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Abstract: We study representations of Temperley-Lieb algebras associated with the
transfer matrix formulation of statistical mechanics on arbitrary lattices. We first
discuss a new hyperfinite algebra, the Diagram algebra Dn(Q), which is a quotient
of the Temperley-Lieb algebra appropriate for Potts models in the mean field case,
and in which the algebras appropriate for all transverse lattice shapes G appear as

subalgebras. We give the complete structure of this subalgebra in the case An (Potts
model on a cylinder). The study of the Full Temperley Lieb algebra of graph G reveals
a vast number of infinite sets of inequivalent irreducible representations characterized
by one or more (complex) parameters associated to topological effects such as links.
We give a complete classification in the An case where the only such effects are loops
and twists.

1. Introduction

Finding integrable statistical mechanics systems in dimension greater than two is
notably difficult, and very little is known about that question [1]. In two dimensions
there are algebraic structures more general than integrability, whose study nevertheless
provides some physical information [2, 3, 4], These structures are not all constrained
to two dimensions. For example the Temperley Lieb [5] algebra: consider the complete
unoriented graph of n nodes, here called n, and all those subgraphs G C n obtained
by removing bonds (edges) from the complete graph.

Definition. 1. We define TG(Q), the Full Temperley-Lieb algebra of the graph G [2],
to be the unital algebra over C with generators

(1, Uim (i = 1 ,2, . . . ,n), Utj = U3i (edge ( i , j ) e G)}
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and relations:
U2 = v/QC/ (1)

(any indices)

[Uim,U3J = [U%3,Ukl\ = [Uif,Ukj]=0, i^kj. (4)

We note the very useful nested structure of inclusions of these algebras (cf. [6]):

GCG'=>TG(Q)CTG,(Q),

where the restriction is achieved by simply omitting the appropriate bond generators.
For example, with G = An, the n node chain graph, we recover the original
Temperley-Lieb algebra T2n(Q). Conversely, it follows from the definition of the
Potts model [7] that TG(Q) is a generalization of the transfer matrix (TM) algebra
^2n(Φ) — ̂ An(Q) appropriate for building a transfer matrix layer of shape G [2] -
in other words for overall lattice shape G x Z. This graph G corresponding to the
shape of physical space is not to be confused with the configuration space graphs of
[8, 9], which work only for the two dimensional case. For example, G a square lattice
produces a cubic lattice statistical mechanical model.

For every Temperley Lieb based statistical mechanical model which has a suitable
generalization onto a lattice with spacelike layer G, such as the Potts model (defined
by Hamiltonian

•*= Σ ^<W (5)

where β is essentially an inverse temperature variable) the transfer matrix algebra
provides a representation (abstractly, a quotient) of the Full Temperley Lieb algebra.
The inhomogeneous transfer matrix itself is a representation of the element

v

where v — exp(/3) — 1. The Potts representation is given explicitly in [2, 10]. By well
known arguments [2, 11, 12] the irreducible representations of TG(Q) which compose
this representation are then the most efficient blocks to use in computing the TM
spectrum. Moreover in two dimensions (G = An), the exceptional cases, where the
algebra is not faithfully represented in physical transfer matrices, correspond to models
with "rational" conformal field theory limits. A large amount of information about
this conformal limit can actually be read in the algebraic properties for finite systems
[9, 13]. By establishing the physically correct generic algebra in other dimensions we
develop a procedure for addressing any analogous situation there.

The G = An algebra is finite dimensional for finite n, and typically faithfully
represented by the finite dimensional physical transfer matrices. We will show that
for general G the Full algebra is always infinite dimensional unless G = An. Since
the physical transfer matrices usually remain finite dimensional in higher dimensions
(for finite systems) one problem is to find explicitly the finite dimensional quotients
of the Full algebra appropriate for these physical systems.

We begin (in the next section) with a discussion of an algebra related to Tn,
called the partition algebra Pn(Q). It corresponds very closely to the diagram algebra
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Dn which is the "mean field limit" of the Potts model. Pn(Q) also has subalgebras
indexed by a graph, and is one of the easiest cases to analyse, as expected from a
"physical" point of view. The algebra Pn(Q) provides an organisational link between
the physical and abstract algebras we have described. We begin analysing TG(Q)
in Sect. 3. We give a complete analysis of the "affine" An case in Sect. 4. The
complications that appear here for the Full algebra, compared to the planar case,
may be given a topological interpretation which leads us in Sect. 5 to a topologically
motivated analysis of the general case. The classification scheme of representations
includes all links that can be embedded in G x Z. Sundry additional remarks are
collected in the last section.

2. The Partition Algebra

We now discuss the partition algebra which will play a crucial role in our analysis
[14].

2.1. Partitions of a Set M

First we need to introduce the set Sm of partitions of a set M of m distinguished
objects

W, C M s.t. M% φ 0, (J Mτ = M, Mj n Mk = 0 (j φ k)\.

For example, if M is the set of the first m natural numbers

S4 = {((1234)), ((1)(2)(3)(4)), ((123) (4)), ((124) (3)),

((134) (2), ((234) (1)), ((12) (34)), ((13) (24)), ((14) (23)),

((12) (3) (4)), ((13) (2) (4)), ((14) (2) (3)),

((23) (1) (4)), ((24) (1) (3)), ((34) (1) (2))}.

We call the individual equivalenced subsets of the set of objects "parts." Thus
(Mj) = (123) is a part of the partition ((123) (4)), and so on. The set Sm is finite for
finite m. The total dimension is well known [2, 10, 15]

m 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

1 2 5 15 52 203 877 4140 21147 115975 678570 4213597 27644437

We write i ~A j in case objects ί , j are in the same partition in A e Sm, so ~A is
transitive.

We will be mainly interested in the case ra = 2n. We will then write our 2n
objects simply as

1,2,3, . . . ,n, 1',2',3'j ,n'.
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2.2. Operations on Sm (m = 2n)

For Q an indeterminate and K the field of rational functions of Q we define a product
[2,10]

(A, = Qf(A'B)C
(7)

1 2 3

Fig. 1. Pictorial realisation of parts as clusters and composition of partitions by juxtaposing clusters.
In this case f ( ( A , B}} = 0

Where C e Sm and f(A, B) e Z>0 are defined as follows. Relabel the objects in B
from

l 7 / ,2 7 7 , . . .χ 7 , l / 7 7 ,2 7 7 7 , . . .,n 7 7 7

Form a partition of 4n objects from ^4 and B by first taking the parts in A and
including into the part containing i' the part from B containing i". Then delete all
the i' and i'1 [counting the number f(A, B) of parts which become empty, and are
then discarded, in the process] and finally relabel all the i1" as i'. The partition of 2n
objects obtained is C.

For example,

((1234) (1'3') (2') (47)) ((11'2') (233;

-> ((1234) (l/ / /2/ / /3/ / /) (47//)) -> ((1234) (l/2/3/) (4')).

This is illustrated in Fig. 2.2. There are other such illustrations in Sect. 2.5.

Definition 2 (Partition algebra [14]). Considering the vector space over K spanned
by S2n, the linear extension of the product & gives us a finite dimensional algebra
over K which we call the partition algebra Pn(Q).

Definition 3. The natural inclusion 5? is defined by

(8)
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Fig. 2. Part of the graph 3 x Z

Fig. 3. Diagram for the connectivity !12t/3 = ((12/)(21/)(3)(3/)) which restricts to 112 for n = 2

It is convenient to introduce the following special elements of the partition algebra:

1 = ((ll /)(22 /).. . (nn)), (9)

\%3 - ((II7) (22')... (i/)... (jϊ)... (nn7)), i, j = 1 , 2 , . . . , n , (10)

1
') (22')... (i)(z')...(nn')), (11)

(12)

Proposition 1 (see [14]). These elements generate Pn(Q).

Definition. 4. For A e Pn let [A] denote the maximum over the Sm components of
A of the number of distinct parts containing both primed and unprimed elements.

For example [1] = n, [AL] = n — 1. Then

Corollary 1.1. For A, 5 e Pn,
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Proposition 2. There is a homomorphism from the Full Temperley-Lieb algebra of the
complete graph n to the partition algebra given by

Propositions (see [2]). The subalgebra of Pn(Q) generated by

(l,Aim (i = 1,2, . . . ,n), Ail+l (i = 1,2, . . . ,n - 1)}

w isomorphic to TAn (Q).

Definition 5. For given n we define Σn as the subalgebra of Pn(Q) generated by

{l,lυ.(i,j = l , 2 , . . . , n ) )

or, where appropriate, as the corresponding symmetric group.

2.3. Full Embedding of Pn_l in Pn

We will need the following simple but surprisingly powerful theorem:

Theorem 1 (see [14]). For each n, Q ^ 0 and idempotent e — en = AnJ^/Q there
is an isomorphism of algebras

As a consequence the categories of left Pn__ι and left PnenPn modules are
essentially isomorphic categories (the extend to which they are not isomorphic is,
for our puφoses, a technicality - the interested reader should turn to [14, 16, 18] for
details).

Let us denote by Fn(M) = enM the object map from (Pn -mod) to (Pn_j -mod)
at level n.

Corollary 1.1 (see [14]). Let fn be the object map of categories defined by restriction
of left Pn modules to left Pn_\ modules through the inclusion J^7,

Then the following diagram of object maps of categories commutes:

(Pn-mod) -̂  (P^-mod)

in I ! / „ - , . (13)

(Pn_! - mod) -1 (Pn_2 - mod)

This implies that, up to edge effects caused by the difference between Pn and
PnenPn, the Bratteli restriction diagram for the algebras Pn (see Sect. 2.6.3 onwards)
has the same structure on each level n. But then
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Proposition 4 (see [14]). The following is a short exact sequence of algebras

Thus, at least for Pn semi-simple, a knowledge of the structure of Pn_ι essentially
determines for us the structure of Pn.

Corollary 4.1. In case Pn(Q) semi-simple the distinct equivalence classes of irre-
ducible representations may be indexed by the list of all standard partitions of every
integer from 0 (understood to have one standard partition) to n.

In fact Pn(Q) is semi-simple for Q indeterminate and for all Q £ C except for
the roots of a finite order polynomial in Q for any finite n (see Sect. 6).

2.4. Diagram Algebra for a Graph G

Let us return to Proposition 3. More generally we have

Definition 6. For graph G the Diagram algebra DG(Q) is defined as the subalgebra
of the partition algebra generated by

Note that Dn(Q) C Pn(Q), as 1^ cannot be built with these generators. However,
under certain conditions it can be substituted, for example,

123AL = ALA12A2A23A3A13AL . (14)

In fact we are more interested here in Dn(Q) than Pn(Q) (compare Proposition 2
with Eq. 6), but Pn(Q) provides a more versatile general setting. We will see shortly
that it is straightforward to move from one to the other.

The relationship between the algebra types T, P, and D is summarized by the
commutative diagram

0

which is exact at D.

Proposition 5. The subalgebra Dn(Q) C Pn(Q) is invariant under conjugation by
elements of the group Σn, i.e.

Corollary 5.1. Every word in Pn(Q) can be written in the form AB where A G Σn

and B e D(Q).
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Clearly we have the rich inclusion structure again

It also follows that DG(Q), and indeed Pn(Q), obeys a number of quotient relations
in addition to the Temperley-Lieb relations. For example, with W E DG(Q) there
exists X(W) a certain (known) scalar function of Q (see [2]) such that

V <
Specifically, if W e 5m with bw parts

X(W) = Qbw .

This relation is suitable for at least part of the set appropriate for physical systems,
as it corresponds to the existence of disorder at very high temperatures (there is also
a dual corresponding to order at low temperatures). At the level of the dichromatic
polynomial it corresponds to isolating bw clusters (cf. [7], for example). Several
analogous relations have also been found [2].

2.5. Pictorial Realisation by Connectivities

Definition 7. For a graph G let J$G be the universal set of the set of bonds of G, i.e.
the set of all (not necessarily proper) subgraphs of G of order |G| nodes (obtained
by omitting bonds).

Note that elements of ̂ G may not be connected graphs [7,17].
The partitions A e Dn(Q) ΓΊ Sm may be realised as classes of ^nxZ under a

certain equivalence ρ. The construction of ρ is as follows.
Explicitly number the nodes of n at "time" t = 0 from 1 , 2 , . . . , n. Practically it

will be convenient to restrict attention in ^?nx% to the subset of elements which for
sufficiently large t have all time-like bonds present and all space-like bonds absent.
This is a sort of very large time asymptotic smoothness condition. For some such
very large t — T number the nodes of (n, T) from 1;, 2 ' , . . . , n'. Then introduce the
map

where B G Sm such that i ~B j iff i,j are connected by a path of bonds present in
the subgraph B0, and b is the number of isolated connected components in B0 not
connected to any point in either of the layers t = 0 or t = T.

The point about the limits t = 0,T is that for finite n there exists some finite
T beyond which (range Fτ) Π Sm does not increase. Thus the asymptotic condition
is not important (just convenient), but ensures that Fτ and Fτ+1 are essentially the
same map.

The equivalence classes of ̂ nxZ are defined so as to make this map an injection
(i.e. B0ρC0 only if B = C).

The range of Fτ does not include the whole of Sm however large we make T (see
the remark after Definition 1). We can extend to the whole of Sm by, for example,
building our "connectivities" on n + 1 x Z (but only labelling the "first" n nodes).
This complication is connected to the nature of the lattice and the TM formalism;
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it will be discussed further elsewhere. In general, different choices of G in J?Gxz»
realise different sets of connectivities, i.e. different ranges for Fτ. This is, in fact, the
essence of the physically important problem of finding irreducible representations of
DG(Q) (see later).

We may extend ̂ n+1 x Z/£ or ̂ nxZ/ 'g to an algebra (over rational functions in Q)

by defining a product B0C0. We first build a new graph (BC\ by discarding t > T
in jB0 and t < 0 in C0 and the joining BQ and C0 by identifying the layer t = T
in BQ with t — 0 in C0. Let D e Sm have the same connectivities as the graph so

produced has between t = 0 and t = 2T - I [i.e. F2T_l((BC)Q) = Qd£> for some

d\. We then define £0C0 = Qd£>0, where £>0 e ^/ρ is such that Fφ0) = D. The
map F is then an algebra homomorphism.

The explicit pictorial realization is particularly neat (but sufficiently general) if we
distribute the nodes of n linearly, as in An, and only draw the part of the graph not
in the asymptotic region. Then for example with n = 12 the g class of Aii+l has a
simple representative

The g class of Ai has representative

v^. - 1 1 1 1 1 1 1 : n i :
The composition rule is to identify the top row of dots in the second diagram with

the bottom row in the first. Clusters then isolated from both top and bottom rows of
the new diagram so formed may be removed, contributing a factor Q.

Finally, then, for example, the TL relation 2

A A A —A
^ί i+l^i.^i i+l — ̂ ιz+l

amounts to the statement that the subgraph

I I I I I Π Π I I I
has the same list of connections within and between the top and bottom layers as the
Q representative of Aii+l above.

Note that no composition of diagrams increases the number of distinct connected
clusters connecting between the top and bottom layers. This means that the subset
of Q cosets with no connections top to bottom form a basis for a Pn(Q) bimodule.
Furthermore, the subset with < p distinct connections top to bottom also form a basis
for a Pn(Q) bimodule.

2.6. Structure and Representation Theory of Pn(Q)

This picture is particularly useful for constructing representations. The number of
distinct connections running from t = 0 to t = T is evidently non-increasing in any
composition (it is a measure of the number of distinct bits of information which can
be simultaneously propagated through the bond covering, which cannot exceed the
number propagated across any fixed time slice). So for example, writing simply P or
Pn for Pn(Q), and defining idempotents

H(UJ

VQ'.-Π
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(Q =^ 0) then /0 allows no connections from t = 0 to t = T, so Pn/0Pn is the
invariant subspace of Pn, where

Proposition 6. The element /0 /s α primitive idempotent.

Corollary 6.1. Γλe left ideal PnI0 is indecomposable (and generically simple).

Note that dim(PnI0) - \Sn .

Proposition 7. The element Iγ is primitive in the quotient algebra Pn/Pn/0Pn, so
again Pnl\ is indecomposable in this quotient.

Now J2 is not primitive in Pn/Pn/1Pn since, for example

On the other hand — /2 and -—γ̂  I2 are primitive idempotents.

Similarly /3 is not primitive in Pn/Pn/2Pn, but, for example

_ (1 ± 112 ± 123 ± !l3 + 112123 + 1 13*23)
^t *3 ~ 3 Ϊ ^ 3 ,

and two further combinations (with other symmetries) are.
From the definition of Iτ we have PnIi_lPn c PnIiPn and a nest of short exact

sequences, i = 1 ,2, . . . , n,

0 -> PnIl_lPn —> PnIjPn —> PnIiPn/PnIi_lPn -* 0,

where finally Jn = 1.

Definitions. Let us define the algebra PJz] = P^PJP^^P^

This is the algebra of elements with not more than ί distinct connections running,
as it were, from t = 0 to t = T, quotiented by the invariant subspace of all elements
with strictly less than i distinct connections from 0 to T.

Proposition 8. In the quotient Pn[i]9

T y T — y TJL^Zjnl^ — ^i^i

(we take ΣQ = Σ^ — I).

Proposition 9. Let Σ be any left Στ module. Then we can write the left Pn[ί] module,

2.6.1. To Construct Irreducible Representations. For each i — 0 , . . . , n and λ h i (λ
a partition of ϊ) and Σχ the λ simple Σi module [20], the set Smlfx generates a
basis for a generic irreducible representation.

Let us first consider the fully symmetrized case for the left Σi module, call it Σ1',
in each sector i. Then we get a basis for the left Pn[i] module Pnl^

s from Sm as
follows. List the elements as partitions of 1 ,2 , . . . , n, ignoring 1', 2' ,...,nf except
in so far as to note which parts originally contained primed elements. We discard
duplicate copies of partitions not distinguished by this property, and partitions in
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which other than i parts originally contained primed elements. We call the resultant
set Sn(i). For example,

We do not need to keep track of exactly which unprimed nodes were connected to
which primed nodes, since the symmetriser makes all these permutations equivalent.
In other words the set Sn(ϊ) is the set of all possible ways of arranging the elements
of Sn (cf. Sm = S2n) so that i parts are distinguished from the rest. An element of
Sn with p > i parts produces p\((p — ϊ)\i\) elements of the basis Sn(ί) (and produces
none if p < i). Note that

The action of the generators on such a basis is just the usual product (7) (remembering
the Pn[i] quotient). It is given explicitly in [2,10]. We will prove irreducibility of
these representations in Sect. 2.6.3.

Moving to the case where we take some other left Σl module in Proposition 9, then
our basis must simply be (semi) direct producted with a basis for this new module.
Permuting actions will act on the Σi module rather than the partitions.

2.6.2. The Case n = 3. We can well illustrate all of these points with an example.
Let us consider n — 3. The available partition shapes λ in 56 are:

(6), (5, 1), (4,2), (32), (4, 12), (3,2, 1), (23), (3, 13), (22, 12), (2, 14), (I6)

with corresponding multiplicities J^:

1,6,15,10,15,60,15,20,45,15,1,

giving total dimension |56| = 203.
On the other hand the dimensions of the bases described above are

5,10,6dim(Σ'2),

i.e., explicitly, the bases are (with parts after the colon understood primed)

{(0:(123)), ((12): (3)) ((13): (12)), ((13): (2)), ((2): (13)),

((23) :(!)), ((1):(23)), ((1)(2):(3)), ((1)(3):(2)), ((2) (3) :

Finally, then, noting the multiplicities of inequivalent generically irreducible repre-
sentations at level i we have

52 + 102 + 62. (1 + 1) + I2. (1 + 22 + 1) = 203 = \S6 ,

so we have, for example, the complete set of inequivalent irreducible representations
for the semisimple cases. Note that all the i = 3 representations reduce to (direct
sums of) the same representation in Dn(Q), because none of the permutations can
actually be realized in this subalgebra.
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2.6.3. General n. Since we know the structure of the symmetric group (algebra) Σi

(see, for example, [19,20]) it behooves us to divide up our analysis by first considering
the algebra for the Σ'-symmetrised case, Pn(Q)/ ~, which we define below. The rest
then follows from changing the left Σi module in Proposition 9.

Definition 9. We define an equivalence relation ~ on Sm by A ~ B iff they are the
same up to a permutation of the connections made by the connectivities from t = 0
to t = T.

We write Pn(Q)/ ~ for the quotient algebra obtained by the linear extension to

Pn(Q)
In this case there is a bra-ket notation for elements of Sm. Every element may be

written uniquely in the form |α) (b\, where α, 6 <E Sn(i) for some i (conversely every
such pair defines a unique element). There is then an obvious inner product (b\c) in
each Pn[ϊ]/ ~, obtained from

|α> (b\ c) (d\ = (b\c) |α) <d | .

Proposition 10. The n -f 1 representations of Pn(Q)/ ^ with bases Sn(ί) (i =
0 , 1 , 2 , . . . , n) and canonical action (up to the PnIϊ_lPn quotient) are each irreducible
for Q indeterminate.

Corollary 10.1. These representations are inequivalent.

Corollary 10.2. Any representation of Pn(Q} built from Proposition 9 "with Σ an
irreducible Σi module is irreducible.

Corollary 10.3. Pn(Q) is semi-simple for Q indeterminate and for all Q G C except
for the roots of a finite order polynomial in Q for any finite n.

Proof. By dimension counting. The irreducible representations account for the full
dimension of the algebra. We can show this explicitly as follows:

The Bratelli diagram for the restriction corresponding to

(Pn(Q)/ ~) D (Pn_,(Q)/ ~)

on these irreducible representations is as follows (with top line n = 0)

1

T \
i i
T X Tΐ \
2 3 1
T x π x* m \
5 10 6 1

T X tT X7 Tίί X^ TίΐT \
15 37 31 10 1

t X Tί X* ίίί XT TTΠ W TίTTT \
52 151 160 75 15 1

T X IT X* iff W TΠT X^ TTTtT X^71 TΠTTT \
203 674 856 520 155 21 1
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and so on. These restrictions are forced by a Morita equivalence theorem - cf. [2]. This
works as follows. The isomorphism of categories in the corollary to Theorem 1 takes
a layer of the above diagram to the layer below it (each node is mapped vertically
down, since the idempotent en cuts at most one connection). The 1 at the right-hand
side of the lower layer is missing, of course, as this is the trivial representation of
Σn. Consequently (i.e. as a knock on effect from the previous layer) the restriction
information for the next two modules to the left is incomplete. However, the only
possibility is for the restrictions to include some copies of the trivial representation,
and these may be filled in by dimension counting. For example, omitting node 3 in
S3(2) we get

= S2(1) + 3.S2(2).

Note that in omitting the last node (n) in this mnemonic if we have a part of the form
(ij . . . ran) (i.e. unprimed) then this maps to (ij . . . ra)y ', since the action of generators
here is as if the part is connected to something*

Irreducible representations of Pn(Q) follow by Corollary 10.2.
Let Us write dn(ί) for the dimension of the 2th representation in row n (the 2th

column, counting the left-hand column as column 0). Then the total dimension of

P(Q) is

when ra = 2n as required (the last identity is readily proved). Altogether Sm(i) x
Σχ(\ h i) gives the complete structure for all semi-simple cases.

3. DG for Arbitrary Graphs G

3.1. The Structure of D^Q)

The structure of the Dn algebra is very similar to Pn(Q). For Pn each node in column
i of the Bratelli diagram above represents a list of irreducibles, one for each partition
of i (with dimension multiplied by the dimension of the corresponding representation
of the symmetric group). The only difference here is that the i — n representation
(the rightmost one on each line) gives only a single (one dimensional) representation.
This just corresponds to the impossibility of any transverse movement of n distinct
connected lines on a graph with only n nodes in the lateral direction.

32. On the Structure of DG

Proposition 11. The connectivities which can be realised on G x Z provide bases for
the irreducible representations of DG.

This follows since in DG these subsets span invariant subspaces. Computing the
dimension is more difficult. See Sect. 6.

We will find in Sect. 4 that the above finite dimensional algebras do not include
all those appropriate for systems of interest in physics.
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Two important questions arise:
1. How do the finite dimensional algebras DG fit into the overall structure of TGΊ
(see Sect. 4).
2. What is the asymptotic growth rate of dimensions of representations corresponding
to a given physical observable or more generally, which Q values are exceptional for
each physical dimension? This is also answered in some cases in Sect. 4.

3.3. Review of G = An

Consider a twice punctured sphere. Put the unprimed elements of M in natural order
at intervals around one boundary, and the primed ones opposite them around the other
boundary. Draw a "seam" from one boundary to the other on the sphere, beginning
between 1 and n and ending between \' and n' . A partition A e Sm is accessed from
TAn(Q) [i.e. in H(TAn(Q))] iff for every part in A a line can be drawn on the sphere
connecting all the elements of the part, but touching no other lines, and not touching
the seam.

If the connecting lines are thickened into ribbons then the usual boundary diagrams
[2, 18, 21] - Fig. 4 and so on, in case n = 6 - represent the edges of these
lines. Representatives of all equivalence classes under continuous deformation of
non-overlapping segments are realized.

A boundary diagrammatic representation of words in DAn(Q) is obtained as
follows. The generator Uι maps to the coset of the diagram shown in Fig. 4. Generators
are then composed by connecting the bottom of the diagram for the first factor with
the top of the diagram for the second, so

is given by Fig. 5. In such diagrams we simply pull the line starting in the i + 2
position straight to exhibit the identity.

Similarly UiUi = ^fQUi is represented in Fig. 6. Here we must interpret closed
loops as removable, after contributing a factor Λ/Q. These diagrams can then be used
to match any word to a reduced word (one which cannot be shortened using the
relations), with an appropriate scalar factor.

Note that here

= Π

(Q =£ 0) is a primitive idempotent. Writing simple T for TAn (Q) the left ideal T/0 is
thus indecomposable (and hence generically irreducible). Let us define
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1 2 . . . i i + 1 ..- π

u

n
Fig. 4. Boundary diagram for Uτ in DAn(Q), cf. A} (j = (i + l)/2) in the connectivity picture

Fig. 5. Boundary diagram exhibiting the relation UτUτ+lUi =

u

0
n

Fig. 6. Diagram for U%U% before removing the closed Joop

On quotienting by the double sided ideal T/0T we find that II becomes a primitive
idempotent, so T7j is indecomposable in T/T/0Γ, and so on. Iterating this filtering
process with respect to k we generate bases for all n -f 1 generically irreducible
representations. The dimensions of these representations are then readily determined
by reference to the tower relation

The argument is precisely analogous to that of Sect. 2.3 (an almost identical con-
struction gives essentially a Morita equivalence TA TAenTA, and so on).

Extended concrete examples for the An case in particular are given in Sect. 9.5.2 of
reference [2].

It follows (cf. Sect. 2.6.3 - but in this case we make use of the symmetry under
reversing the order of the chain, i.e. swapping e{ and en) that the generic Bratteli
restriction diagram for the irreducible representations associated to Tn(Q) D Tn_l(Q)
(with top line n — 0) is:
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\
5 4 1

5 9 5 1

14 14 6 1

x\ /v /\ /"\
14 28 I 20 7 1

42 48 27 8 1

4 2 9 0 7 5 3 5 9 1

132 165 110 44 10

132 297 275 154 54 11 1

and so on. Recall, for comparison with the diagram for Pn(Q\ and with the diagram
in Eq. (17) later, that T2n(Q) = TAn(Q), i.e. we jump two lines on this diagram for
every one on the diagram in Eq. (17). Also note that here, unlike Pn(Q)9 there is
only a single representation associated with each node. This is because the planar 2d
lattice allows no possibility of connectivities crossing without themselves becoming
connected (i.e. no permutations are allowed).

It is straightforward to compute the exceptional structures in this case (see [2]).
We can summarize the answers to the questions posed at the end of the previous

subsection in this case by noting that here the Diagram algebra is isomorphic to the
Full algebra.

Perhaps the next two simplest cases to consider are G — An and the daisy
graphs (tree graphs consisting of spokes radiating from a central node). They are
both extremely illuminating, and we will deal with each in commensurate detail.

4. The Case An

Here we want to address the following questions:
1. What is the structure of DG(Q}1
2. What is the structure of TG(Q)Ί
3. What is the content of the TM algebra, i.e. the cylindrical Potts model representa-
tion?

Everything we do in this section is enthralled by the consequences for An * of
the highly useful An tower relation (15). For An this is the key to an inductive step

* In this paper we choose An to have n vertices rather then n + 1 (the standard case) to make our
notations more convenient
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between the structure of the smaller and the larger algebra. Here, of course, we can
only manage a weak echo

n C n + 1
U U

Άn £ An+l (16)

U U

An C An+l ,

where the vertical inclusions are realized by, for example, omitting Uln in going from

An to An. We are further handicapped by the extra complications of even the simplest
cases:

4.1. The Case DAn(Q)

This is the quotient of T^ (Q) appropriate for dichromatic polynomials (that is
to say, the representations appearing in the TMs for dichromatic polynomials are
representations of this algebra [2]), and so it is reasonable to suppose that it plays an
important role in the closely related Potts models as well (see Subsect. 4.4), if not in
all physical models.

We would like to know the complete structure of the algebra, but physically
the key initial question is: What is the generic asymptotic growth rate, with n, of
dimensions of irreducible representations? The asymptotic growth rate for the Q-state
Potts representation is Q. Clearly if the generic asymptotic growth rate of dimensions
of irreducible representations is greater than the actual asymptotic growth rate of
the model representation generically containing those irreducibles then eventually
the model representation must become smaller than the generic irreducibles and
hence a source of non-generic representations. For axiomatic statistical mechanics
this crossover number should still be 4 here (i.e. as it is for the open boundary case).
This is indeed what we find.

Bearing in mind our tower structure let us begin by recalling the generic Bratelli
restriction diagram for the irreducible representations in the ordinary open bounded
case, i.e. associated to TAn(Q) D TΛn_ι(Q). Starting with top line n = 0 we have:

1
t
1

ΐ
2

ΐ
5

ί
14

"T
42

ί
132

\

X

X

X

X

X

1

TT
3

TT
9

TT
28

TT
90

TT
297

\

X

X

X

X

1

π
5

n
20

n
75

TT
275

\

X

X

X

1 (17)
n \
7 1

TT x n \
35 9 1

ίί X TT X ίΐ \
154 54 11 1

Since the affine case restricts to the open case by omitting Uln we know that
the irreducible representations must decompose as direct sums of the representations
above. The irreducible representations may be characterized in essentially the same
way as in the open case (quotienting by those permutations of t = 0 to t = T
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lines discussed above, which in this case are just cyclic permutations, the number
of equivalence classes is the same), but the dimensions are different. These may
be computed in a number of alternative ways. The above dimensions will be lower
bounds. The Pn(Q)/ ~ dimensions in Sect. 2.6.3 will be upper bounds.

We find the following table of dimensions of irreducibles for DAn(Q) [not a
restriction diagram this time - see Eq. (16)]:

1

1

2

5

14

42

132

1

3

10

35

126

462

1

6

28

120

495

1

8

45

220

1

10

66

1

12 1

and so on. Note that the numbers in column i (counting from i = 0 on the left) give the
dimensions, but correspond in general to more than one inequivalent irreducible, since
a semi-direct product with the cyclic group of order i survives from the corresponding
product with Σi in the "mean field" case (G — n). For a general graph G our procedure
is first to compute the Pn(Q)/ ~ type cases (which symmetrise among the possible
permutations of distinct connectivities), and then semi-direct product (as in Sect. 2.6.3)
with the subgroup of Στ consistent with the permutations that can be realised in G x Z.
In this case only cycles are available (and all irreducible dimensions thus multiplied
by 1).

For example the S3(2)Σ± basis may be written

{(((1210 (320) ± ((1220 (310)), (((2320 (117)) ± ((231') (12'))),

(((22') (1310) ± ((210 (1327))), (((1) (21') (32')) ± ((1) (22') (31'))),

(((2) (II7) (32')) ± ((2) (120 (310)), (((3) (II7) (22')) ± ((3) (12') (217)))}

so the representation of 112 for the - case is

/ I
0

0

0

0

\0

0

0

±1

0

0

0

0

±1

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

o \
0

0

0

0

±17

and is the identity matrix for the -f case.
The dimensions may be computed as follows. Let Cn j denote the irreducible

representation of TA (Q) with j distinct lines from t = 0 to t = T; the representation

induced from DAnI /DAnI3_lDAn (i.e. the representation in the nth row and jth

column of the diagram above, in each case counting from zero on the top, resp. left).
Let Cn 3 denote the corresponding representation of DAn(Q). Then

Proposition 12.

IT/i —

z /
m=0,l,2,...

(18)

(19)
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and for fc = 2, 3, 4, . . . , n,

m=0,l,2,...,n— fc

Proof The dimension (7n 0 is given by the number of elements of Sn = Sn(G) such
that i ~ j, k ~ I, and i <k < j implies that i < I < j [2]. The first equation comes

from noting that the same constraint applies for Cn 0.
The dimension Cnl is given by the number of elements of 5n(l) such that ί ~ j,

k ~ 1, and i < k < j implies that i < I < j\ and such that i ~ j implies no primed
part contains k such that i < k < j. The second equation comes from noting that

the difference between this and Cn l is elements in the basis for the latter where a
connection i ~ j does not prevent k such that i < k < j appearing in a primed part
(we write k ~ oo). Consider these elements and modify them by cutting the line from
i to j and attaching each loose end separately to oo (i.e. put these two in separate
primed parts). That this is the correct move follows from the action of the generators

of TAn(Q) on the basis states of Cn j . These elements include the whole of Cn 3

plus any for which there was originally a further i2 ~ j2 and intermediate k2 ~ oo.
Cutting again, and so on, we get the required result.

For the third equation, note that Cnk D Cn k. The difference is elements where
a line to oo is "isolated" from oo in Cn k as above. The innermost of these isolating

lines may have its own line to oo also (subsequent ones may not, even in 6 k).
Thus we get either zero or one line to oc becoming two lines to oo by cutting at
the problem point. The new element is either in Cn k+l or Cn k+2 or still illegal (but
now with either k + 1 or k -f 2 lines to oo). It is straightforward to check that all of
these two bases is generated in this way. Cutting again on the illegal elements we
may iterate to obtain the required results. QED.

From Proposition 12 the dimensions of representations in A and A cases are
linearly related. Therefore the asymptotic growth rate is equal to 4 in both cases.

42. The Full TL Case TAn(Q): Explicit Example for n = 2

42.1. Generalities. Consider the unital associative algebra over C defined by gener-
ators

and relations 1-4.
This is a "degenerate" case of TG(Q)9 i.e. G = A2 (from the diagrammatic point

of view we have two bonds between 1 and 2, so U12 φ U2]). However, it is the
simplest interesting case to consider.

It is useful to get an idea of the problem by simply beginning to list linearly
independent words in this algebra by length:

1,

U^U2^U12,U21,

UλU2^ ULU12, ULU2l, U2{Un, U2UU, U2U2l, UUU^ U12U2., U21U^ U21U2. ,

ULU2U12, U,U12U2^ UλU2lU2, ULU2[U12, U2Ul2Uλ, ULU2U2{ ,

ul2Uι.u2^ U2yl2u2l, u2luLu2^ U2lu2yl2, u2luLul2, ul2uLu2l
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. . . and so on (we have given the complete list up to length 3). Clearly we need to
be able to get some control of this explosion of elements. Our treatment of Pn(Q)
tells us how to do this. There we were able to filter the algebra through a sequence
of double sided ideals generated by certain idempotents. Since that was a quotient
algebra of this, we still have these elements as candidates for primitive idempotents.
Let us look at the left sided ideal generated by (unnormalized) idempotent U1U2^
Organising the words by length we have the following structure

(UnU2lUvU2)
k (21)

, (UUU21U{ U2 )k - U2 (U12U21U, U2 )k

UlU2(UnU2lUlU2)
k

U^U^U^U^ )k U^U.U^U^U.U^

The ideal generated by UlU2(UnU2lUlU2)
k (any natural number k) is a proper

invariant subspace (see Proposition 13). There is an injective map from TU1U2 into
TUlU2(UnU2lUlU2)

k, so the full ideal TU{U2 is isomorphic to a direct product of
the k = 0 sector with the natural numbers under addition, (N, +) - which is abelian.
A general source of irreducible representations is thus the quotient of TU1U2 by

where a G C corresponds to the irrep. of (M, +) given by R(l) = α.
These quotients have a symmetric inner product () defined by

ABT =

(22)

(23)

with Gram matrix, in the basis

that reads

Uι.Ul2U2lULU2, U2U12U21ULU2}

VQ a
a a\/Q a.
Q Oί^/Q a

a

The latter has for determinant

/ Q
VQ Q
VQ a

(24)

a
a

a/Q aQ

a a θί\fQ aQ

a Oί
a

detGr2;0 = a3(a - Q)4((Q - 2)2 - a). (25)

With the relation (22) Ul U2 /Q becomes a primitive idempotent, so the repre-
sentation is indecomposable. Taking also into account the Gram matrix it is thus
generically irreducible.
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V π n J
Fig. 7. Boundary diagram for Ul U2 in D^ (Q) drawn on a cylinder

We still have a representation in terms of boundary diagrams but now lines are
non-contractible non-overlapping segments on, and beginning and ending on the
boundaries of, the twice punctured sphere without any seam: Fig. 7. It follows from
the structure in (21) that this is a faithful representation. The ideal TU{ U2 is infinite
dimensional. We can write down a sequence of quotients which exhibit the invariant
subspaces indicated by the determinant (25). With the above topological picture in
mind, the first trial quotient with which we might hope to collapse the ideal into a
non-trivial finite dimensional one, is of the form

(el + aUu + bU2l)UlU2 = 0

(e, α, b scalars) but then

Uγ(el + aUl2 + bU2l)Uι.U2m =

and

Ul2U2l(el + aUn =(e+

+ α + b)UlmU2f = 0

4-

so either Q — 1 (an exceptional case, which we will discount for the moment), or
e = 0 and α = -b (= -1, without loss of generality). Diagramatically we have
equivalence between the pictures of Fig. 8 and Fig. 9, i.e. we have legalized this

U U

Fig. 8. Boundary diagram for U} U2U12 in DA (Q}

U

Fig. 9. Boundary diagram for U\ U2 U2\ in D^ (Q)
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U U

V n n y
Fig. 10. Boundary diagram for p{ = 2 in D^ (Q)

topologically non-trivial move. Altogether the prospective quotient ideal is spanned
by

{U^UuUM (26)

and UlU2t is a primitive idempotent (so the ideal is indecomposable, and generically
simple). It is easy to see that this module is isomorphic to the 2 dimensional
representation of the diagram algebra, which is, in turn, the one induced by braid
translation

(g — 1 - q±lU, where q + # 1 = χ/Q) from the An case (see Fig. 4.2.1).
There are many other possible quotients which we may try. For example,

U\2U2\U\U2. =

where fc is a scalar. In this case

U21U{2 Ul2U2lUlmU2f = Q U2{U12

so k = Q, and

= U21U{2 kU{U2

t/L C/2! U12U21ULU2^ = UL U2l kUλU2 = k UλU2, =

so Q = 1. For the moment we will disregard such exceptional Q cases. As is probably
already apparent, the way to get generic cases is to make quotients corresponding to
introducing topological moves [as Eq. (26)]. There are various options corresponding
to simply dragging a line across a puncture, which we will leave to the interested
reader. Those which give rise to representations in which a new parameter actually
survives unconstrained are characterized in the next section:

4.2.2. Free-Non-Contractible Loops. By reference to the boundary diagram picture
we note that a natural class of (finite dimensional) quotients to consider is

This corresponds diagrammatically to establishing a rule in which 2p{ free non-
contractible loops (see Fig. 10) may be replaced by 2p2 < 2p{ loops at cost of an
overall factor a(p{,p2). The dimension is 6pγ. However the representation implied
by (27) reduces to a direct sum of cases p{ = 1, p2 = 0 (22) for various choices of
α. Consider for instance the case p2 = 0. Call X any element of the basis (24). The
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subspace spanned by ("topological" Fourier transform)

177

Pi-l

\X,k} =
pk

~ X(Ul2U2lULU2f

is invariant for each k = 0 , . . . ,p1 - 1. The relation (22) holds with a = a(pl)
p^.

If p2 7^ 0 the sector with 2p2 loops is an invariant subspace isomorphic to the case
p2 = 0. The quotient has a — 0.

Thus the only case to consider is the aforementioned (22),

U\U2U\2U2\U\U2. = <* U\U2.

with α a scalar. A basis for the full ideal with the above quotient is given by (24), i.e.
this produces a 6 dimensional algebra (without unit). Here U{ U2 /Q is a primitive
idempotent, so the corresponding representation is indecomposable. In our basis we
have (with all omitted entries zero)

\/VQ
I

V

1

0

0

a

/o
0

0

0

0

\0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

VQ
0

\

07

\
VQ
0

0

0

0

0

0

0

0

1

VQ
1 0

1 0 07

1
1

0

a

V 0

/o
0

0

0

0

V o

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

VQ
0

0

0

0 0

0

0 0

1

VQ
1

1

1

VQ)
\

0

0 07

Proposition 13. The algebra is infinite dimensional.

Proof. We prove that the above set of representations characterized by the indetermi-
nate a are mutually inequivalent. This follows by direct computation of

trace(βα(?712i721t7LE72ι)) - a . QED

A straightforward generalisation of this proof serves to show that the An algebra
is infinite dimensional for all n > 1.

If we want to examine the exceptional structure of the present set of representations
with respect to α then one suitable basis is

{C7,.ί72., (Un
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in term s of which we have

/ VQ
2 0

0 0 0

0 0 0 0 1

\Q

U12 =

/o
0

0

0

0

\0

0

— a

1/2

VQ
0

0

0

0

0 0

0 0

1/2

0

0

0

0

o VQ
0 0

-1

1

VQ
1 0

1 0

\

07

\

07

/ VQ
2 0

0 0 0

0 0 0 0 0

Q-a 0 0 0

\ 0 0 0 0 0

/o
0

0

0

0

\0

1/2

VQ
0

0

0

0

-1/2

0

VQ
0

-VQ
-VQ

-1

1

0

1

1

0

0

\

o/
We note that when a = Q (cf. the Gram matrix) there is a two dimensional invariant
subspace corresponding to the quotient

which we have already identified with the diagram representation [Eq. (26)].
Note that the left sided ideal generated by UnlI2ί will be "dual" to this one (i.e.

isomorphic up to the usual duality transformation).

4.2 .3. The Case Tί7, /Γ/0T. The word structure of the left sided ideal generated by
UL (quotienting by TU{U2T) is

u2lul,
U2U{2UL

U2UnU2lULU21U2U12UL

and so on. By the same argument as before, the appropriate quotient here is

and

U12U2U21UL

Notice that (28) implies

U1U12U2U21U1 =

(28)

(29)

(30)

The only consistent choices are z = 0 or z = \/Q, cel = 1. This then reduces to a
four dimensional ideal. Once again there is a symmetric inner product, with Gram
matrix in the basis {U\ ,UlUu,UlUuU2,UlUnU2U2l},
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Fig. 11. Boundary diagram for UlUl2U2U2ιUl

with determinant
(31)

in case z = 0. In case z — \/Q the irreducible quotient is isomorphic to Cnl.
In order to see what is going on it is useful to look again at Fig. l i r a boundary

gets a weight α^1 when going around the cylinder.

4.3. The Full Case TAn(Q)

To get further insight we shall use the analysis of the so called 6-vertex model carried
out in [9], Introduce the space C4n of dimension 22n considered as tensor product
of 2n fundamental representations of the quantum algebra U sl(2) (with generators

X±,H). Set as usual ^/Q — q+q~l and consider the matrix representation of T^Q),

where U% (Ui l+l) acts as identity everywhere except in the (2i — l)th and (2ί)th [(2i)th

and (2ί + l)th] copies of C2 where it acts as the 4 x 4 matrix,

U =

0

o

°\
o
o
o/

while the special boundary element Uln acts between the first and last copies of C2

as
0 0\

-x 0
U =

/ O

0 q

0

~l

0

\0

q

0

0

O/

where x is a complex parameter. For each value of the total weight h = 0, ±1,. . . , dm
this provides a representation of T& (Q) with continuous parameter x. We shall refer

/ x \ U

to this representation as Rn I I . It has for dimension the binomial coefficient
\h J

C2~
h. The cases ±/ι are isomoφhic and we restrict without loss of generality to the

study of h > 0.

4.3.1. The Case T/0. The same analysis as n — 2 works for any n, i.e. all irreducible
representations may be found by putting

(Uι.U2.... Un)Ul2U23... Unl(ULU2f... Un) = a(U,U2f... Un) . (32)

Proposition 14. The dimension of this sector is Wn — (n -f i)-Cn 0 = C2n.
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This is because in addition to the Cn 0 basic connectivities in the i = 0 (zero
propagating connections) sector we get a new basis state from each one of these by
picking any of the n sites and moving it round a closed non-contractible path.

The idempotent /0 is primitive with the quotient (32) so T/0 modulo (32) is
indecomposable. It has a natural basis of words in the generators generalizing (24).

The representation induced from this basis we will call ̂  l

C
x \ ( x

1 and the vertex model Rn ί j ,

where

Associate with each boundary diagram a state in the h = 0 sector of the vertex model
basis by giving all possible orientations to boundaries with the weights

qι (33)

and
ϊ . . . t = 9-"v/2, ι...ι = <r>/v->/2,
ι...r = -y/v-1/2, ι...{ = -«!/v/2,

where up (down) arrow indicates h — ±1/2. This is best illustrated by an example.
To UnU2\Ul U2 forn = 2 is associated for instance

- - <
/ 2l

The idempotent Ul . . . UnJQn/2 projects the sector ft, = 0 of the vertex model onto a
one dimensional subspace. The intertwiner is then obtained by acting on this subspace

ί x\
with the representations Rn I 1 . This intertwiner is x-generically invertible as can

be shown by noticing that in every row and column there is exactly one occurrence
of the highest power of q (or q~l).

The use of the vertex model is to determine a minimal set of invariant subspaces
over the non-generic values of x. We will then saturate the bound by reference to
Grn Q. It is not convenient to work entirely in ̂  as the Uqsl(2) action is not manifest
there.

Commutation with Uqsl(2) is not possible in An due to boundary effects, but

for non-generic values of the parameter x, x = q±2k (k positive integer) there is a
commutative diagram as the h = 0 case of

ot,
— Π— q

(35)

π2h
— q

Rn
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(fc > h) where X+ is the raising operator in Uqsl(2) [9]. This allows us to identify
f k\

an invariant subspace ρn ( 1 = KerX*; A similar result holds by replacing q with

q~[. Its dimension is C™n - C™~k'. We note that the intertwiner is singular at these
values.

In addition to this, another case that was overlooked in [9] is a — 0, x = — 1.
Using the symmetry of the TL algebra under q —> — q one can establish in that
case the existence of a long commutative diagram where the morphisms are given by
generators of 11^1(2). This implies that there is an invariant subspace ρ'n of dimension

Proposition 15. The determinant of the Gram matrix has a factor aCn/2 and is overall
order 22n~l in a.

Proof. The factor arises since half the basis states begin with one non-contractible
loop (and ABT has an even number). An upper bound on the number of closed
loops formed by the ABT contribution to a single determinant factor (23) is the total
number of occurrences of C7ln in the T/0 basis (since we cannot build a loop without
the periodic closure). In the T/0 basis there are Cf™~1+n - Cf™+1+n words with w
factors of E7ln, but

/ ^ ^ 2n 2n ) ~
w=l,2...

On the other hand the complement of an invariant subspace contributes a zero
of order its dimension to det Gr. The sum of dimensions of the complements of the
invariant subspaces we have so far identified in Rn is

n
x—> ι 1 1 oX fΊ7ϊ—1 i I s~ΊTL 1 ^yZTi

2_^ 2n ~" 2 2n ~ 2 '
i=l

where we used
2n n

Therefore the bound is already saturated and this determinant is

i n

detGrn;0 oc a^ °?n JJ(α - P?)CSΓ1 , (36)
ι=l

where we introduced

The Pk are polynomials in ^[Q determined by the induction

pk - VQpk-ι - pk-2 , n = 2, P! =
We have therefor proven

/αΛ
Proposition 16. The representation Rn has dimension C^n and is irreducible

\ 0 / / f t "
except at x — q±2k, k = 1, . . . , n, α/2^ x = —1. When x — ̂ ±2fc // contains ρn I
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with dimension C%n — C™~k as an irreducible component. When x — —\ it contains

ρ' with dimension - C2- .
2 / 1 \

It is easy to show that the particular ρn I 1 representation is isomorphic with

the one induced from Cn 0 by braid translation.

4.32. The Case TIh/TIh_lT. All irreducible representations may be found by

introducing the quotient relation constructed as follows. Take the word Ih (here

n— h \

Ih = Π (Ui /^/Q)j and rotate the top once around the cylinder clockwise holding

the bottom fixed. Equate this new word with Oίhlh. The same result with α^1 holds
then for counterclockwise rotation. For instance if h = 1,

(C/L . . . U(n_^)Unl(U2, . . . Un)Un . . . Un_ltn(

= *,(£/,.... C^.,,.),

L . . . U(n_ιγ)

In the h = 1 case this does not give a finite dimensional representation. We need
the additional relation

(ULU2, . . . U(n_^UnUΏ . . . Unl(ULU2. . . . [/(„_,).) = z(U,U2, . . . U(n^) . (38)

This is because a single connectivity can pass through a non-contractible closed loop,
while multiple connectivities cannot. As in the n — 2 case, either z — \/Q, a{ = 1 in
which case this is just Cn 1? or z = 0 and α^ is unconstrained. Putting z = 0 brings
h — 1 into line with other 'h > 0 for which this issue does not arise.

The left sided ideal TIh/TIh_λT we call T[h\. Quotienting further by (37) [and

by (38) with z = 0 in the case h = I] we obtain

Proposition 17. The dimension of ^n is C™~.
\ a J

Proof. Recall that this number is the number of walks of length 2n on the Pascal
triangle from the beginning to height 2h. We associate Uλ ... U(n_h^ to the lowest
such walk that does not visit negative heights. The rest of the correspondence is
obtained by adding diamonds <jθj to represent each U until we reach the same walk
again via spacial periodicity and relation (37). Note that any periodic rectangle defines
a different but isomorphic basis by the relation (37).

The intertwiner given in the case T/0T is also an intertwiner between ̂  ' h

ί x\
and Rn ( 1, where ah = xh.

\rι)

h

The commutative diagram (35) holds as well here, allowing us to identify a

( k\
j of dimension C^~h — C™~k ;, h < k < n.

h )
By a similar argument to the case h — 0 we can find an upper bound on the x-order

n
of the Gram matrix ]Γ C™n . The above sequence of invariant subspaces provides

k=h+l
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enough power of ah to saturate this bound. The determinant of the Gram matrix reads
therefore

n

detGrn>fc = ± J] (-(* + z'1) + fa)0**"
i=h+\

and

Proposition 18. The representation Rn I 1 has dimension C^n and is irreducible
\hj /k\

except at x — q±2k, k = h + 1 , . . . , n. When x — q±2k it contains Qn ί j with
A

dimension C™~ — C^~ as an irreducible component.

The representation ρn ί j is the one isomorphic to the representation
\ h J

induced from Cn^h by braid translation.

4.4. The Potts model

As an application we now determine which of the above irreducible representations
appear in the toroidal Potts model. Consider a most general inhomogeneous Q state
Potts model on An x Z with periodic boundary conditions in time direction. Couplings
can vary from edge to edge, corresponding to inhomogeneous edge transfer matrices
of the form given in the introduction. We restrict for simplicity to Q G [0,4]
and for Q not an integer define the Potts model partition function by the usual
dichromatic polynomial. Introduce also the partition function Zhh/ of the associated
6-vertex model with periodic boundary conditions and such that the total H number
encountered along the space (resp. time) direction is equal to h(h'}. Consider the same
model with twisted boundary conditions in space direction, as given in [9]. Then the

f x\
trace of the transfer matrix in the representations Rn ( J reads

h<

In this formula and in what follows we do not take into account the truncation of
various sums due to the finite size of the system, which can be easily reinstalled. Let
us set

where Λf is a real number. It will turn out that we can restrict to the case where x
is of modulus one, which we can always parametrize as x — q2t, t e [0,̂ ]. Then
(40) can be inverted to give

(42)

0

The partition function of the Q state Potts model was then rewritten in [22] as

Z = Z(l} -f Z(2) (43)
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with

[ o
- (44)

and

Z(2) = Q_l Zhh/ cos[π(h Λ h')] , (45)

where Λ denotes the greatest common divisor. This was established by analysis of
the weights of non-contractible loops (in space and time directions) in the vertex-
boundaries correpondence. To get the desired result we therefore have to plug in
these formulas the inverse Fourier transform (42). Let us start by Z(2\ Breaking the
sum over h into odd and even values gives immediately

As far as Z^' is concerned, its analysis is more difficult since one has to take into
account the whole arithmetic properties of the spins h,h'. For integers p 1 ? . . . ,pfe,
Π j , . . . , nk introduce the expression

cos—,pΓ p k

κ) = E (-)Σm'cos(^P;ι'-m'...ί^-ίΊ

(47)
then the contribution of a given sector h ̂  0 is seen to be

<48)

It thus decomposes onto generically irreducible representations. From h = 0 one just
/ a- _ ~2 \

gets Z , which is trace over a reducible representation. However this trace
V ° / / x = ι\

has to be combined with a trace over Z ( _ j that comes with multiplicity Q — 2
h = 1

in Z(1) and — (Q — 1) in Z^ (we used the symmetry h — •> — /ι). So on the whole we

get trace over the irreducible ρn

We therefore conclude that the representations of T^n(Q) appearing in the Potts

model case are ρn ί j = Cn 0 (with multiplicity one), ρ'n I j = όHjl
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(with multiplicity Q - 1, as expected for the order parameter), Rn h
for k = 1, . . . , Λ& — 1 and Λ&\h, h arbitrary (but limited for a given n).

( x — 1
Let us now discuss multiplicities. For the case h = 2 we get Rn I

h = 2_
Rnl . The first one comes with multiplicity Q2 - 4Q + 2 in Z(1) and

-Q + 1 in Z(2\ adding to Q2 - 5Q + 3. The second comes with Q2 - 5Q + 4
in Z(1) and 2Q — 2 in Z^2\ adding to Q2 — 3Q + 2. In general the representation

' T — 1 \ ί Ύ — — \
'*J -1- I ι t i τ-\ y^-v . -< m t -Γ^i I **jl L

, arises with multiplicity P2h — Q +1. The representation Rn .
ΓL i v n

that arises only for ft even has multiplicity P2h -P2+2Q-2. All other representations
' x =

^ < (̂  coprimes) arise with the multiplicity, if we write the

decomposition in prime factors @ = PI - -P^, h = p™λ . . p^fe,

These can be rewritten as polynomials in Q, with no very illuminating forms however.
/ x\

The multiplicity of Rn ί J is independent of n for n large enough, as in the An\fi J
and mean field case. In those cases the result is a consequence of Theorem 1. Here
this theorem does not hold.

5. Arbitrary Graphs and the Full Case

5.7. Examples

Let us discuss a few examples. Consider first the Daisy graph G — D4. As usual we
start with J0 and generate T/0 by acting with the generators. Choose the convention
that the central node in such a Daisy graph is associated with Un for n — 1 legs.
Then list the words

t/H/O C/24/0 E/34/0

U14U24I0 U14U34I0 U24U34I0 (50)

U4U14U24I0 U4U,4U34I0 U4U24U34I0 Ul4U24Uί4I0

U34U4U14U24I0 U24U4U14U34I0 U14U4U24U34I0 U4U14U24U34I0

The basis truncates at this point because the relations collapse all longer words onto
these. Therefore the ideal T70 is finite dimensional [and dim(Γ/0) = dim(DG/0) —



186 P. Martin, H. Saleur

Consider now the graph G — D$ with the incidence matrix

/O 1 0 0 0 0\

1 0 1 0 1 0

0 1 0 0 0 0

0 0 0 0 1 0

0 1 0 1 0 1

\0 0 0 0 1 O/

(51)

Rather than generate the whole basis, we simply note that the following set of words
does not collpase

(I0U23U25U45U2U5U[2U25U56U2U5U^ (52)

so the algebra is infinite dimensional. How can we characterize such non-collapsing
words? If we draw the connectivity diagram of the above word on G x Z, the interior
of each bracket is made of two interlocked loops: a Hopf link. In the diagram algebra,
these would collapse to give two factors of Q. But in the Full algebra case there is no
relation to simplify such a word. Recall that in the A case similar words that could
not be collapsed corresponded to non-contractible loops.

Returning to G — D3 consider now the h — 1 sector,

U24U4U34I,

U14U34I,

U14U34U4U24I,

U34U4U14U24I,

t/24/,

U24U34I{

UUMI, U14U24U34I,

4U24I, U14U4U34I,

U14U24U4U34I{

U24U4U14U34I,

4U34I, U4U14I{

U14U4U24I,

U24U4UUI{

U24U34U4U14I}

U14U4U24U34I{

(53)

U4U14U34U4U24I{

U24U4U14U34U4U24I,

U2U24U4U14U34U4U24I1 U2U34U4U14U24U4U34I1

As in the list in (50) the table truncates here. The total dimension is 36 (cf. the
4 case, the state ((123) (4)0 cannot be reached from Iλ ~ ((1) (2) (3) (4)0). However,
as we will see in the next section the h — 2 sector is infinite dimensional.

5.2. On the Characterization of Irreducible Representations

Consider the h = 0 sector. We may associate words in the ideal T70 with certain
elements of the universal set of G x Z (as we do in DG, but here the equivalence
relations are different). Words are equivalent if their graphs drawn on G x Z are
related by the following moves: 1. Contraction of cul-de-sacs and removal of points,
up to factors of Q,
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2. Deformations of the graph which take a segment to a segment without touching
another segment.

Note that such a deformation may take an empty disconnected loop to a line and
hence remove it at cost a factor of Q. To establish these moves note that objects such
as cul-de-sacs and loops may be embedded in An x Z, where the moves are allowed
by the relations.

The quotient relations required to make the ideal T/0 finite dimensional must tell
us how to deal with each type of object drawn on G x Z distinct under the relations
above. Suppose such an object K is not equivalent to the empty graph. Then formally
(KIQ)k gives a new element of the ideal for each higher integer fc. On the other hand

TI0(KlQ)k is an invariant subspace of T/0 (cf. the An case), so the way to deal with
this is to introduce the quotient relation

IQKIQ = aκQ
nmIQ, (54)

where aκ G C and n(K) is the number of components in K. There is no constraint
on aκ forced by the relations, since J0 forms an impenetrable barrier (cf. the relations

and the cases An and An).
Relations of this kind are not in general sufficient to produce finite dimensional

ideals. However, the additional relations required to make a finite dimensional ideal
do not seem to give rise to continuous parameters. Such additional relations generate
still further relations which constrain the value of any parameter introduced.

The simplest example of both these features is provided by D^\ The normal 52
elements basis of DGIQ is extended by the non-collapse of words like

(U5Uί5Ul5U5U25U45)
kI0. (55)

Accordingly the relations

^^35^15^5.^25^45(^5.^35^15^5.^25^45^0 = <*κΛ > (56)

which can be represented graphically as

/0(Hopf Link)/0 - ακ/0(oo)/0 (57)

may be introduced with no restriction on aκ. In the other quotient required to get a
finite dimensional ideal (and consistent with DG - i.e. taking connectivity to identical
connectivity)

(U5U35Ul5U5U25U45)
k+2I0 = z(U5Uί5Uί5U5U25U45)

2I0 , (58)

we are forced to take z = Qk for consistency with the action of U35U15U25U45. The
DGIQ quotient is the case k — — 1, for which aκ is also determined by the relations.

The smallest representation which supports the quotient (56) (together with its
images under Z4 which imbed the Hopf link into G x Z in ways that are different
with respect to the moves) has dimension 301. This is the case k — 1.

Let us give a more interesting example. We will construct a free parameter quotient
associated to the trefoil knot for G the Daisy with 6 petals,

/0C/67ί/57C/7.t/17t/47t77.f/67t/27[77.t/37f/17^.C/7.C/67f/27
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Fig. 12. A graph supporting the trefoil knot

Fig. 13. A braid can be drawn on D4 x

The best way to visualize this is to construct a piece of paper with section G and
imbed the knot in this "oregamoid" such that each sheet carries at most one piece
of string at a time. Incidentally the graph in Fig. 12 will also support the trefoil knot
with the long leg carrying up to three lines at once.

These examples can be generalised to give

Proposition 19. There are at least as many free parameters associated to the ideal
TG!Q as links embeddable in G x Z.

In physical terms, connectivities carry information. For instance the case h = 1
describes spin spin correlations. The h = 0 sector may be associated to the partition
function. When we consider the h > 0 sectors therefore we must keep track of
information at the boundary of the system and hence in the present language move
from links to tangles. For example on the Daisy with 5 petals the "Staffordshire Knot"
(the tangle generated by opening one arc of the trefoil) gives

IιU56U6Ul6U46U6U56U26U6U36U^^^^

Since for any G other than An two strands can be braided twice on G x Z we have

Proposition 20. All algebras TG (G φ An) are infinite dimensional

For instance for G = D4 (see Fig. 13),

b = I2U41U4U43U42U3U4U43U4[U4U42I2 (59)

is braided once, so b2 — aI2 is a legitimate quotient.

6. Remarks

6.1. Q Non-Generic

Until now we considered only exceptional values of the free parameters. Let us now
consider exceptional values of Q. If there are free parameters, this is only interesting
at their exceptional values (see e.g. Gr2 0).
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This has been understood in details for An [2,6]. The non-generic values in that
case are given by

/ λ 2

Q = 4(cos^ 1 , (60)
V Q J

where p, q are coprime integers. The case p = 1 is usually referred to as Beraha
numbers. The continuum limit of the corresponding ABF [23] models is given by a
"minimal" conformal field theory [24] which is unitary in the p — \ case.

The non-generic Q values in the An case are identical, as can be expected since
the difference with An is merely a "boundary effect."

In the mean field case preliminary study shows at least all integer Q are non-
generic, and it seems likely that there are no other.

In the An, An cases, the maximum non-generic value of Q (60) is Q = 4, which
coincides with the boundary between second and first order phase transitions. As we
" increase the dimension" to the mean field case G = n these two numbers move
therefore in opposite directions. Indeed in the mean field case the boundary between
second and first order phase transitions is now at Q = 2 while, as mentioned above,
the set of non-generic Q is unbounded.

A more complete study of the non-generic Q case for An and n will appear
elsewhere. *

In two dimensions, relations between Q non-generic values and colouring problems
have been observed [25]. These relations seem to extend to the mean field case.

62. The General DΌaisy

The dimensions of the irreducible representations for the general Daisy case can be
computed. The numbers themselves are not very illuminating. However we note that
DGIG has the same dimension as the complete graph case (with same number of
vertices). Therefore the asymptotic rate of growth of dimensions is unbounded.

63. Conclusion

Despite the difficulty of the higher dimensional case, such as G = An x An, the
study of algebraic properties seems an interesting alternative to the search for inte-
grable systems. Among the important questions amenable with existing techniques
(or computers) are the determination of dimensions of generically irreducible repre-
sentations, and hence exceptional Q values. A warm up case would be G = An x A2.
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