Commun. Math. Phys. 158, 517-536 (1993) Communications in

Physics

© Springer-Verlag 1993

Perturbation Theory for the Decay Rate
of Eigenfunctions in the Generalized
N-body Problem

I. Herbst!
Department of Mathematics, University of Virginia, Charlottesville, VA 22903, USA

Received November 20, 1992

Abstract. Simple examples are known where eigenfunctions decay faster than the
usual upper bounds would lead one to believe. We develop aspects of the perturba-
tion theory of the decay rate of eigenfunctions as measured by radial exponential
weights. We show that generically (in a Baire category sense) eigenfunction decay
rates are governed by the lowest threshold.

1. Introduction

There is now an enormous literature on exponential decay of eigenfunctions in the
N-body problem. The best known upper bonds are due to Agmon [Al]. If H is
the generalized N-body Schrédinger operator (see Sect. II for details), and
E < Zo(H) = inf 6.(H), these bounds state that any L? solution of Hy = Ey
satisfies

W) < c,e”®, ally<1, (L1

where p 4(x) is the distance to the origin in the “Agmon metric” [A1]. If y(x) is the
unique ground state with eigenvalue E < Xo(H), it is known [CS] that

W(x)| = & e ", ally>1, 1.2)

with &, > 0, but for other eigenfunctions lower bounds are harder to come by. We
mention here some results of [FH1, 2] in this direction: Define

a, = sup{a = 0: exp(a|x|)yeL?} .

Then o, + E is a threshold or + oo. (The possibility + oo can be eliminated with
certain assumptions about the potential which we will not make here.) The set
J (H) of thresholds is a closed countable set to be defined later. Suffice it to say for
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the present that min (H) = Xo(H). We also have the statement (for E < X, (H)),

3

lim r"11n< | |¢(rw)|2da(co)> = —oy, (1.3)

r—o sn-1

which combines upper and lower bounds. Here o is Lebesgue measure on S" 1.
The relationship of the Agmon distance to a, is as follows: if we look for the

direction of minimal decay given by the Agmon distance, we find

min p4(rw) =(/Zo(H) — E)r.
weSn—1

Thus, if the particular threshold singled out by y is Zo(H) in the sense that
oy + E = Zo(H), we have min,gn-1 p4(rew) = a,r. The Agmon distance thus gives
more information than the upper bound inherent in (1.3) about the behavior of the
eigenfunction if the eigenfunction picks out the “right” threshold (namely Z,(H)).
However, this need not be the case (see [FH;0,] for examples), and when the
“wrong” threshold is chosen, the Agmon distance may have no relevance to the
decay of the eigenfunction. (Of course, the upper bound is always correct but may
be very far off from the true behavior.)

Since abnormally rapid decay does indeed occur, two natural problems suggest
themselves:

(1) Understand the nature of this decay when it does happen. In particular, find
a relation between the decay rate in various directions and spectral data. Aside
from (1.3) which only gives information about the rate of decay in the direction
of weakest decay, not much is known. (However, see [FH1] for a conjecture
and [D1, D2] for some attempts to understand this problem.)

(2) Show that generically (in some sense), the Agmon distance gives the correct
decay rate.

In this paper we solve a simplified version of problem (2). We show that
generically all eigenfunctions with eigenvalues below Xy (H) pick the “right” thre-
shold, ie., aj + E = Zo(H). (We will be precise about the word generic in Sect. 3.)

There are two basically different results which need to be proved in our
approach. The first, which we accomplish in Sect. 2, is a stability result which in its
simplest form says that if Eq < Zo(H) is an eigenvalue with corresponding eigen-
functions y;, each of which has “normal” decay (so that o, + Eq = Zo(H)), then
for small We C§ (R") the eigenfunctions of H + W with eigenvalues near E, will all
have normal decay. (Actually a more general stability result is proved where W is
allowed to be a (generalized) N-body potential.)

The second result is more perturbation-theoretic and says that if the eigenfunc-
tion y decays abnormally fast, then we can find an arbitrarily small We Cy(R")
which turns  into a normally decaying eigenfunction. Thus even though y may be
analytic in W (as a vector in L?), its decay rate can change discontinuously. Our
approach to this problem necessitates looking at all orders of perturbation theory.
We do this in Sect. 3.

The main results of this paper are summarized in Theorems 2.6, 3.6, and 3.7.
There is also a new approach to lower bounds for positive solutions presented in
Theorem 3.8. While our method does not reproduce the lower bounds of [CS], the
new technique may be of interest. In addition, a new proof of the main result of
[FH1] is given in an appendix.
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The present paper is similar in structure to [AHS] which develops perturbation
theory for embedded cigenvalues. As the reader will see, an eigenvalue with
abnormally decaying eigenfunctions is actually an embedded eigenvalue of a cer-
tain non-self-adjoint operator and thus the similarity is natural. Indeed, at least in
this author’s mind, [AHS] was originally conceived as a necessary prerequisite for
the present work. In addition to the similarity in structure of the papers, the present
paper relies heavily on estimates proved in [AHS]. These estimates originate in
[FH1].

The author thanks S. Agmon for useful conversations.

2. Stability of Normal Exponential Decay

Throughout this paper,
M
H= —4+4+V, V()= vmx),
i=1
where the v; are real and 7; is an orthogonal projection with range X; < R". This
type of operator was first introduced by Agmon in [A]. Let 4; = Ay,, the Laplace
operator associated to X;. We assume

(i) vi( — 4; + 1)~ is compact on L*(X;);
(i) (= 4; + )7 tx;* Vou(x;) (— 4; + 1)~ is compact on L%(X,). (2.1)

Let £ be the family of subspaces X of the form
X=Xi1+Xi2+ +Xiz .

We also include {0} and R" in . For X € ¥ we define Hy = — Ax + Vy, where
Vx(x) = in x Vi(m;x). By convention Hy, = 0 on ¥. We define 7(H) = {A: A is
an eigenvalue of Hy for some X # R"}. Thus by definition, 0e 7 (H).

If ¢ is an eigenfunction of H with eigenvalue A, < Zo(H) = inf 7 (H), then we
say that Y has normal decay if aj + 4o = Zo(H) and abnormal decay otherwise.

We will perturb H by adding a real-valued function W(x) = Z.Ail w;(7; x),
where the w;’s satisfy the same assumptions (2.1) as the v;’s.

We first state a result which essentially says that the number of linearly
independent eigenfunctions of H with eigenvalue near 1, € R which decay at least as
fast as e *"(a? + 1o ¢ I (H)) cannot increase under a small perturbation W. The
size of W is measured by the norm

(W= W(=4+ D)7+ [(=4+ D) 'x-VW(=4+ D7 .

Theorem 2.1. Suppose o> 0 and o? + Ay¢ T (H). Then there is an open interval
J containing Aq and a 6 > 0 so that if | W|, < 0, then

Y dim{y eker(H + W — A):a, = a} < dim{yeker(H — Ao): oy, = o} .
redJ

It turns out that this theorem can be thought of as a result about the perturba-
tion of the point spectrum of a certain non-self-adjoint operator. With p,(x) =

exp(a{x)), {x> = ./|x|* + 1, define
H,=H + Vinp,*D + D-Vinp, — |Vinp,|?>, 2(H,) = 2(4),
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where D is the gradient operator. Note that H, is the closure of p,Hpy *|CF(R™).

Theorem 2.2. Suppose o> 0 and o* + Ao¢ T (H). Then there is an open interval
J containing A and a 6 > 0 so that if | W|, < d, then

Y dim ker(H, + W — 4) < dim ker(H, — o) -

AeJ

Deduction of Theorem 2.1 from Theorem 2.2. 1t clearly suffices to prove (i) and (ii)
below:

(i) There is a 6 > 0 so that if Ao + a2¢ J (H), then |4 — Jo| + | W], < & implies
A+a?¢ T (H + W), and
(ii) If A + «* ¢ 7 (H), then dim ker(H, — 4) = dim{y eker(H — 2): o, = a}.

To prove (i) note that if Xe % and X + R", then 4o + «* ¢ .7 (Hx) U 0,(Hy).
According to Theorem 2.5 in [AHS], if |4 — A¢| + | W], is small enough,
A+o*¢a,(H+ W)y). Hence, if |1—4Ag|+|W|, is small enough
A+ a?¢T(H+ W). To prove (i) we show that if A+ a?¢J(H), then
ker(H, — A) = p(ker (H — A) n {: o, = a}). Thus, suppose feker(H, — 4). Then
let ¥ = pg'f. Formally we have 0= (p,Hp; ' — A)f = p,(H — ) ps *f so that
yeker(H — 4) and p e L?, and thus «, = o. This is easily made into a proof.
Suppose ¢ € C3°(R"). Then we easily see that

0=(ps "(H—=Dpu,f)=((H—Dp., pz " f) -
But p; ' 2(4) = 2(4) so that
(patp, (H — A)Yp) =0

for all pe C(R"). Thus Y eker(H — A).

If y eker(H — A)and «, 2 «, then since by [FH1], o + A€ 7 (H) U {0 }, while
«* + A¢ T (H) we have a,, > o. In particular, f= p,ye L* It follows easily that
Py € D(4) and H,f = Af. Hence Y = p; 'f with feker(H, — 4). (]

We now embark on a proof of Theorem 2.2: From Theorem 3.1 of [AHS] we
have for |1 — Aq| + | W|1 < 64,

k| GO2pe(H + W=l 2 lpad | — 1 Kpab |l , (2.22)

with some compact operator K independent of W and A and for all ¢ € C5°(R"). Let
xr be the characteristic function of {x: |x| < R}. Then for large enough R,

IK( — )l <5

so that

IKp.dl < 5(Ipagl + 1),

and thus (2.2a) implies

KI<x>2p(H+ W=Dl Zllpadl —clioll- (2:2b)
It follows easily from (2.2a) that

kI <x>*(Hy + W= Df I 2 I fI = IKSfl, fe2(4). 23)
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It is important to note that (2.2b) is claimed to hold only for ¢ € C&°(R"). While
(2.2b) has a meaning for ¢ € D(H) = 2(4), where both right and left sides may be
infinite, it is often incorrect even though it makes sense. Indeed, in Proposition 3.5
it is shown that under certain assumptions (2.2b) cannot hold for all ¢ € Z(H).

Let P, be the orthogonal projection onto the subspace of all Y eker(H — 4o)
with a, = a. As in the proof of Theorem 2.1, o, > a. It follows from (2.3) that P,
has finite rank for otherwise we could argue that for an orthonormal sequence
{fmm=1,2,...} of eigenfunctions of H, we had | Kf, || = | f |. (Note that we
have not assumed that 1o¢ 7 (H) so that as far as we know there is nothing to
prevent ker(H — /) from being infinite dimensional.) It follows that P, = p,Pyp; *
is a bounded finite rank projection onto ker(H, — 4o).

We claim that for some § > 0 and k > 0 we have

kI Gy (Ho+ W =21 = P)f | 2 I1(1 = P)SIl 24)
for all fe 2(4) and |A — 4| + | W], < 0. Suppose not. Then there is a sequence
L€2(4) with P, f,=0 and A,— 4, |W,]1—>0 so that |f,||=1 while
| <x>*(H, + W, — A,)f. || = 0. We can assume that f,~>f. It follows that for
¢eCq’(R"),

0 =1im(¢, (Hy + W, — ) fo) = (HS — 40) 9, ) ,

which implies (H, — o) f = 0. We also have 0 = P, f, — P,f so that p, 'f'is ortho-
gonal to Range P, but also in Range P,. Hence f = 0. From (2.3) it now follows that
0 = 1, and thus for some § > 0 (2.4) holds for some k > 0 if [A — Ao| + | W], < 6.
Now suppose

Y dim ker(H, + W — 1) > dim ker(H, — Ao) = L .

Aed

Letfieker(H, + W—A), et j=1,...,L+ Landf=Y " B;f;with P,f=0.
We an assume that the p; 'f;=;, j=1,..., L + 1 are orthonormal, and that
¥ = p; ! fhas norm 1. Then

kI GOHH A+ W =) f Il Z 1

and
<D Ho + W —20) f1I £ Z [Bil140 — A1 1 <xD3f1
and thus

KL+ D)1J sup | <ootfill 2 1,

J

where |J| = length of J. We can use (2.2b) with ¢ = y;, A = 4;, and « replaced by
a slightly larger number f to conclude that || ps; || < c|| ¥l = ¢ so that

sup || O3l = sup | &) papy ol S ¢
j i

Thus
kL+D|JIc=1,
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which is a contradiction if |J| is small enough. O

We now discuss the meaning of Theorem 2.1 further. It is easy to see that
Zo(H + W) is continuous in the variable W. In addition, Z,(H) is always an
isolated point of 7 (H). This follows from a theorem of Perry [P] which says that
under our assumptions eigenvalues can only accumulate at thresholds from below.
Thus if we let

Zy(H)=inf[T(H) N (Zo(H), 0) U {0}],
we have
2y(H)> Zo(H) .

We have allowed for the possibility that 7 (H) n (Zo(H), 00) is empty in which case
2i(H)= + .

Suppose now that A, is an eigenvalue of H with 1y, < Zo(H). The question
which we want to address is how shall we choose a? + A, in order to get informa-
tion from Theorem 2.1? If a? + A, < Zo(H) no information is provided. This is
because for |4 — Aol + |W|; small we will have a® + 1 < Zo(H + W). But
af + A2 Zo(H + W) for all yeker(H + W — ). The most obvious choice to
take is

20(H)< o? + 2 <21(H) .

We shall do this but we must point out that even though we always have
Z,(H + W) — Zo(H + W) > 0, there are potentials V' where this difference may be
arbitrarily small for arbitrarily small W.

In such a situation it is impossible to have a? + A between Xo(H + W) and
Z,(H + W) for all small W.

There are two special conditions which produce a situation where it is possible
to have | W,|; » O while X, (H + W,) — Zo(H + W,) — 0. In order to discuss them
we make two definitions. In the following X < Y means X = Y and X = Y, and
o,(A) is the set of eigenvalues of 4.

Definition 2.3. We say that v is critical for subsystems if there is an X € £ with
0 <X <R"suchthat 2o(H) = Xo(Hy) ¢ 0,(Hyx) and given ¢ > O there is a W and an
eigenvalue A(W) of (H + W)x such that | W | < eand |A(W) — Zo((H + W)yx)| <.

Clearly, if V is critical for subsystems an eigenvalue is just about to emerge from
the bottom of the essential spectrum of one of the Hy with 0 < X < R" and
0(Hx) = o.s(Hy). This situation has been studied for certain kinds of potentials
[KS1,2; Ka; S21.

Another condition which may cause X (H + W) — Zo(H + W) to become
arbitrarily small for small W is degeneracy.

Definition 2.4. We say that X,(H) is degenerate (in 7 (H)) if there are two subspaces
X1, X,e & with X1 + X, and both < R" such that Z,(H) is an eigenvalue of both
Hy, and Hy,.

In this case clearly a small perturbation W can split X, into X, and X'; which
will be arbitrarily close.

Proposition 2.5. Suppose Z,(H) is not degenerate in J (H) and V is not critical for
subsystems. Then there are positive numbers 6, and 0, so that if | W|,; < 6;, then
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Proof. Suppose 2o(H) < 0. Then Zy(H)eo,(Hy,) for exactly one X, < R". Con-
sider the set

g() = {Xeﬁf: 0<X <Rn,20(H) = Zo(Hx)} .

If X e %,, then since Xo(H)e 7 (Hy) there must be a Ye . with Y < X such that
2o(H)eo,(Hy). It follows from the nondegeneracy condition that X, ¢ %, and
that 2o(H)e04.(Hx,). Suppose Xe&,. Then again, by the nondegeneracy
condition we cannot have Z,(H)ea,(Hy). Since V is not critical for subsystems
there is a neighborhood Ny of X,(H) and a positive number Jdyx so that
Nxno,(H+ W) =0if |W|; <dx. If X is in

{XeL\{Xo}:0< X <R", Zo(H) < Zo(Hy)} ,

clearly the same is true. Similarly, if X = {0}. Finally, for small W there is
a neighborhood Ny, of Zo(H) so that Ny, no,((H + W)x,) = {inf o ((H + W)x,)}
and by continuity, for small W, Z,(H + W) =info((H + W)y,). Hence if
2o(H) <0 we have shown that for small W, X, (H+ W)—2o(H + W) is
bounded away from zero.

Suppose 2o (H) = 0. This situation is easier to deal with. By the nondegeneracy
condition (note that 0 is an eigenvalue of Hyy), if 0 < X < R" and X € %, Then
Zo(H) =0¢0,(Hy). Because V is not critical for subsystems, there is a neighbor-
hood Ny of 0 and a positive number dy so that Ny no,(H + W)y) =0 if
|W|; < 6x. Thus for small |W|;, Zo(H + W) =0 and Z,(H + W) is bounded
away from zero. O

Returning to our main line of development, we note that if Xy(H) is non-
degenerate in J (H) and V is not critical for subsystems we can choose « > 0 so that
SoH+ Wy<o?>+ A< Z{(H+ W) for |W|; + |4 — Ay| small. We then learn
from Theorem 2.1 that the number of abnormally decaying eigenfunctions with
eigenvalue near A, cannot increase. In particular, if all eigenfunctions of H at
Ao have normal decay, the same is true for the eigenfunctions of H + W at A if
| W11 + |4 — 4] is sufficiently small. This is summarized in Theorem 2.6 below.

If we have degeneracy or criticality there can be at least two thresholds X, and
2, emerging from a point as W is turned on, and an eigenfunction with eigenvalue
initially at 4o, and with «f + Ao = Zo(H) has a choice of which threshold to pick to
control its decay rate, a choice from among at least two thresholds emerging from
the same point. We cannot prove that the eigenfunction always picks X, and in
fact we believe that it does not. What we can prove is stated in the next theorem.

Theorem 2.6. Suppose V is not critical for subsystems, that Xy(H) is nondegenerate
in 7 (H), and that 2o < Zy(H). Then there is a 6 > 0 and an open interval J contain-
ing Ay so that if | W\ < 6, then

Y dim{yeker(H + W — A): 0 + A> Zo(H + W)}

ied
< dlm{l//eker(H - /10): a,%, + }-0 > Zo(H)} .

Proof. We choose « > 0 so that Xo(H) < o + Ao < Z;(H). We can choose § and
|J| small enough so that Zo(H+ W)<oa?+A<ZXZ(H+ W) if 1eJ and
|Wl]; <6. Then dim{yeker(H+ W — A): a, = a} =dim{yeker(H + W — A):
OJ

a; + A > Zo(H + W)}, and the result follows from Theorem 2.1.
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Remark. If we restrict W to a subclass so that X (H + W) — Xo(H + W)=c¢c >0
for W in this subclass and | W|; small, clearly the conclusion of the theorem holds
even if V' does not satisfy the assumptions of Proposition 2.5. This happens, for
example, if W(— 4 + 1)~ ! is compact for then I (H + W) = I (H).

3. Perturbation Theory

In this section we will consider an eigenfunction ¢, of H with eigenvalue
Ao < Zo(H). Under the assumption that ¢, has abnormal decay, we will show that
an arbitrarily small perturbation We C§(R") can be added to H to turn ¢, into
a normally decaying eigenfunction. This result, along with the stability result of
Sect. 2, will be enough to show that generically all eigenfunctions with eigenvalue
below Xo(H) have normal decay.

A byproduct of our methods is a new approach to lower bounds for positive
eigenfunctions. At present, due to the use of radial weights, this approach cannot
reproduce the results of Carmona and Simon [CS], but it may be of interest
nevertheless.

In this section we will always assume (2.1), but we will sometimes also need the
following:

For each i, {y>*v;(y)( — 4; + 1)~ ! is bounded for some ¢ > 0 . (3.1)

Consider the situation where a non-degenerate isolated eigenvalue of H has
a corresponding eigenfunction with abnormal decay. We then add a small per-
turbation to H to obtain H + tW with corresponding eigenfunction ¢(¢). Our
objective is to choose W so that ¢(t) has normal decay for all small || > 0.
The next result shows we need only make sure that some derivative
¢®(0) = d*¢(t)/dt*|,- o has normal decay.

Proposition 3.1. Suppose W(x) = Zﬁl wi(m;x) satisfies (2.1), and that for t in an
open interval I containing 0,

(H+ tW — At) () =0, (3.2)

where we assume ¢(*) and A(*) are C*® functions on I. Suppose f, > 0 is chosen so
that B§ + A(0)¢ T (H) and a4y > o but for some k 2 1, ayniy < Bo. Then there is
an open interval J containing 0 with J < I such that for all te J\{0},

%py < Po -
Proof. Differentiating (3.2) m + 1 times gives
(H — 49)¢™*V(0) = (m + 1) (A (0) — W) ¢™(0)

LY (m ‘ 1) 90§10 (), 63)
k=2

where 4o = A(0). Let I = min{k = 0: aye( ) < Bo}. Using (3.3), it follows by induc-
tion and the methods of [FH1] or the Appendix, that for 0 < k < I, we have
(xd,(h)(o) > ﬁo.

Suppose the proposition is false. Then there is a sequence t; — 0 (t; & 0) with
toe, > Bo. This follows from the proof of Theorem 2.1 which shows that for small

[t], eg@ F Bo-



Perturbation Theory for Decay Rate of Eigenfunctions 525

Given any fe C*(I), let

i £
fin@® =f@) - Zjiff—)tk-
k=0 K:
For fand ge C*(I) we will make use of the easy proved formula
j i~k
(@) =fO) g ) + Y, fia@®)gv™2(0) - (3.4)
k=0 (j— k!

We take f(t) = H + tW — A(t), and g(t) = ¢(t), and find (using (fg) () = O),
(H + tW — A1) du-13(t) = (4(t) — 20) — tW) ¢~V (0) '~ /(1 — 1)!
-1 1o tl—l—j
09O gy
We denote the right side of (3.5) divided by ¢' by f,(t) and write t ™ ¢y - 1;(¢) = ¥ (2).
We thus have

(3.5)

(H + tW — Ae)y(t) = filt) -
We know that ,(t;) = y; satisfies o, > Bo and thus use of ¥; in (2.2b) is easily
justified. We find
KN <0 ppo it) | 2 1l ppotbn@) Il — e () | - (3.6)

But lim,o(t) = ¢P(0)/I! and Agj(2)/t? " - AY*D()/(j + 1)! This shows that
[l :(z;) | and the left side of (3.6) are uniformly bounded so that

lim sup [ pg, ()| < oo .

j= o
As a consequence, || pg,#®(0)|| < o0, and thus ayme) = o, a contradiction.  [J

Corollary 3.2. Suppose Ay < Xo(H) is a non-degenerate eigenvalue of H = — A + V,
where V satisfies (2.1). Suppose W is a real function in CP(R"), and that ¢(t) is
a smooth normalized eigenfunction of H + tW for small |t| with (H — 49) ¢(0) = 0,
whose existence is guaranteed by standard perturbation theory. Suppose

o) >~/ Zo(H) — Ao but for some k > 0, agno) = / Zo(H) — Ao. Then for all small

[t] >0,
Uy =/ Zo(H) — AF) ,
where (H + tW — A(t)) ¢(t) = 0.
Proof. Just choose B, > 0 with Zo(H) < B3 + 1o < Z{(H) in Proposition 3.1. [

Note that it follows from (3.3) and the Appendix that agm) = «/2o(H) — 4, for
all k. We now allow ourselves to contemplate the possibility that no matter what

real We C§(R") we choose, we obtain ayw) > +/2Zo(H) — A¢. The proof of the
following proposition is somewhat involved.

Proposition 3.3. Suppose H = — A + V,where V satisfies (2.1) and that Ay < Xo(H)
is a non-degenerate eigenvalue of H with eigenfunction ¢, satisfying

Opo >~/ Zo(H) — Ag. Suppose that for each real We C5°(R") we have

Ap®0) = A/ Zo(H) — /10, all k =1.
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Let Q be a real function in C{(R") so that Ag¢o(H + Q). Then for every >0
satisfying

Zo(H) < B> + Ao < Z1(H),
there is a constant k() > 0 so that for all y € D(H),

k(B <x>*pp(H + Q — o)V | Z Il pp¥r I - (3.7)

We remark that the significance of this result is that (3.7) holds for all € 2(H).
We will see that under a mild additional assumption on the potentials, namely (3.1),
this cannot be.

Proof. We assume that || ¢o | = 1 and define P, as the projection Pof = (¢, f) Po.
Since many W’s in Cg°(R") will appear in the proof we put a subscript on ¢(t) and
A(t) so that

(H+tW—Aw(®)ow() =0, ¢w(0) = o, iw(0) = 4o,

where W is a real function in CP(R"), and ¢ is in some small W-dependent interval
containing zero. We remind the reader that 1$(0) = (¢o, W)
The main part of the proof consists of accumulating large numbers of functions
fin the range of H + P, — A, so that inequalities similar to (3.7) hold for ¥ = Gf,
= (H + Py — 49)~'. Namely we would like to prove

k(B <x>* pg(H + Po — Ao)¥r || Z [l ppp |
for such . For this purpose, let
Ran,, = span{(H + Py — ) $5°(0): W is real and in C5°(R")} .
For any set S = L*(R"), let

S=8u {fe L*(R": for any ball B contered at 0
there is a sequence f;€ S with || ps(f; — xf) Il =0
for all B with B2 + Ao < Z,(H)},

where y3 is the indicator function of B.
Starting with 2o = { uo: peC}, let

9,,,4.1 29? + Raan .

We claim there is an increasing sequence of Borel sets {4;} such that for m = 1,
G = L*(A,). (By defintion, L*(4) = { fe L*(R"):f = 0 a.e. on A°}.) In fact, we will
show that for m = 1,

D+ 1 = closure span { fGh, + h,: fe L°(R"), hy and h,e L*(4,))} .  (3.8)
Let us compute &, . Specializing (3.3) to m = 0 we see that
Dy ={(W+ p)do: WeCPR"), peCj .

Setting N = {x: ¢o(x) = 0}, we easily find &, = L2(N°), and thus we can take
Ay = N°. If we knew that meas(N)=0, It would immediately follow that
D = L*(R") for all m = 1, but meas(N) = 0 is not known at present unless strong
assumptions are made about the interactions v;.

Given that (3.8) holds for some m, it easily follows that @, = L?*(Am+ 1) for
some A, +; > A,. We give the proof. Suppose h is orthogonal to 9,,+;. Then
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clearly he L?(A%) and (h, fGhy) = Ofor all fe L (R") and all hye L*(A,). Let {e;} be
a countable dense set in L?(4,,) and define

B, = U {x: (Gej)(x) + 0} .

It follows that i = 0 a.e. on B,, so that we can conclude (@m+ = Lz((A U B,.)).
Looklng at (3.8) again we see that &, ; < L*(4,, U B,,) 50 Dms1 = L2*(Ap+1) with
m+1 = A o B

We now assume what we will call our working induction hypothesis: for some
121, (3.8) holds for all m with 1 <m < land &,, = L*(4,,) form=1,2,...,1.

Lemma 3.4. Given our working induction hypothesis,

(i) PO Tprrif m <1

(i) Let
v Woer = Z (Bry = Way) Gy — Wa))G . ..
TESm+1
(Hn(mﬂ) - n(m+1))¢o 5
where u; = (¢o, Witho). Then for 1 Em < |,
D+ Rang, oy =span{fi, . wn..: W;eCERN} + D, . (3.9)

(i) For each B> 0 satisfying Zo(H) < B* + Ao < Z,(H), there is a k(B) <
(independent of m and 1) such that for 1 <m <1,

IpsGps * <x) ~H L2 | = k() - (3.10)
Proof. According to our definition of Ran,,, ¢{#”(0)e G Ran,,, so thatif 1 Em £ |,
$8(0)e G Ran,, « GDp, = GDy = GL*(Ay) .

But if 1 < m < I, we see from (3.8) that GL?(4,) © D+ .. Since ¢iP(0) = poe D,
(1) follows.
From (i) and (3.3) it follows that if m < [,

(H + Po — Ao)$i " V(0) = (m + ) (AH(0) — W)d#”(0) + g,

where g€ 9,,, and thus iterating

(H + Py — Ao)p§0(0) = foww. . w +h,

~ i X m+1W’s
where he 9,,. By “polarization”

span{ fwivlw w : W real and in C3°(R")} =span{fw, . w...: W;eCSR"}.

This proves (ii).
According to Corollary 3.2 of [AHS] there is a k(f) < oo such that if § >0
satisfies Zo(H) < B2 + Ao < Z1(H), we have

k(B) Il pp<x>*(H + Po — Z0)d || Z llpp (3.11)
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for all pe C(R"). Let
= {fe L*(R"): p,fe L*(R") for all y satisfying y* + 4o < Z,(H)} .

We writefj——@L»g iffje?,foralljand || p,(f; —g)|| > O0forally < /2 (H) — Ao.

Suppose fe &, and Bis a ball centered at 0. Then there is a sequence f;€ 2, with
fjﬁ xef If Y; = Gf;, it follows that ;€ 9, so that we can substitute ¢ = y; in
(3.11) (this requires a limiting argument) to find

k(B pa<xD2fill Z Nl pplsll -

Taking j — oo and using Fatou’s lemma we learn

k(B ps<x>*xf Il Z Il pp Graf 1l -
Now we take BTR”" and get

k(B) pg<x>*f 1l = ll ppGf |

for all fe J, = L*(A,). Replacing f by pg 1 {x>~*f we obtain (3.10) for m = 1.
Suppose 1 <M < and that (3.10) is true for all m satisfying 1 <m < M. If
fe %y = L*(Ay) and f = 0 outside a ball, then by definition there exist g;€ P,

and hjeRany, so that g; + h—s f. As in the proof of Proposition 3.1, it follows
from the hypothesis of the proposition and (3.3) that h;e 9, and Gh;je Z,. Thus

gi€2,, and from the boundedness of p,Gp, ' (x>~ ’-’|L2(AM s 1t follows that
Gg;e2,. Thus y; = G(g; + hj)e P, and

k(B Nl pp<{x>*(H + Po — Ao)¥;ll Z Il ppt¥;ll -
Taking j —» o0 we obtain

k() pg<x>*f 1l Z I pGS 1l

and as before this easily extends to all fe L?(4,,). Hence (iii) of the lemma is
proved. 0

We now continue with our main line of development. It follows from our
working induction hypothesis that if 1 <m < |,

ém = ClOSUrC(Span{flezG o 'fm—lequO:fla e afmeLoo(Rn)} + gm—l) .
(3.12)

In particular,

U= (uy— W3)G(ps — W3)G - G414 — Wt+1)¢o€971-

From (iii) of the lemma € ,. Suppose f; € L*(Af) and B is a ball centered at 0.
We choose a sequence W; ;e Ci(R") such that | Wy ;— xgfill,—0 for all
pell, o). We want to show the Z,-convergence of (u,; — Wy, ;) Gy, where
p1,; = (¢o, W1, ;o). For this it is convenient to note that from (iii) of the lemma it
follows that (H + i) p,Gp; * (x> ~#| .24, is bounded. The easy proof will be omit-
ted. Thus by Sobolev’s inequality p, Gy € L(R") for some g > 2. Hence the conver-
gence follows by Holder’s inequality. Similarly we conclude that the other
permutations in fw, ;w,, ... w,,, converge in Z, so that

V' = xsf1Glw,,....w,
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isin 9,4,.If we add to f1 a function in L*(4,) we are adding a function in 9, to /4
so we can assume that f; above is an arbitrary L® function. Given a function
f2e L*(Af-,) and a sequence W, ;e C&°(R") with || {x)>™"(W,, ; — f3)Il, = O for all
p e (1, o0 ) we use an analysis similar to the one just used to show the convergence
of p,xsf1Gfw.,,... w,- We conclude that "

V" = xsf1Gf2 GfW3 Wi

is in Dy, Again we can replace f2 by an arbitrary L function by adding
a function in &, to y". Continuing in this way we find that &, , ; contains the span
of all functions of the form

f1GfG - - - fiGfii 1o +

where f;e L® (R”) and he 9,. We can calculate the right side of (3.8) with m = [ and
find that it is given by (3.12) with m =1+ 1. From what we have just shown
@H 1 O (right side of (3.12) with m = [ + 1). But a glance at the definitions shows
9,1 cannot be any larger and hence (3.8) holds with m = . We have thus shown
that (3.8) holds for all m 2 1 for an increasing sequence of Borel sets {4,}. Taking
into account (iii) of the lemma one easily finds that if 4 = ( J;;_; A,

I s Gpﬂ_l XDl £ k(P).

We would thus like to show L2?(A4) = L?(R"). This follows from the following
argument: let P be an arbitrary polynomial. It follows that for f, ge L*(R"),

fP(G)gpoe L2(4) .

But by the functional calculus we can find a sequence
P, (G) 5 e ™H+Po  (for fixed t > 0) .

Thus fe " *PI g = fe Mgy + ¢, fdo € L*(A). It follows that

fe " gpoe L*(4)

for all f, ge L (R™). Since e " is “positivity improving” for ¢ > 0 [RS], it follows
that L*(4) = L*(R").

Finally we need the bound for (H + Q — 4o)~ ! rather than (H + P, — 4o) " *
= G. This follows (with a different k() from the resolvent equation. Proposition
3.3 is proved. O

We now proceed to show that (3.7) cannot hold for all y € Z(H), at least if we
make a mild additional assumption.

Proposition 3.5. Suppose H= — A + V, where V satisfies (2.1) and (3.1), Lo < Z((H),
and B > 0 with Zo(H) < B* + Ay < Z,(H). Suppose, in addition, that Q is a real
Sunction in C§(R") such that Ao¢ o(H + Q). Then (3.7) cannot hold for all y € D(H).

Proof. Let Go = (H + Q — Ao)~*, and pick ap > 0 with af + 4o < Zo(H). We will
use the fact that

I PaoGoPr' Il <0,
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which follows from the usual analyticity arguments (see [CT] for example) once it
is known that A, is not in the essential spectrum of H,, (see [DHSV]). Assume that
(3.7) holds for all Y € Z(H). Then

Il psGops *<{xD> %]l < 0 .

Consider the operator

F(2) = PunGopah<x) 7%,
where a(z) = (f — ao)z + 9. Matrix elements of F(z) between vectors in C§ are

analytic for z in a neighborhood of the strip {z: 0 < Rez < 1} and bounded in the
strip. Hence we can use the three lines lemma (maximum principle) to conclude that

sup{ || F(t)|:t€[0,1]} < 0.

Choose ¢ in (0, f71/Zo(H) — o) small enough so that {y>v;(y)( — 4, + 1)~ ! is
bounded for all i. We choose «, so that a(e)?> + Ao = Zo(H). We will obtain
a contradiction to the statement that F(e) is bounded.

The boundedness of F(g) is equivalent to

| <2 pa(H + @ =AY || Z [l pa V|l (3.13)

for all y € 2(H), where ¢ = || F(¢) ||. Let us assume that Xo(H) < 0. We will indicate
the proof for the easier case Xo(H) = 0 later. It is easily seen that we can find
X e Z\{R"} so that Z(H)€ 04;.(Hx) and thus Hy has an exponentially decaying
eigenfunction ¢y with eigenvalue 2X,(H). We assume | ¢x| =1. Let
¥ = puos @x ® ux:. Then according to (3.13),

cll<xX*(H+ Q + B—Zo(H)px @ ux: || 2 ux:| , (3.14)
where
x x 2
B =a(e) <<_x§ ‘D+D- —<—x—>> + a(e)?/{x)?,

and D = V. We choose uy: € C§ (Br()(a)), where Bg,(a) = X+ is a ball of radius
R(a) centered at a. By a scaling argument we can choose uy: so that

| Ax:ux: || < const/R(a)?,
[ Dux. || < const/R(a),
lux:|l =1.

The point a will be chosen to tend toward infinity along a fixed line emanating from
the origin while we will choose R(a) = 6| a|, where § > 0 but small. The direction of
the fixed line and 6 will be chosen presently. The closed set

S= ) XtnXx{
Xi¢X
is a proper subset of X* because each X* n X; appearing is a vector space of
dimension strictly less than dim X*. (Otherwise X* n X{ = Xt and X; c X.) We
choose a to lie in X*\S so that m;a % 0 for all i with X;d¢ X. We choose 6 €(0, 1) so
that Byry(a@) = X*\S for a in the chosen direction. We will use the notation
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x = (y, z), where ye X and ze X*. We can choose § small enough so that for some
¢ >0,if X;d¢X,|y| £0|z|, and ze Br(,(a), then

Ix| < ¢|mx]| .
Let y, be the characteristic function of the set

{x=(,2: 1yl >d|zl, z€ Brey(@} ,
and y, be the characteristic function of

{x = (3,2 |y| £ 6|2, 7€ By (@)} .

We know that e’ ¢y (y)e L*(X) for some y > 0. Let Vx(x) = ., _ yvi(m;x). We
estimate

1<xY(V = V)x @ ux: | < const- || <xpf (V= Vy)e " (=4 + )71

+ const- || x> ya(V — Vi) (— 4 + 1)~ . (3.15)
The first term on the right is bounded by e #<* for some u > 0 because if y; (x) > 0,

(x)%e” 7 < const-e™#@. In the second term we write V' — Vy =) . v;, and
in the i term we estimate for y,(x) > 0,

(xDF = (x)7H(x)° < (z) ¥+ const * (7;x)°
< const - {a) " {m;x)° .

Thus the second term on the right of (3.15) is bounded by const - {a) ~%. Summariz-
ing, we have for large a,

I<x>% (H + Q@ + B — Zo(H))$x ® ux: |

(x)*

X
x>
+ const*{a)y % . (3.16)
The second term on the right of (3.16) can be estimated as follows:
1<x> =18 x- Dy ® ux: || < const<ay == (||(y*Dydx) ® u-||
+ 1 ¢x @ (z* D;)ux-|)

< const*{a)~1-9 |

< [I<x)% Ay px ® ux: || + const: *Ddx ® uy:

since
Iz Doux: || = (lal + R(@)) | D ux: || < (lal + R(a)) - const/R(a) < const .
An easy estimate of the first term on the right side of (3.16) then gives
I<x>* (H + Q + B — Zo(H)) ¢x ® ty: |
< const - {<a)! || Aysux: || + <ay~% + <ay~* -9}

< const*{<a)~t +<ay~ -9},
But for large a, this contradicts (3.14).
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If 2o(H)=0 a simpler argument works. We replace ¢y ® uy: with
ue C§ (Br(s(a)), where Bg,(a) is an open ball in R". The vector a is chosen to lie
outside of UiX i. The rest of the proof is essentially the same. O

We summarize what we have learned so far.

Theorem 3.6. Suppose Ao < Xo(H) is a non-degenerate eigenvalue of H (where
H = — A+ Vand V satisfies (2.1) and (3.1)). Suppose the corresponding eigenfunc-
tion ¢ has abnormal decay so that a, + Ao > Zo(H). Then there exists a real
function We C§(R™ so that the following holds. Let ¢(t) be a smooth family of
normalized eigenfunctions of H + tW with ¢(0) = ¢q. Then there is a T > 0 so that
¢(t) has normal decay for 0 < |t| < T.

As we mentioned in the Introduction, 1o in Theorem 3.6 is an embedded
eigenvalue of the operator H, if Zo(H) < a? + Ay < Z{(H). It follows from The-
orem 3.6 itself that A4 € 0.4 (H,) for otherwise the eigenvalue would persist for small
t. More precisely, a small change in the argument used to prove Proposition 3.5
shows that if a2 + Ao > Zo(H), and there is an X € % such that £o(H)e 04;.(Hy)
and dim X" > 1, then J, is in the interior of o(H,). (For N-particle operators with
particles moving in R” with v = 2, the essential spectrum of H, is found explicitly in
[DHSV].) If no such X exists, for example, if n = 1, then this type of argument will
not work. However, it is probably the case that A, is in the interior of the point
spectrum of HF(!). It would be interesting if a perturbation theory could be
developed directly for H, from which Theorem 3.6 would follow.

We now state a result which says that in some sense, normal decay is generic.
For that purpose let #, be the set of all real functions W with | W|; < co. Itis easy
to see that %, is a Banach space. Let % be the closure of the real C§°(R") functions
in the | * |; norm. The reader can show without difficulty that a real function W e #
if and only if both W(— 4+ 1)"'and (=4 + 1) ' [X-D,W](—4 +1)"! are
compact operators.

We agree to call an eigenvalue A, normal if the corresponding eigenfunctions all
decay normally, and abnormal otherwise.

Theorem 3.7. Suppose H = — A + V, where V satisfies (2.1) and (3.1). Then the set
of all We % such that the interval ( — oo, 2o (H)) contains only normal eigenvalues of
H + W is a dense G;.

Proof. When Theorem 2.6 is referred to in the proof, we mean both Theorem 2.6
and the remark following. Let 4 = (— 00, 2o(H)) be compact and define

0, = {We%: all eigenvalues of H + W in A are normal} .

Suppose We 0,. Then there is an open ball U = # centered at the origin so that if
WeU, then H + W + W has only normal eigenvalues in A. This follows from
Theorem 2.6 and a compactness argument. Thus ¢, is open.

We now show that ¢, is dense in %. Given We %\0, we will find a sequence
W, # with |W,,|; = 0 so that W + W,,€0,. To find W,, first choose W,, real

~ 1 ~
and in CP(R") such that |W,, — W|; < P and let Wl = W,, — W. We now add

. . 1 .
a real function W2 in CPR") with |W2|; < 3 5 that all eigenvalues of
m

H + W + W, + W2in A are non-degenerate. Lemma 5.5 in [AHS] is helpful here.
The function W + W, + W2 is real and in C(R"), and thus we can make use of
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Theorem 3.6 where the potential V is replaced by V + W + W,} + W2. Suppose
H + W+ W} + W2 has L abnormal eigenvalues in A. Pick one of these eigen-

values and find a real C§ perturbation with | *|; norm less than ( which turns

3mL)

this eigenvalue into a normal one. This can be done because of Theorem 3.6.
Choose the perturbation small enough so that no eigenvalues enter A. By Theorem
2.6 a small enough perturbation will not increase the number of abnormal eigen-
values in A so we can proceed one by one to change abnormal to normal
eigenvalues. This process adds at most L perturbations with |- |; norm each less

. . . 1
so in total a perturbation W2eCg with |W2| <——. Thus

than Gm)’

1
(3mL)
1
W, = WL+ W2+ W2 has |W,|, <

We have shown that @, is a dense open subset of #. Choose compact intervals
A, = (— o0, Zy(H)) so that 4,,T(— oo, Zo(H)). Then

G = m @Am
m=1
is a G5, and WeG if and only if H + W has no abnormal eigenvalues in ( — o0,
2o(H)). G is dense by the Baire category theorem. O

In Theorem 3.7 we have restricted consideration to the discrete spectrum
because in [AHS, Theorems 5.11, 5.11'] it is shown that under mild additional
assumptions, generically there are no embedded non-threshold eigenvalues.

We end this section with a discussion of how our methods relate to lower
bounds for positive solutions to the Schrédinger equation. First we note that there
is an alternative proof of Proposition 3.5 using lower bounds for positive solutions.
It goes as follows:

Given the hypotheses we can choose Q € C§°(R") so that 4y < infa(H + Q) and
(3.7) still holds for all y € Z(H). Just use the resolvent equation. Butif fe C&, f = 0,
and f#0, then Yy=(H+Q —4)~!f is a positive function satisfying
(H — Ao)¥ = 0 outside a compact set. According to (3.7), p,¥ € L? for some o > 0
with «? + Ay > Zo(H). If certain additional assumptions are made about the v;’s,
this contradicts the lower bounds of [CS].

Perhaps more interesting is that Proposition 3.5 can be used to obtain lower
bounds of a sort for positive solutions.

Theorem 3.8. Suppose H = — A + V, where V satisfies (2.1) and (3.1). Assume, in
addition, Ve KX°, the Kato class described in [AS]. Suppose Ay < Zo(H) and that
Vo€ D(A) satisfies (— A + V — o)o = 0in Qg = {x: | x| > R} with Yo(x) >0 in
Qg. Then

a.ﬁo + /10 = ZQ(H) ,
so that
1 E2
lim ;m( i Ilpo(ra))Izdco> = — JZo(H) = Ay .
r—o Sn-t

Proof. We can assume Ay < infa(H). For if this is not true just add a real
QeCg(R™ so that g < info(H + Q). We still have (— A4+ V+ Q — Ao)Yo =0
outside a ball.
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We now assume that contrary to the statement of the theorem,
a3, + Ao > Zo(H). Suppose fe C&(R" , f real and define ¢ by
(H—-120)¢=f.

According to [AS], ¢ and y, are continuous for large | x| and thus by a result of
Agmon [A2, Theorem 2.7] for large | x| we have

[P(x)] < coo(x) .
Thus for some « > 0 with a? + 4o > Zo(H) we have p,¢peL? for every ¢ of the
form (H — Ao)~1f with fe C¥(R". Using the kind of approximation argument
already used in the proof of Lemma 3.4, it follows that for all Y € 2(H),
kIl <2 pa(H — A)W |l Z Nl patt |l -

But by Proposition 3.5 this is impossible. 0

Appendix

We will need an estimate of the form

kI <x>p(H+W—=20)¢| zlppll —Kpo| , (A.1)
with p = p(a, , t, 41, #2) given by

p00) = (GO + pr )Y+ (L + ppadxp)s €,

where p,€[0, 1], u,€(0,1], « =0, and K is compact. Let #; be the set of all
real-valued measurable functions W on R" with | W|; < oo. The estimate (A.1) and

the conditions for its validity below represent a slight generalization of Theorem
3.1 of [AHS].

Theorem A.l. Suppose H= — A + V, where V satisfies (2.1). Fix t and o, non-
negative and suppose A + 0} ¢  (H). Then there exist positive contants &, 6, k, and
a compact operator K sothat if We B, | W], + |4 — Aol + e —ap| <e0=7 =9,
w1 €[0, 1], and u, (0, 1], then (A1) holds for all e C$(R™), where s = 1 if ag =0
and s = % if ag > 0.

Proof. The proof in [AHS] suffices with minor variations. The fact that a( = 0) is
not fixed above, whereas it is in [AHS, Theorem 3.1] causes no difficulty. For the
reader’s convenience we present some estimates involving the function F given by
F = 1n p, which are necessary for the proof, and refer the reader to [AHS],

<—<|z—|>>oz§|VF|§a+y+t(x>‘l.
Define g and G by
VF=xg9, G=(x"V)g—(x*V)|VF|*.
Then if ¢, a, y are bounded we have
[x- Vgl <c{xp7t,
a)TTSgS @+ K2,
GZcx) M +dy+0a). O
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Theorem A.2. Suppose H= — A+ V and V satisfies (2.1). Suppose Y € 2(H)
and

H—=4)¥=f.
Assume {x>' "< fe L>(R") for some t; = 1 and o; = 0. Then
w0 + o€ T (H)u[0f + Ao, 0] . (A.2)

Suppose in addition that «? + Ao¢ .7 (H). Then if &y = 0 we have {x)" "'y e L*(R"),
while if a; > 0 and oy, 2> oy, we have (x)"~*e" e L*(R") .

Proof. We will use (A.1) in the form
KN<x>p(H = Ao)pll 2 llppll —clldll , (A3)

which follows from (A.1) as (2.2b) was shown to follow from (2.2a). We will also
make use of (A.3) for ¢ D(H) N D(p) instead of just ¢ € CP(R™). This follows
by a simple approximation agrument. We allow the left side of (A.3) to be
infinite.

Suppose that contrary to the statement of the theorem, (A.2) is incorrect. Then
ay <oy and o + Ao¢ 7 (H). We apply Theorem A.1 with ag = oy If 2, =0 we
choose & = g = ay =0,y =0, and u; > 0. Taking u, | 0, in (A.3) (with 5 = 1), we
find (x)"y e L? for all . A similar argument with t =0, =0,0<y <a;, s =1,
taking u, | 0, shows that e’y e L* for some y > 0 which contradicts oy = 0.
Otherwise oy, > 0 so we take og = oy, 0 < < oy, but oy <o +y < ;. We set
s=%and t = 0. We allow y, | 0 which gives e®*? >y e L2, again a contradiction.
This establishes (A.2).

To establish the remainder of the theorem we first suppose a; = 0. Then let
a=a=y=0, s=1, u; >0. Using (A.3) with ¢ = and allowing pu, |0 we
find that {(x)¥eL? whenever <{x)'*'feL®’ If oy >0 (and «, = ;) let
oo =01,0<a <oy, a+y=ag,u >0 5s=1% We can achieve this with |o — ag|
and y > 0 as small as we please. Substituting ¢ =/ in (A.3) and taking u, |0,
U1 10, we obtain {x)'e**y e L? whenever {x)'*¥e*® fe L2, dJ
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