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Abstract. Whether spin-independent Coulomb interaction can be the origin of a
realistic ferromagnetism in an itinerant electron system has been an open problem
for a long time. Here we study a class of Hubbard models on decorated lattices,
which have a special property that the corresponding single-electron Schrόdinger
equation has Nά-folά degenerate ground states. The degeneracy Nd is proportional to
the total number of sites \Λ\. We prove that the ground states of the models exhibit
ferromagnetism when the electron filling factor is not more than and sufficiently close
to £>0 — Nά/(2\Λ\), and paramagnetism when the filling factor is sufficiently small. An
important feature of the present work is that it provides examples of three dimensional
itinerant electron systems which are proved to exhibit ferromagnetism in a finite range
of the electron filling factor.
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1. Introduction

1.1. Ferromagnetism in the Hubbard Model

In some solids, electronic spins spontaneously align with each other to form strong
ferromagnetic ordering. A familiar example is Fe, which maintains long range
magnetic order up to the Curie temperature, 1043 K. Given the fact that interactions
between electrons in a solid are almost spin-independent, the existence of such a
strong order may sound as a mystery. As we shall describe below, this has indeed
been an interesting open problem in theoretical physics for quite a long time.

In 1928, Heisenberg [8] pointed out that the spin-independent Coulomb interaction
between electrons, when combined with the Pauli exclusion principle, can generate
effective interaction between electron spins. Heisenberg's picture of ferromagnetism
was that the relevant electrons are mostly localized at atomic sites, and their spin
degrees of freedom interact with each other via "exchange interaction." It has been
realized, however, that his exchange interaction usually has the sign which leads to
antiferromagnetic interaction rather than ferromagnetic one. (See [9] for a review.)
Nevertheless, Heisenberg's idea still plays a fundamental role in modern theories of
ferromagnetism.

A somewhat different approach to ferromagnetism, which was orignated by Bloch
[2], is to look for a mechanism of ferromagnetism in which the itinerant nature of
electrons, as well as the Coulomb interaction and Pauli principle, play fundamental
roles. This project, combined with sophisticated band-theoretic techniques, has led to
many approximate theories [10]. A common feature of all these theories is that they are
based on the Hartree-Fock approximation (i.e., mean field theory) and its perturbative
corrections. Although such approximations can lead to reasonable conclusions in some
situations, they have a serious disadvantage from a theoretical point of view. The
basic strategy of the approximations is to treat electrons with up and down spins as
different species of particles, and then introduce some self-consistency conditions.
By doing this, one severely destroys the original SU(2) invariance of the model
and gets Z2 invariant self-consistent equations. The existence of ferromagnetism then
reduces to a problem of spontaneous breakdown of the discrete Z2 symmetry, which
is essentially different from the original problem, a spontaneous breakdown of the
continuous SU(2) symmetry. As a consequence, the approximate theories give only
two ferromagnetic states with the net magnetization pointing up or down, instead of
expected infinitely many states with an arbitrary direction of magnetization. Since a
continuous symmetry breaking is a very subtle phenomenon in general, results based
on the Hartree-Fock approximation and its improvements are not conclusive enough
to answer the fundamental question whether spin-independent Coulomb interaction
alone can be the origin of a realistic ferromagnetism in an itinerant electron system.
We stress that such a critical point of view has been held by many physicists. See,
for example, the review of Herring [10].

Given the subtlety of the problem, it is desirable to have idealized models in
which one can develop concrete scenarios for the itinerant electron ferromagnetism.
The so-called Hubbard model [11, 13] is a simple but nontrivial model suitable for
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developing such scenarios. There has been a considerable amount of heuristic works
(mostly based on the Hartree-Fock approximation and its improvements) devoted to
theories of ferromagnetism in the Hubbard model. Since the literature is too large
to catalogue here, we only refer to the pioneering work of Kanamori [13] and a
review by Herring [10]. The Hartree-Fock approximation applied to the Hubbard
model yields the so-called Stoner criterion for ferromagnetism [10, 11, 13]. It says
that ferromagnetism occurs if DPU > 1, where DF is the single particle-density of
states at the fermi level and U is the strength of the Coulomb repulsion. Although
this is certainy not true in general, large values of Dp and/or U determine the region
in parameter space where one may find ferromagnetism.

In 1965, the first rigorous example of ferromagnetism in the Hubbard model was
given by Nagaoka [24], and independently by Thouless [31, 17]. It was proved that
certain Hubbard models have ground states with saturated magnetization when there
is exactly one hole and the Coulomb repulsion is infinite. Recently, it was pointed
out that the theorem extends to a general class of models which satisfy a certain
connectivity condition [29]. Whether the Nagaoka-Thouless ferromagnetism survives
in the models with finite density of holes and/or finite Coulomb repulsion is a very
interesting but totally unsolved problem [4, 25, 27, 28, 32].

In 1989, Lieb proved an important theorem on general properties of the ground
states of the Hubbard model [18]. As a consequence of the theorem, he showed
that a class of Hubbard models on asymmetric bipartite lattices with finite Coulomb
interaction have ferromagnetic ground states at half filling. It is sometimes argued
that Lieb's examples represent ferrimagnetism (i.e., antiferromagnetism on a bipartite
lattice in which the number of the sites in two sublattices are different) rather
than ferromagnetism. Although this might be true when the Coulomb repulsion
is sufficiently large and the dimension is high enough, we believe mechanisms
underlying his examples are much richer in general situations.

A more recent example is due to Mielke, who studied Hubbard models on general
line graphs [20, 21]. A special feature of his models is that the single-electron
Schrodinger equation corresponding to the Hubbard model has highly degenerate
ground states. He proved that these models with nonvanishing Coulomb interaction
have ground states with saturated magnetization when the electron number is exactly
equal to the dimension of degeneracy of the single-electron ground states. Mielke
also extended his results to a finite range of the electron filling factor in certain two
dimensional models [22]. See [23] for the recent results for a more general class of
models.

The latest example is due to Tasaki [30], who proved the existence of ferro-
magnetism in a class of Hubbard models with nonvanishing Coulomb interaction on
decorated lattices. As in the Mielke's models, the class of models have highly degen-
erate ground states in the corresponding single-electron Schrodinger equation. It was
proved that the ground states of the Hubbard model exhibit ferromagnetism in a finite
range of electron filling factor. The proof made use of a basis of the single-electron
ground states which satisfy certain locality and (reflection) positivity conditions, and a
percolation representation for physical quantities. This work covered models in three
dimensions as well.

A common feature in the examples of Lieb, Mielke, and Tasaki is that each model
has a completely degenerate band in the corresonding single-electron spectrum, and
the ferromagnetism (in the interacting many electron problem) is proved when the
degenerate band is exactly or nearly half-filled. This situation, where £>F is infinite,
is, in view of the Stoner criterion, in some sense dual to the aforementioned theorem
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of Nagaoka, where U is infinite. The possibility of ferromagnetism in systems with a
degenerate single-electron band has been discussed for a long time since the pioneering
work of Slater, Statz and Koster [26] in 1953. But general consensus on whether
ferromagnetism appears or not has been lacking. See Sect. VIII.2 of [10].

12. Purpose of the Present Paper

The purpose of the present paper is to give further discussions on the ferromagnetism
studied in [30]. We do not only present all the detailed analysis announced (but
omitted) in [30], but also offer a new proof of the main theorem. Since the new proof
is considerably simpler and stronger than the original one, we are able to remove
some conditions required in the previous paper. We no longer need the (reflection)
positivity condition or the symmetry condition stated in [30], and are able to treat
models on an arbitrary decorated lattice.

Our results and their proof demonstrate that there is a mechanism generated by
the Coulomb interaction which selects ferromagnetic states as ground states. The
mechanism is most clearly seen in the expression of the "spin Hamiltonian" (6.8),
where the Hamiltonian for the Coulomb interaction, projected onto a particular
subspace, is reduced to that of the ferromagnetic Heisenberg model. This can
be regarded as a rigorous example of a "(super) exchange interaction" which is
ferromagnetic. The selection mechanism works most effectively when the degenerate
single-electron band is nearly half filled (in the sense that the electron number is
nearly equal to the dimension of degeneracy in the single-electron ground states), but
becomes ineffective when the electron density is too small.

Although the models treated in the present paper are still artificial, we hope that
such a selection mechanism generally takes place in a Hubbard model with a large
density of states at the bottom of the single-electron energy band. Such a Hubbard
model should exhibit ferromagnetism for suitable electron filling factors when the
Coulomb interaction is sufficiently large. In other words, we hope the present examples
to provide the simplest models in a "universality class" of Hubbard models which
exhibit realistic and robust ferromagnetism. The recent numerical and heuristic works
of Kusakabe and Aoki [16] for closely related models (which were proposed by the
present authors) indeed suggest that the ferromagnetism in the present models is robust
and not pathological. It is a challenging problem to extend our results to more general
situations.

It is encouraging that ferromagnetism observed in transient metals, like Ni, might
have similar properties as our ferromagnetism. The 3d band of Ni has large (single-
electron) density of states at the top of the band, and the filling factor of the band
is close to one [13]. After the electron-hole transformation, the situation becomes
quite similar to that in the models treated in the present paper. When the number of
electrons is equal to the degeneracy of the single-electron ground states, our model
might also resemble certain ferromagnetic ionic crystals.

A reader might feel that the Hubbard models treated in the present work have
"nonstandard" hopping matrix elements (including the next nearest neighbor hopping)
when compared with the "standard" models with uniform nearest neighbor hoppings.
(See Eq. (2.3) and Fig. 1.) It should be remarked that, unlike in the lattice field
theories, for example, the hopping matrix in the Hubbard model need not be the
naive discretization of the Laplacian. It is determined from overlap integrals between
electron orbits, and can be quite complicated in general. For example, the typical three-
band Hubbard model used to study the normal state of the high-Tc superconductors
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(see e.g. [3] and the references therein) contains next-nearest neighbor hoppings and
on-site potentials as well and is very similar to our two-dimensional model described
in Sect. 2.1. Another important reason for studying a "nonstandard" model is the
remarkable "nommiversality" of the Hubbard model. These days it is suspected
that the simplest Hubbard model with uniform hopping does not exhibit neither
ferromagnetism nor superconductivity for reasonable parameter values. This is the
case in recent numerical and analytical results for the Hubbard model in infinite
dimensions [12]. However the chance is big that a particular version of the Hubbard
model with specific hopping matrix (i.e., band structure) and filling factor shows
such interesting properties. This is reminiscent of the rich nonuniversal behavior one
observes in the actual itinerant electron systems in nature.

The organization of the present paper is as follows. In Sect. 1.3, we give general
definitions of the Hubbard model, and discuss simple construction of ferromagnetic
ground states in certain models. In Sect. 2, we describe our results for a particular
Hubbard model, and discuss their physical consequences. The physics of the present
paper can be read off from these two sections. Section 3 is devoted to a proof of
our main theorem which provides a complete characterization of ground states. In
Sect. 4, we derive the percolation representation for various physical quantities, and
prove rigorous upper and lower bounds which have direct physical significance. In
Sect. 5, we calculate correlation functions. In Sect. 6, we derive a "spin Hamiltonian"
and discuss about spin wave excitations.

13. Hubbard Models with Degenerate Single-Electron Ground States

In the present subsection, we will give preliminary discussions on a special class of
Hubbard models, in which one can easily construct exact ground states which are
ferromagnetic. We shall also give some general definitions.

We take a finite lattice A with \Λ\ sites and consider a Hubbard model on Λ.
Throughout the present paper, we denote by | S\ the number of elements in a set S.
The Hamiltonian is

H = Htmp + H.aΛ, (1.1)

where

^hop ~ / ^ tχyCxσCyσ ' 0-2)

sc,τ/6Λ,σ=T,l

and

4σ and cxσ are the creation and the annihilation operators, respectively,
of an electron at site x e A with spin σ — 1,|. They satisfy the anticommutation
relations

and

Kσ>V} = {4σ,4τ}=°> (1.5)

for any x, y £ Λ and σ, r =|, |, where {A, B} = AB -f- BA. The number operator
is defined as
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The hopping matrix (t ) is real symmetric, and the on-site Coulomb repulsion Ux is
strictly positive. The total electron number operator is

and we denote by 7Ve its eigenvalue. A standard prescription is to consider the

eigenspace of 7Ve with a given eigenvalue 7Ve, or to consider a certain grand canonical

ensemble with the expectation value of 7Ve fixed. The quantity Ne/(2\Λ\) is called the
electron filling factor.

We also define the spin operators by

σP^cxτ/2, (1.8)

where p^ with a = 1, 2, 3 are the Pauli matrices,

o
We denote by 3^(3^ + 1) the eigenvalue of

Σ Σ ^α)4α)'
α=l,2,3

which is the square of the total spin operator. We say that a state exhibits ferromag-
netism if it has 5tot proportional to the system size \Λ\.

The single-electron Schrόdinger equation corresponding to the hopping Hamilto-
nian (1.2) is

where φx G C, and ε is the single-electron energy. Suppose that our hopping matrix
(txy) has a special property that the (single-electron) ground states of the Schrodinger
equation (1.11) are A^-fold degenerate. We denote the ground state energy by ε0, and
the space of degenerate ground states by J^0. Let {φ^}u^y be a complete linear
independent basis for the space ,̂ 0, where V (with \V\ = Nά) is the set of indices.
The wave function and the creation operator corresponding to a basis state φ(u} are
denoted a s φ } anc*

respectively.
Consider a ferromagnetic state

(1-13)

where A is an arbitrary subset of the index set V, and Φ0 is the vacuum state, i.e.,
the state with no electrons. Since the basis {φ(u^}uev is linear independent, the state
ΦAT is nonvanishing. The electron number of the state ΦA^ is given by 7Ve = \A\.
By using the commutation relation
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we find HhopΦA-^ = N&εQΦA^9 where 7Veε0 is the lowest possible eigenvalue of J:fhop in
the subspace with the electron number is fixed to 7Ve. On the other hand, we already
know from the construction that H mίΦA^ = 0, where 0 is the minimum possible
eigenvalue of JEΓint. Therefore we have found the following.

Theorem 1.1. Consider a Hubbard model with the Hamίltonian described by (1.1),
(1.2) and (1.3). In the subspace with the electron number fixed to 7Ve < yVd, the
ground state energy is NcεQ, and the ferromagnetic state (1.13) with an arbitrary
subset A c V with \A\ — NQ is a ground state.

Such a construction of ferromagnetic ground states may be standard, but is not
sufficient to draw any meaningful conclusion about the magnetism of the system. A
really important (and much more delicate) problem is whether these ferromagnetic
states are the only ground states, or what are the other ground states, if any. Note
that the single-electron density of states DF is infinite for 7Ve < Nd. Therefore the
Stoner criterion DPU > 1 predicts the appearance of only the ferromagnetic ground
states for any value of Ux > 0. But it soon turns out that the situation is not that
simple. A trivial counter example is the model with txy — 0 for all x,y, which has

the degeneracy Nά = \Λ\. Any state with no doubly occupied site is a ground state of
this model, so there can be no magnetic ordering. We have paramagnetism, in contrast
to the conclusion based on the Stoner criterion.

In the present paper we shall study a class of Hubbard models, in which we can
give complete answers to the above questions.

2. Main Results and Physical Consequences

2.1. Definition

In the present section, we discuss our rigorous results and their physical consequences.
In order to simplify the discussion, we shall concentrate on the simplest class of
models defined on the decorated hypercubic lattice. Many of our results extend to
other models with only minor modifications. See the remark at the end of the present
subsection.

We shall begin with the definition of the model. Consider a ^-dimensional
L x . . . x L hypercubic lattice, where L is an even integer, and denote by V the
set of sites. We impose periodic boundary conditions. (Note that, in Sect. 1.2, we
used the symbol V to denote the index set for the basis states. The reason for using
the same symbol for the set of sites will become clear when we construct a basis at
the end of Sect. 2.2.) Let

B = {{υ,w} \v,w e V, v-w\ = 1}, (2.1)

be the set of bonds, where υ — w denotes the euclidean distance between the sites
υ and w. For each bond {v,w} in B, we denote by m(υ,w) the point taken in the
middle of the sites v and w. We define

M = {m(v,w) {v,w}eB}, (2.2)

and consider the decorated hypercubic lattice A = V U M.
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Fig. 1. The decorated square lattice. The hopping matrix elements are given by txy = t for a black

line, txy = \t for a gray line, txx = 4ί for a site x of the square lattice, and txx = \2t for a site
x at the middle of a bond, where t, λ > 0. The on-site Coulomb repulsion is nonvanishing for any
site. It is proved that the ground states exhibit ferromagnetism when the electron filling factor ρ is
not more than and sufficiently close to ρ0 = 1/6, and paramagnetism when ρ is sufficiently small

We will study the Hubbard model on the lattice A. We again write our Hamiltonian
as H = Hhop + tfint, where

#hop = Σ Σ ^Cvσ + Clσ + λ4(V,W)σ) (<W + Cwσ + λcm(^)σ) , (2 3)

'M + ̂  Σ Vzi' (2 4)

σ=ΐ,l {v

and

-"int = U / ^ '"U-\'υul ' ~ / ^

with t > 0, λ > 0, U > 0, and U' > 0. The case λ < 0 is related to λ > 0
by a unitary transformation. In the case t < 0, the highest single-particle energy is
degenerate. This case can be mapped to t > 0 by a particle-hole transformation when
U = Ur. Note that the above hopping Hamiltonian and interaction Hamiltonian can
be written in the form of (1.2) and (1.3) by suitably choosing the hopping matrix
(txy) and the interaction Ux. See Fig. 1.

In general we can take an arbitrary finite lattice V, and construct the corresponding
decorated lattice Λ by adding points at the center of each bond in V. The Hamiltonian
is defined as in (2.3) and (2.4), but the parameters t, λ, U, and U' can be bond (or site)
dependent, provided that they have the required signs. Corollary 2.2 and Theorem 2.3
extend immediately to such general models. If the dimension of V is not less than two,
and the coordination number of V is uniformly bounded, one can extend Theorems 2.4
and 2.5 with some extra care.

2.2. Single-Electron Properites

The special form of the hopping Hamiltonian (2.3) makes the present model fall into
the class considered in Sect. 1.2. To see this, we should study the eigenstates of the
single-electron Schrόdinger equation (1.11) corresponding to (2.3). A standard way
is to use the Fourier transformation to directly solve the eigenvalue problem. One
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easily finds that the eigenstates can be classified into (d+ l)-bands, whose dispersion
relations are given by

0 f or i = 1,

X2t for ΐ = 2,3, . . . , d,
d (2.5)

X2t + 2t Γ(1 + cos ) for i = d + 1,
ε ( k ) =

where ^ = 1, 2, . . . , d + 1 is the index for the bands, and k = (&15 . . . , kd) is the
wave vector with —π<k<π. Note that the present model has a singular band
structure, in which most of the bands are dispersion-less.

Rather than making use of the direct Fourier tranformation calculation, however,
we here make use of special features of (2.3) to get the following.

Lemma 2.1. Consider the single-electron Schrodinger equation (1.11) corresponding
to the hopping Hamiltonian (2.3). Then the ground states have ε — 0, and are
characterized by the condition that

Ψυ + Ψw + λψm(υ,w) = 0 (2.6)

holds for all {v,w} £ B. The dimension Nd of the corresponding eigenspace J&0 is
equal to \V\ = Ld.

Proof Since the operator Hhop is positive semidefinite, the eigenvalues must satisfy

ε > 0. Let us define a single-electron state as Φ = ( Σ .̂cj.̂  Φ0 and note that the

Schrodinger equation (1.11) is written as HhopΦ — εΦ. Noting that

(4σ + Clσ + λcl(^)σ) (Cvσ + Cwσ + λcm(^)σ

= (Ψv + Ψw + λ^m(v,w)) (σ + C σ + λcn(v,W)σ)
Φ0 > (2'7>

we see that the condition (2.6) gives a necessary and sufficient condition for the state
Φ to have ε = 0. To get the dimension, one only has to note that the eigenspace is
determined by \Λ\ - \V\ independent constraints. D

From Lemma 2.1 and Theorem 1.1, we get the following preliminary result about
ferromagnetism.

Corollary 2.2. In the subspace with the electron number fixed to Ne < Nά(= Ld), the
ground state energy of the full Hubbard Hamiltonian H (defined by (2.3) and (2.4)) is
0. Among the ground states, there are the ferromagnetic states defined as (1.13).

Let us construct a basis for the space ,̂ 0. We shall label each basis state by a
site u in the hypercubic lattice V. For each u G V, we define a single-electron state

Ku)L6v by

{ I x = u

— χ-1 x = m(u, v) for some υ (2.8)

0 otherwise,

which clearly satisfies the condition (2.6). The basis is not orthogonal, but is easily
checked to be linear independent. Certain characters of the basis will play a central
role in the proof of the main theorem in Sect. 3.
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It should be stressed that the locality of our basis (2.8) does not imply that electrons
are localized in the present model. One can always take a standard basis states with
definite crystal momenta, in which the single-particle states are extended. The actual
behavior of electrons should be determined by studying various correlation functions.
See discussions in Sect. 2.3.

23. F erromagnetism for a Special Electron Number

Our first nontrivial result about ferromagnetism deals with the model with a special
electron number.

Theorem 2.3. In the subspace with the electron number fixed to 7Ve = Nά(= Ld), the
ground states of H have Sίot = NQ/2 and are nondegenerate apart from the (25tot+ 1)-
fold spin degeneracy.

The theorem will be proved in Sect. 3.1 as Corollary 3.3. The theorem establishes
that the ground states exhibit the maximum possible ferromagnetism. Mielke [20,
21] roved a similar result for a general class of Hubbard models on line graphs and
on some decorated graphs similar to our model but with additional hopping matrix
elements between the sites m(v,w). Recently Mielke [23] extended his results to
a general class of Hubbard models with a degenerate single-electron ground states.
The result of [23] includes that of both [20, 21] and the above Theorem 2.3. See the
remark at the end of Sect. 3.1 for further discussions. Note that, in the band-theoretic
language, the degenerate single-electron ground state band (indexed as i = 1 in (2.5))
is exactly half-filled when 7Ve = 7Vd.

Note that the above theorem applies to the model with d = 1 as well. This does
not contradict with the general result of Lieb and Mattis [19, 1], which inhibits
ferromagnetic order in one dimension, since our model contains non-nearest-neighbor
hoppings.

By substituting the definition (2.8) of the basis state into the expression (1.13) of
the ferromagnetic ground state, we find that the ground state for 7Ve = 7Vd is given
by

Σ

and its SU(2) rotations.
When the parameter λ is extremely large, the ground state (2.9) has essentially

one up electron at each site of the hypercubic lattice V. We will show in Sect. 5 that
the coherence length in the ground state is equal to λ"1. This is extremely short if
A > 1. In this limit, our model resembles that of nearly localized electrons (as in
Heίsenberg's work [8]), and the origin of the ferromagnetism may be interpreted as
a "super exchange interaction" via the nonmagnetic atom on the site between two
magnetic atomic sites. We also expect that the model with NQ = Nά describes a kind
of Mott insulator, at least when A > 1 and U > 1.

When A <C 1, on the other hand, the coherence length A"1 becomes large, and
it is no longer possible to regard the present model as that of localized electrons. It
seems that even the simplest model with 7Ve = 7Vd contains many interesting physics,
which remain to be understood.
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2.4. Ferromagnetism in a Finite Range of Electron Numbers

Let us investigate whether the ferromagnetism established for the special electron
number is stable when the electron number is changed. We stress that any physically
realistic model of ferromagnetism should possess such stability. All the theorems
presented here will be proved in Sect. 4.

In Sect. 3.1, we will find that the ground states of H are highly degenerate for
N& < Nά. To get physically meaningful results, we have to consider the average
over the degenerate ground states. Instead of fixing the electron number explicitly,
we will employ the grand canonical formalism, and control the expectation value of
the electron number by choosing an appropriate chemical potential. The reason for
using the grand canonical formalism here is mainly technical.

For an arbitrary operator O, we define the grand canonical-like average by

e 0

/μ Tr[exp(μJVe)P0]

where P0 is the orthogonal projection operator onto the eigenspace of H with the
eigenvalue 0. It is expected that, by choosing a suitable (dimensionless) chemical
potential μ in (2.10), we recover zero-temperature properties of the system with a
desired electron filling factor. If the electron filling factor had a pathological behavior
as a function of μ, the use of the grand canonical formalism could not be justified.
The following theorem guarantees that this is not the case.

Theorem 2.4. For arbitrary values of μ, we have the upper and lower bounds

(2 n)

In the dimensions d > 2, there are positive finite constants μλ, c\ which depend only
on the dimension d, and for any μ > μ{, we have the lower bound

l-qe-^ (2.12)
j Vd

The above bounds determine the behavior of the electron filling factor for extreme
values of the chemical potential. When μ is negative and its absolute value is large
(compared to 1), (2.11) implies

When μ is positive and large, (2.11) and (2.12) imply

where the maximum value of the electron filling factor is defined as ρQ = Nd/(2\Λ\) =
(2d + 2)"1. The relation « means that both sides behave equally apart from
multiplication by a uniformly bounded function of μ.

Now we can state our main theorem.



352 A. Mielke, H. Tasaki

Theorem 2.5. In the dimensions d > 2, there are finite constants c2, c3, μ{, μ2 (with
C2> C3> Ah > 0 and μ<2 < Q) which depend only on the dimension d and not on the size
of the lattice. For any μ > μlf we have

Smaχ(Smax + D > ( ( ^ } μ > ^maχ(^max + !)(!- W*) , (2.15)

where 5max = Nά/2. For any μ < μ2, we have

\ <^e)μ < <(Stot)
2}μ < \ (Ne)μ + c3\V\e2» . (2.16)

Note that, when the bounds (2.15) hold, the total spin of the model is proportional
to the number of sites \Λ\. When the bounds (2.16) hold, on the other hand, the
total spin is proportional to the square root of \Λ\. Therefore Theorem 2.5 establishes
that the ground states of our Hubbard model exhibit ferromagnetism when the filling
factor is not more than and sufficiently close to ρQ, and paramagnetism when the filling
factor is sufficiently small. In the band-theoretic language, ferromagnetism appears
when the degenerate ground state band is nearly half-filled.

The requirement that the dimension is not less than two in Theorem 2.5 is
essential in controlling the ferromagnetic region by using a kind of Peierls argument.
(See Sect. 4.4.) The paramagnetic part (the bounds (2.16)) of Theorem 2.5 easily
extends to the case with d = 1. We believe that the one-dimensional model exhibits
paramagnetism for all the values of μ < oo.

As we have discussed at the end of Sect. 1.3, the Stoner criterion from the Hartree-
Fock approximation predicts the appearance of only the ferromagnetic ground states
for all μ < oc. Theorem 2.5 clearly shows that this is not the case. For selection of
ferromagnetic states to take place, the degenerate single-electron band must be nearly
half-filed in the sense that 0 < ρ0 — ρ <C 1 . We expect that this feature is universal in
the Hubbard models with large single-electron density-of- states. It is interesting that,
in perturbative corrections to the Hartree-Fock approximation, one finds somewhat
similar conditions in order to ensure sufficiently large "effective" U. See [13] and
Sect. X of [10]. See also [15] for a related discussion.

It is an interesting problem whether the ferromagnetism in the present rather
artificial model is stable under various perturbations to the Hamiltonian. We believe
that the ferromagnetism persists under small perturbations if the on-site Coulomb
repulsion is sufficiently large, but we have no rigorous results at the moment. The
numerical results of [16] for closely related models (one of which is introduced in
[21] and the other is defined at the end of Sect. 3.1 of the present paper) indicate
that the present ferromagnetism is stable under perturbations. It is also important to
investigate whether ferromagnetic order in the three dimensional model is present at
finite temperatures. Recall that, in one and two dimensions, ferromagnetic order in
any Hubbard model is destroyed by thermal fluctuation at finite temperatures [5, 14].

2.5. Other Properties

In Subsect. 2.3, we argued that the model with the special electron filling factor ρ — ρ$
(which corresponds to 7Ve = 7Vd) is likely to be an insulator (at least when λ > 1

and U > 1). When the filling factor ρ = (N&)μ/(2\Λ\) is strictly less than £>0, on the
other hand, band-theoretic intuition suggests that the model describes a metal.

Let £'GS(A/r

e) be the ground state energy of a Hubbard model with the electron
number fixed to 7Ve. The charge gap of the model is defined as

Λhare(^e) = ^GS^e + D ~ 2BGS(ΛΓe) + EGS(Ne - 1) . (2. 17)
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It is believed that, if a system has nonvanishing charge gap (in the infinite volume
limit), it describes an insulator. In our case, we already know from Theorem 2.2
that EG$(NQ) = 0 for any NQ < 7Vd, which means that Z\charge(JVe) = 0 for any
NQ < Nά — l. This might first appear as an indication that the present model describes
a ferromagnetic metal when the electron filling factor is strictly smaller than ρ0.
However one must recall that vanishing of the charge gap is a necessary but not a
sufficient condition for an electron system to be a conductor. (A trivial example of
an insulator with a vanishing charge gap is the model with ίfhop = 0.)

To determine whether the present model is metallic or not, a more elaborate
analysis on the transport properties seems necessary. At present we are not able to
calculate conductivity (from, e.g., the Kubo formula). We can only calculate certain
static correlation functions in the model with 7Vd - 2d + 1 < Ne < Nά. See Sect. 5.

A rotation invariant system with spontaneous ferromagnetic order always has spin
wave excitations. In Sect. 6, we show that the interaction Hamiltonian (2.4), projected
onto a certain subspace, becomes

PAHmtPA = J(λ) ( - 2SU §„) PA , (2.18)

where the summation is over nearest neighbor pairs of sites in V, and J(λ) > 0. (See
Sect. 6 for definitions.) It is remarkable that (2.18) is nothing but the Hamiltonian of
the ferromagnetic Heisenberg model. We expect that the low energy spin excitations
of the model are roughly described by the "spin Hamiltonian" (2.18) when U is small.
Then there should be spin wave excitations when the ground states exhibit long range
order. When JVe = JVd (i.e., the degenerate band is exactly half-filled), we prove that
there are excited states whose excitation energies are bounded from above by that
of the spin wave excitations of the Heisenberg model. See [16] for discussions on
low-lying excitations in the closely related Hubbard model with U = oo.

3. Characterization of Ground States

3.1. Main Theorem

In the present section, we shall state and prove our main theorem. The theorem
provides a complete characterization of the ground states when the electron number
7Ve does not exceed the degeneracy 7Vd of the single-electron ground states. This
result will be used in Sect. 4 to prove various bounds for physical quantities. The
class of models treated here, which includes the model of Sect. 2 as a special case, is
specified by a set of conditions for a basis {φ(u^}u^v of the space ̂ 0 of degenerate
single-electron ground states. See BO, Bl, and B2 below.

Let A be a finite lattice. We consider a Hubbard model on A with the Hamiltonian
defined by (1.1), (1.2), and (1.3). As in Sect. 1.2, we denote by {φ(u}}u£V a basis
for the Nά-dimensional space J 0̂ of the single-electron ground states, where V is
the index set. Recall that, in Sect. 2, the symbol V stands both for the (undecorated)
hypercubic lattice and for the index set. We stress that this is an accidental coincidence
in the model of Sect. 2, and V is not necessarily a set of sites in the present section.

We denote by αj^σ the creation operator defined as in (1.12), which corresponds to
a basis state φ^u\ We have seen in Sect. 1.2 that the ferromagnetic state (1.13) is an
exact ground state of the model. We start from explicit construction of other ground
states.
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We introduce a notion of connectivity in the index set V by declaring that two
indices u and v are directly connected if φ^φ^ ^ 0 for some site x G Λ. Let A
be an arbitrary subset of the index set V. The subset A can be uniquely decomposed
into a disjoint union of connected components as A — C} U . . . U Cn. Note that, in
the ground state (1.13), electrons on different connected components may be regarded
as not interacting with each other. (Of course this is a basis-dependent observation,
which should not be taken literally.) For each k — 1, 2, . . . , n, let us define a subset
Ak of the lattice A by

Λk = {xeΛ φ^^Ofor some ϋ 6 Ck} . (3.1)

By the definition of connectivity, it immediately follows that ΛkΠΛk/ = 0 for k ^ k' .
We define the spin lowering operator on Λk by

4~ = Σ 5* (3 2)

Because of disjointness of the support sets, operators Sk with different k commute
with each other. For {m f c} f c = 1_. j n with mk = -|<7fc|/2, 1 - |C fc |/2, . . . , \Ck\/2, we
define

where ΦA1 — Y[ au^ΦQ is the ferromagnetic ground state defined in (1.13). Note
uζA

that πιk can be regarded as the total Sz on the sublattice Λk.

Lemma 3.1. In the subspace with the electron number fixed to N& < Nά, the state
ΦA r I with arbitrary A C V (such that \A\= NQ) and with arbitrary {mk}k=l n

is a ground state of the Hubbard model. The ground state energy is equal to NQε0, where
ε0 denotes the single-electron ground state energy.

Proof. For u £ Ck, we have

which means that the states (3.3) are still linear combinations of the states

( Π alσ(u)}φQ with σ(» = ΐ > i This proves that HhopΦM } = NQε0ΦAj[πik}.
\u£A /

Note that 7Veε0 is the lowest possible eigenvalue of Hhop. On the other hand the

identity nx^nx^S~ = 0 and the fact that nx^nx^ΦA^ — 0 immediately imply
nx^nx^ΦA ^ -j. = 0 for any x G A, and hence H mΦA^mky = 0. Again 0 is the

lowest possible eigenvalue of /fint. Π

The ground states ΦA rm j are not in general eigenstates of the square of the

total spin operator (Stot)
2. One can construct eigenstates by taking suitable linear

combinations. For example, suppose that A consist of two connected components as
A = C{ U C2, and |CΊ| = |C2| = 2M. Then the state

M

m=-M
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is a spin-singlet, i.e., an eigenstate of (Stot)
2 with the vanishing eigenvalue. Note that

such construction of spin singlet ground states is possible when \V\ — Ne is at least of
order Ld~l (where L is the linear size of the lattice). See [21, 22] for related results.

In order to completely characterize the set of ground states, we require the basis
{φ(u}}u^v to satisfy the following three conditions.

BO. {φ^}uev is a linear independent complete basis of the space 3@§. Thus we have

\V\ = Nά. For each u G V, the corresponding wave function {φ(^}x€A *s rea*-

Bl. Quasi locality: For each u G V, there is a site x(u) G Λ with the properties that

ψ($u) φ 0 and ̂  = 0 for any v φ u.

B2. Local connectivity: For each x G Λ, there are at most two indices u G V such
that Viw) ^ 0.

Then the main theorem of the present section, which will be proved in Sect. 3.2,
is the following.

Theorem 3.2. Consider a Hubbard model with the Hamiltonian described by (1.1),
(1.2) and (1.3). Let ε0 and ̂ 0 be the ground state energy and the space of the ground
states, respectively, of the corresponding single-electron Schrόdinger equation (1.11).
Suppose that one can find a basis {ψ^}ueγ for the space ^0 which satisfies the
conditions BO, Bl, and B2 stated above. In the subspace with the electron number
fixed to JVe < 7Vd, the ground state energy is A^eε0, and an arbitrary ground state is a
linear combination of the states (3.3) with various A (with \A\ = NQ) and {mk}. In
the subspace with the electron number fixed to 7Ve > Nd, the ground state energy is
strictly larger than Neε0.

Mielke [22] also gave a somewhat similar complete characterization of the ground
states for a class of Hubbard models on two-dimensional line graphs.

Theorem 3.2 alone is not enough to determine magnetic properties of the system.
As we have seen by constructing the state (3.5), there are states with small total spins
among the degenerate ground states. Whether the system exhibits ferromagnetism
depends on how large connected components of a "typical" subset A are. We shall
deal with this problem in Sect. 4. The following special case, which corresponds to
the "half-filled degenerate band," can be treated without further analysis.

Corollary 3.3. Assume the conditons for Theorem 3.2, and that the index set V is
connected. In the subspace with the electron number fixed to N& = JVd, the ground
states of the Hubbard model have 5tot = AΓe/2, and are nondegenerate apart from the
(2Sr

tot -f \)-fold spin degeneracy.

Proof. We have A = V because \A\ = \V\. Since A is connected, (3.3) represents
fully ferromagnetic states. D

Remark. Corollary 3.3, which establishes the existence of ferromagnetism for a special
electron number, can be proved in more general settings. In [21], the same statement
was proved for the Hubbard models on general line graphs. Let us mention that it
is always possible to find a basis that satisfies the conditions BO and Bl. This fact
implies that the connectivity of V is necessary and sufficient for the ferromagnetic
ground state to be unique in the case JVe = Nά. A proof and a basis-independent
formulation of this result was given in [23].

We shall briefly describe a class of models similar to the present ones, in which
the existence of ferromagnetism can be proved (at least) for special electron numbers.
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Let the unit cell C consist of n external sites x l 5 . . . , xn, and one internal site y.
(The cell C can be, e.g., a bond, a plaquette, or a cube. Then the external sites are
corners, and the internal site is taken at the center of C. When C is a bond, the models
reduce to the ones considered in the present paper. One of the models studied in [16]
is obtained by letting C a plaquette.) We define the hopping Hamiltonian within the
cell as

Hho[C] = t 4 σ + λ c σ

 C *σ + λ C σ , (3-6)

where t, λ > 0. The whole lattice Λ is constructed by assembling together identical
copies of the unit cell C. When doing this, an external site may be (or may not be)
shared by several distinct unit cells, but an internal site should belong to exactly one
unit cell. The total hopping Hamiltonian is

h o [ L (3.7)

where j is the index for the copies of the unit cell. It is easily seen that the single
electron ground states have energy ε0 = 0, and their degeneracy 7Vd is identical to the
number of external sites, where an external site which belongs to several different cells
is counted only once. When the whole lattice is connected, it can be proved that the
Hubbard model (with Ux > 0) with the hopping Hamiltonian (3.7) has fully polarized
ferromagnetic ground states for NQ — Nά. The proof can be done by generalizing the
one in the present paper, but it follows immediately from the theorem in [23].

One can also introduce more complicated cell structures and consider various
arrangements of cells. The existence of ferromagnetism in the resulting Hubbard
model can be proved by the theorem of [23].

3.2. Proof

Following [22], we first introduce some creation and annihilation operators. The
Gramm matrix G for the basis {φ(u}}u^v is defined as

Since {φ^}u^y is linearly independent, the matrix G is regular. We define

Note that {{^}X^Λ}U^V a^so fQrms a basis of the space ^0. It is easily verified
that there are completeness conditions

and
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where
Ψxy = Ψy* = δxy- Σ Ψ(^(G-\υφ^ . (3.12)

u,v€V

Note that ψxy with a fixed x (or y) defines a state orthogonal to the space j^0 since

for any x ζ Λ and w £ V.
Let us define

and

From (3.10), we find that buσ is the dual of a(

uσ in the sense that

{bwr,alr} = δuvδστ (3.16)

for any u,υ £V and σ, r =j, j. The ortogonality (3.13) implies

Kσ,4τ} = {dLAr}=0, (3-17)

for any x G Λ, u G V and σ,r =|, |. Finally from the completeness relation (3.11),
we get the expansion formulas

4, = 4u)βL + 4σ, (3 18)

for any x £ Λ and σ, r =t, j The formulas (3.18) and (3.19) will turn out to be
useful later.

We shall now prove Theorem 3.2. We restrict ourselves to the subspace with the
electron number fixed to NQ < Nά. By construction, we already know that the states
(3.3) are ground states of the Hubbard model, and the ground state energy is A^eε0.
We will show that they are the only ground states.

Let Φ be a ground state. Since a ground state satisfies HhopΦ — NQε0Φ, it can be
written in the form

Φ= Γ f(AA) 4 α Φ o , (3.20)

where A^ and A^ are subsets of V such that \A^ +\A^\ — 7Ve, and f(A^A^) is a
coefficient.

A ground state must also satisfy HintΦ = 0, and hence cx^cχ]Φ — 0 for any
x G A. By substituting the expansion formula (3.19), this necessary condition can be
rewritten as

= 0, (3.21)
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for any x £ A. We have used dxσΦ — 0, which follows from the anticommutation
relation (3.17) and the representation (3.20) of Φ.

We shall first set x — x(u), where x(u) is the site defined in the quasi-locality
condition Bl. Then the condition (3.21) becomes

(^u)fbu,bulΦ = 0. (3.22)

By using the anticommutation relations (3.16), we find from (3.22) that the coefficients
in (3.20) must satisfy

A) = 0 (3.23)

if A τ Π A± ^ 0.

Let u, υ G V be directly connected, and take x e Λ such that ψ^ψ^ ^ 0. By
using the local connectivity B2 and (3.23), we see that the condition (3.21) becomes

Again from the anticommutation relations (3.16), we find that

/(J3T U M, Bl U {υ}) = /(J5T U H, BL U {u}) , (3.25)

where ̂  and jE?| are arbitrary subsets of V\{u,υ} such that |5| -f \B^\ = NQ — 2.
In other words, the coefficients f(A^A^) are symmetric under the exchange of spins
corresponding to the indices u and υ.

Take a subset A C V with \A\ = 7Ve, and decompose it into connected components

as A = U C fe. Take {mfc}fc=lι...,n with mfe = -\Ck\/2, 1 - |Cfc|/2, . . . , \Ck\/2. By
fc=l

noting that the condition (3.25) is valid for any pair of directly connected indices u, v,
we find that the coefficient f(A^ , A^) takes a constant value for those A^9 A^ such that

A T Π A | = 0, - A τ U Λ i = Λ and |^LT Γ}Ck\ - \A[ ΠCk\ = 2mfc for any A; = 1, . . . , n.
This proves that any Φ of the form (3.20) satisfying the conditions (3.23) and (3.25)
is a linear combination of the states (3.3). The first part of Theorem 3.2 has been
proved.

To prove the second part of Theorem 3.2, fix the electron number NQ > 7Vd, and
assume that the ground state energy is still NQεQ. Then the condition (3.23), along
with the fact that \A^ +\A^ > \V\, immediately leads to Φ = 0.

4. Percolation Representation

4.1. Representation

In the present section, we shall prove Theorems 2.4 and 2.5 concerning the behavior
of grand canonical average of various quantities. The proofs are based on the complete
characterization of the ground states obtained in Sect. 3 and a percolation analysis.

Throughout the present section, we shall assume for simplicity that the index set
V forms a d-dimensional hypercubic lattice (where d > 2) with periodic boundary
conditions, and two sites u and v are directly connected with each other if and only
if \u — v = 1. This is precisely the case in the model of Sect. 2. Generalizations to
other models are straightforward.

The strategy to make use of the percolation type analysis in the present context
follows that of Mielke's work on the Hubbard models on two dimensional line
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graphs [22]. Here we shall make the ideas presented in [22] into a rigorous proof, by
presenting careful analysis of a non-independent percolation problem. (Unfortunately,
the discussion in [22] made use of some properties of the independent percolation.
As a consequence, the critical filling factors predicted in [22] are incorrect. We stress,
however, that the main body of [22] is completely rigorous, and that the present
method can be also applied to the models of [22] to establish rigorously the existence
of ferromagnetic order in a finite range of filling factor.)

In the present subsection, we will derive representations for various expectation
values in terms of a (non-independent) percolation problem, and give some heuristic
discussions about behavior of the system.

We recall from Sect. 3.1 that the space of (many-electron) ground states of H is
spanned by the states

k=l

where A is an arbitrary sublattice of the hypercubic lattice V. The sets Cl , . . . , Cn

are the connected components of A (in the usual sense), and πιk = — |C fc |/2, 1 —
|C fc |/2, . . . , \Ck\/2. We first realize the trace in the definition of the grand canonical
like average (2.10) by using the complete set of ground states (4.1). For an arbitrary
operator O, let us define its matrix element o(B, {nk}\A^{mk}) by

OΦA,{mk}=*+ Σ *s>toJ;A{roJ)*B,{nfc}, (4.2)
B,{nfc}

where Ψ is a state orthogonal to the eigenspace of H with the eigenvalue 0. Since
the states (4.1) form a complete basis of the eigenspace, the trace can be realized as

Tr[OP0]= ^ o(A,{mJ;A{m f e}), (4.3)
A,{m f c}

where the sum is over all the subset A G V and all the possible {mk}.
From (4.1) and the definitions (1.6), (1.7) and (1.8), we immediately get

and

A.tm,Λ , (4.5)

where S&> = £ ̂ 3)

xeΛ
For a fixed subset A, we define the corresponding subtrace by

TrA[0] - Σ °^ ίmJ; A> ίmfc» -

Straightforward calculations show

I C Ί I / 2 I C W I / 2

Trjexp(μ#e)] = ]Γ ... ]Γ

mn=-|Cn |/2

fc=l
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and

(4.8)

Δ-^ \ / J

mn

 x k=l

From the definition (2.10) of the average, and the SU(2) invariance, we get

where the "partition function" is given by

(4.10)
ACV

Similarly we have
(4 π)

ACV k=l

Note that the right-hand sides of Eqs. (4.9) and (4.11) can be regarded as
expectation values in a percolation system. The set A may be regarded as a
configuration of occupied sites. The probability that a configuration A appears is
proportional to the statistical weight W(A) defined in (4.7). Such identification allows
us to develop, as in [22], a geometric picture for the ferromagnetic-paramagnetic phase
transition observed in the present Hubbard model.

When μ is negative and its absolute value is large (compared to 1), (4.7) suggests
that the probability to find a configuration with many occupied sites is relativel small.
This means that, among many ground states (4.1), only those with low electron filling
factor have main contributions to the grand canonical average. We expect that the
percolation system is in its low density phase, where all the connected clusters (which
are C\ , . . . , Cn in our case) have uniformly bounded sizes with large probability.
Then the representation (4.9) implies that the square of the total spin is propotional
to the system size, which is a characteristic behavior of a paramagnetic phase.

When μ is positive and large, (4.7) suggests that the probability to find a
configuration with many occupied sites is large. This indicates that the electron
filling factor should be close to its maximum value £>0. When the dimension d is not
less than the lower critical dimension of the percolation problem, which is two, we
expect that the system is in the percolating phase, where one finds an infinitely large
connected cluster with probability one. Such a cluster has a dominant contribution
in the representation (4.9), and we see that the square of the total spin becomes
proportional to the square of the system size. This is the desired ferromagnetic
behavior.

Although the present percolation problem is not a simple independent percolation,
we can use suitable stochastic geometric techniques to get meaningful bounds for
physical quantities. In the following sections, we will make the above heuristic picture
into rigorous proofs.
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42. Universal Bounds

We shall prove elementary bounds which are valid for any values of μ.
Since \Ck\ > 1, we see

ψ$r + l)*l\Ck\ (4.12)

Substituting the bound into (4.9), we immediately get

((Stot)\ > I <#e>μ , (4-13)

for any value of μ. This is the lower bound in (2.16).
We shall prove the upper bound for the electron number in (2.1 1). Fix site u G V,

and let A be an arbitrary configuration in which u is occupied. By A* we denote the
unique configuration obtained from A by eliminating the site u. Then the weights for
two subsets satisfy

^ ' 'W(A) e»(\C\ + 1) '

where C is the connected cluster in A which contains u, and C' are the connected

components of C\{u}. Noting that \C\ = 1 -f Σ |Cj l > me above ratio can be bounded
as 3

i . ,
" ' (4>1 }

W(A)
3

For a general event concerning a configuration A, we define

^event = ]£ W(A)χ[event] , (4.16)
ACV

where χ is the indicator function, i.e., χ[True] = 1, χ[False] = 0. The bound (4.15)
implies that

ZUZA = Σ W(A)^^ G A^ 2eμ Σ w(^*)χ^ ^ A]
ACV ACV

Λ , (4.17)
A ;cy

where we have used the fact that, when A runs over all the configurations with u e A,
A* runs over all the configurations with n φ A* . This immediately implies

<* e A» =
By summing up the inequality over u, we get

which is nothing but the desired upper bound in (2.1 1).
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We shall now prove the lower bound in (2.1 1). Let b be a 3 x . . . x 3 (hyper-)cubic
region in V, and u be the site at the center of b. Take an arbitrary configuration A
with A Π b = 0, and let A* be the unique configuration obtained by adding the site
u to A. Then we have 2eμW(A) = W(A*). As in the above we see that

(χ[AΠb ^ 0]}μ = - - < - n&Ξ* - = - . (4.20)
1 -f e v/2

The quantity in the left-hand side is the probability that there is at least one occupied
site among the 3d sites in b. By sujmming up (4.20) over all the nonoverlapping
3 x ... x 3 (hyper-)cubes in V, we get

which is the desired lower bound in (2.11).

4.3. Low Density Bounds

We shall prove the bounds which are valid when the chemical potential μ is negative
and its absolute value is large.

Let ^[A] = {CΊ, . . . , Cn} be the set of connected clusters in a configuration A.
Take a connected set C of sites in V. For any configuration A with C £ ^[A], we
denote by A* the configuration obtained by eliminating C from A. When A runs
over all the configurations with C £ %?[A], A* runs over all the configurations with
C Π A* = 0, where C is a set obtained by adding neighboring sites to C. We have
W(A) = e^c\(\C\ + l)W(A*)9 and thus

(χ[C G rU]J) = € - < = e^l(|C| + 1) . (4.22)

Note that, when μ is negative and large, the right-hand side converges to zero rapidly
as the cluster becomes large. From the representations (4.9) and (4.11), we get

= Σ d^l2 -
CCV

= ι^ι Σ 5 (ici2 -
where, in the right-hand side, the sum is over all the connected set C which contains
a fixed lattice site o. We have made use of the translation invariance to get the final
equality. The standard argument shows that the number of such connected C with n
sites can bounded from above by αn, where a is a positive constant which depends
only on the dimension d. By substituting the bound (4.22) into (4.23), we get

^ (4.24)

where the final bound is valid when -μ is sufficiently large and the sum converges.
Here c3 is a positive finite constant which depends only on the dimension d. The
upper bound in (2.16) has been proved.
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4.4. High Density Bounds

We shall prove the bounds which are valid when μ is positive and large enough.
Our proofs are based on a variation of the Peierls argument, which is standard in
spin systems [6] and percolation [7]. Let us recall that we have assumed that V is a
d-dimensional hypercubic lattice with periodic boundary conditions.

Let A = V\A, which may be called the set of unoccupied sites, or defects.
Again this can be decomposed into connected components as A = Dl U . . . U Dm,
and we denote by &[A] the set {D l5 . . . , Dm}. Take a connected set D. The set
V\D decouples into several connected components. We call the largest connected
component the exterior of D, and other components the interior of D.

Take a connected set D, and let A be an arbitrary configuration with D G &[A].
We denote by A* the configuration obtained by adding to A all the sites of D. Let
CD G &[A] with j = 0, . . . , p be the connected clusters in A which are adjacent

to the defect D. We choose the numbering so that C® lies in the exterior of D, and
C® with j — 1, . . . , p, in the interior. See Fig. 2.

Fig. 2. The defect D G &[A] and nearby clusters. The white regions represent the occupied sites

Now the ratio of the weights for the configurations A and A* can be evaluated as

W(A*)

j|(|Cf 1 + 1). (4.25)

j=ι

Since each C® with j = 1, 2, . . . , p is in the interior of D, it must be surrounded
by sites in D. Let d3 be the number of sites in D which are directly surrounding the

cluster C® . Then we get the following bound.

} , d j > l , ; dj<2\D\ j-1

P J «
<c'exp[α|ϋ|], (4.26)
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where c' is a constant, and α = d/{e(d - 1)}. Thus we get the bound

(χ[D 6 ®[A]])μ < ZD&[A] < c'e-(^ \D\ . (4.27)

Note that when μ is sufficiently large, the probability to find a larger defect becomes
exponentially small.

We will construct a lower bound for the electron number. From the representation
(4.11), and the definition of the defects {Z>15 . . . , Dm}, we get

\v\ - (Ne)μ = ̂ Σ w^ Σ \D»\ = Σ
ACV k=\ DCV

\ D \ , (4.28)

where the sum in the righ-hand side is over all the connected sets which contains a
fixed lattice site o. We have made use of the translation invariance as in (4.23). From
the bound (4.27) and the same entropy estimate as in (4.24), we get

oo

\V\ - (7Ve)μ < \V\ Σ annc'e-(μ-a}n < cl\V\e~μ , (4.29)
n=l

where the final inequality holds when μ is large enough and the sum converges, and
Cj is a positive finite constant which depends only on the dimension. Thus we have
proved the lower bound (2.12) for the electron number.

We will now prove the lower bound for the total spin in (2.15), which establishes
the appearance of ferromagnetism. (Note that the upper bound in (2.15) is trivial.) Let
A be a configuration and &[A] be the set of the corresponding defects. By ext(J9)
we denote the exterior of a defect D. Define

ext(D), (4.30)

Dei/ [A]

which is indeed an element in W'[A\. For a connected cluster (defect) D, we denote
by v(D) the total number of sites in D and in its interior. Then there is a trivial
inequality

iQxt >ι^ι- Σ v^ (4 31)

D£C/[A\

From (4.31) and the representation (4.9), we now have

<(Stot)
2}μ>|

ACV

2 ACV \ maX

•SinaxίSmK + 1) - (\V\ + I) \V\ Σ(χ[D e ®[A]]μυ(D), (4.32)
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where Smax = \V\/2. The sum in the most right-hand side is over all the connected
clusters including a fixed lattice site o. We have again made use of the translation
invariance as in (4.23) and (4.28). Substituting the bounds v(D) < \D\d/(d~l} and the
entropy estimate (as in (4.24)) into (4.32), we finally get

((Stot)2)μ > Smaxί^max + Ό ~ (l^l + |) |̂ | ]ζ CLnnd/(d~l}e~(μ~a}n

n=l

for sufficiently large values of μ. Here c2 is a positive finite constant which depends
only on the dimension d. Thus the lower bound in (2.15) is proved.

5. Correlation Functions

In the present section, we evaluate electron-electron correlation functions for the
model of Sect. 2 with Nά-2d+ I < NQ < Nά. As we have mentioned in Sect. 2.3,
the result implies that the coherence length in the ground states is λ"1.

Let ( . . . ) be the usual microcanonical average for some fixed JVe < Nά. For an
arbitrary operator O, it may be expressed as

Σ o(A,{mk} A,{mk})

(O) = ^"*>"*°" Σ . . (5.1)

A,{τnk};\A\=Nt

Then one obtains

Lemma 5.1. If for a given 7Ve < 7Vd all ground states have the total spin Sΐol = N&/2,
then

Σ lrϊ r \ — e V^ κ (nWn) ΓS 9^
(CxσCyσ) ~ J^ 2^ ̂  ^V ' ^<2)

σ d ueV

Proof, Since the operator Oxy = ̂  cχσ

c

yσ is SU(2) invariant, it suffices to consider
σ

the expectation value in the subspace where all spins are |. We thus get

Σ ° x y(Aί;Aί), (5 3>
A \A\=Ne

where oxy(A, |; A, |) are the matrix elements of Oxy in the subspace with all spins |.
Using the expansion formulas (3.18) and (3.19), these matrix elements may be written
as

where ouv(A, |;A, f) are the matrix elements of Ouv — a^bv^ and we used the
relation

ouυ(A, ΐ; A, T) = δuυδuu(A, ΐ; A, |). (5.5)
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Now,

A;\A\=N& A3u,\A\=N&

(5.6)

which yields the desired result. D

Clearly, Lemma 5.1 may be applied in the case 7Ve = Nά if V is connected, and
in the case Ne — 1, which is trivial. As a consequence we have

Corollary 5.2. Consider the model of Sect. 2 in the sub space with the electron number
fixed to some value Nά - 2d + 1 < 7Ve < 7Vd. Then

-y\-(d-^^[-\\X-y\] (5.7)

for L >> 1 and \\x — y\^> \, where \\x\\i =

Proof. Since any A C V with \V\ — 2d + 1 < |A| is connected, we find that any
ground state has 5tot = N&/2 if 7Vd - 2d + 1 < Ne < Nd. This allows us to use
Lemma 5.1.

It remains to calculate κf^\ The Gramm matrix (3.8) for the basis (2.8) is given
by

1 + 2d\~2 if u = υ ,
if u-v = 1 , (5.8)

otherwise.

The inverse can be calculated as

λ 2 ιk (u-v)

ddk- - . (5.9)

The integral (2π)~d f ddk is a shorthand for the sum L~dΣ, where k = (2πn1/L,
fc

. . . , 2πnd/L) with integers n^ such that —L/2 <n3 < L/2. Since the definition (3.9)

implies K^ = (G~{)yx for x G V, the desired expression for the correlation function
(5.7) follows by combining (5.2), (5.9) and the standard asymptotic evaluation of the
integral (sum) in (5.9). D

Just as one cannot conclude from the vanishing charge gap (2.17) in the case
7Ve < Nά that the system is a metal, one cannot conclude from the exponential decay
in (5.7) that the electrons are localized. In the case 7Ve < JVd this exponential decay
is due to the ground state degeneracy. A" 1 is the phase coherence length and not the
localization length.

Before closing the section, let us briefly discuss why we are not able to calculate
the correlation function in the general situation with μ < oo. In the grand canonical
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ensemble, we also have

/ j "

Σ

But (5.5) only holds in the subspace with 5tot = NG/2. The reason is that only in
this subspace all the states that can be constructed using the operators αj^ are ground
states of H. Therefore, the dual basis in this subspace is simply given by all the states
constructed using the operators buσ, and δuυ(A, T A ΐ ) nas me simple form (5.5).
In all the other subspaces with 5tot < NQ/2 the dual basis to the states (3.3) cannot
easily be constructed.

The difficulty for the models with μ < oo may be expected from a physical
point of view. The ground states for JVe = Nά are essentially the same as that of a
noninteracting spinless fermion system. Calculating correlation functions should be
of no difficulty. When μ < oo, on the other hand, the ground states reflect strong
correlation effect, and have quite nontrivial structure. Though the expression for the
ground state (3.3) appears rather simple in the nonorthogonal basis, it will become
highly complicated when expressed in the standard orthogonal basis.

6. Spin Hamiltonian and Spin Wave Excitations

In the present section, we rigorously derive a "spin Hamiltonian" of our Hubbard
model. More precisely we show that the interaction Hamiltonian Hmv when projected
onto a certain subspace which includes ground states, exactly reduces to the Hamil-
tonian of the ferromagnetic Heisenberg model. In the model with exactly half-filled
degenerate band, we prove that there is a set of low energy excited states whose ex-
citation energies are bounded from above by that of the spin wave excitations of the
Heisenberg model. This result suggests that our Hubbard model has a "normal" spin
excitation structure. Based on a trial state calculation, Kusakabe and Aoki recently
[16] argued that the closely related Hubbard model with U — oc has low-lying excita-
tions which are expected for a "normal" itinerant electron system with ferromagnetic
order.

We first discuss the general class of models as in Sect. 3. For a subset A c V, we
define a (non-orthogonal) projection operator PA by the following procedure. Given
an arbitrary state Φ, we can uniquely decompose it as

Π αlτ Π αliφo,
A|,A| nEA| v£A^

where # is orthogonal to the space with HhopΦ = NeεQΦ. We define

lτ Π a
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By using the expansion formulas (3.18) and (3.19), we get

- ^y/^y +d j Vτv r )& +<*/—^ x 9Ϊ χ ΐ I 1 / ,j x r\

Σ ίMi + 4Λ ( Σ Λi + d-ι Y <6-3)
*

Let a site x G /L be such that there is an index u G F with x(w) = x, where x(u) is
defined in the quasi-locality condition Bl in Sect. 3.1. Then from (6.3) we get

\ ̂
/ . ^ i n^ K^ i rf u^ n^ h n^ h P — 0

X φx κx φx aq^ou^as^ou^A — υ.

Next take a site x e Λ such that there are indices u,v eV with φ^φ^ ^ 0. From
the local connectivity condition B2 and (6.3), we have

Kin7 ^ κx φx

+ ai^u^bυi + al^ulbu[)PA . (6.5)

Let us introduce spin operators for the state φ^ by

4σP(σαX,/2, (6.6)

σ,r=ΐ,l

where p^ with α = 1,2,3 are the Pauli matrices (1.9). The operators S(^ are not
self- adjoint, but have exactly the same algebraic structure (i.e., commutation relations)
as the standard spin operators. Using these operators, (6.5) can be rewritten as

By substituting (6.7) into the definition (1.3) of the interaction Hamiltonian, we
get the desired "spin Hamiltonian"

PAHmίPA = Σ JuV(
l2-2§u SJPA > (6-8)

u,υ£V

where the "exchange interaction" is given by

7 — \^ TT κ(u) (υ) (u) (v) (6Q\
Juυ — 2.^ x x x ^x ^x ' \Ό'^)

x

If the "exchange interaction" Juv is nonnegative, the "spin Hamiltonian" (6.8) is
nothing but the Hamiltonian of the ferromagnetic Heisenberg model. We expect
that the "spin Hamiltonian" (6.8) roughly describes low energy excited states which
involve only spin degrees of freedom when U is small.

In [30] it was shown that a class of models with certain global symmetry has
Juv > 0 for directly connected u, v. The proof of ferromagnetism in [30] was based
on this observation. Note, however, that the proof in Sect. 3.2 no longer requires
symmetry conditions.
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We can explicitly evaluate Juυ for the model of Sect. 2. By combining the definition
(2.8) of the basis state φx(u\ the definition (3.9) of κ^\ and the formula (5.9) for
(G~l)uv, we get

J(λ)>0 if u-υ\ = l,

0 otherwise, (6'10)

where

1 — cos(fcι) \
J(λ) = U' ((2πΓd I ddk —

\ k-fZί—TΓ TΓ^d

U'Cd a s λ l O ,

t/'λ'4 f o r λ » l . ( }

The constant Cd depends only on the dimension d.
The form of the "spin Hamiltonian" (6.8) suggests that the model has spin wave

excitations when there is a ferromagnetic order in the ground states. For the model
with 7Ve = 7Vd, we can prove the existence of low energy excited states as follows.

Theorem 6.1. Consider the model of Sect. 2 in the subspace with the electron number
fixed to 7Ve = 7Vd. To each wave vector k — (2πn1/L, . . . , 2πnd/L) ^ (0, . . . , 0)
with integers —L/2 < nj < L/2, there corresponds an excited state whose excitation
energy is bounded from above by a function EL(k). In the infinite volume limit L —» oo,
EL(k) converges to an analytic function E(k) which satisfies

E(k) = J(λ)|A:|2 + O(\k\4). (6.12)

Recall that the dispersion relation of the spin wave excitations for the Heisenberg
Hamiltonian (6.8) is

d

Esw(fc) = 2J(λ) YVl - cos /cω), (6.13)

which has the same asymptotic behavior as (6.12)

Proof. Let us define the "one magnon state" by

Φ3 = Σelk'USΰΦvτι (6 14)
uev

where 5~ = S^-iS^ — α^ί>u|, and Φv^ = Jj a\^ΦQ. Note that Ψk with different

k are orthogonal to each other, and Ψk with k ^ (0, . . . , 0) is orthogonal to the ground
states. If we denote the energy expectation values as

(6.15)

the first part of the theorem follows from the standard variational argument.
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It now remains to evaluate EL(k). As for the denominator of (6.15), we have

(6.16)

where o denotes an arbitrary fixed site in V. The second line of (6.16) follows from
the anticommunication relations {auσ,alr} = (G)uvδσr, {buσ,blτ} = (G-{)uvδστ,

and the relations bu^Φv^ = au^Φv^ — 0. The third line follows from the translation
invariance.

The numerator of (6.15) can be evaluated in a similar manner, although the
calculation is more complicated. By using the representation (6.3), we have

,

v t r u s

e-*fc u(e t f e 'υ-e' f e r)4rVχΓ)«χVS')

x(G)us(G-\υ(ΦVΓΦv^

x(G)ua(G-l)uo(Φv,,Φv,). (6.17)

Summing up (6.17) over x, dividing the result by (6.16), and noting that HhopΨk = 0,
we finally get

uev

which converges to an analytic function of k as L — * oo. By expanding (6.18) in fc,
we find

|Σ Σ (k r)2Ux^ψ^K^ψ^(G)ua(G-\0

U

2= J(λ)|fc|2 + 0(|A;|4), (6.19)

which is the desired estimate. D
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