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Abstract: We investigate one-dimensional discrete Schrodinger operators whose
potentials are invariant under a substitution rule. The spectral properties of these
operators can be obtained from the analysis of a dynamical system, called the trace
map. We give a careful derivation of these maps in the general case and exhibit
some specific properties. Under an additional, easily verifiable hypothesis concern-
ing the structure of the trace map we present an analysis of their dynamical
properties that allows us to prove that the spectrum of the underlying Schrédinger
operator is singular and supported on a set of zero Lebesgue measure. A condition
allowing to exclude point spectrum is also given. The application of our theorems is
explained on a series of examples.

1. Introduction

In this article we present general results on the spectral properties of a class of
one-dimensional discrete Schrédinger operators of the form

H,= —A+V onl*Z), (1.1)

where 4 is the discrete Laplacian and V' is a diagonal operator whose diagonal
elements V, are obtained from a substitution sequence [1]. By a substitution
sequence we mean the following. Let o7 be a finite set, called an alphabet. Let
o/* be the set of words of length k in the alphabet, o/* = ( J,cno/* the set
of all words of finite length, and /™ the set of one-sided infinite sequences
of letters. A map & &/ - o/* is called a substitution. A substitution ¢ naturally
induces maps from o/* — o/* and /™ — /N, which we will denote by the same
name and which are obtained simply be applying ¢ to each letter in the respective
words or sequences (e.g. (abc) = &E(a)E(b)E(c)). A substitution may possess
fix-points in /N, and such fix-points, u, will be called substitution sequences.
There are two natural conditions that guarantee the existence of at least one
fix-point, namely £°0, and that we will assume to be satisfied for all substitutions
we discuss [1]:
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(C1) There exists a letter, called 0, in 7, such that the word £(0) begins with 0.
(C2) The length of the words &™(0) tends to infinity, as nT 0.

A class of substitutions we will in general deal with are the so-called
primitive substitutions [1]. They are characterized by the fact that there exists
an integer, k, such that for any two letters o;, «; in .o/ the word &*; contains the
letter o;.

Given a fix-point u = (a0 . . . ) of a substitution &, the associated sequence
of potentials is now obtained as follows. Consider a map v: & — R (which we will
always assume to be non-constant), we set, for n = 0, ¥, = v(a,). This sequence is
then completed to the negative side by setting, say, V_,_; = V.

Schrodinger operators with potentials of this type have attracted considerable
attention over the last years in connection with the discovery of quasi-crystals
[2,3]. For, indeed, the prototypical one-dimensional quasi-crystal is associated to
the Fibonacci-sequences, which are substitution sequences associated to the substi-
tutions ¢ on the alphabet o7 = {a,b}, where

(@ =ab", (b)=a. (1.2)

(The most studied example (also called the Kohmoto model) corresponds to the
case n = 1 and the Fibonacci sequence associated to the golden number.) There is
a host of numerical and analytical work which has been done for these models [4],
with amongst the most notable mathematical results those by Casdagli [5], Siitd
[6] and Bellissard et al. [7], in which it was shown that the spectrum of these
operators is always singular continuous and supported on a Cantor set of zero
Lebesgue measure. All these results relied heavily on the very fact that the
Fibonacci sequences are substitution sequences (in more technical terms, they
employed the so-called trace map, whose existence is a direct consequence of the
substitution, as we will discuss in detail below), and this observation stimulated the
investigation of other examples of substitution sequences. The first and most
heavily studied [8] example was the Thue—Morse sequence [9], defined by the
substitution

E(a) =ab, &(b) =ba (1.3)

which offers an additional interesting feature in that it is not quasi-periodic. Again
it was proven that the spectrum of the corresponding Hamiltonian is purely
singular continuous [10,11] and, moreover, a complete description of the gap-
structure of the spectrum, including the dependence of the gap-width on the
potential strength could be given [10]. A further example, where the same type of
results could be proven [11], is provided by the period-doubling sequence, with
substitution

¢(a) =ab, &(b)=aa. (1.4

These results required, in each example, a rather detailed analysis of some dynam-
ical system associated to the so-called trace map. Unfortunately, for more compli-
cated substitutions (e.g. on more than two letters), these become prohibitively
complicated. Nonetheless, one would expect that certain qualitative properties of
the spectra of such Hamiltonians should not depend on the details, but only on
some general features of the substitution.
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There are, indeed, two promising approaches attempting to obtain more
general results. One is the perturbative method of Luck [12] that establishes, on
a heuristic level, a connection between the Fourier spectrum of the sequences
themselves and the gap structure of the spectrum of the Hamiltonians and that
allows even to compute the behaviour of the gap-widths. A shortcoming of this
approach is, besides the difficulties to give mathematically rigorous justifications of
some of the steps involved, that it fails to make clear predictions in situations where
the Fourier spectrum of the underlying sequence is not of the pure-point type.
Unfortunately, singular continuous and even absolutely continuous Fourier
spectra are not at all uncommon for substitution sequences. Nonetheless we
emphasize that this perturbation method is so far the most powerful tool to get fast
quantitative predictions.

Another attempt to obtain general information on these systems is based on the
K-theory of C*-algebras. It was realized [13, 14] that general gap-labelling the-
orems [15,16] can be applied particularly well in these cases as substitution
sequences allow for an easy computation of the corresponding K,-groups. This
allows then to predict all possible spectral gaps from a simple computation of
a Perron—Frobenius eigenvector of a (not too large) matrix. The shortfall of this
approach is, so far, that it cannot predict whether the allowed gaps will actually be
open for given values of the potentials, and in the known examples, closed gaps do
occasionally occur. In particular, the K-theory makes no predictions on the type of
spectrum one may expect.

In this article we attempt to obtain general results on the nature of the spectrum
from a careful analysis of the trace maps. Indeed, it is natural to conjecture that
the existence of an exact renormalization group structure, as is presented by
the trace map, is responsible for the particular spectral properties observed
in the examples. In particular, one may be led to believe that due to the existence
of the trace map the singular spectral type should be the rule rather than the
exception. We will prove here that this is true in some sense: namely, that under
some conditions that can be verified fairly easily (there is a simple algorithmic
procedure to verify them) and that appear to hold in most examples (the
Rudin—Shapiro sequence [17] being a notable exception), the spectrum of our
operators is always singular and supported on a set of zero Lebesgue measure.
This result is based on the analysis of some general properties of the trace
maps and of the ensuing characteristics of large time behaviour of the associated
dynamical systems. These will allow to identify the spectrum with the set of
energies for which the Lyapunov exponent vanishes. A general theorem proven
already in [11] which is based on a profound lemma of Kotani [18] will then yield
the result.

A more subtle question relates to the existence of point spectrum: there is
a simple supplementary condition under which the existence of eigenvalues can be
excluded, but this condition is not satisfied in all examples where the singular
continuous nature of the spectrum was proven.

The remainder of this article is organized as follows. In Chap. II we review the
derivation of the trace maps and exhibit some of their properties. We will define
a new substitution rule on an extended alphabet that encodes the principal part of
the trace map and formulate the assumptions entering in our theorem in terms of
this substitution. In Chap. III we formulate our main theorem and present its
proof. We also discuss the problem of eigenvalues. In Chap. IV we elucidate our
results with some examples.
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II. The Trace Map

In this section we give a careful review of the derivation of the so-called trace map
and establish some crucial properties of these maps. The trace map was originally
introduced by Allouche and Peyrieére [19], but we also refer to the paper [20] by
Kolar and Nori in which a more general and systematic construction is given.

As usual for one-dimensional discrete Schrodinger operators like (1.1), the
analysis of their spectra is based on the discussion of the associated Schrodinger
equation, written in vector form as

E-V, -1
0 0
where Yg(n) = " ‘/erl(n) 1)> with i the solution of the usual Schrédinger equation
£ —

H,Wr = Eyg. Iterating Eq. (2.1) we get, of course, the solution of the initial value
problem in the form of a product of matrices as

Pp(n + 1) = 101 <E Ve ”(1)) ?:(1) . (2.2)

In the case of substitution sequences we are naturally led to define the maps

Ty o - SL(2, R) via
To(@) = (E "1”(“) - é) . 2.3)

Again, by some abuse of notation we denote by the same symbol the maps
Tg: % - SL(2, R) where for o = (¢ . . . &, 1) € 7,

Te(®) = Te(tty—1) - - - Teloo) - (2.4)
The map T allows us to introduce the induced action of £ on Im(T5) via

ETp(0) = TH (o) = Tew) (2.5)
and we will also use the notation

{'Te(w) = TP (0) = Te(l") . (2.6)

It is obvious from (2.4) that the action of ¢ defines a dynamical system on
SL(2, R)¥!, since T(x), x €./, can be expressed as a product of matrices
T¢~Y(a), o € . The analysis of this dynamical system could in principle yield all
desired information on the spectrum of (1.1). In practice, however, it turns out to be
difficult to work with this system directly and it is advantageous to pass to a new
dynamical system based on the traces of the matrices T (w).

Let us define, for w e o*, xg(w) = tr Tg(w). Of course we may write also
xP(w) = tr TP (w) and obviously we may extend the action of ¢ to write
Ex Y (w) = xP(w), however this time there is no immediate expression of
ExP~B(a) as a function of the x{ ™) («), i.e. a realization of this action as a dynam-
ical system on IR'’! and in general such a realization will not exist. However, it is
always possible to find a finite subset, # < .&/* such that for all w € £, x{(w) can
be expressed as a function of the x{*~ ! (w), with w € 4, that is a realization of the



Spectral Properties of One-Dimensional Schrédinger Operators 49

action of ¢ as a dynamical system on R'?!. Such a dynamical system is called a trace
map. Note that in the sequel we will use the names f or f§; for the elements of 4 to
distinguish them from generic words w. Following [20], such a trace map can be
constructed for any substitution in the following way.

Notice first that for unimodular 2 x 2-matrices A, B, the Cayley—-Hamilton
theorem yields

tr(AB) = trAtrB —tr(BA™Y). 2.7

It is easy to deduce from this relation (see [20]) that for three such matrices 4, B, C,
one has

tr(ABAC) = tr(AB)tr(AC) + tr(BC) — tr Btr C . (2.8)

Let us label the letters in o/ by oy, ..., ag, with K = |.&/|. Starting with o, we
write

x@F V) =tr [[ T¥(x). 2.9
aelay
Now there are two possibilities: if £o; contains no letter of o/ twice, then we set
Px+1 = &ay. The word Pg., will then be considered as a “letter” in the new
alphabet # (which also contains all the letters o; from .o7) that we will construct.
More precisely, due to the invariance of the trace under cyclic permutations it is
natural to identify words £a4 that differ only by a cyclic permutation of their letters,
so that the elements of # will really be equivalence classes of words in .7 *.
If £a4 contains a letter, say o, in &7 twice, then an element in its equivalence class
may be written in the form aw,aw,, and thus by (2.8),

X () = tr TP (ewy) tr TH (aw,) + tr TH (wy0,)
e TP ()t T (@,) - (2.10)

We now proceed with each of the traces appearing in (2.10) just as before, that is if
a corresponding word (say ow;) contains no letter twice it is included into %,
whereas for words that still contain a letter twice, (2.8) is again applied. The
important point is that with each application of (2.8) the words that may appear
become strictly shorter so that this process necessarily terminates after a finite
number of steps, leaving us with x{*" (a;) expressed as a polynomial in the
variables x{¥(;), with f; elements of some finite set . The same procedure is now
applied on the remaining letters «; in o/, and finally on the new letters f8; € # that
have been introduced in the process. But since the elements of % are equivalence
classes of words in .o/ * that contain no letter twice, the length of these words is
a priori bounded by K, and the cardinality of % by [20]
X K!
B| < —
1= 2Ry

so that the algorithm described above will terminate after a finite number of steps.
In the end we have, for each f§; € 4, an expression

*E(B) = KB, - XD (Bra)) 2.12)

where each f; is a polynomial map from R'?' to R'?!, and where we have fixed, for
notational convenience, the numbering of the letters 5; € # once and for all.

(2.11)
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An important further characterization of these maps can be given through the
following notion of a “degree,” d, defined as follows: Put, for x € R'#!,

d(x;) = |Bil, (2.13)
and let for any two polynomials, p and ¢ in the variables {x; i
d(pq) = d(p) + d(q) (2.14)
and
d(p + q) = max(d(p), d(q)) - (2.15)
Obviously, these three relations allow to compute the “degree,” d(p), of any such
polynomial.

We collect the properties of the trace map in the following

Proposition 2.1. Let & be a substitution on an alphabet < of cardinality K. Then

there exists an alphabet % whose elements are words modulo cyclic permutations in
K!
U1K=1 o', such that of < B and |B| <Y1, K= and a polynomial map

£ RI# S RI? such that if £ (x) is the n' iterate of f on the initial vector x, then,

x =™ (x®) (2.16)
Equation (2.12) holds for each ; € . Moreover f satisfies
d(f) =1¢Bilw 2.17)

where |w|,, denotes the number of letters of w considered as a word in </ *. Finally,
there exists a unique monomial of highest “degree” (whose coefficient is one) in f; which
we shall denote by f,.

Proof. Most of the proposition is evident from the construction given above and
has already been noticed earlier [20]. The statement (2.17) on the degree is also
evident from the fact that only (2.8) is used in the construction of the trace map and
that there is exactly one term on the right-hand side of (2.8) that has the same
degree as the term on the left. <

Remark. The reader may notice that the construction of the trace map (and even
the alphabet %) is not unique, and that in general several trace maps can be
obtained for the same substitution. They will all, however, enjoy the properties
stated in Proposition 2.1. For practical purposes, one may try to minimize the size
of # and consider the trace map on invariant submanifolds. For our general
considerations here this will be of no importance.

The map f; introduced in Proposition 2.1, will be called the reduced trace map
and is of central importance for our analysis. We find it useful — and natural - to
associate with f'a substitution, ¢: 4 — %%, in the following way: Let us first define
the map X: #* — R such that for any w = (B;, . .. B;,) € #*,

X(@=x;,...x,.

(2.18)
Then ¢ is a substitution such that for any f; € 4,

X(PB) =filx1s - -+, Xpay) - (2.19)
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Properties of the substitution ¢ will be crucial for our analysis. The substitu-
tions ¢ associated to trace maps will typically not be primitive, but have a structure
that we will call semi-primitive:

Definition 2.1. A4 substitution ¢ on an alphabet % is called semi-primitive, if

(i) There exists a subset € < % such that ¢ maps € into €* and the restriction of
¢ to € is a primitive substitution on the alphabet €.

(ii) There exists a positive integer k such that for each letter B € B, ¢*B contains at
least one letter from €.

Note that although (2.19) does not uniquely define the substitution ¢, (since
X (w) does not depend on the order in which the letters appear in w but only on
their multiplicity) either all or none of the substitutions satisfying (2.19) for a given
f are semi-primitive. In most examples of trace maps associated to primitive
substitutions ¢ we have analyzed (see Sect. IV), the associated substitutions
¢ turned out to be semi-primitive, the Rudin—-Shapiro sequence being the only
counterexample.

To conclude this section, we note that semi-primitive substitutions arising from

primitive substitutions £ in the above described way have the following additional
property:
Lemma 2.1. Let & be a primitive substitution satisfying conditions C1 and C2. Let
¢ be a substitution on % associated to its reduced trace map. Let € be a subset of
2B such that the restriction of ¢ to € is primitive. Then there exists a letter y, € €, such
that yo as a word in </* contains the letter 0.

Proof. To prove the lemma, just notice that for any letter §; € 4, the word ¢f; € £*
considered as a word in ./ * is made of the same letters as the word &f; € &/*. The
same holds true for the k™ iterates of ¢ and &, respectively. Now if ¢ is primitive,
then there exists k such that for any letter o, and a fortiori for any word w € o7*,
&k e contains the letter 0. Therefore, for any letter y € €, ¢*y must contain a letter
from % containing 0. But by assumption, ¢*y is a word in €*, and thus % must
contain at least one letter which, considered as a word in .o/ *, contains the letter 0,
which was to be proven. <

ITI. Trace Map and Spectrum

In this section we review the determination of the spectrum of H through the
dynamical spectrum of the trace map and some of its consequences. In particular,
we will prove the main result of this article, that is

Theorem 1. Let & be a non-constant primitive substitution with no constant iterate
defined on a finite alphabet /. Let v be a non-constant map from </ to R and H, the
Schrodinger operator defined in (1.1). Suppose there exists a trace map whose
associated substitution ¢, defined on an alphabet %, as described in Sect. II, is
semi-primitive. Assume further that there exists k < oo such that £*0 contains the
word ff for some f§ € B. Then the spectrum of H, is singular and supported on a set of
zero Lebesgue measure.

The strategy of the proof follows the one used in [11] to prove that the
spectrum of H, is singular continuous in the particular case of the period doubling
sequence.
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Let us begin by defining the so-called unstable set %.

Definition 3.1. Let y, denote a letter in € that contains the letter 0 € <. Let U,
denote the set

Uy, = {xe RPNV, .| f@® (x)] > 2}, (3.1)
where i(yo) is defined such that yo = B (). Then

#=|) intU,. 3.2)
n=0
Remark. Notice that in general ¥ may contain several letters containing the letter
0, and thus the set % depends a priori on which of these letters was chosen.
However, as will become clear later, % is really independent of this choice. Note
also that we may choose the labelling of the letters in 4 in such a way that our
chosen v, is f; (i.e. i(yo) = 1), which will simplify further notation.
Since in the sequel we will want to speak, for fixed v, of the set of energies such
that x{) belongs to % or in fact other sets we will define later, it will be convenient
to define, for any set ¥ =« R'®!, £(Y) = R, by

&(Y)= {Ex¥e Y} . (3.3)

Notice that £(Y*) = &(Y), where the superscript ¢ indicates the complement of
a set. The definition of % (notice that it differs from the one given e.g. in Siitd [6])
implies immediately

Lemma 3.1. For given v, &(%) < o(H,)".

The proof of this lemma in this form has been given by Bellissard [10]. A similar
result was also proven by Siit0 [6]. Essentially it is contained in Theorem VIII.24a
of Reed-Simon, Vol. 1 [21].

In principle we would like to prove also the converse of Lemma 3.1 which
would allow to compute the spectrum of H, from the trace map. In [11] we have
seen that if % is such that the Lyapunov exponent vanishes for E € &(%°¢), then not
only the converse of Lemma 3.1 holds, but also, applying some general results of
Kotani [18], the spectrum has zero Lebesgue measure. However, while the defini-
tion of % is convenient to prove Lemma 3.1, it is inconvenient to describe # in
more detail since in order to decide whether x{’ is in % we need to control x{ for
all n. In [6, 10 and 11] a simpler characterization was found in the cases of the
Fibonacci, Thue-Morse and period-doubling sequences which required informa-
tion on x{ only for some n. This implied in particular that the sets %, were open.
We will give such a characterization in the general case. In fact, we will define a set
% that a priori is contained in % but that is big enough such that for energies
E e &), the Lyapunov exponent vanishes.

To define this set, let us introduce the maps p™: 4 — R by

P (B) = | () TR (3.4)
and let

Pruax = max p™ (B;) . (3.5)
ﬂ,eﬂ

Note that for notational convenience we have dropped the explicit mentioning of
the dependence of p™ on the initial condition x.
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From now on we will always consider a trace map whose associated substitu-
tion ¢ is semi-primitive. Recall that this means that ¢ is primitive on an alphabet
€ <A

Definition 3.2. Let %, .., be the subset of R'*' such that x € %,,..,, implies
(i)

ryneig p™M(y) > [pmx] %, (3.6)
(i)
) min, .| <"
[mln p(”)(v)] >c. (3.7)
ye¥

We have the following

Lemma 3.2. There exists no < oo such that for all ¢ > 0 small enough and &' > e,
there exists 1 < ¢ < oo such that for all n = ny and for all n’ > n, %e e © u, e

Proof. Note first that a priori % e © % «.nife’ Z eand ¢ < c. We will now show
that Ollg en S Uy o i1, foralle’ = e+ 2¢-90 and ¢ < c¢fu~¢), where 6 > 0 is some
constant that depends only on the substitutions ¢ and ¢, and @ > 1 depends only
on the substitution & (m fact,asn? oo, 816, where 6 is the largest eigenvalue of the
“substitution matrix,” i.e. the matrix whose entries M, ;j are the number of times the
letter a; appears in the word (o;[1]). Iterating this result one sees that
('Zlm’,, c bt «-where ¢, grows like clf0-a1 and ak needs only to satisfy
ee=e+ Yy i’ Butsincee + Yr_ ci? Se+ Y2, i ° = Zitsuffices to choose
& = & Moreover, if ¢ is chosen sufficiently large, & will be as close to ¢ as desired.
This obviously will imply the lemma.
The crucial idea of the proof is the observation that for ¢ sufficiently large
x e, c,» implies that f ~ £ Indeed, for any i,

1%

AP = sup [T 17
{n}: 22 njenpl =gt pl i1
12
= sup 1—[ [p(n) ﬁ)]nllé‘"ﬂl
{"} T nfenp) =1 i=1

1281

sup [TLp™(B:)I™
{m.} T my =gy i=1

< [pwm, Jerien, (3.8)

Using the fact that by assumption for any y € €, ¢(y) contains only letters in %, in
a similar way we obtain for any y € €,

1IN

||
| fin (FP ) 2 inf [T 178 (oo
{3 20 mlemp) = jgntty) =1

. 1&gty
= | min p®(y)
ve¥

> [pm, i -a (3.9)
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On the other hand

- 12
|A(f® (x)) — £(f ™ (x)] £ const. sup 112
{n}: Y12 nmilenpi] < |ent1pl i=1
é const. [pggx]lénﬂﬁ( — infg, .4|E"B3

< [ph QA —n, (3.10)

where k is some strictly positive constant. Here we have used that

&gl =3 &Ml £ Km{g( [ Ll (3.11)
ach ae
and
ﬂlrg] [&"Bil = ;35 [Earl . (3.12)

Moreover, for primitive substitutions (see e.g. [1]), there exists a finite constant
b such that

‘5n+ 1O(|
< b0 +r,, uniformlyin oe., (3.13)

Y . S
" - lnfaed(éna| -

where r, converges to zero exponentially fast as n1 co. In particular, (3.13) is
uniformly bounded from above by some constant 1/x, and for n sufficiently large, it
is bounded from below by a constant § > 1. The uniform upper bound then implies
the last inequality in (3.10). For ¢ sufficiently large, the constant in (3.10) can be
bounded by an arbitrarily small power of [p),7/¢""'#I, and thus it can be absorbed
in x.

Putting together (3.8) and (3.10), we get for all f; € # the upper bound

LA S TSP+ AP ) = £ X)]
< [P, + [pm, qie A =0
= [ (L + [pG] — =AYy . (3.14)
Thus
PUTI() S Pl + o] ¥

e SRy
|&"+ Bl

(m) €™ Bl (m) K1 Byt
< [p{, ]t + (nlo e PLol 1°4)

< o0, exp {

<[P, (3.15)
where we have used the lower bound on p{), implied by (3.8), and the uniform
lower bound on (3.13) given by 6. We have also readjusted the constant x in the last
line to absorb the In [p{),] in the exponent. Since the bound in (3.15) is uniform in i,
the last line in (3.15) is an upper bound for p{%." 1), In much the same way we obtain
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a lower bound on p®*V (y) for y € %, namely
1
pG) 2 [t <1 — [pfgh] ~ =97
= [p™, ]t~ &= (nLpi 3¢ M p 3%~ 941 + )
2 [p ]l e, (3.16)

Here we assumed that ¢ is smaller than x (since x is some absolute constant that

depends only on the trace map, we may always choose ¢, for instance, smaller than

x/2), and t may be chosen as ¢~ *~99/2 (note that the second inequality in (3.16)
2

uses that for a >0, e™* < 1 —a + 5’2— <l—all —7),ift2 ‘5’). Putting (3.15) and

(3.16) together, we get that

min p®*V(y) = [pGi V] meme oAt (3.17)
yEF
and
Min e, 'of N
[mig; p"‘“’(v)] > Ml —s -0 o) (3.18)
Ve

as claimed above and the proof of Lemma 3.2 is completed. <

Corollary 3.1. Let ¢ and ¢ > 2 and nq be chosen such that the conclusion of Lemma
3.2 holds. Then, for all n = 0,

Uy, on < int%, . (3.19)
Moreover, defining (for a given choice of ¢, ¢ and ny)
U= \) Usen» (3.20)
we have that
U< . (3.21)

Proof. By Lemma 3.2 we have that if x e @Z,C,,,, then for all m = n,

. 1€™1
m 3 m m s m aeﬁlém Imm,ﬁ, ™yl
£ (91 2 min ([p™ () ]¢™) = min ([p™ ()] = ")
ye® ve¥€

el

> C:r”uiz;ulé"'“i =c> 2 (322)

which by definition of %, proves that 027“,,, < %,. But since the sets JZ;,C,,, are
manifestly open, they are also contained in the interiors of the sets %,. The final
conclusion (3.21) is then obvious from the definition (3.20), which proves the
corollary. <

Proposition 3.1. Suppose ¢ is semi-primitive. Then x € %° implies that for all B; € %,

1
1&" Bl

lim sup In|f™(x)] <0. (3.23)
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Notice first that if p{), < D’ " for some n-independent constant D that may be
chosen as large as desired, then a trivial estimate similar to the one used in
obtaining the upper bound in the proof of Lemma 3.2 shows that there exists, for
any m, a constant Dy, depending only on D, m and f, such that

phax" = DY (3.24)

Proof. Proving the proposmon is equivalent to proving that lim sup,;,, pim. < 1.

On the other hand, if p), > D? ", with D chosen sufficiently large, we will prove
that there exist k, k" and > 0, (independent of n) such that

PRt < [ (3.25)

Before proving (3.25), let us show how (3.24) and (3.25) imply the proposition. Let
us fix D and m = k + k’. Obviously, to prove (3.23), it is enough to show that for
any 1 < ny < m, we have that

listup plhotim) < 1, (3.26)

Now by (3.24) and (3.25) we get that for any n,
ple™ < max (D77, [phar] '} (3.27)
and iterating this
pus ™ <max {DY7, DY, [pha] T, L
plnodim) < max (DY, DY IO Dy [plra) 1o
(3.28)

As a matter of fact, depending on whether 6™ is smaller or greater than (1 — J)
the last line in (3.28) is bounded by either max{D{ ™", [p®)]* -} or
max {Df (179" [plo)]1 9"} Obviously, whatever D, or pﬁ,’,’;’,{, this bound con-
verges to one as i foo, proving (3.26) and hence (3.23).

To prove (3.25) we proceed in two steps: First, we use the fact that ¢ is primitive
on % to show that there exist k and ¢’ > 0 such that for all n,

max PR S [pm ™ (3.29)

Then we use this inequality together with the second condition from the
definition of semi-primitivity to show that there exist k" and é > 0 such that (3.25)
holds.

Let us now prove (3.29). For each ;€ 4,

) =fE ("), (3.30)

where f is a polynomial s.t.

d(fF) = |&Bi] (3.31)

and

d(f® —f0)y <& -1, (3.32)
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so that as in the proof of Lemma 3.2,
| F0(FM(x)) — F% (£™(x))] £ consty [pr), 1" Al = minaes €]
<[p®, ]Ié"”ﬁ.-l (1=%) , (3.33)

where 1 > K > 0 depends only on k, prov1ded [p("g ]'5"“”*' is sufficiently large,
which is guaranteed by the condition p{"), > D°". In particular, & can be chosen
such that (3.33) holds for all 0 < k < m.

Now, to prove (3.29), notice that, since x € %, there exists y € ¥, such that either

£ = ¢y (3.34)
with ¢; < ¢ (recall (3.13)) or
£ ClIET < Lot~ (3.35)

Now choose k such that ¢*y contains all letters in € (and in particular 7) so that

1%]
|78 (Fm )] < sup [T 1155, <] i)l

{nd: ZZ, mieml = 1yl — gl =1
< [pi]
= Lol e, (3.36)
Since |E"F| = k|E" %y, uniformly in y, § € 4, this yields
Y

|FO (M) < [, ] 710 = xe) (3.37)

which together with (3.33) gives (3.26).
Finally, we choose k’ such that for all §; € 4, ¢* p; contains a letter, say 7, from
%. Then, for all ;€ 4,

én+k

— 1"l [pg:;x](l — &)<l

Cn+k

12|

|FER(f )] < sup [T 179 (£ )
{n}: D02 mlem il = R B | — fenthy) i=1

x| fif) (S x))]
ntk+kp ) gntks _ n+ks
< [p:{nglé Bil = 1€ [pﬁ,’,‘;x](l )& )

< [pm), ] il = aiemts (3.38)
from which (3.25) follows as before. This concludes the proof of the pro-
position. <

Remark. Proposition 3.1 provides us with a nice dichotomy: for substitutions with
semi-primitive reduced trace maps, for any initial condition x, either all compo-
nents of f ™ (x) diverge in absolute value exponentially fast with the same rate, or no
component grows exponentially fast. To prove this it was crucial that for primitive
substitutions the lengths of the words |£"a| grow with n exponentially fast with the
same rate, i.e. |£"a| ~ 0", where 0 is the largest eigenvalue of the substitution matrix
(see e.g. [1, 14]).

Our next task will be to show that — under some extra conditions — the
Lyapunov exponent will be zero if E € & (%)°. This is the contents of
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Proposition 3.2. Suppose f satisfies the assumptions of Proposition 3.1. Assume
further that there exists k < oo such that *0 contains the word BB, for some B e 4.
Then E € & (U Y implies that

y(E, v) = lim —lln | Tew™) || =0. (3.39)

ntool

(Here u™ denotes the word consisting of the first n letters of the substitution sequence
u=£&°0)

Proof. We show first that

lim —— In || TE(£"0)|| = 3.40
nToolé"Ol | Te(E"0)| = (3.40)
Now let us denote
1
RY), = max || T® (o) [|7e71 - (3.41)
aesd

Using the Schwarz inequality, one finds that
ITE D)) < [Raae 1 (3.42)
Now choose k such that £*0 contains S, for some f§ € 4, and use that
(TP(B)? = xP (B TP (P — 1, (3.43)

where by Proposition 3.1 lim sup, o | x{(8)|1/¥"#! < 1. Thus

1]
178 9@ < [x (B sup [T 78 (o) I
In} Smleral = |67 el — &) =1
1]
+ sup [T IT ) )™
(n) Tmlgra = 1€ kel - 2] i=1
S [Ryp ] (3.44)

from which (3.40) follows as the analogous statement in Proposition 3.1.
From (3.40) one obtains (3.39) just as in [11]. <

Remark. Note that the condition in Proposition 3.2 that f € 4 is not very restrict-
ive. For, if some other word, say w, appears as ww in u, one may always extend the
alphabet # to include w and study the corresponding trace map.

Proposition 3.2 provides in fact two pieces of information: First it shows that
the Lyapunov exponent vanishes on & (). However, this also implies that if
Eea(H,), then x{” e U. This is 1mp11ed by the general fact that for Schrédinger
operators the Lyapunov exponent is strictly positive if E is outside the spectrum
(see, e.g. [22]). This allows us to prove

Proposition 3.3. Suppose H, permits a trace map satisfying the assumptions of
Proposition 3.2. Then E € o(H,) if and only if y(E, v) =
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Proof. To prove the proposition, set
O = {E|y(E,v)=0}. (3.45)

We have just seen that &(%)° < ¢ while in general O = o(H,). On the other ‘hand,
Lemma 3.1 shows that o(H,) = (&(%))‘, while by Corollary 3.1, (%) = &), so
that finally we have the chain of inclusions

E@Y < O c o(H,) < EU) < E@UY (3.46)
which clearly implies the equality of all these sets and proves the proposition. <

Theorem 1 is now a direct consequence of the following general theorem that
was proven in [117:

Theorem 2. [11] Let H, be an operator of the form (1.1), where V is a non periodic
potential that takes only finitely many values. Let (2, T) denote the topological
dynamical system where € is the closure of the set of translates of the sequence V, and
T the shift operator. Assume that V, is aperiodic and (2, T) permits a unique ergodic
T-invariant probability measure p. Then, if ¢(H,) = {E|y(E, v) = 0}, o(H,) is sup-
ported on a set of zero Lebesgue measure. In particular, o(H,) has no absolutely
continuous component.

This theorem is in fact a consequence of a lemma of Kotani [18] which states
that for aperiodic potentials that take only a finite number of values, the set of
energies for which the mean Lyapunov exponent (where the mean is taken over the
hull 2 with respect to the T-invariant measure y) vanishes is of Lebesgue measure
zero. Using a result of Herman [23] one can then show, along the lines of a proof of
Avron and Simon [24] in the case of almost periodic potentials, that under the
assumption of unique ergodicity the sets on which the Lyapunov exponents for
different elements in the hull vanish may differ only by sets of zero Lebesgue
measure. The detailed proof of this theorem can be found in [11] and will not be
reproduced here. The assumption of unique ergodicity is satisfied for substitution
sequences based on primitive substitutions. The proof of this result is rather
elaborate and may be found in the book by Quéffelec [1]. Therefore, Theorem 1 is
proven. <O

Theorem 1 shows that for substitution sequences satisfying our hypothesis, the
spectrum is manifestly different from both periodic (absolutely continuous spec-
trum) and random (dense pure point spectrum) potentials. However, in the exam-
ples more precise results were proven in that also the existence of eigenvalues could
be excluded. In our general setup we can only exclude this possibility under
a simple supplementary hypothesis:

Theorem 3. Suppose the hypothesis of Theorem 1 are satisfied. If in addition there
exists ng < oo s.t. £"0 = (o) EM(vo)w, where yo €€ and we L* and m are
arbitrary, then the spectrum of H, is purely singular continuous and supported on
a Cantor set of zero Lebesgue measure.

Proof. The basic idea of the proof was used already in Siit6 [6] to obtain the same
result for the Fibonacci sequence. Namely, note that under our assumption for all
n ._2_ Ro,

T 0) = T¢ " (@) Tg ™" "™ (yo) T ™™™ (o) , (3.47)
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and therefore T "™*™(yo) and TJ "*"™(ypy)* are transfer matrices over
|gmmnotm)y | and 2|E™ ot ™)y | sites, respectively. Now, (2.7) implies (see e.g. [6])
that for any normalized vector ¥ € R?,

1 - —n m n—n m
EémaX{H T~ ™ (o) YL e TR~ ™ (o) | T ™™™ (o) I } . (3.48)

To use (3.48), we only need the following

Lemma 3.4. Let y, € € be any word such that the word y, € o/ * contains the letter 0.
Then, for all E € o(H,) there exists a sequence of integers n; tending to infinity such
that for all i, |xI™(B)| < 2.

Proof. As we have stated at the beginning of this section, any letter y, satisfying the
assumptions of Lemma 3.4 may be used to define the set %, and in each case,
&) = o(H,), and thus does not depend on the chosen letter. The conclusion of
the lemma is then obvious from the definition of # together with the fact that the
sets &(%,) are open. <

Let now Eeo(H,) and let ¥, be a solution of (2.1), i.e. a solution of the
Schrodinger equation. Let n; be the sequence given by Lemma 3.4. Assume that
Y:(1) + 0 (otherwise, of necessity, ¥ ;(0) will be nonzero, and the discussion below
can be repeated with n; replaced by — n;). Then

0

i 1
1¥els 2 3, max {| Pe(1€"BDIZ 1 ¥e(28™BD 17} 2 D 2l Pe(D)|? = o,

i=1

(3.49)

which proves that  is not in [*(Z) and thus that E is not an eigenvalue. But since
this holds for all energies in the spectrum, the theorem is proven. < <&

Remark. The proof of Theorem 3 implies the stronger result that for all energies in
the spectrum, no solution of the Schrédinger equation tends to zero at both plus
and minus infinity.

Remark. The hypothesis in Theorem 3 is clearly not necessary. The period doubl-
ing sequence provides an example where the hypothesis does not hold but the
spectrum is still singular continuous. This is also true for the Thue-Morse sequence
[10, 117, where, however, an additional symmetry allows to use essentially the same
argument. We feel that in all cases where the hypothesis of Theorem 1 hold, the
spectrum should be singular continuous.

IV. Examples

In this final section we consider some specific examples, in fact the same ones as in
[14]: the Fibonacci sequence, the Thue—Morse sequence, the period-doubling

sequence, the circle sequence, the “binary” and “ternary”, “non-Pisot” sequences
and finally, rather as a “counter-example,” the Rudin—Shapiro sequence.
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In all examples (except Rudin—Shapiro) the alphabets .o/ will consist of at most
three letters that we denote by a, b, c. For the corresponding traces (that we identify
with the elements of %) we will use the simplified notations

x=trTgla), y=trTgb), z=trTg().
u=tr Tg(a) Tgb), v=trTgb)Tg(),
w=tr Te(a)Tg(c), r=tr Tg(c) Te(b) Te(a) . 4.1)

1. The Fibonacci Sequence. The Fibonacci sequence is the fixpoint of the substitu-
tion & on two letters, a and b, defined by

a—&a) =ab, b—Eb)=a. 4.2)

The substitution & is primitive, since £2(a) = aba and ¢2(b) = ab both contain
all the letters of the alphabet. Using (2.7) the reader verifies easily that a trace map
fis found as

X—=>U y—oX, U—>XU—Y. 4.3)
Thus the reduced trace map f~ is then
Xou y-oXx, U-—Xxu. 4.4)

Obviously, (4.4) may be viewed directly as the substitution ¢, defined in Sect. 2,
acting on the letters x, y, u. This substitution is semi-primitive, since, with
€ = (x, u),

(i) ¢ maps % into ¥* and ¢*(x) = xu and ¢*(u) = uxu both contain all the letters
of 4.
(ii) ¢2(x) contains x and u, ¢*(y) contains u and ¢*(u) contains x and u.

Moreover, since 0 is given by a, €30 = abaab and thus contains the square of the
word a.

Therefore all the hypothesis of Theorem 1 are satisfied and then the spectrum of
H, is singular and supported on a set of zero Lebesgue measure.

Moreover, ¢*0 = abaababa begins with the square of the word aba. Now, aba is
not a word in %, however, following the remark after Proposition 3.2 we may
enlarge # by including the letter ¢ = aba. A simple calculation shows then that
¢(t) = xu? and this extended trace map is still semi-primitive. Thus, Theorem
3 implies that the spectrum of H, is purely singular continuous.

This of course recovers here a result already proven in [6] and [7].

2. The Thue—Morse Sequence. The substitution this time is defined by [9]
a—&a)=ab, b—-E(b)=ba. 4.5)

Obviously, the substitution is primitive. Notice that both the letters a and b can
be taken as “0” and that there are therefore two fixpoints £®(a) and & (b).

Using again (2.7) with 4 = B, we can find the following trace map f:
X—ou y-ou,

u—xyu—x*—y*+2, (4.6)



62 A. Bovier and J.-M. Ghez

and the corresponding reduced trace map f and the substitution ¢ are
X—u, y—-u u—->xyu. 4.7

This time, the substitution ¢ is even primitive since ¢?(x) = $*(y) = xyu and
¢*(u) = u*xyu contain all the letters of %.

Finally, choosing a as 0, £2 a = abba, which contains the square of the word b.
Therefore Theorem 1 holds and thus the spectrum H, is singular and supported on
a set of zero Lebesgue measure.

As we noticed in the last remark of chapter 3, although we cannot apply
Theorem 3, the spectrum of H, is purely singular continuous, as was proven in [10]
and [11].

3. The Period-Doubling Sequence. It is defined as the fixpoint of the primitive
substitution

a—E@a@=ab, b->¢b)=aa. 4.8)
The trace map here is
Xx—u y-x>-—2,
U—->xu—xy—u. 4.9
¢ is given by
X—=u y-x3, u-xiu. (4.10)
With € = (x, u) one checks that it is semi-primitive, since

(i) ¢ maps % into €* and ¢*(x) = x?u and ¢>(u) = u?x>u.
(i) ¢*(x) contains x and u, ¢>(y) contains u and ¢2(u) contains x and u.

Finally, 20 = abaa contains the square of the word a and thus Theorem
1 applies. However, the hypothesis of Theorem 3 are not verified, although it was
proven (through a rather cumbersome calculation) in [11] that the spectrum is
singular continuous. Note however that the “inverted” sequence (obtained by
setting £(a) = ba) satisfies the hypothesis of Theorem 3.

4. The Circle Sequence. The circle sequence is associated to the substitution & on
three letters

a— &(a) = cac, b-E(b) = accac,
¢ — &(c) = abcac . 4.11)

This substitution has no fixpoint, since it does not posses a letter “0,” but it has

a cycle of length two and the twice iterated substitution has two fixpoints.
Using then the identities (2.7) and (2.8), we find an alphabet % =

(a, b, c, ab, bc, ca, abc), identified with % = (x, y, z, u, v, w,r), and the following
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trace map f,
X —szw—x, yozwl—xw—z, z-owr—y,
u—(@Zw—x)(zw? —xw—z)—w,
0= (zw? —xw —2)(wr —y)—yz + v,
w = (wr — y)(ew — Xx) —u,
r = wr — y)(w — x)((zw? — xw — z) — w)
+ w2 —r — yw — u(zw? — xw — z) . 4.12)
The reduced trace map f is
X —zw, y—zw? z-owr,
u—z2w3, v ->zwr, w - zw?r,
r—z22whr . (4.13)
The associated substitution ¢ is again semi-primitive with € = (z, w, ), since
(i) ¢ maps € into €* and ¢%(z) = zw?rz>w*r, ¢*(w) = wr(zw?r)*z2w* and
G2(r) = (wr)? (zw?r)* 22 whr.
(ii) For any f € %, ¢*(p) contains z, w and r.
Moreover &2c begin with the square of the word ca € 4 so that both Theorem
1 and 3 apply and show that the spectrum is singular continuous in this case, too.
5. Binary Non-Pisot Sequence. This sequence corresponds to the substitution
a - &@a)=ab, b —Eb)=aaa 4.14)
and the trace map
x —u y-x3-3x,
u—x3u—x%y —2xu+y (4.15)
with reduced trace map
X -u y-x3, u->xu. (4.16)

Here € = (x, u) and since ¢2(x) = x3u and ¢(u) = x*u>, we see that the substitu-
tion ¢ is semi-primitive. Moreover, £0 = abaaa contains the square of the word a,
so Theorem 1 applies.

Theorem 3, however, does not apply in this case (although again, as in the case
of the period doubling sequence, the inverted sequence satisfies the hypothesis of
this theorem) and we do not know for sure whether the eigenvalues are present in
this example.

6. Ternary Non-Pisot Sequence. This sequence corresponds to the substitution
a—-E&a=c b-oéb)y=a, c—>Ec)=bab. 4.17)

As in the case of the circle sequence, this substitution does not possess a
fixpoint, but a cycle of length three, whose three elements can be considered as
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substitution sequences. With the alphabet 4 = (x, y, z, u, v, w), we can find the
trace map f

X =z, y—X, Z—oywu+x,
Uu-w, v-ou>—2, wouw+w—xz, (4.18)
and the reduced trace map
X =z, y-oX, Z-oyu,
u—-w, v-oul, wou. 4.19)

The substitution ¢ is semi-primitive with € = (u, v, w) since ¢>(u) = wuuvuv,
¢°(v) = uow?uow? and @°(w) = wowu?wu? and for any f € %, ¢3(p) contains u,
v and w.

Moreover, £3a = £9b = E4c = babacabab begins with the square of the word
ba. Therefore, by Theorems 1 and 3, the spectrum of H, is purely singular
continuous.

7. The Rudin—Shapiro Sequence. The Rudin—Shapiro sequence [17] is defined on
an alphabet of four letters. The substitution rule is

a—-¢@@=ac, b-{l(b)=dc,
c>éc)=ab, d—E&d)=db. (4.20)

The final example serves to illustrate that even the hypothesis of Theorem 1 is not
always satisfied. It has been remarked in different contexts (see [12]) that the
Rudin-Shapiro sequence has quite exceptional properties and that the analysis of
the spectrum of the associated operators eludes perturbative and even numerical
methods. -
Using the trace map computed by [20], we obtain a reduced trace map fon an
alphabet # = (x, y, z, w, s, t, g, r) (this trace map was obtained in [20] in a clever
way in order to stay with as few traces as possible. A straightforward derivation
would give a map on twelve letters which would share the same properties)

X =S, y-ot zZ-oL w-os,
S—>r, t—>q, q—>Xwr, r—oyzq. (4.21)

It is easy to notice that the two alphabets ; = (x, w, t,r) and €, = (), z, s, q) are
mutually exchanged by the substitution ¢ associated to f. This implies that ¢ is not
semi-primitive. Now, €; and %, are left invariant under ¢* and one might hope to
simply study the dynamics of the trace maps on the two sub-alphabets separately.
However, the subdominant terms in the trace map (which we have not written, but
see [20]) do not respect this invariance which makes it impossible to even adapt
the proof of Propositions 3.1 and 3.2 to this situation. So once again, the
Rudin-Shapiro sequence retains its mystery.
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