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Abstract. Using the relation between the space of rational functions on (C, the
space of SJ7(2)-monopoles on R3, and the classifying space of the braid group, see
[10], we show how the index bundle of the family of real Dίrac operators coupled
to S£/(2)-monopoles can be described using permutation representations of Artin's
braid groups. We also show how this implies the existence of a pair consisting of
a gauge field A and a Higgs field Φ on R3 whose corresponding Dirac equation has
an arbitrarily large dimensional space of solutions.

1. Introduction and Statement of Results

Let Jfk denote the space of based, SU(2) monopoles in R3 of charge k. Thus an
element of M^ is represented by a configuration (A, Φ), where A9 the gauge field, is
a smooth connection on the trivial SU(2) bundle P over R3 and Φ, the Higgs field,
is a smooth section of the vector bundle associated to P via the adjoint representa-
tion. Since the bundle P is trivial A can be identified with a smooth 1-form on R3

with values in the Lie algebra sιι(2) and Φ can be identified with a smooth function
Φ: R3 -> su(2). We equip R3 with its standard metric and orientation and su(2)
with its standard invariant inner product. The pair (A, Φ) is a monopole if it
satisfies the following conditions:

(1) l - |Φ |eL 6 (R 3 ) .
(2) The pair (A, Φ) has finite energy; that is the Yang-Mills-Higgs functional is

finite

Here DA is the covariant derivative operator defined by A and FA is the
curvature of A.

The first author was supported by a grant from the NSF



242 R.L. Cohen and J.D.S. Jones

(3) The pair (A9 Φ) satisfies the Bogomolnyi equation

*FA = DAΦ ,

where * is the Hodge star operator on R3.

The charge of the monopole is defined as follows. Since Φ is smooth and
1 - |Φ|eL6(lR3) it follows that if |x | is large enough Φ(x) Φ 0. So for sufficiently
large R, define

where SR is the sphere of radius .R in R3 and the target is the unit sphere in su(2).
Then the degree of ΦR is the charge of the monopole.

The based gauge group ^ is the space of bundle automorphisms g: P -+ P
whose restriction to the fibre over the origin is the identity. This group acts on the
pairs (A, Φ) in the usual way and the space Jίk is the quotient of the space of
monopoles with charge k by the action of ̂ . For more information concerning the
geometry of the space Jίk see [6] and [19].

Let us denote the space of pairs (A9 Φ) which satisfy the asymptotic condition

and has finite energy

Φ) = \ J (\FA\
2 + \DAΦ\2)dvol < oo

by j/. The group ^ acts on stf and we denote the quotient space ^/^ by &. The
components of this space are determined by the charge of the configuration (A9 Φ)
which is defined as above. We use the notation 3%k for the component with charge k.

Fundamental results concerning the topology of Mk have been proved by
Taubes, Donaldson and Segal. In [25] Taubes proves by using Morse theoretic
arguments that the inclusion Jtk -> &k is a homotopy equivalence through dimen-
sion k. Taubes proves in [24] that &k is homotopy equivalent to the space Qk S

 2 of
all base point preserving maps S2 -> S2 of degree k and so we see that Jίk is
homotopy equivalent to Ωk S 2 through dimension k.

In [18] Donaldson proves that Jίk is homeomorphic to the space Ratfe of based
rational functions p/q of degree k. Here p and q are monic polynomials of degree
k over <C with no roots in common. The homotopy type of Ratfc was originally
studied by Segal [23]. The space Ratfe is a subspace of Ω2S2 since it can be
identified with the space of holomorphic maps/: S2 -> S2, where S2 is the Riemann
sphere C u oo , which have degree k and satisfy the basepoint condition/(oo) = 1.
Segal proved that the inclusion

is a homotopy equivalence through dimension k. Thus combining the work of
Segal and Donaldon gives a proof of the fact that J(k is homotopy equivalent to
ΩkS

2 through dimension k.
The homotopy type of Rat* was studied further in [10, 11, and 17]. The basic

method is to compare the filtration of Ω2S2 given by the degree of a holomorphic
map with the combinatorial models of these loop spaces described in [20, 21, and
22]. To state the results we need to recall the relation between braid groups and
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Ω2S2. Let βq be Artin's braid group on q strings, and let Bβq be its classifying space.
There is a map αg: Bβq-+ΩqS2, constructed explicitly in [22], which induces
a monomorphism in homology and an isomorphism through dimension [#/2].
One of the main results of [10] relates the stable homotopy type of the space Ratfc

with the braid groups. Recall that a stable homotopy equivalence between two
finite cell complexes X and 7 is a homotopy equivalence between the ΛΓ-fold
suspension spaces

ΣNX~ΣNY

for N sufficiently large; we denote this by X ~s 7

Theorem 1. There is a stable homotopy equivalence

This is proved in [10]. Thus Ratfc and therefore the monopole space Jik have
the same homology, cohomology as the braid groups, and this is similarily true for
any generalized homology or cohomology theory. Here we will study in detail the
implications of the following corollary.

Corollary 2. There are isomorphisms

K(Bβ2k) * K(Jtk\ KO(Bβ2k) * KO(Jίk] ,

where K, KO are complex and real topological K-theory.

Here by K and KO we mean K° and K0°. Of course the corollary is true for K*
and KO* but here our principal interest is in the K°-groups.

As is customary when working with the cohomology of groups we will denote
K(Bβq) by K(βq) and use similar notation for the other K-theories. Now repres-
entations of βq give elements in the X-theory of βq. On the other hand, since Jίk is
a moduli space of connections a natural method of constructing elements in the
K-theory of Jίk is to take the index bundles of families of Fredholm operators
constructed using the connections. For each representation of SI/ (2) there is
a natural family of differential operators parameterised by Jίk, the Dirac operator
coupled to SLr(2)-monopoles using the given representation of 5(7(2). The main
goal of this paper is to use the above corollary to compute these index bundles in
terms of representations of the braid groups. Before stating the results we will
describe the twisted Dirac operator in more detail.

Let £f — ̂ 3 be the spin representation of Spin (3) and let

d: C°°(]R3; ^) -> C°°(R3; «$")

be the Dirac operator defined on smooth functions from R3 to ̂ . Furthermore let
£ be a representation of SU(2). Now given a monopole c = (A, Φ)eJtk we may
form the coupled Dirac operator dc>£,

dCtE: C°°(R3; Sf ® E) -» C°°(1R3; ̂  ® E) .

In coordinates this operator is given by the formula

dc.E(Ψ)= Σ te®l) β )̂ + (l
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Here e±, e2, £3 are the usual generators of the Clifford algebra of R3; the covariant
derivative operator DA on C^R3; Sf ® E) is defined using the spinor connection
and the connection A', DAί t is the covariant derivative in the direction of the ith

coordinate in R3; et acts on £f by the SU(2) action on E.
Taubes showed in [24] that for each representation E the operators dc> E form

a continuous family of Fredholm operators dE9 defined on suitable Sobolev spaces,
parameterised by c = (A, Φ}eJίk. Associated to this family of Fredholm operators
is the index bundle

However, as we will show in Sect. 5, this X-theory class is zero. This fact contrasts
sharply with the situation for the family of Dirac operators coupled to SU(2)-
instantons on the four sphere S4 via the fundamental representation. This was
studied in [7] where it was shown that this Dirac family produces a non-trivial
element in complex X-theory.

In order to get more information we will use a real analogue of this index class.
More precisely, recall that the Dirac operator d on R3 has a quaternionic structure.
This will be described in more detail in Sect. 2. Thus if we couple the Dirac operator
to a monopole c using a quaternionic representation E of SU(2)9 for example the
standard representation of SI/ (2) = Sp(l) on (C2 = H, then the resulting operator
has a real structure and so can be identified with the complexification of a real
operator. We denote this real operator by δCίE. The index bundle of the corres-
ponding family of operators is real and so for each E in the quaternionic repre-
sentation ring RSp(SU(2)) we obtain a bundle

Our main goal in this paper is to compute these real index bundles.
The most important single case is the case where E is the fundamental repre-

sentation of SU(2) = Sp(l) on (C2 = H. We will use the notation δ for the family of
operators obtained by coupling the Dirac operator to monopoles using the funda-
mental representation. The index bundle now gives us the basic element

mά(δ)eKO(βk) .

Any real representation of βq gives a real vector bundle over Bβq and hence an
element in K0(βq). This gives a homomorphism

R0(βq)-+K0(βq)

and we will not use any special notation to distinguish between elements oίRO(βq)
and the corresponding elements of K0(βq) unless it is absolutely necessary. The
most basic representation of βq is the permutation representation pq given by
composing the homomorphism βq -> Σq9 which maps a braid to the corresponding
permutation of its end points, with the representation of Σq in 0(q) given by
permuting the coordinates of R^. There is a close relation between the elements
pk and ind((5) in KO(βk) but to describe this precisely requires a little more
background.

Given integers p9 q with p < q the inclusion u: βp -> βq defines a map

Bu:Bβp->Bβq.
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In fact this map is stably split, that is, provided N is sufficiently large, there is a map

τ:ΣNBβq-+ΣNBβp

such that the composite

is homotopic to the identity. This map τ induces a map

τ*:KO(βj-+KO(βg)

and it follows that the composite

is the identity.

Theorem A. Under the isomorphism KO(Jίk) ^ K0(β2k) of Corollary 2, the element
ind(δ)εKO(J?k) corresponds to

This theorem shows that there is an intimate relation between the index bundle
ind((S) defined by the fundamental representation of SI/ (2) and the permutation
representation of the braid groups. However twisting the Dirac operator using
other representations does not produce any other interesting classes.

Let y: SU(2) -^ Sp(n) be a symplectic representation. By identifying
SI/ (2) = Sp(l) with the sphere S3, such a representation defines a homotopy class
in π3(Sp(n)). Now π3(Sp(n)) = TL and we choose this isomorphism so that 1 corres-
ponds to the homotopy class of the usual inclusion Sp(l) -> Sp(n). Now define ny to
be the integer corresponding to the homotopy class of y. The definition of
ny extends additively to virtual quaternionic representations, that is elements of
RSp(Sυ(2)\

Theorem B. Let γeRSp(SU(2)) be any virtual quaternionic representation ofSU(2).
Then the index bundle of the family of real operators δy is given by

ind(δy) = nymd(δ)eKO(Jΐk) ,

which, by Theorem A, corresponds to

under the isomorphism of Corollary 2.

We will show in Sect. 5 that ind(δ) has order two in KO(Jtk\ Thus it follows
that we do not produce any new elements of KO(Jΐk) by using representations
other than the fundamental representation.

In fact the Dirac operator can be coupled to any pair (A, Φ) which satisfies only
(1) and (2) in the definition of a monopole. This family of operators is extensively
studied by Taubes in [24] and we frequently refer to this paper for details of the
analysis associated to these, and other closely related operators. Taubes' motiva-
tion was to use computations with the Chern classes of the index bundle of this
family of operators, as in [7], to force the existence of large spaces of solutions to
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the Dirac equation. This in turn was used to study the critical values of the
Yang-Mills-Higgs energy functional. However as pointed out in [26] there is
a difficulty with the calculation in [24] arising from the fact that the index bundle
ind(d) of the complex Dirac operator coupled to pairs (A, Φ) using the fundamental
representation of 5(7(2) is trivial and so its Chern classes are all zero. This is the
reason why we study the real operator δ in terms of real K-theory. Nonetheless the
resulting theorem about critical values is true (Theorem A1.2 of [24]) and an
alternative proof is given in [26]. In fact Taubes's original argument in [24], based
on the topology of the family of Dirac operators can be completed as follows.

Recall that the space of pairs (A, Φ) which satisfy the asymptotic condition
1 — I Φ I e L6 (R3 ) and have finite Yang-Mills-Higgs energy is denoted by si and its
quotient by the gauge group ^ is denoted by JL The components of £8 are
determined by the charge of the configuration (A, Φ) which is defined as above. We
can couple the Dirac operator to such a configuration c = (A, Φ) using the stan-
dard representation of SU(2) and so we obtain an index bundle

By using computations of Stiefel- Whitney classes, rather than the computations
with Chern classes in [7], we prove the following theorem which would complete
the proof of Theorem A 1.2 in [24] using the original argument given in Sect. C3 of
that paper.

Theorem C. Let N be any integer. Then for every k there exists a class
c = (A, Φ)e&kfor which the space of solutions of the Dirac equation

and the adjoint equation

δ*ψ = 0

both have dimension ^ N.

This paper is set out as follows. In Sects. 2 and 3 we give the technical argument
required to identify the index bundles homotopy theoretically. This argument is
related to real Bott periodicity. The conclusion, for the case we are interested in, is
given in Theorem 4.1; the statement is very natural but it requires a careful analysis
to give a proof. In Sect. 4 we go on to complete the proof of Theorem A. In Sect.
5 we prove Theorem B and in Sect. 6 Theorem C. Some of the results in this paper
are described very briefly in [15].

The authors would like to thank M.F. Atiyah, S. Dostoglou, S.K. Donaldson,
N. J. Hitchin, and C. Taubes for helpful conversations and correspondence concern-
ing this work. The first author would also like to thank the mathematics depart-
ments of Oxford University and University of Paris VII for their hospitality while
some of this work was being carried out.

2. The Coupled Dirac Operator

In this section we describe in detail the construction of the coupled Dirac operator
and show how the process of forming the coupled Dirac operator and taking index
bundles is related to the Bott equivalence Ω2(Sp/U) ~7Lx BO. This equivalence is
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part of the real Bott peridicity theorem. Our argument is motivated by Atiyah's
proof of Bott periodicity [5] using elliptic operators. However it is quite tricky
in detail. The first thing which makes it so is that we are dealing with real
K-theory. The second is that the process of coupling the Dirac operator is
not the standard process of coupling an operator to a connection as the local
formula given in Sect. 1 shows. Thus it requires a careful analysis to estab-
lish the relation between the family of coupled Dirac operators and the Bott
equivalence.

The first step is to describe in detail the coupling process at the following level
of generality. Let (A, Φ) be a pair consisting of a smooth connection A on the
trivial Sp(rc)-bundle over R3 and a smooth map Φ: IR3 -> sp(n). This pair is
required to statisfy the following conditions. Firstly (A9 Φ) is required to have finite
energy;

Φ(Λ, Φ) =4 J (\FA\
2 + \DAΦ\2)dvol < ao ,

2 R 3

where DA is the covariant derivative operator defined by A and FA is the curvature
of A. Secondly we must impose asymptotic conditions on Φ. Inside the Lie algebra
sp(n) we can look at the orbit of the quaternionic matrix

11 o ... o \
0 i ••• 0

\ 0 0 - i /

where i : = ^J — leC c H, under the adjoint action of Sp(n). This orbit is the
homogeneous space Sp(n)/U(n). Consider the function

dφ(χ) = d(Φ(x\ Sp(n)/U(n)) = inf | Φ(x) - y \ .
yeSp(n)/V(n)

This function is continuous and we assume that

Notice that in the case n — 1, Sp(l)/l/(l) = S2 and the function dφ is exactly
I Φ I — 1. Since π2(Sp(n)/U(n)) = % the charge of the pair (A, Φ) is defined in exactly
the same way as in the case n = 1.

Now define <s#(n) to be the space of pairs (A, Φ) which have finite energy and
satisfy the above asymptotic condition. Once more the gauge group &(n) consisting
of automorphisms of the trivial bundle which are the identity at the origin acts and
the quotient space jtf(n)/&(n) will be denoted by &(n). Now define &8k(n) to be the
space of those pairs with charge fe. There are stabilisation maps

&(n) -» Ά(n + 1)

given by forming the direct sum with c0 e $Q(Ϊ) where c0 is the pair with A = 0 and
Φ = i is constant. We denote the limit by

= lim
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Theorem 2.1. There are natural homotopy equivalences

which make the following diagrams commute

Ω2(Sp(n)/U(n))

I I
Ω2(Sp(n + l)/U(n + 1)) -

where the vertical arrows are the natural stabilisation maps.

The proof of this theorem is given by repeating the argument used by Taubes
[24, Sect. Bl] in the case where n = 1 in the general case. From the real Bott
periodicity theorem there is a homotopy equivalence

Ω2(Sp/U)~ZxBO

and so we immediately obtain the following corollary.

Corollary 2.2. The stabilisation maps &(ri) -> &(n + 1) are homotopy equivalences
through dimension 2n and there is a homotopy equivalence

Now we describe how to couple the Dirac operator on R3 to the pair
c = (A, Φ)e$(ri) using a quaternionic representation E of Sp(n). Form the Sp(n)
connection

α = A + Φdt

on the trivial bundle over IR4 = R3 x R. This connection is independent of t and
a standard computation shows that (A, Φ) satisfies the Bogomolnyi equation if and
only if α is self dual. We can now form the Dirac operator on R4 coupled to the
connection α using the representation E

where ^4

± are the positive and negative spin representations of Spin (4). More
explicitly the operator δα is defined to be the composite

C°°(R4; ̂  (x) E) -̂  Ω1^4; ̂  ® E) ̂  C°°(R4; ̂  ® E) .

Here ΩX(R4; ̂ 4 ® E) is the space of one-forms on R4 with values in ^4

+ ® £;
Dα is the covariant derivative operator defined by the spinor connection and the
connesction α; and μ is Clifford multiplication.

We now restrict this operator to the subspace of functions on R4 = R3 x R
which are independent of ί. Since α is independent of t we get an operator

δα: C°°(R3; ̂  ® E) -» C^R3; « 4̂" ® E) .

Now let e1 , . . . , en be the usual generators for the Clifford algebra Cn of R". Then,
in the case n = 4, we use e4 to identify <9V with ^4 and so form the operator

e4 δα: C°°(R3; ̂  ® E) -> C°°(R3; ̂ 4

+ ® £) .
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Finally using the identification of the C3-module ̂  with ^4 where et e C3 acts as
e^βi we end up with the operator

dc,E: C°°(1R3; ̂ 3 ® E) -> C°°(1R3; ̂ 3 ® E) ,

where c refers to the pair (>4, Φ) used to define α. In coordinates this operator is
given by

compare Sect. 1.
Now Spin(3) £ Sp(l) and under this isomorphism the spin representation

5̂ 3 becomes the canonical representation of Sp(l) on the quaternions. In particular
the spin representation has a quaternionic structure. The representation E has
a quaternionic structure and so ̂  (x) E has a real structure. Furthermore the Dirac
operator preserves this real structure. Therefore there is a real representation ER of
Sp(l) x Sp(n) whose complexification is £f3 ® E and a real operator

whose complexification is dCίE. We refer to δCtE as the real Dirac operator coupled
to c using the representation E.

Following [24], define a norm on the space C°°(R3; ER) by the formula

I I < / Ί I C

2 = ί (|D^I2 + l ( i ® < W I 2 ) d v o i .
R 3

Taubes shows in [24, Sect. C] that <SC> £ extends to a real Fredholm operator

where «^(ER) is the completion of the space of compactly supported smooth
functions CC°°(R3; ER) with respect to the norm || ψ ||c. Taubes also shows that the
family of real operators δc,E parametrised by c = (A, Φ)G&k(n) is continuous in c.

There is technical point to take care of in this construction. The Hubert spaces
Jjfc form a bundle of Hubert spaces over stf(n) and ^(n) acts on this bundle. The
quotient by this action of ^(n) gives a bundle of Hubert spaces over 3$(ri) and the
Dirac family gives a Fredholm operator δc,E on the fibre of this bundle over
ce^t(n). Now using Kuiper's theorem that the unitary group of Hubert space is
contractible this bundle can be trivialised. Thus we get a map

where ̂  is the space of Fredholm operators on a real Hubert space. The
homotopy class of the resulting map does not depend on the choice of the
trivialisation; compare [4].

Now we specialise to the case where E = H" is the fundamental representation
of Sp(ri). We use the notation

for the corresponding map. Now let ι: &(ri) -> &(n 4- 1) be the inclusion. Then for
(H) note that

δ(n+ l)i(C) = δ(n)c®δCo,
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where δco is the real Fredholm operator given by coupling the Dirac operator to the
pair c0 defining the stabilisation map &(n) -» &(n + 1). The operator δco has index
zero since Taubes proves in [24, Lemma C3.3] that the index of δc is given by the
charge of c and c0 has charge 0. Now since δco has index zero, the map ̂ κ -> ̂
defined by taking direct sum with δco is homotopic to the identity and so we see that
the diagram

commutes up to homotopy. It follows that there is a map

whose restriction to $(ri) is homotopic to δ(n). This map δ is not necessarily
uniquely determined, but any two choices will be homotopic on any finite skeleton
of J*(oo) and this is sufficient for our purposes.

Loop sum gives a composition law on the space Ω2(Sp(ri)/U(n)) and composi-
tion of Fredholm operators gives a composition law on J*R. The argument given in
[24, Sect. C.5] shows that the composite

Ω2(Sp(n)/U(n)) -̂ U <g(n) -̂ > ̂

is an //-map; that is it preserves composition up to homotopy. Indeed Taubes's
argument shows that the composite

Ω2(Sp(n)/U(n)) — Λ(n) — ̂

is an H-map for any quaternionic representation E of Sp(n).
Now we prove the following theorem.

Theorem 2.3. The map δ: J*(oo) -> J^ is a homotopy equivalence.

Proof. From [4] we know that ̂  is a classifying space for the functor K0(JΓ); that
is for any compact space X

or equivalently

^^ΊίxBO .

Now note that taking the index of Fredholm operators gives a bijection

and Taubes shows in [24, Lemma C3.3] that if ce&k(n) then

index δc = k .

Thus δ induces an isomorphism on π0.
Now we construct a map
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where Gq(Ί&N) is the Grassmannian of g-planes in IRΛ Given c = (A, Φ}e@k(ri) we
first form the ί-invariant connection α on R4 = R3 x R and then the covariant
derivative operator

Dα: C°°(R4; En) -> C°°(R4; R4 (x) EΛ) ,

where En = H" is the fundamental representation of Sp(ri). Now let Fc RN be
a g-dimensional subspace of RN and form the operator

Dα ® 1 : C°°(R4; En) (x) F-> Ω1^4; £„) ® K -

Now £„ ® F is naturally isomorphic to Enq and this operator is the covariant
derivative defined by a unique ί-invariant, Sp(nq) connection β which in turn
corresponds to a unique element crG$k(qn). The map v is given by

(C, V) H* d .

Suppose 7 is a compact, connected space and Kis a vector bundle over 7 classified
by a map

Then for fixed ce 3S(n) we get a map

It is routine to check that the index bundle of the family δ °/c> v of coupled Dirac
operators is given by

where mά(δc)eZ is the index of the Fredholm operator δc. Therefore iϊcε&^ri) it
follows that

Now if 7 is a finite CW complex we can choose q and N large enough so that

[7; 50] = [7; Gβ(R")]

and the above argument shows that

is surjective.
Now take 7 to be a sphere and pass to the limit. We deduce that

is surjective. However, in view of Corollary 2.2, the homotopy groups of both
spaces are abstractly isomorphic cyclic groups and therefore ^ must be an
isomorphism.

This shows that δ: JΊ(oo) -> BO is a homotopy equivalence. However δ: J*(oo)
-^ZxBO is an fί-map; its restriction to ^(oo) is a homotopy equivalence
^ι(°Q)-» 1 x#0 and it induces an isomorphism on π0. Thus it is a homotopy
equivalence. D

Note how Theorem 2.3 and Theorem 2.1 show that the composite

Ω2(Sp/U) -̂  &( oo) -̂ i J^R ~ TL x 50
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is a homotopy equivalence. The proof given here actually uses Bott's theorem that
there is a homotopy equivalence between Ω2(Sp/U) and TL x BO. However a more
careful analysis, based on [5], shows that the argument can be made into a proof of
Bott's theorem. We will not go into the details here.

We now have two equivalences of Ω2(Sp/U) with TL x BO. The first is the Bott
equivalence

and the second is the composite

Ω2(Sp/U) -̂  Λ( oo) -̂  ̂  ~ ΊL x BO .

We need to know that these two equivalences are homotopic. Combining them we
get a self equivalence

λ: ZxBO-+%xBO .

This map is an H-map and so it defines a natural isomomorphism

λ:KO(X)-+KO(X)

for any space X. We show in the next section that any such natural isomorphism
must be ± 1 and this will allow us to conclude that these two equivalences are
homotopic.

3. ^-Theory

We now establish the general facts about K-theory we need. Let

λ:KO(X)->KO(X)

be a natural homomorphism of groups. We refer to λ as an additive operation and
use the notation A0 for the group of additive operations KO(X) -» KO(X). The
purpose of this section is to prove the following result.

Theorem 3.1. (1) Let λ be an element of A0. Then λ is zero if and only ifλ is zero on
X = S4nfor alln^Q.

(2) Let λ be an element ofΛ0 which is an isomorphism for any finite CW-complex
X\ then λ = ± 1.

The method of proof for this theorem is quite standard in the study of
operations in K-theory, compare [1,2]. We should emphasize here that we only
study natural transformations of the single functor KO = K0° not natural trans-
formations of the generalized cohomology theory KO*.

The first step in the proof is to establish the following lemma. Let ζ be the
universal oriented 2-plane bundle over (CF°° = BSO(2) and let

According to [3]

is the ring of formal power series in u. Now define a homomorphism

Λ0 -> KOφP"), λ\-+λ(ζ).
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Lemma 3.2. This homomorphism

is injective with image the subgroup of power series with even constant term.

Proof. The splitting principle for real bundles tells us that an additive operation
λ is uniquely determined by

where 1 is the unit in KO(pt), η is the universal real line bundle over £0(1) = IRP00,
and as above, ζ is the universal 2-plane bundle over BSO(2) = (CP°°. We first show
that λ(ζ) uniquely determines the others. The naturality of λ with respect to the map
CP°° -> pt shows that λ(ζ) determines λ(l).

Now let/: 1RF°° -> CP°° be the standard inclusion. Then/*(Q = 2η and so by
the naturality of λ

However we know that

where TL is the 2-adic integers. Therefore multiplication by 2 is injective on
XO°(IRP00). Thus λ(ή) is determined by λ(0 and this shows that the homomor-
phism Λ0 -> XO((CP°°) is injective.

To determine its image we construct operations pk e Λ0, where p°(x) = rank(x),
such that

Pk(ζ) = uk

for k > 0. These will be constructed using the (real) Adams operations ψk. Ac-
cording to [3] there is a polynomial Tk(x) of degree k with leading term xk

such that

ψk(u) = Tk(u) .

In fact Tk is uniquely determined by the equation

Now ψk(ζ) = ψk(u + 2) = ψk(u) + 2 and it is straightforward to construct pk as
a linear combination of the operations φk. By taking formally infinite sums,

where the A/ are integers, it then follows that the above homomorphism has as its
image those power series with even constant term. Note that on a finite CW-
complex only a finite number of the ρi in this formally infinite sum will be non-zero
so the above expression makes sense. D

Now let pkeΛ0 be the unique additive operation such that pk(ζ) = uk in

. We now compute the effect of pk on the reduced K-groups KO(S4n).
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Lemma 3.3. The homomorphism

pk:KO(S4n)-+KO(S4n)

is zero ί f n < k and

pk: KO(S4k) ^Z-> KO(S4k) £ Z

is multiplication by (2k)l/2k.

Proof. Let ph: KO(X) -» H*(X; Q) be the Pontryagin character and let phn be the
component of ph in H4n(X; Q). Then, computing in KO(dP°°) we see that

where xEί/2((CP00) is the usual generator. Therefore we obtain the following
formulas:

(2k)!

Since the Pontryagin character is additive, the splitting principle shows that

for any element ξeKO(X). In particular this is true when X is a sphere and the
lemma follows since the Pontryagin character is injective when X is a sphere. D

Proof of Theorem 3.1. Part (1) is a straightforward deduction from the previous
lemma. To prove part (2) let

be an additive operation which is an isomorphism on KO(S4k) for all k. Then since
p1 is the identity and λ is an isomorphism on S4 it follows from Lemma 3.3 that

λί = ±1. Also from this lemma it follows that λ acts on KO(SS) ^ TL by multipli-
cation by

6λ2 ± 1 .

Now since λ is an isomorphism it follows that

λ2 = 0.

Continuing in this way we see that

λi = 0, f o r i ^ 2

and this proves part (2) of Theorem 3.1. D
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4. The Fundamental Representation

Now we use the results of the previous section to prove Theorem A in the
introduction. First we summarise the conclusions of the previous two sections
about the case we are interested in, which is the case $ = J*(l). Recall

Sl/(2)/l7(l) = Sp(l)/t/(l) = S2 ,

and so we get a map

η: Ω2S2 = Ω 2 ( S p ( l ) / U ( l ) ) -> Ω2(Sp/U) ~ TL x BO ,

where we are of course using the Bott equivalence Ω2(Sp/U) ~ TLxBO. Further
using the coupled Dirac operator we get a map

From [24], compare Theorem 2.1, we know that there is a homotopy equivalence

τ Q2s2 _> (%Λ. , ύύ O r t/(f ,

Theorem 4.1.

<S°/~ ±η:Ω2S2-*ZxBO .

Proof. Consider the maps

Z x BO <δ(co)ol« Ω2(Sp/U)-^->% x BO ,

where β is the Bott equivalence. Then both are //-maps which are homotopy
equivalences. Thus they define a natural automorphism of KO(X) and by Theorem
3.1 this must be ± 1. Therefore

^(00)0/00- ±β: Ω2(Sp/U)-+ZxBO ,

and the lemma follows by composing with the above map

Ω2S2 -+ Ω2(Sp/U) . D

It follows that replacing the Bott equivalence β by — β if necessary we can
assume that

δ°I~η: Ω2S2->ZxBO ,

and so in X-theory

ind(<5) = ηεKO(Ω2S2) ^ K0(<%),

where md(δ) is the index bundle for the family of Dirac operators coupled to pairs
c = (A, Φ) using the fundamental representations of 5(7(2) on H.

Now we compute the element in KO(Jtk) given by restricting ηtoJ^k. In view of
Lemma 4.1 this is the index bundle for the family of Dirac operators coupled to
monopoles using the fundamental representation of SU(2). To study this we must
recall some of the homotopy theory of the spaces Jίk and how they are related to
the braid groups.

Let Ck = Cfe((C) be the configuration space of k distinct ordered points in C. The
symmetric group Σk acts freely on Ck and the quotient space Ck is the configuration
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space of k distinct unordered points in <C. The space Ck is an Eilenberg-MacLane
space with πι(Cfc) = βk and so

Ck = Bβk .

Then as mentioned in Sect. 1 there is a natural map

and this map is an isomorphism in homology through dimension [fc/2]. Now let

be the map corresponding to the inclusion of the space of monopoles in the space
&k under Taubes's equivalence of ΩkS

 2 with <%k. Our aim is to relate the maps

and to do this we use the gluing construction for monopoles described in [24].
Recall from [6] that a monopole of charge 1 is determined by its centre in 1R3

and a phase angle in S1 and so

Taubes shows that k one-monopoles whose centres are sufficiently far apart can be
patched together to give a single fe-monopole. This construction gives a continuous
map

λk: C f cx

The importance of this map is given by the following theorem proved in [11].

Theorem 4.2. For a sufficiently large N there is a map

μk:Σ
NJfk-+ΣNCkxΣk(Jtί)

k

such that

In [11] splittings of the spaces Ratfc of rational functions were considered.
Theorem 4.2 follows from this work by applying Donaldson's homeomorphism

[18]. Therefore we have the following corollary.

Corollary 4.3. The induced homomorphism

4*: KO(Jtk) -> KO(Ck x Σk(

is injective.

Now the space

is the total space of a bundle over Ck with fibre

and so it is an Eilenberg-MacLane space. The fundamental group is given by the
semi-direct product
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where the braid group βk acts on (ΊL)k by permuting factors. Further there is
a natural homomorphism

jk' 02,fc-» β2k

defined by "cabling" as follows. Start with k pairs of pieces of string and twist the ith

pair nt times, where nt e Z. Now braid the k pairs according to the braid b e βk. This
gives a braid on 2k strings and the homomorphism jk maps (6; n l 9 . . . , nk) to this
braid. This gives a map

Bjk: Bβ2,k = Ckx ^(S1)* -> 5j?2Jk = C2k .

This map also has a stable splitting, indeed we have the following result proved in
[9].

Theorem 4.4. For sufficiently large N there is a map

such that

ΣNBjk°τ2k~l.

Corollary 4.5. The induced homomorphism

is injective.

For our purposes it is easier to consider the stable splitting of the monopole
space before the stable splitting of the configuration space Ck but in fact the stable
splitting of the monopole space is essentially a consequence of the stable splitting of
the configuration space, as was shown in [10, 1 1]. See [1 1] for a detailed analysis of
these splittings and the relation between them.

We can now choose N large enough and consider the composite

ΣNλ
2k k

One of the main results of [11] is the following theorem.

Theorem 4.6. The composite

ΣNλk°τ2k:Σ
NC2k^ΣNJfk

is a homotopy equivalence.

Next we must be careful in the choice of the stable splittings of the map

Let

be the natural section. Then the following lemma follows directly from [13, 14].

Lemma 4.7. The stable splitting

τ2k: Σ C2k-^-Σ CkxΣk(S )
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of Theorem 4.4 can be chosen so that

ΣNCk-*ΣNC2k^ΣNCkxΣk(Sl)k

is homotopίc ΣNsk.

We will always assume that the stable splitting τ2k of Theorem 4.4 is chosen so
that it satisfies Lemma 4.7. Now to prove Theorem A we must analyse the
composite

^* KO(Ck x Σk

- KO(C2k) .

Here we have written τ$k for the map of K-theory induced by the stable map
YNr
^ τ2k

Let us use the notation

so ξk is the index bundle defined by the family of Dirac operators coupled to SU(2)
monopoles using the fundamental representation of SU(2). First we compute the
element

λ?(ξk) = λ?ί?(η)cKO(Ck x ^(S1)*)

in terms of representations of

Let πk be the representation of β2tk defined as follows:

β2, k = βkx (%)k ^Σkx (Z/2)k cz 0(k) .

Here the first homomorphism is the obvious quotient map and Σkx(7L/2)k is
identified with the subgroup of 0(k) generated by the permutation matrices and the
matrices with ± Γs on the diagonal. Thus in the representation πk the generator of
the ith copy of TL acts by changing the sign of the ith basis vector and a braid acts by
permuting the basis.

Now we can do the first computation required to prove Theorem A.

Lemma 4.8.

Proof. The composite map

can be described in purely homotopy theoretic terms as follows. Recall that, since
Ω2S2 is a double loop space, there are extended power maps
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The construction and properties of these maps can be found in [20]. It is proved in
[8] that the following diagram:

CkxΣk(Ω2S2)k - > ΩέS2

θk

commutes up to homotogy.
Now the inclusion of iί: Jί^ ~ S1 -^Ω2S2 corresponds to the generator of

πι(Ω2 S 2 ) ^ Z and from Lemma 4.1 it follows that ξ1 = ίf(η) is the real Hopf
line bundle over S1 ~ Jl± . By construction the map η: Ω2S2 -*Zx BO is a double
loop map and so it commutes with extended power maps. From this it follows
that

and it is straightforward to check that this bundle corresponds to the representa-
tion πk. D

This shows that ξk is completely determined by a representation of the group
β2,k but now we must relate the element πkeKO(β2,k) to representations of the
braid group β2k, that is we must compute

τϊk(πk)eKO(C2k).

The first step is to establish the following lemma. Recall that pk is the permutation
representation of βk in 0(k). We will use the notation

<lk β2,k-+βk

for the natural quotient map and

jk' /?2,/c -* β2k

For the inclusion given by cabling.

Lemma 4.9. The representation jk(p2k) of β2k is given by

Proof. Let eί9 . . . , e2k be the standard basis for R2k. Then in the representation
J*(p2k) the generator of the ith factor of TL in β2,k acts by interchanging e 2 i-i>
e2ί and leaving the other basis vectors fixed while a braid acts by permuting the
k pairs (el9e2)9. . . , (e2k-ι, e2k). Therefore in the basis

fk+i = e + e2, . . . , f2k = e2k-ι -I- e2k ,

the representation jk(p2k) is precisely πk 0 q*(pk). Π

Now we complete the proof of Theorem A which, by Lemma 4.8, amounts to
computing τ$k(πk). From Lemma 4.9 we know that
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and so, using Theorem 4.4, it follows that

The splitting τ is the composite

ΣNC2k -^ Σ«Ck x ̂ (S1)* = Σ»(Bβ2, k)

Note that this stable map is a stable splitting of the map

->2k

induced by the inclusion of braid groups because we have chosen τ2k so that it
satisfies Lemma 4.7. Theorem A now follows easily.

5. Other Representations

Given any quaternionic representation y of SU(2) we have described how to
construct the family of real Dirac operators <5C>>,, parametrised by monopoles
c = (A, φ)eJίk. The index bundle of this family of operators gives us a class

md(δy)εKO(Jtk).

We have also computed this element in the case where y is the fundamental
representation. The goal of this section is to give a general formula for the K- theory
classes ind(<5y), that is prove Theorem B in Sect. 1. We also prove that
ind(<3)eK(^) is trivial, where d is the complex Dirac family, and that
md(δ)EKO(J?k) has order two.

First we give the proof of Theorem B. Let y: SU(2) = Sp(l) -> Sp(n) be a sym-
plectic representation. By identifying Sp(l) with the sphere S3, such a representa-
tion defines an integer nyeπ3(Sp(n)) £ Z. Then we must prove that

ind((5y) = nymd(δ)eKO(Jΐk) .

Now y defines a map

The homotopy class in π2(Sp(n)/U(n)) ^ TL of/v is also given by ny e %. Furthermore
y and/y induce a map

in the natural way. The obvious compatibility of these constructions gives the
following lemma.

Lemma 5.1. The diagram
/! δγ

Ω2o2 . tfύ(\\ ^ az:
o - > zft\±) - > 3r^

β ' Λ j F,l 1 =

Ω2(Sp(n)/U(ή)) -?=-

commutes up to homotopy.
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In the statement of Lemma 5.1 the map

δ(n):

is, as in Sect. 2, the map defined by the real Dirac family coupled to pairs c = (A, Φ)
using the fundamental representation oϊSp(n). Now by construction, the composite

-U J^ ~ Z x BO

represents the element mά(δy)eKO(Jίk}.

Lemma 5.2. The map

represents the element nγ

Proof. Since I± : Ω2S2 -> ̂ (1) is a homotopy equivalence, it suffices to prove that

represents the element in KO(Ω2S2) given by nγ times the class represented by

δ(l)°Iί:Ω
2S2->^~ZxBO .

Now Lemma 5.1 shows that

But by repeating the argument used to prove Theorem 4.1,

δ(n) o IH: Ω2(Sp(n)/U(n)) -> J^ - Z x BO

is homotopic to the composition

Ω2(Sp(n)/U(n)) -> Ω2(Sp/(7) -̂  Z x 50 ,

where β is the Bott equivalence. Hence δy°Iι is homotopic to the composition

Ω2S2 — ̂  Ω2(Sp(n)/t/(n)) -̂  Ω2(Sp/U) -^ TLxBO .

Since the Bott equivalence β is an equivalence of 2-fold loop spaces (in fact infinite
loop spaces) we see that δy°I^ is homotopic to a 2-fold loop map

Ω2S2 -> ΊL x BO ~

But any 2-fold loop map jQ2# : Ω2S2 -> Ω2 7 is determined up to homotopy by the
homotopy class [#]eπ2(T). In our case this homotopy class is nyεπ2(Sp/U) = 2.
Using the fact that π0(Ω2Y) = π2(Y)9 this discussion proves that the map

is characterized, up to homotopy, by the properties that

(1) it is a 2-fold loop map, and
(2) on π0 it is the homomorphism ΊL-*7L given by multiplication by nr
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Now by Lemma 4.1 the map

°/ι: Ω2S2-+ZxBO

is also a 2-fold loop map, and it induces the identity on π0. Hence the class
ny (δ(l)°I1)eKO(Ω2S2) is represented by the unique (up to homotopy) 2-fold
loop map which induces multiplication by nγ on path components. That is,
ny-(δ(l)oIl)eKO(Ω2S2) is represented by δ^I^. D

We now complete the proof of Theorem B in the introduction. Given a repre-
sentation γ. SU(2) -> Sp(n) the index class md(δy)eKO(J?k) is represented by the
composition

Jίk -> Λ(l) -̂ -> JFR ~ Z x £0 .

In particular, the index class ind(c)) corresponding to the fundamental representa-
tion is given by the composition

δ(i)
Jΐk -» #(1) - > ̂  ~ Έ x BO .

Thus by Lemma 5.2 we have

ind(<5y) - nγ md(δ)eKO(Jtk) ,

and this completes the proof of Theorem B.
To complete the study of these index bundles we now prove the following

lemma.

Lemma 5.3. (1) The index bundle mά(d)eK(J^k) = K(β2k) of the complex family of
Dime operators coupled to monopoles using the fundamental representation ofSU(2)
is trivial.

(2) The index bundle md(δ)eKO(Jίk) = K(β2k) of the real family of Dirac
operators coupled to monopoles using the fundamental representation of SU(2) has
order 2.

Proof. First note that by definition ind(<9) is the complexification of md(δ). Let

be the map given by forgetting the complex structure. It now follows that

r(ind(5)) = 2 ind(<5)

and so the second part of the lemma follows from the first part.
To prove the first part we start by using Theorem A to tell us that under the

stable homotopy equivalence Bβ2k ^s J#k the index bundle ind(<S) corresponds to
ρ2k — τ*pkeKO(β2k\ Hence it is sufficient to show that for every 7, the complexifi-
cation of the representation pj of βj is trivial in complex K-theory; that is

This statement was essentially proved in [12] in a somewhat different context. For
the sake of completeness we give a simple direct argument due to E.H. Brown.
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By definition PJ is the representation given by the composition
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where the first of these maps sends a braid to the permutation of its endpoints, and
the second is the permutation representation. This representation gives the follow-
ing /-dimensional bundle

over Bβj = Cj. Here, as before, C, and C3 denote the configuration spaces of
j distinct ordered and unordered points in C respectively. In this bundle the
symmetric group Σj acts on RJ by permuting coordinates. Thus the complexifica-
tion of the representation p7 gives the bundle

A trivialization

of this complex bundle is defined as follows. Given

define

,Zj 9ul

/ 1 '
Zi

2

' ' \ZJ

i

Λ1 \
/ u2

, j
NzΓ1 - zj-1 ' \uj I

Then Ψ is well-defined. The determinant of the above Vandermonde matrix is

Us

(Zr~Zs}

This determinant is nonzero since the z, are assumed to be distinct. Thus Ψ
is a linear isomorphism on each fibre and this gives the required trivialisa-
tion. D

6. Solutions of the Dirac Equation

In this section we prove Theorem C of Sect. 1; we show that given any integer
N then in each space 3Sk = 3Sk(l) there is a pair c = (A, Φ) such that

dim ker δc ̂  N9 dim ker δ * ̂  N .

In fact we prove the following theorem which clearly implies Theorem C.
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Theorem 6.1. The element

cannot be expressed as a difference of finite dimensional bundles.

Proof. Each of the spaces 36k are homotopy equivalent and these equivalences
can be chosen so that in X-theory they preserve the index bundles. Thus it is
sufficient to prove this result with k = 0. Now we can use the following identi-
fications

where the second equivalence is induced by the Hopf map -S3 -> S2. Under these
equivalences, and in view of Lemma 4.1, the index bundle ind(<5) corresponds to the
following bundle. The composite

where the first map is the Hopf map, represents the generator of π$(Sp/U). Now
applying Ω2 to this composite and using the equivalence Ω2(Sp/U) ~Zx BO gives
a map

ζ:Ω2S3->ZxBO .

The corresponding element in K-theory is the index bundle.
The mod 2 homology of Ω2S3 is well-known. For the remainder of this section

H* will denote homology with coefficients in 2£/2. Using the loop structure to
define a product Ω2S3 xΩ2S3 -+Ω2S3, and therefore a Pontryagin product in
homology

2i-ι. i ̂  1], x2i

is a polynomial ring. The coproduct in homology

induced by the diagonal map A: Ω2S3 -+Ω2S3 xΩ2S3 is determined by the fact
that it is a ring homomorphism and the formula

Now let vn = υn(ζ)<=Hn(Ω2S*) be the nth Wu classes of ζ. Then, see for example
[16], it is known that for all i,

where <,> is the pairing between cohomology and homology. Now suppose
that ζ = E — FeKO(Ω2S3), where E and F are finite dimensional bundles.
Then

V(ζ)=V(E)V(FΓ1

9

where V = 1 + v1 + - - - is the total Wu-class and V(F)~1 is the power series
in the Wu classes Vi(F) given by inverting the formal power series V(F). Since
E and F are finite dimensional bundles it follows that vk(E) and vk(F) are decom-
posable elements in the cohomology ring H *(Ω2S3) for k > max (dim £, dim F).
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It therefore follows that v^ζ) is decomposable for i > max (dim £, dim F). However
if v = α βGH*(Ω2S3), where α, β φ 1, is a decomposable element then

= 0.

Thus

<t>2k-ι, X2 k -ι) — 0> 2k — I > max(dim £, dim F) ,

and this contradicts the fact that <t;2k_1, x 2

ι-ι> = 1 for all ί. D
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