequence {¢&,} in D(H) such
that

&—& 06,08
Since d¢9(x)&, = (Qx — AdU(x)Q)¢, € D(Q), it follows that
{Q3¢g(x) — Ad U(39(x))Q} &, = (Q*x — xQ%)¢&,

is well-defined, and converges to dg(x)&. On the other hand Ad U(6o(x))Q¢,
converges to Ad U(do(x))Q¢, and hence Q6y(x)&, converges. Thus dg(x)E € D(Q)
and

(Q0g(x)¢ — Ad U(9¢(x))Q)¢ = da(x)¢ .
Since ¢ is an arbitrary vector in D(Q), this implies that do(x) € D(Jg).
Proposition 2. D(5,2) is a core for d,.

Proof. Since D(dg) N D(dy) is a core for 69, which may be shown as Theorem 1(i),
this follows from the above lemma.

Lemma 12. U ¢ D(J,) where the bar denotes the norm closure.
Proof. We shall show that
{xeB(H)||x=U| <1}nD(dg)=¢ .

Let E, =(1+4+U)/2 and E_ =(1 —U)/2. Since Q is unbounded and
UQU = —Q, it follows that Q?E, = E, Q? is also unbounded. Hence there is
a sequence {&,} in D(Q*) N E, # and {4,} in (1, 00) such that [, = 1 and

1028y — M&all >0, 4, — o0 .
Let n, = Q&,/11Q&, | € E_# and compute for x € D(d,),

(80(%) Emsn) = ~/ (X s En) + / Fn( X115 1)

= (% (Q2E/1QE N = /2nEn) = (QE0 = /Tt X*11,) -

Since || Q¢&, |l — ﬂ — 0, the right side converges to zero. Hence if |x — U || < 1,
then |E,xE, —E.||<land |E_xE_ + E_|| <1 and thus

1(60(%)Ems M)l 2 24/ 2w — /I | E+ XE4 — E4 || + |E_xE_ + E_|)

should hold as n — oo . This is a contradiction since the left side is bounded.

Let A4 be the closure of D(d,). Then A is a f-invariant proper C*-subalgebra of
B. Let o = f|A, and L the generator of «, and let y = AdU|A. Note that
8o(D(89))= A since D(8y?) is a core for 8y. Thus d = g is a well-defined super-
derivation on A. Now we sum up the result obtained:

Proposition 3. The super-derivation d and the one-parameter group o of *-automor-
phisms defined on the graded C*-algebra (A, y) as above satisfies that d o, = o, > d for

all te R, D(d?) is a core for d, and d* = L, where L is the generator of o.



Super-derivations 27

References

10.

11.
12.

. Bratteli, O.: Derivations, Dissipations and Group Actions on C*-algebra. Lecture Notes in

Math. 1229, Berlin, Heidelberg, New York: Springer 1986

. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics I

Berlin, Heidelberg, New York: Springer 1979

. Connes, A.: Entire cyclic cohomology of Banach algebras and characters of §-summable

Fredholm modules. K-theory 1, 519-548 (1989)

. Connes, A.: On the Chern character of 6-summable Fredholm modules. Commun. Math.

Phys. 139, 171181 (1991)

. Jaffe, A., Lesniewski, A., Osterwalder, K.: Quantum K-Theory. Commun. Math. Phys. 118,

1-14 (1988)

. Jaffe, A., Lesniewski, A., Osterwalder, K.: On Super-KMS Functionals and Entire Cyclic

Cohomology. K-theory 2, 675-682 (1989)

. Jaffe, A., Lesniewski, A., Wisniowski, M.: Deformations of Super-KMS Functionals. Com-

mun. Math. Phys. 121, 527-540 (1989)

. Kastler, D.: Cyclic cocycles from graded KMS functionals. Commun. Math. Phys. 12,

345-350 (1989)

. Kishimoto, A.: Freely acting automorphisms of C*-algebras. Yokohama Math. J. 30, 39-47

(1982)

Pedersen, G.K.: C*-algebras and their automorphism groups. New York: Academic Press,
1979

Sakai, S.: C*-algebras and W*-algebras. Berlin, Heidelberg, New York: Springer 1971
Sakai, S.: Operator Algebras in Dynamical Systems. Cambridge: Cambridge University Press
1991

Communicated by H. Araki








