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Abstract. We present a classification of W algebras and superalgebras arising in
Abelian as well as non Abelian Toda theories. Each model, obtained from a con-
strained WZW action, is related with an SI(2) subalgebra (resp. OSp(1]2) superal-
gebra) of a simple Lie algebra (resp. superalgebra) 4. However, the determination
of an U(1)y factor, commuting with SI(2) (resp. OSp(1]2)), appears, when it exists,
particularly useful to characterize the corresponding W algebra. The (super) con-
formal spin contents of each W (super) algebra is performed. The class of all the
superconformal algebras (i.e. with conformal spins s < 2) is easily obtained as
a byproduct of our general results.
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1. Introduction

Lots of efforts have been done recently to detect and understand the infinite
dimensional symmetries which underly two dimensional field theories. A particular
role is played by Toda theories, since each of them possesses a W symmetry [1, 2].
More recently, it has been shown that in fact Toda models can be seen as
constrained WZW models [3]. One can say that such a property reinforces the
fundamental role of WZW models in the realm of conformal field theories. It also
provides a natural framework to compute explicitly the W algebras which then
appear.

In order to reduce a WZW model to a Toda one, some of the conserved current
components have to be set to constants or zero. It can be realized that, from a given
simple Lie algebra (or superalgebra) ¢, different choices of constraints can be
proposed, each of them giving rise to a different Toda model, to which will be
associated a W (super)algebra. Actually, to each such a Toda model corresponds
a (integral or half-integral) grading [4] of ¢ specified by a Cartan element H €%4. In
other words, ¢, which is chosen maximally non-compact, admits a vector space
decomposition:

9= %, with [H X,]=hX, forany X,e9%,. (1.1)
hetZ
As an example, the usual or Abelian Toda model associated to ¢ is obtained by
taking H as the Cartan generator of the principal SI(2) in the algebra (or superprin-
cipal OSp(1]2) in the superalgebra) 4.

For each such a grading H can be defined either a S1(2) [4-7] or an SI(2) ® U(1)
[8] (resp. OSp(1]2) [9, 10] or OSp(1]2) ® U(1)) sub(super)algebra of ¥ generated by
{Mo, M.} @®{Y}(resp. {Mo,M,F.}@®{Y})andsuchthat H= M, + Y. More
precisely, even when the U(1) part is not zero, the SI(2) (resp. OSp(1|2)) subalgebra
is sufficient to characterize the W algebra: one can then say that the different Toda
models in ¥ are classified by the different SI(2) (resp. OSp(1]2)) subalgebras of G.
However, interesting information on the structure of the corresponding W algebra
can be obtained when the Y generator exists. As will be shown below, a conserved
hypercharge can be associated to it, which may greatly simplify the Poisson
Bracket (PB) computation of the different primary fields constituting the W alge-
bra. The usefulness of the conserved hypercharge Y is illustrated to calculate the
PB of the algebra of spins 2, 3, 3, 1 first considered in [11, 12].

Once given the SI(2) (resp. Osp(1]2)) subalgebra of ¥, the conformal spin
content of the corresponding W algebra can easily be deduced, owing to the
existence of the so-called highest weight Drinfeld-Sokolov gauge [13], from the
decomposition of the -adjoint representation w.r.t. SI(2) (resp. OSp(1]2)). Since, as
mentioned above, the existence of a U(1) factor in 4 commuting with SI(2) (resp.
0Sp(1]2)) can help for the computation of the PB between W generators, it is the



502 L. Frappat, E. Ragoucy, and P. Sorba

determination of SI(2) @ U(1) (resp. OSp(1]2) @ U(1)) subalgebras in ¥ that we
plan to perform, as well as the reduction of the ¥-adjoint representation w.r.t. each
SI(2) ® U(1) (resp. OSp(1]2) ® U(1)) algebras.

Let us distinguish for a while the Lie algebra case (or bosonic case), from the Lie
superalgebra one. Much is known, owing to Dynkin, concerning the first point.
Indeed, the determination of the semi-simple subalgebras of a simple Lie algebra
has been considered by this author [14], and made explicit for algebras of rank up
to 6 by Lorente and Gruber [15]. We have added the determination of SI(2) ® U(1)
algebras and provided, by means of general formulae, the reduction of the adjoint
representation of a classical algebra ¢ w.r.t. each of its SI(2) @ U (1) subalgebras. In
particular, in each case, the construction of the defining vector from which can
immediately be deduced the gradation has been performed. Such a detailed study
of the bosonic case was necessary to complete the W algebra part, and also to settle
down some material for the super W case.

As already mentioned, in the supersymmetric case, when ¢ is a simple Lie
superalgebra, the SI(2) algebra is replaced by its supersymmetric “extension”
0Sp(1]2) [9, 10]. 1t is therefore the classification of OSp(1]2) @ U(1) subsuperalge-
bras in ¢ which is now of interest. Contrarily to the bosonic case, not very much is
known about the classification of OSp(1|2) subalgebras in a simple Lie superal-
gebra. Note that a first attempt in that direction can be found in [9], and also that
[10] deals only with Abelian super Toda models, in other words with the super
principal OSp(1]2) in a simple superalgebra. Hereafter, we explicitly achieve this
classification in a way which, we believe, is clear and allows a direct use. As in the
algebra case, general formulae for the decomposition of the fundamental and
adjoint representations of a simple Lie superalgebra with respect to OSp(1/2)
@ U(1) subsuperalgebras are given, and the (super) conformal spin content of the
super W algebras determined. In order to illustrate these results, and mainly to
allow a comparison with the extended superconformal algebras [16], tables are
constructed for superalgebras of rank up to 4.

2. W Algebras and (Half-)Integral Gradings

2.1. W Algebras in Toda Theories. It has been elegantly shown that, starting from
a WZW model, the action of which is S(g) and the fields g(x) (resp. superfields
g(x, 6)) belong to the group (resp. supergroup) G, and imposing some of the
components of the conserved (super) currents to be constant or zero leads to
a Toda model.

Let us, at this point, briefly fix some notations.

As far as G is a group, the WZW conserved currents read:

Jy=g"'0,9 J_=(0-9)97" 21)
with
0-Jy=0,J_=0. (2.2)

When considering a supersymmetric WZW model [10], a supergroup element
will locally be defined as:

g(x,0) = exp(¢'Bi + Y’ F;) , 2.3)
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where the ¢ (resp. y/) are bosonic (resp. fermionic) superfields, and the B; (resp. F;)
commuting (resp. anticommuting) generators in the considered finite dimensional
superalgebra 4. Then the corresponding supercurrents are:

J+=é_1D+g’ J—=(D—g)g_15 (24)

where ¢ differs from g by the change of sign on its fermionic generator part, the
bosonic ones staying unchanged. We note that the fermionic character of
D, =040, + 0o, implies the supercurrents to develop as:

J=WB + &F, 2.5)

the W' being fermionic and the @’ bosonic superfields.

The choice of the J components which are constrained to be constant with
respect to those which are put to zero naturally defines a grading (see 1.1) on the
(super)algebra 4. The simplest and most known example is the Abelian Toda
model relative to ¢. In this case the J components associated to the opposite of the
simple roots have constant values while those relative to the other negative roots
are put to zero. The grading is ruled by the generator H, sum of the Cartan
generators in the Cartan Weyl basis. The ¢ subalgebra 4, is exactly the Cartan
subalgebra of  in this basis, the simple root generators E ., form the % subspace
% . 1, and their partners E _, the subspace ¥ _; finally ¢, is constructed from the
positive roots and %_ from the negative ones.

As could be expected, imposing a set of constraints reduces the huge symmetry
provided by the Kac-Moody current algebra to a subset of quantities, polynomials
in the current components and their derivatives, which will constitute a W-algebra.
For example, the original conformal symmetry of the WZW model itself is broken
when constraints corresponding to the grading H are imposed, and in order to
construct the Virasoro symmetry for this Toda model a H dependent correction
term has to be added to the former one.

More precisely, the stress energy tensor reads [3]:

1
Ty=3TeJ? — TrHOJ (2.6)
when % is an algebra, and [10]:
Ty = StrG JJ + %JDJ) — Str(H-D2J) 2.7)

when ¥ is a superalgebra.
The determination of the other generators of the I algebra can be achieved as

follows.
If & is an algebra, one selects in ¥ _; a (constant) element M _ such that [3]

Ker(@dM_)n¥%, = {0} . (2.8)
Then one expresses J as:
J=M_+J._,, (2.9

where the variable dependent part J . _; belongs to ), %, with h > — 1.
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If ¢ is a superalgebra, then one picks up in % _ {,, a fermionic (constant) element
F_ with {F_, F_} = M_ # 0 such that:

Ker(ad F_)n%, = {0}, (2.10)
and one expresses J as:
J=F_+4+J,_;. (2.11)
Finally one has just to use the gauge transformations:
J—>gJg~' +(dg)g7 ", (2.12)
where g belongs to the local Lie groups generated by 4., or:
J—>gJg~' +(D-g)g™" (2.13)
in the supersymmetric case, to transform J into:
J'=#—+Zh:Wh+1(J)Xh with pu_ = M_ (resp. F2), (2.14)

where the W, (J) are gauge invariant polynomials generating the W algebra
associated to the Toda theory, and X, e%.

Note that the condition (2.8) expresses the non-degeneracy for h > 0, of the
operator:

adM _: gh'»gh—l . (2.15)

Then Drinfeld—Sokolov (D.S.) gauges can be used to determine a complete set
of gauge invariant quantities W .,(J). In the highest weight D.S. gauge, each
Wy+1(J) is “carried” by the highest weight X, of a given SI(2) subalgebra built
from M _.

The PB among W generators will be calculated from the PB:

{J°0x) J°(¥)}ep = i f20(x — x") J(x') + kn8,3(x — x') , (2.16)
when % is a Lie algebra and:
{J4X), I (X")}pp = i( — DAATEVfeb 5(X — X")J4(X")
+kn®*D,6(X — X'), (2.17)

when ¥ is a superalgebra. £° are the structure constants, #°° the scalar product and
k the central extension parameter of the Kac Moody (super)algebra; by [a] is
expressed the Z, grading of the generator 7%: [a] = O (resp. 1) if 7% is a commuting
(resp. anticommuting) generator (see [10] for more details).

Using (2.6) (or 2.7) one understands that W, ,(J) has a (super) conformal
weight 1 + h under Ty.

2.2. Properties of (Half) Integral Gradations. We have presented in [8] three
propositions establishing a correspondence between (integral and half integral)
gradings of a simple Lie algebra ¢ which specify Toda theories, and SI(2) ® U(1)
subalgebras of 4. The generalisation to the superalgebra case is straightforward,
replacing the SI(2) part by its “supersymmetric extension” OSp(1]2). Therefore, we
limit ourselves to enounce hereafter these properties.

Let H be a grading operator of a (super)algebra . Then:
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Proposition 1.

i) % being an algebra, any element M _ €% _ can be embedded in one of its SI(2)

subalgebra.
ii) ¢ being a superalgebra, any fermionic element F_e%_ with {F_, F_}
= M _ % 0 can be embedded in one of its OSp(1|2) subalgebra.

Proposition 2. Let M_ €% _, (resp. F_ €% _,,;). Then, it is always possible to write
H as:

H=M,+Y (2.18)

with M being the Cartan part of an SI(2) algebra constructed from M _ (resp. an
OSp(1]2) superalgebra built on F _), and the generator Y commuting, when non-zero,
with this three (resp. five) dimensional subalgebra.

Moreover, the SI(2) part constructed from M_ (resp. OSp(1|2) superalgebra
built on F_) is unique up to a conjugation by group elements generated from the
subalgebra ¥, = Ker(ad M _) N %,.

Proposition 3.

i) Let M_, My, M, and Y generate an SI(2) ® U(1) subalgebra of 4 with
M_€e€%_y and My + Y = H. Decompose 9, considered as a vector space, into
irreducible representations 2;,(y;) of this algebra, where y; denotes the eigenvalue of
Y on the SI(2) representation 9;,. Then

Ker(adM_)n%, = {0} iff |y;|<j; forany 2;(y:;)in¥ . (2.19)

i) Let M_, F_, My, Fy, M, and Y generate an OSp(1|12) ® U(1) subsuper-
algebra of 4 withF _ €% _,,, and Mo + Y = H. Decompose ¥, considered as a vector
space, into irreducible representations R;,(y;) of this algebra, where y; denotes the
eigenvalue of Y on the OSp(1]2) representation R;, = D;, ® D,—1,2. Then

Ker@dF_)n 9, = {0} iff|y;| <ji for any #;(y:)) in ¥ . (2.20)

In the following, we will call the condition (2.19) (resp. 2.20) a non-degeneracy
condition for ad M _ (resp. for ad F _). Of course, as the grades satisfy h; = j; + y;, one
must impose h; €37 in the % adjoint representation to have (half)integral grading.

These three propositions have to be completed by:
Proposition 4. The gradations H = My + Y and M lead to the same W algebra.

This last proposition has been proven in [7]. From the point of view of the
decomposition under SI(2) @ U(1), note that (2.19) ensures that the highest weight
of the SI(2) subalgebra are in the ¥ part of @ for both H = Moand H =M, + Y
gradations. This is in agreement with the “halving” used in [7].

We end this section by a property which characterizes the position of ¥ in .

Proposition 5. Let & be the commutant of the chosen subalgebra SI(2) (resp.
OSp(112)) in %. Then Y, when it exists, belongs to the commutant of the semi-simple
part €, of € in 4.

Before proving this proposition, let us first remark that, once SI(2) (resp.
0OSp(1]2)) is given, a necessary condition for Y to exist is the existence in the %-
decomposition w.r.t. SI(2) (resp. OSp(1]2)) of a D, (resp. By, = D) part.
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Now, let us remark that Y belongs obviously to the commutant € of the
subalgebra SI(2) (resp. OSp(1]2)) under consideration, but cannot be any element of
%. Note that a subalgebra of a simple Lie algebra ¢ is reductive, that is ¥ decom-
poses as:

¢=¢.0U1HS - --aUQ), 2.21)

where %, is a semi-simple Lie (super)algebra. The non-degeneracy condition
implies that any element of € reads as 2,(0), that is ¥ commutes with any element
in €. It follows that ¥ must belong to the U(1) @ - - - @ U(1) part commuting with
%,in .

2.3. Primary Fields of W Algebras. The spin of the W generators corresponding to

a given gradation H are obtained from the highest weights of the SI(2) @ U(1) (resp.

0Sp(1]2) ® U(1)) decomposition of the ¥-adjoint representation (DS gauge). Now,

we have to know whether the W generators are (super) primary fields under Ty.
(Super) primary fields satisfy the following Poisson bracket:

{Tu(x), Whs1(x" ) = (h 4+ 1) Wy 1(x)0:0(x — X') + 0W), 1 1(x")0(x — X') ,

(2.22)
1
{Ta(X), Whi12(X')}es = <h + §>ax5(X =X )YWy+1(X")
1
HOX = X)OWyr1(X') — 2Dx0(X — X)Wis12(X7) (2.23)
where we have used for the supersymmetric case the conventions
X =(x,0) and (X —X')=(0—0)d(x —x'). (224

Note that (2.22) corresponds to PB between fields and (2.23) between superfields.
We will say, in the former case, that W), has spin h + 1, whereas, in the latter case,
W+ 1), carries a superspin® h + 3. In fact, it is clear from the expression of T that
the only generators W), (resp. W, 1,2) which are not primary are those which
satisfy (H, X,> + 0, where <, ) is the ¥ non-degenerated scalar product and X, is
the generator of 4 carrying W), (resp. Wy ,2) in (2.14). This implies that X/, is
a Cartan generator, so that h =0 and W, = W (tesp. Wy41/2 = Wy») forms
a singlet representation of SI(2) (resp. OSp(1|2)). Actually, by linear combinations,
-one can always eliminate these non-primary generators, but one. Since for H = M,
all the W generators are primary (except Ty, of course), we can think of the
non-primary generator as carried by Y itself [7]. This is ensured by the equality

(CH YY) ={Mo+ Y, ¥>=(Y,Y>+0 if Y+0. (2.25)

We will call this (super) generator WY (resp. W1,). Note that because of its spin
1 (resp. superspin %), the PB of Ty with W} (W} ;) differs from the PB of T with
a (super) primary field only by a central extension term, corresponding to a second
order derivative (resp. fermionic derivative D) of a (super)delta distribution.

! Note that the two components of the superfield W, ,, are of conformal spins & + } and h + 1
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Thus, all the W generators are primary with respect to Ty, except Ty itself and,
when Y =+ 0, a spin 1 generator W7 (resp. a superspin 5 generator W{,) carried by Y.
In that case, W} (W1 ,) differs from a primary field (resp. superfield) by a central
extension term.

2.4. Classification of Constrained WZW Models. The above properties suggest
a way to determine all the different (super)Toda models associated with
(half-)integral gradings of a simple Lie (super)algebra ¢, and their corresponding
(super) W algebras, namely:

i) Classify all the SI(2) (resp. OSp(1]2)) sub(super) algebras of .

ii) Add to each of these simple sub(super)algebras a commuting U(1) factor
such that in the decomposition of the ¥ adjoint representation into SI(2) @ U(1)
representations Z;,(y;) (resp. 0Sp(1]2) @ U(1) representations %;,( y;)), the follow-
ing conditions hold:

il <ji i=1,...,n, (2.26)
1
ji+ v €Z (integral grading) j; + y; EEZ (half-integral grading) . (2.27)

Note that the y; values are naturally restricted when calculating the SI(2) ® U(l)
(resp. OSp(1]2) @ U(1)) decomposition of the adjoint representation of ¥ coming
from the product of fundamental representations already decomposed into
SI(2) ® U(1) (resp. OSp(1]2) @ U(1)) representations: this will be made explicit in
the following.

iii) Then to each such an SI(2) ® U(1) (resp. OSp(1]2) @ U(1)) sub(super)alge-
bra of ¢ satisfying (2.26) and (2.27) there will correspond a classical (i.e. PB)
W algebra generated by the n elements Wi 41, ..., Wy, 11 (tesp. Wi, s1/2, - . -,
Wi, +1;2) of conformal (super)spin under the (super)Virasoro algebra defined in
26,27 hy+1,...,h,+ 1 (resp. hy +3, ..., h, + %) with h; given by

hi = yi +ji (2.28)

as a consequence of a Drinfeld—Sokolov highest weight gauge [3, 13].
iv) Reconstruct the grading H from the SI(2) @ U(1) (resp. OSp(1]2) @ U(1))
decomposition. Varying Y for a fixed SI(2) (OSp(1|2) super)algebra will give all the

isomorphic gradations.
v) Deduce informations of the PB from the SI(2) ® U(1) (resp. OSp(1]2)
® U(1)) reduction.

These five steps will be made explicit in the following. In Part I, we will focus on
the algebras case, while in Part II the previous results will be used to state the
superalgebras case.

Part I. W Algebras Built on Lie Algebras

3. The Different S/(2) Subalgebras in a Simple Lie Algebra %

The classification of SI(2) subalgebras of a simple Lie algebra ¢4 has been achieved
by Dynkin [14]. His techniques can be summarized as follows:
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Any S1(2) subalgebra in 4 can be seen, up to a few exceptions occurring in D, and
Es .5 algebras?®, as the principal SI(2) algebra of a regular % subalgebra.

-2
In the D, case, one has to add [nT] SI(2) subalgebras, each of them being

a principal subalgebra of the singular ones:
B;®B; withi+j=n—1 andi=%j. 3.1)

For 4 = B, and D,, n > 3, the diagram O—O-—O must be considered
twice, one been related to an “algebra As,” and the other one to “D3.” Indeed, the
% subdiagram

€ — €1 €i+2 — €i+3

O O O

€i+1 — €42

defines a system of simple roots for “A3,” while the subdiagram

i+2
provides a system of simple roots of “D3.” In order to convince the reader, we
remark that the fundamental representation of D, reduces with respect to 45 as
2n =4+ 4 + (2n — 8)1, and with respect to D3 as 2n = 6 + (2n — 6)1.

Agaln B, and D, admit two different types of 24, subalgebras associated to the
diagrams

e —e; e3—ey eg—e; e te
and

The fundamental of D, reduces with respect to the first algebras as 2n =
2420 +(0, 2+2)+(2n—38) (0,0) and with respect to the second as
2n =(2,2) + (2n — 4)(0,0). We can note that as well as in case 1), it is the
bifurcation appearing in the (extended) DD of (B, ) D, which is responsible for these
doublings, the first reduction being associated with “24;,” and the second with
‘6D2.7’

4. SI(2) Decompositions of Simple Lie Algebras

Given any SI(2) subalgebra of a Lie algebra ¢ in the 4, B, C, D series, we need to
know the decomposition of the adjoint representation of ¥ with respect to this
three dimensional subalgebra. For such a purpose, we will first compute the SI(2)
decomposition of the (1, 0, 0, . . ., 0) fundamental representation of 4. We will
deduce the SI(2) decomposition of the ¥ adjoint representation by computing the
product of the fundamental representation by its contragredient one: for the A,
series, the adjoint representation is given by this product, once throwing away
a trivial representation, while in the B, and D, (resp. C,) cases, one has to select the
antisymmetric (resp. symmetric) part.

> We will not discuss the E , 4 cases: see [15]
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4.1. The 4 Fundamental Representation with Respect to a SI(2) Subalgebra.

4.1.1. Sl(n) case. Any SI(2) subalgebra is the principal subalgebra of a (sum of) SI(p)
subalgebra(s) in Sl(n). For each SI(p) subalgebra will correspond a Z,_1y
representation of SI(2) in the n of Sl(n), which will be completed with singlets.

For instance, if we look at the SI(2) principal subalgebra of SI(p) @ Sl(g) in Sl(n),
we will have

=Dp-12@ Dg-12@ M —p— 9% . (4.1)

4.1.2. Sp(2n) case. An SI(2) subalgebra is the principal subalgebra of a (sum of)
Sp(2p) subalgebra(s), SI(2)* subalgebra(s), or Sl(g)* subalgebra(s). The superscript
refers to the Dynkin index of the SI(m) subalgebra considered: it is 1 when the SI(2)
subalgebra is constructed on a long root, and 2 in the other cases. The Sp(2p)
subalgebra contributes to the fundamental representation via a Z,_() SI(2)
representation, while the Si(q)* (resp. SI(2)*) leldS the Dy—1y2 + @(q 1y/2 (resp.
2,,,) representations. The 2n representation is then completed by singlets. For
example, for the decomposition of Sp(2n) under the principal SI(2) of
Sp(2p) ® Sl(q)* @ rSI(2)*, we have:

=D 1® (D4-1)2® g(q—l)/z) DrP1,®@2n—2p—29—-2nD,. (42)

4.1.3. SO(n) case. When SI(2) is principal subalgebra of either an SO(2p + 1) or an
SO(2p + 2) one, the n fundamental of SO(n) contains a &, representation. In the
case of an Sl(q), g + 2, subalgebra, then it is the sum 2,_ 1y, ® D (4-1)2 Which
shows up. For g = 2, one must distinguish the case SI(2)* (long root) which leads to
D112 ® Dy, from the case SI(2)* (short root) leading to Z;.

Finally, we have mentioned in Sect. 3 the existence of two SI(2) @ SI(2) and two
Sl(4) = SO(6) algebras. The corresponding decompositions are:

2(91/2 ® 91/2) @ (n — 8)Z,

SI2) @ SI(2) { G @0 3, , (4.3)
h=9;3,® @3/2 @ (n— 8)90
S0 {3 5T 9 9

We recall that for each SO (2n) subalgebras, there exist SI(2) algebras related to the
singular embeddings SO(2k + 1) ® SO2n — 2k — 1), 0 < 2k < n.

4.2. The % Adjoint Representation with Respect to SI(2) Subalgebras. To achieve
the SI(2) reduction of the adjoint representation for any simple Lie algebra 4 from
the knowledge of the fundamental representation, the following formulae are
especially convenient:

(DX DIr=Don-1DDon-3® DY, nel, 4.5)
(gn—(l/Z)xgn—(l/Z))A =Dop-2®@D3y-a® DYy nelk, 4.6)
(@nxgn)s=92n®92n—2@”‘@90 neZ, (47)

(Du-1)2) X@n—am)s =Don-1 P23 DY, nek, 4.8)
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the subscript (A) S standing for (Anti-)Symmetric part of the product. We have also,
form, peZ and j, k e} Z:

(n2) x (2} =", x 2), 0™ D3, x 3,
=m(9,-x@,.)A@im2——l—)(@jx9j), (4.9)
(n2)x(m2)}s =" @, x 2) 0 """ D@, ),
=m(@,-x9,.)s@ﬁ(m2—_l—)(@jx@,.), (4.10)
{(m@j) x(pDy) ® (p%s) x (mgj)}A = {(m@j) X (p2y) ® (pDy) (mgj)}s
=mp(Z;x D), @.11)

where m%; stands for the direct sum of m representations ;.

5. SI(2) ® U(1)y Decompositions of Simple Lie Algebras

5.1. Sl(n) Algebras. We start by considering the case ¢ = Sl(n), which has already
been studied in some detail in [8]. Let us recall that, for such an algebra, all the
SI(2) representations of equal dimension &; have the same U(1)y eigenvalue y; in
the n fundamental representation, so that a general decomposition reads

n=@n;Z;(y;) with s all different , (5.1)
Jj

where n; is the multiplicity of £;. One will have to impose to the product
nxn — 9,(0), the non-degeneracy condition | y| < j for any representation Z;(y)in
the ¢ adjoint representation. Note that the condition ye3Z, which ensures
a (half-)integral gradation, has to be imposed only in the adjoint representation,
and not in the fundamental.

As an example, consider the SI(2) which is principal with respect to 4, in 4, +,.
Then

1
E_+_3=@n/2(J’)@2@0<—n; Y>’ (5.2

= +1
"+3=@n/2(—,\’)@2@o<n ) ,V>, (5.3)

where we have, of course, imposed the traceless condition for Y. It follows:

n+3xn+3—D(0) = <@@j(0))@2.@,,,2<” ; 3y>
j=1

n+3

® 2@n/z< - y> @ 4Do(0) (5:4)

. .. |In+3 3
with the condition y‘ < g and y' = ! yEe3Z.
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5.2. SO(n) Algebras. Now, let us turn to the 4 = B, or D, case. These algebras
have a real fundamental representation, so that if &;(y), y & 0, appears in the
decomposition, then Z;( — y) must also be present with the same multiplicity. To
get the adjoint representation, we have to improve the formulae (4.5-4.11) by
specifying the U (1) dependence. Using the reality of the adjoint representation, one
is led to

{[n2,(y) ® nD;( — )] x[nD;(y) ® nD;( — y)]1}a
=n*(2;x 2;) 0) ® ((n2;) x (nZD))a (2y)

@ ((n2;) x (nZ;)a (—2y) forj G%Z and neZ (5.5)

where ((n2;) x (nD;))a is computed via (4.9). This formula shows that from a term
n;(y) in the fundamental, we will always get a term 9,(2y) in the adjoint, except if
n = 1andjis integer. Moreover, when n = 1 and j is integer but non-zero, there will
always exist a 2( & 2y) term in the adjoint representation. The non-degeneracy
condition | y| < jfor 2 ( y) will then lead to set y = 0, except forn=1andj 1nteger
where, forJ + 0, we will have |2y| <1 and 2y eiZ, thatis y=0,or y= +32, or
y= %3

Thus, for the orthogonal series, the only SI(2) representation with non-zero U (1)
eigenvalues are those which appear in the fundamental representation as n(2,(y) ®
2,(— y)) with n = 1 and p integer. Moreover, for p + 0, we have |2y| = 0, or %, or 1.

Note that these restrictions are necessary but not sufficient conditions on y: we
still have to impose the non-degeneracy condition in the % adjoint. To be complete,
let us add the formula:

{2[n2,(y) ® nZ,( = »)I1x[PZu(y") ® pZil — ¥')1}a
=(Dux2,)(y + V)@ (ZuxDp)(—(y + ")
D(Dnx D) (y = V) B (D x D) (—(y— V). (5.6)
As an example, we look at the principal SI(2) of SO(2n — 1) in SO(2n + 1):
2m+1=2, 100 Zo()) @ Zo(—y)=2n+1,
2n+ 1x2n+ Da = (D2n-3@ D20-1® - ® D1 ® Z0)(0)
DLw-1()) @ Zn-1(—), (5.7)

with the condition |y| < n — 1.

5.3. Sp(2n) Algebras. Finally, let us study the case 4 = C,. From the SO(n) case, it
is easy to deduce the rule:

{[(n2(y) ® nD;( — »)1x [n2(y) ® nD;( — y)1}s
= nz(gj X 2;)(0) ® ((n2;) x (n2;))s 2y)

® ((n2;)x (nD;))s (— 2y) forj G%Z and neZ, (5.8)

where (n2;) x (n%;))s is computed via (4.10).
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Then, the SI(2) ® U(1) decomposition of C, is deduced from the B, one by
exchanging integer and half-integer:

For the symplectic series, the only SI(2) representations with non-zero U(1)
eigenvalues are those which appear in the fundamental representation as
WDyt 4(¥) @ Dp+y (— ) with n =1 and p integer. Moreover, the allowed eigen-
values for the U (1) generator Y are |2y| =0, or %, or 1.

We illustrate these results on the decomposition under the SI(2) of
SI(2)*> ® Sp(2n — 2) in Sp(2n + 2):

2n+2=9,_320®2,(y)®24(—y), (5.9

2m+2=2,_3;0)® Z4(—y) D@ Z4(y), (5.10)

2n+2x2n+2)s=(D3p-3D D2s-sD " D %1)(0) D (21 ® %,)(0)
D229 D P(—2)D (D1 D Du-2) ()
@(gn—l@@n—l)(_y)’ (511)

with [2y] < L.

6. Classification of (Half-)Integral Gradings

The decomposition of the adjoint of a simple Lie algebra ¢ in terms of SI(2) ® U(1)
representations gives an exhaustive classification of the different constrained WZW
theory arising from a (half-)integral grading. Moreover, the different values of Y (at
fixed S1(2) subalgebra) leads to the equivalent theories [7]. Thus, if we know how to
reconstruct the gradation H from this decomposition, we will be able to give an
explicit classification of gradations. This is the aim of this section.

6.1. Defining vectors. An SI(2) algebra in a simple Lie algebra 4 is specified [14] by

its defining vector (fi, . . ., f;), itself defined from the relation
Mo =Y, fiH; f; rational, 6.1)
i=1
where M, denotes the Cartan part of SI(2) and {H}, . . ., H,} a Cartan subalgebra
of 4.

For the A, B, C, D algebras of rank up to 6, a defining vector for all SI(2)
subalgebras has been explicitly computed in [15], and we will use the same
normalization here, up to a global factor 2. We compute them in the general case.

We set for a while Y = 0, and look at the gradation produced by M,, Cartan
generator of a given SI(2) subalgebra of 4. This SI(2) subalgebra can always be seen
as the principal embedding of a (regular or singular) subalgebra of 4.

First consider the case ¥ = A4,. The defining vector components are just the
eigenvalues of M,, since one can always diagonalize M, with hermitian matrices.
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Then, we have the rules:

AzpcA,,—>f=<p,p—l,...,l, 0,...,0, =1, —2,..., —p), 6.2)
n+1-2p
1 1 1 -1 -3 1
A2p+1CAn—>f=<p+—2—,p—§,...,5, 0,...,0, T,—z—,..., ——p—z)
no2eet (6.3)

For example, the defining vector of A, (resp. A;) in A4 is (1, 0, 0, 0, — 1) (resp.
4, 0,0,0, —3)). The defining vector of A, @ A, is (1,3,0, —3, — ).

Let us now turn to the SO(n) case. Because of the antisymmetry of the matrices
in the fundamental representation, the Cartan generators cannot be diagonal. In
fact, they are constructed with ¢, matrices on the diagonal. Each ¢, matrix
possesses + 1 and — 1 as eigenvalues, so that one has only to specify the positive
M -eigenvalues in the defining vector. The general rules are:

B, of DysicBy—>f=(pp—1,...,1,0,...0), (6.4)
Dy Disf=(pp—1,...,1,0,...0), 65)
AZpCBn or Dn—')fz(p>p7p—1>p—la-*-:1>1>03"-0)9 (66)
1 1 1 1 11
A2p+1CBn or Dn—-)f=<p+-2—,p+§’p——§,p—§,,5,5,0,0)(67)

As there are some exceptional embeddings of SI(2) algebras in orthogonal ones,
there will be also exceptions for the defining vectors. For A3 = D3, they are two
different defining vectors, one associated to “As,” and the other one to “D;™:

“As”<B, or D,—f= e, %, %, %, 0, ..., 0) , (6.8)
“Dy”=B, or D,—»f=(2,1,0,...,0). (6.9)
They are also two defining vectors for 24; = SO(m),
“24,"<B, or D,— (—;—, —;—, %, -;—, 0,..., 0) , (6.10)
“D,”<B, or D,—(1,0,...,0). (6.11)
Finally, for the short root of B,, we have
A} <= B,~(1,0,...,0). (6.12)

The defining vectors associated to the singular embeddings (B; ® B;) = D, (with
i+j=n—1,i%j)are computed with the above rules.

Finally, we study the case of Sp(2n) algebras. The rules are similar to those of
SO(n) algebras:

1
A%cC,,—»f=<§, o,...,o), (6.13)

A%pccn_—’f:(p’p’p_19p_—‘1‘3"'>1) 1507"'0)7 (6'14)



514 L. Frappat, E. Ragoucy, and P. Sorba

1 1 1 1 11
A§p+1CCn—-)f=<p+§,p+§,p—§,p—§,...,5,5,0,...()), (615)
ccCof=(p+ip—Lt Lo . o (6.16)
p n =\P 27p 2>‘-~>2, g o v e . .

6.2. Case of SI(2) ® U(1) Decomposition. When H = M, we can no longer speak
about defining vector for H, since H cannot be embedded in an SI(2) algebra.
However, it is still possible to compute a vector f=(f, ..., f,) that defines H,
using the relation (6.1). We give hereafter the rules to compute this vector asso-
ciated to H.

Let us first look at the SO(n) case, where Y appears, in the fundamental
representation, only in combinations 92,,(y) @ 2,,( — y) with m integer. The rule is
then

Dn(y) ® Dp( — y) in Fund' (meZ.)

>f=m+ym—ym—1l+ym—-—1—y ...,14+y1—y90,...,0).
(6.17)

For example, for 4, < Dg, we have
12=2,(2) ® D2(— y2) ® Do(y0) ® Zo( — Yo)
f=(2+y232—}’2a1+J/2,1—J/2> Ya» yO) (618)

For the case 4 = A,, the defining vector can be read directly in the fundamental
decomposition: the piece corresponding to a representation Z;(y;) in the funda-
mentalis (i + y;, i — 1 + y;, . .., — i+ y;). Note that the different eigenvalues y;
are related by a traceless condition:

YmQi+ 1)y, =0 for n+1=PmP(y). (6.19)

They are determined in the adjoint representation, by the usual condition |y| < j
and y e }Z for any representation %;(y) in the adjoint.

For example, for the reduction of 4, with respect to its regular 4, algebra, we
have

1
-3 +y — 2y> ,  (6.20)

8=(2:®%0)(0) @ 2,3y)® Z:(—3y), (6.21)

1
2=9,()® Do( — 2y), thus f= (5 +,

1 1 1
|i3y|§§ and -_|-3ye§Z=>y=0, + (6.22)

6 .
Finally, for the symplectic algebras, the rules are analogous to those of the B,
case, that is:

Din+4() @ D+s(—y) in Fund' (meZ.,)

1 1 1 1
>f=\m+s+ym+s—ym—s+tym—s—y ...,

2 2 2 2

11
=+ %z=»0,...,0). .
3t %5=90, > (6.23)
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7. Poisson Brackets of W Algebras

7.1. Generalities. The knowledge of the spin contents of a W algebra with the use
of a SI(2) ® Uy(1) decomposition, together with Proposition 4 of Sect. 2.2, allows
us to determine many of the PB of this algebra, when Y exists. Indeed, let W, be the
W generators, I €4 indexing the generators. The theory possesses a grading
operator H, and we suppose here that H = M. The spin content associated to the
stress energy tensor 7Ty is then given by s; = 1 + j; + y;. [tis conserved through the
PB, so that starting from the general form:

{WI(X), WJ(XI)}PB
= 0—0(1, J)aj1+y:+jj+yj+1 5(x _ x')

+2 Y 01(L J, K, p, q) (3" Wk(x)) (0*6(x — X))

K p.aq

+ 2 2 0L, J, K, L, p, q, 1) (8" W(x")) (" Wr(x') (9" 6(x — X)) +

K,L p,q,r
.
where the a,(. . .) are coefficients, the conformal invariance imposes the sums to
satisfy the equalities

p»q, K such that p +jx +yxk +q=jr +yr +js+ ys,
p»q 1, K, L suchthatp +jx+yxk+q+jo+yo+r+1=ji+yr+j+y;
: (7.1)

But Proposition 4 ensures that this algebra is the same as the one obtained from
the grading operator®> M,. The main change between tthese two algebras is the
stress energy tensor (Ty or T)y,). Then, the conformal invariance of the PB when
the gradation is given by M, imposes:

prijktaqa=jr+ijs
ptjkt+tq+jtr+1=j+j;
. (7.2)
Gathering (7.1) and (7.2) leads to:
ptijk+q=jr+j; and yg=y +y,
ptijk+q+jo+tr+1=j+j;, and yx+y.=yr+ys

For each line, the second equality shows that the charge associated to the U(1l)y
generator is conserved. This severely limits the number of allowed fields in the r.h.s.
of the PB, since not only the Ty, -conformal spin (associated to SI(2)) but also the
“hypercharge” associated to Y is conserved. Note that in this context, T, has
a zero U(1)y value.

3 This can be guessed if one remarks that the SI(2) highest weights are the same for H = M, and
H=M,+Y
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Finally, let us add that there may exist several independent Cartan generators
Y; which can be added to M, in such a way that H; = M, + Y, is a non-degenerate
gradation, the corresponding SI(2) subalgebra of which is still (M., M,). For
example, in the decomposition of SO(8) with respect to SI(3), we have
8=21(y1) D Z2:(—y1)® Do(yo) ® Do( — yo)
BXx8)a=(2: D9, ®2%) (0) D Z1(2y1)® Z1(— 2y,)
DD1(y1+ ) D Z1(— (y1 + Y0) D Z1(y1 — Yo)
@ Z1(— (y1— o)) - (7.3)

In the above decomposition of the adjoint representation, one sees that y, and y,
can take the values 0, 3, independently from one another, without violating the
non-degeneracy condition. So, we can decompose Yin Yy + Yy, ¥, and Y, being
defined by the vectors fu = (3, 3, 4, 0)and f; = (1, 1, 4, 0).

Thus, we will now write the W generators as

Witys1 = W_]+1 > (7.4)

J + 1 being the conformal spin in the basis where all the fields (but T') are primary,
and y being the set of “hypercharges” associated to the different possible U(1)y.

For instance, in the case of SO(8) reduced by SI(3), we will have as W gener-
ators:

(0,0) Y Y
TMo > Wl 1: le 3
(0,0) (1,0) (—1,0)
w3, Wy, W, ,
1/2,1/2) (—1/2, -1/2) (1/2, —1/2) (—1/2,1/2)
W(Z s W2 ’ W2 > W2 >

where the doublet superscript indicates the hypercharges of the W generator with
respect to Wit and W72,

7.2. Use of the Stress-Energy Tensor. We know that the theory associated to
H contains a stress-energy tensor Ty, and that all the fields but W] are primary.
Moreover, from Eq. (2.6), it is clear that

TH=TM0+6W1Y forH=Mo+ Y. (7.5)

Then, a generator W}y ) being primary (we omit T and WY) with respect to Ty and
Ty, we will have

{0, WI(x), WP(X')ps = y WP (x')0,0(x — X') . (7.6)

Note that although T, is not an eigenvector of Wy, we associated to it an
“eigenvalue” 0. Of course, if there are several U(1), each of them will satisfy this

property.
Thus, the generator W71 associated to Y = H — M, generates a conserved “hy-
percharge,” and all the W generators except T are W{-eigenvectors:
(W0, W) ey = yWP(x') S(x — X) . (7.7)
T possesses a zero hypercharge, but the PB reads:

(T(), WYX )pp = — OWY(¥)S(x — ') + WY(¥)as(x — x').  (18)
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Finally, let us remark that the set of spin 1 generators must be closed, because of
the conservation of the conformal spin. This shows that we will have a KM algebra,
corresponding to the part of ¥ which has not been used for the definition of the
SI(2) algebra, i.e. the commutant € of SI(2) in 4. About the position of Y in &,
please come back to Proposition 5 at the end of Sect. 2.2.

7.3. Example. As an example, let us look at the W algebra coming from non-
Abelian Toda on SI(3). The W generators are

. 1
W2, W3/2+y, W3/2_y, Wl with y= 0or 5 . (79)

Applying the above procedure to the PB of this algebra, we can determine their
structure. As a notation, we will write 0 for 0, and ¢’ for 0,.,

{W1(x), Wa(x')}eg = (a10' Wo(X') + a3 0> Wi(x') + a,0' (W, W) (X')
+ ay Wiy Wapp—y(x'))0(x — X)
+(@sWy(x') + ag Wi Wi (x) + a; W1(x'))0d(x — X)

+ agWi(x')0?6(x — X') + agd*6(x — x') , (7.10)

{W2(x), W3p2,(x')}pp = (@100 W3p2+,(X') 6(x — X') + a11 W3y 1,(x")0(x — (367"11)
{Wa(x), Wi(x')}pp = (@120 Wi (X') + a130" W,(x"))d(x — X)

+ a1 a Wi(x')06(x — x') + a150%6(x — x), (7.12)

{Waaey(x), Waps)(x)}es =0, (7.13)

{Wap4y(X), Wiy (X' ) s = (@160 W1 (X') + ag, W1 Wi (x')
+ aig Wy (x"))d(x — x')
+ ayo Wi (x')00(x — X') + az00%6(x — x), (7.14)
{Wi(x), Waazy(x)}es = a31 Wapp1,(x')d(x — X'), (7.15)
{Wi(x), W1(x')}pg = a2200(x — X') . (7.16)

Now, assuming that ¥ = 0, replacing W, by T the Virasoro tensor, and recognizing
in W, the WY generator, we are led to the constrains:

ar=—1, as=2, ay=a3=a,=as=0a;=0a3=0, (7.17)
3

apo= —1, a1 =75, (7.18)
2

ay, = —1, a14=1, a13=a15=0, (719)

af = +1. (7.20)

Thus, the W algebra associated to the regular SI(2) in SI(3) must satisfy:
{T(x), T(x')}pg = — OT(x')o(x — x') + 2T (x')06(x — x')
+c035(x — x'), (7.21)
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3
{T(x), W;—r/z(x’)}PB = —7 W3i/2(x’)5(x —x')+ 3 W;—*/Z(x’)aé(x —x'), (71.22)

{T(x), Wi(X')}pp = — O'W1(x')o(x — x') + Wy(x')0d(x — x'), (7.23)
{W32(x), W32(x')}e =0, (7.24)
{W32(x), W32 (x)}es = (a160 W1 (X') + ag Wi Wi(x') + a1 T(x')) (x — x')

+ a1 Wi(x')38(x — X') + a00%8(x — x') , (7.25)
{Wi(x), W3,(X)}ps = + Wi (x')ox — x'), (7.26)
{Wi(x), Wi(x')}pg = k0d(x — X', (7.27)

which has to be compared with the W algebra made explicit in [12]. Note that the
Jacobi identities for the PB of the W algebra will also constrain the remaining
structure constants.

8. The Exceptional Algebras G, and F,

Let us first consider the algebra G,. This (rank 2) algebra admits the system of
roots:

t(eite), +(2e—e;—e) withi, j, k=1,2,3 all different. (8.1)

The fundamental representation of G, is seven-dimensional, and its adjoint has the
dimension 14. These representations are real. To simplify the discussion about
SI(2) ® U(1) decomposition, we remark that G, can be embedded in SO(7) (in
a singular way). As a consequence, its adjoint representation will be present in the
antisymmetric part of the product 7 x 7. Indeed, we have [17]:

(IxDa=7014. 8.2

Thus, we can obtain the adjoint representation from the fundamental by
14 =(7x7)s — 7. It is then sufficient to know the decomposition of the funda-
mental. This is done with the same rules as for the SO(n) algebras (because of the
embedding G, = SO(7)). Note that none of the SI(2) subalgebras of G, can be
extended to a SI(2) @ U(1) subalgebra in such a way that (2.19) is still satisfied. The
results are presented in Table 8. The defining vector is given in the Cartan basis of
SO(7), the Cartan generators of G, being given by H; — H, and 2H, — H, — H;
(see Sect. 6).

The exceptional algebra F, has rank 4 and dimension 52. Its fundamental
representation has dimension 26, and F, can be (irregularily) embedded in SO (26).
However, one cannot directly obtain the adjoint representation from the funda-
mental one, since a new representation appears in the antisymmetric part of the
product:

(26 X 26)5 = 52 + 273 . (8.3)

Thus, our general method cannot be applied to give the U(1) dependence. The SI(2)
algebras have already been studied in [14], where the decomposition of the
fundamental representation was given: we recall in Table 9 this decomposition
giving the conformal spin content.
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9. W Algebras from Lie Algebras of Rank up to 4

As an application of the above formulation, we represent here an exhaustive
classification of W algebras arising from constrained WZW models based on
classical algebras of rank up to 4. For such a purpose, we follow the point of view
developed in Sect. 2.4, using the results presented in Sects. 3—6. Although the
algebras B, and C, on the one hand, and 45 and D3 on the other hand are
isomorphic, we have separately considered these four algebras to show the differ-
ences in the calculations. The classification is listed in Tables 1-9, where the
decomposition of the fundamental of ¢ with respect to SI(2) @ U(1) is given. We
give the minimal (i.e. the lowest dimensional) regular subalgebras containing the
SI(2), when they exist. For the singular embedding associated to D,, we mention
the SO(3) @ SO(S) subalgebra. Then, we give the conformal spin content s =j + 1,
with the convention: n#s means that the spin s appears n times. In the same column,
we give under the spin s the hypercharge(s) y when it exists. Finally, we write the
different gradations that lead to this W algebra.

Table 1. W algebras for Lie algebras of rank 1 and 2

% Sublag.  SI(2) ® U(1) decompos. Spin contents Gradation
(fundamental rep.) (Hypercharge)
Al Al @1/2 2 (%s - %)
AZ Al @1/2(J’)@90(_2y) 2’ %7 %$ 1 (%9 0> _%)
(Oa 3y5 - 3)’, O) (%, _%) _%)
A, 2, 3,2 (1,0, — 1)
B, A, 29, ® Do 2, 2*%, 3x1 (%, %)
A
24 91@@0(,)})@@0(_.)1) 212’271 (1’0)
1
0y, -0 (1, 3)
(L1)
B, D> 4,2 21
C, A, D1, @29, 2, 2%3, 3x1 (4,0
24, ot
Af @1/20’) ® 91/2( -) 2,2,2,1 (3, %)
0,2y, —2y,00 (3. 3)
(1,0
C, D32 4,2 3. 3)
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Table 2. W algebras for A3 = D,
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Y Sublag. Si(2) ® U(1) decompos. Spin contents Gradation
(fundamental rep.) (Hypercharge)
A3 Al 91/2(.))) @ 2@0( - y) 2’ 4*%’ 4x1 (%5 0’ 09 ;2l)
(0,2y,2y, —2y, —2y,4x0) A o )
24, 2 482, 341 3.3 553
A2 D1(y) @ Zo(— 3y) 3,2,2,2,1 (1 0 0, — 1)
(03 2)’, - 2y; Oa 0) 4’ 47 —41’ —11)
=3 __Z)
8’ 8a 8, 8
A3 @3/2 47 3’ 2 (25 2 _2L7 _2_1)
D3 Ay 2@1/2@90()’)@90( =) 2, 4*%, 4x1 (12"’ %, 0)
(0,)1,)’, - "%4*0) (%;%9%)
24, 2, @39, 4%2, 3x1 (1,0, 0)
AZ 91()’)@91(—)’) 3’2a212’1 (13 170)
0, 2y, —2y,0,0) (G % 3)
(.32
D; D, D Do 4,32 (2,1,0
Table 3. W algebras for B; and C;
3 Sublag. SI(2) ® U(1) decompos. Spin contents Gradation
(fundamental rep.) (Hypercharge)
B, A 29,, ®39, 2, 6%3, 61 G, 10
2
Ai 2, ® 49, 5%2, 6x1 (1,0, 0)
24,
Al @ A% 91 @ 2@1/2 %y %, 29 2a %’ %y 17 17 1 (15 %7 %)
A,
9 D,(— 200 3,542, 1 1, 1,0
2A1®Af} 1(Y)® 2:(—y) @ 2(0) * ( )
4 (09 2)’, V. =y — 2y, 07 O) (%: %a %)
33} D0 ® 2o(»)®Zo(—)) 43,321 @ 1,0
2
(0’ V=W O, 0) (2» 17 JZL)
(27 1’ 1)
231
2,2, 1
B, 178 6,4,2 G210
Cy A, Dy, D49, 2, 4%3, 101 %,0,0
A2
2Al } 91/2()’) @ @1/2( —1)@29,(0) 3+2, 4*%, 4x1 (12‘, ‘%, 0)
1
0, 2y, —2y, 2%y,
2x( —y), 4%0) (1,0,0)
A2 29, 3%3, 2, 3x1 (1,1, 0)
CZ @3/2(-9290 43 %, %, 29 3*1 (%’ %’ 0)
A, @ A2
‘;f 1} 39,2 6+2, 351 459
1
C,® A4, @3/2 @ 91/2 4,3, 3%2 (%s %, %)
Cs Ds2 6,4, 2 63
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Table 4. W algebras for A,
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Sublag. SI(2) ® U(1) decompos. Spin contents Gradation
(fundamental rep.) (Hypercharge)
A -2
' @l/Z(y) @ 390( 3 y) 2’ 6*%> 91 %’ 0) O’ 05 LZL)
5 -5
<0, 3*?))9 3* y y’ 9*0> (%9 ;517 _5 B ;51’ ;51)
2A1 2921/2(.))) @ 90( - 4y) 4*2’ 4*%5 4x1 (%’ %’ g _Tl» —Tl')
(4*0, 2*5y’ 2*( _Sy)a 4*0) (%9 %9 __Za ——52‘5 __52_)
A, — 3y
2,(9)® 2%( ; ) 3, 542, a1 (1,0,0,0, — 1)
5 -5
<O’ 2*7)}’ Oa 2*—2_Za 4*0> (%, %, %37 I_Oaa ;5&)
(%7 %> _%’ _%9 _%)
A A -3
24 gme %(Ty) 3,2+, 252, 243, 1 (1,5 0,54 —1)
Sy — 35Sy Sy — 5y —a -
<O’ ?, _3_a 05 Oy ?a T" 0 (%9 %’ %9 —54'5 %)
A3 93/2@) @ Do(— 4y) 4,3, 2*%, 2,1 (%’ %} 0, ;zl, ?)
(07 Oa 5)’, - 5)’, 2*0) (g’ %a %’ LSQ, ;56—
(%’ %’ :Sl’ :5—2’ :S—Z
(42, %, T8, =& 5
10> 10> 10> 55 10
A4— 92 5’ 4) 3’ 2 (2a 13 Oa - 17 - 2)

Table 5. W algebras for B,

Subalg. SI(2) ® U(1) decompos. Spin contents Gradation
(fundamental rep.) (Hypercharge)
Ay 29, ® 5P, 2, 10%3, 13x1 3,400
AZ
! D, ® 69, 72, 15%1 (1,0, 0, 0)
24,
(24,) 4@1/2 ® Do 6%2, 4*%, 10*1 (‘12', %, %, %)
A1 (’BAIZ 5 5 3 1 1
@1®2@1/2®@0(y) 25 2> 4*23 6*7, 4*1 (19 2> 2> 0)
3A1 @90(— J’) 111
(4*0’ Vs — ) O; O: 2B A (1’ 25 2 2)
- =) 4*0)
4,
44, D,(3)® D,(— y) ® 32,00 3, 9%2, 4x1 1,1,0,0
24, @ A2 1() i(—=) 0(0) ( )
(0’ 3*)’, 3*( —.V)y 2y’ —2)’, 5*0) (%’ Jis %J 0)
A, ® Af 39, 3%3, 6%2, 3x1 1,1, 1,0)
A3 293, ® Do 4,3%3, 2%3, 2, 3x1 33%%
B
Az} D, ® 49, 4,4%3,2, 6x1 2.1,0,0)
3
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Table 5. (continued)

Subalg. SI(2) ® U(1) decompos. Spin contents Gradation
(fundamental rep.) (Hypercharge)

BZ ('BAI «@2 @2@1/2 4; 2*%, 2*%’ 2a 2’ 3*1 (2, 1, %’ %)

B, @24,

Ay ® A2 } D, ®9:1® %o 4,4,3,3,4%2 (2,1,1,0)

B

Ds} 200D Zo(y) ® Do(—y) 6, 3%4,2, 1 (3,2,1,0)
' 0, y, =y, 3+0) (3.2 1)

B, D, 8,6,4,2 4,3,2,1)

Table 6. W algebras for C,

Subalg. SI(2) @ U(1) decompos. Spin contents Gradation
(fundamental rep.) (Hypercharge)
Al 91/2 @ 6@0 2, 6*%, 21x1 (%, 0, 0, 0)
A2
2Al } D112(9)® D112(— y) D4Do(0)  3%2, 83, 11x1 4 30,0
1
(09 2y7 - 2)’, 4*)’, 4*( _y)a 11*0) (1’ Oa 09 0)
A @ A?
133 ! } 391/2 @ 2@0 6*25 6*%) 6x1 (%’ %3 %’ O)
1
242
44, 492,, 10%2, 6+1 G539
24, @ A}
A? 29, ® 29, 3,3, 3, 5%2, 61 (1,1, 1,0)
A% @ Al 2@1 @ 91/2 3*3a 2*%9 2*25 2*%3 3x1 (15 1’ %) O)
C, D32 @ 49, 4, 4*%, 2, 10+1 (%, %» 0, 0)
C,® 4, 93/2 @ 91/2 ® 29, 4,3, 2*%, 3%2, 2*%, 3x1 (%, %, %, 0)
C, ® A}
D3,0)® 2 Dia(—y) 4 243, 6%2, 1 3553
C2®2A1} 32000 ® D1)2(y) ® Z1)2(— y) *3, 6% 2222
(an, - 2)’, —2y’y, 2 3*0) (%a 19 ‘ZLs 0)
AZ
2C3 } 93/2(.}))@@3/2(_}}) 3*43 3, 3*2a 1 (%’ %y %’ %)
’ 0,2y, —2y,0,2p, —2y,2+0) (2,1,1,0)
C3 95/2 ® 2‘@0 6’ 4’ %a _’ZZa 2’ 3x1 (%7 %’ %9 0)
Ci® 4, Dspp @ D2 6,4,4,3,2,2 6314d
C4 97/2 8a 65 47 2 (%a %a %9 %)
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Table 7. W algebras for D,
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Sublag. SI(2) ® U(1) decompos. Spin contents Gradation
(fundamental rep.) (Hypercharge)
Ay 29,,®49, 2, 843, 91 (2,40,0)
24, 2,®59, 6%2, 101 (1,0,0,0)
(24, 491/2 6+2, 10*1 (“2‘: é’ %, ‘zL)
3A1 91 @291/2@@0 %a ‘22 3*2a 4*%a 31 (1’ %y %a 0)
A
s 21(31) ® Z1(— y1) 3, 7%2, 2¢1 (1, 1,0, 0)
1
® Zo(y0) ® Zo( — ¥o) 0, +y1 £ Yo, *2y1, 3%0) (3,330
(2,1,0,0)
(1,1,%0)
(1,1,1,0)
6.4 % %)
A3 293, 4, 3%3, 2, 3x1 3359
D3 ‘@2633@0 49 3*37 23 3x1 (2’ 1’ 09 0)
B, ® B, 9, ® 9, 4,4, 3, 3%2 (2,1,1,0)
D, D3 ® Do 6,4,4,2 (3,2,1,0
Table 8. Classification for G,
Minimal including S1(2) decomposition Spin contents Defining
regular subalgebra (fundamental rep.) vector
A1 291/2 @ 390 25 4*%7 15 1, 1 (%, %’ 0)
A% @1 @ 2@1/2 %’ %9 2) 15 13 1 (1’ %’ 0)
A @ A} 29, P 3,2,2,2 (1,0,0)
G, D 6,2 23,9

Table 9. Classification for F,

Minimal including
regular subalgebra

S1(2) decomposition
(fundamental rep.)

Spin contents

Ay

A7

24,

A, @ A3
34,

69, ® 147,

2, ®89,,® 7%,

39, @ 69,,, ® 52,

62, ® 82,

2,979,

D, @295, D32,029,),
293, @39 @49, ® Do

2, 14%3, 211

7%2, 10%3, 15%1

243, 6%2, 10%3, 61

3, 13%2, 8x1

73, 2, 14x1
2x4, 3x3, 62, 2*%, 1
3%3, 23, 6x2, 4%3, 3x1
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Table 9. (continued)

Minimal including SI(2) decomposition Spin contents
regular subalgebra (fundamental rep.)
A3@ 4,
A3 @ A
B, ® A2 39, ®39, ® 2%, 24, 4x3, 6%2
B, @24,
B,
4 D, ®4D 3, D 5D 4, 4%3, 453, 2, 6x1
3
B, ® A, 292@293/2@91 @291/2(‘591 4, 2*%, 3, 4*% 3%2, 3%1
B
3} 39, ® 59, 6, 5%4, 2, 3x1
D,
B, DsDDaDD,® Do 8,2%6,4,3,2
C; Da®295),® D> 6, 2+5L 4, 243, 2, 3x1
C:; @A, 2, D9;®29, 2%6, 5, 4, 3, 3%2
F, Ds® Dy 12,8, 6,2

Part II. Super W Algebras Built on Lie Superalgebras
10. The OSp(1|2) Subsuperalgebras of Simple Lie Superalgebras

The determination of the different OSp(1]2) subalgebras in a simple Lie superal-
gebra ¥ = 45 @ Yy is greatly simplified by the two following remarks:

1) The SI(2) part of OSp(1]2) is in the (semi)simple bosonic part of the considered
superalgebra. The knowledge of a method to classify the SI(2) subalgebras of
a simple Lie algebra can be obviously generalized to the case of a direct sum of two
(or three, cf. D(2, 1; «)) simple algebras.

2) Any representation of OSp(1|2) is completely irreducible, and any irreducible
OSp(1]2) representation %; (j integer or half-integer) is the direct sum of two SI(2)
representations ;@ 9;_;, with an exception for the trivial one-dimensional
representation £, = 9,. From the reduction of the fundamental representation of
% into SI(2) ones, it is therefore easy to verify whether the SI(2) under consideration
can be embedded into an OSp(1|2) superalgebra.

Now, in the same way that the SI(2) subalgebras of a simple Lie algebra ¢ are
principal subalgebras of the ¢ regular subalgebras (up to exceptions arising in the
D, case, see Sect. 3), it is rather clear that the OSp(1|2) subsuperalgebras of a simple
Lie superalgebra ¢ are superprincipal in the ¢ regular subsuperalgebras (up to
exceptions arising in the D(m, n) case). One recalls that the definition of a regular
subsuperalgebra (SSA) is a direct generalization of that of an algebra, and such SSA
can be obtained from the extended Dynkin diagrams for superalgebras, as for
simple algebras [18]. Of course, since several Dynkin diagrams can be in general
associated to the same superalgebra, one has to apply the method to each allowed
Dynkin diagram specifying the superalgebra. A SSA of ¢ which is not regular is
called singular. An example of singular SSA of ¢ is the superprincipal OSp(1]2),
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when it exists. It is defined as

F.,=YE, and F_. =Y E_,, (10.1)
acd ‘aed
E+={F+,F+}, E_={F_,F_} and H={F+,F_.}, (10.2)

where 4 is a simple root system of .

Not all the simple Lie superalgebras admit a superprincipal embedding. Actually,
it is clear from the expression of the OSp(1|2) generators, that a superprincipal
embedding can be defined only if the superalgebra under consideration has a
completely fermionic simple root system 4 (which corresponds to a Dynkin diagram
with only grey or/and black dots). Notice that this condition is necessary but not
sufficient (the superalgebra PSl(n|n) does not admit a superprincipal embedding
although it has a completely fermionic simple root system). The simple superalgebras
admitting a superprincipal OSp(1]2) are the following: Si(n + 1|n), Sl(njn + 1),
OSp(2n + 1|2n), OSp(2n|2n), OSp(2n + 2|2n) withn = 1 and D(2, 1; ) witho + 0, + 1.

Finally, the method for classifying the OSp(1]2) SSAs in a simple Lie superal-
gebra ¢ can be summarized as follows:

Any OSp(1]2) SSA in a simple Lie superalgebra % can be considered as the
superprincipal OSp(1]2) SSA of a regular SSA % of 9, up to the following exceptions:

1) For % = OSp(2n + 2|2n) with n = 2, besides the superprincipal OSp(1|2) SSAs
described above, there exist OSp(1|2) SSAs associated to the singular embeddings
OSp(2k + 112k) ® OSp(2n — 2k + 112n — 2k) with 1 £k <n — 1.

i) For 4 = OSp(2n|2n) with n = 2, besides the OSp(1|2) superprincipal embed-
ding, there exist OSp(1|2) SSAs associated to the singular embeddings OSp(2k + 1|
2k) ® OSp(2n — 2k F 1|2n — 2k) = OSp(2n|2n) with 1 £k <n — 1.

11. OSp(1]2) Decompositions of Simple Lie Superalgebras

Following the general method explained above, once the possible OSp(1]2) embed-
dings are determined in the simple Lie superalgebra ¥, one has to reduce the
adjoint representation of ¢ into OSp(1|2) supermultiplets. Consider an OSp(1/2)
SSA of ¢, and let 4 be the minimal including regular SSA of ¢ having this OSp(1]2)
as superprincipal embedding. We will show on the example of Sl(m|n) how to
obtain the decomposition of a simple Lie superalgebra starting from the decompo-
sitions of its bosonic and fermionic parts with respect to the bosonic SI(2) sub-
algebra of the OSp(1]2) under consideration. Moreover, we will see that such
a decomposition can be obtained in a systematic way from the decomposition of
the fundamental representation of the superalgebra with respect to the OSp(1]2).

11.1. The Unitary Superalgebras Sl(m|n). The bosonic part of ¥ = Si(m|n) with
m =% nis g = Sl(m) @ Sl(n) ® U(1) and the fermionic part % is the (m, n) ® (m, n)
representation of Si(m) @ Sl(n). The regular SSAs of Si(m|n) which admit a
superprincipal embedding are of the SI(p + 1|p) or Sl(p|p + 1) type.

Consider an OSp(1]2) SSA of 4 such that the minimal including regular SSA in
Y is 9 = Sl(p + 1|p) with p < inf(m — 1, n). Under SI(2) (of OSp(1]2)), the repre-
sentations m and n of SI(m) and Sl(n) decompose as

m=9,,®m—p—1%,,
n=24-12®@0— PP . (11.1)
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Therefore the fermionic part % reduces to
(m, n)® (m, n) =2(Z,2 @ (m — p — 1)D0) X (D p-1)2® (n — Do)
= 2@1,_1/2 (‘B 2917-3/2@ T ('B 291/2 @ 2(m i 2 1)@(1"1)/2

®2(n—p)Dp2®@2m—p—1)(n—p) D . (11.2)
The bosonic part 45 is decomposed as

Yy = Slm) @ Sln) @ U(1)
=(Zp2®(m —p—1)D6) X (D2 ® (m — p — 1)Dy)
S (Dp-12@ (= D)D) X (Dp- 12 @ (n — P)Do) — Zo
=2,029,.1® - ®22,®2m—p—1)D,,
@2 —pP)Dp-12® Lm—p —1)* + (n — p)* + 112, . (11.3)

Gathering the SI(2) representations &; into OSp(1/2) irreducible representations
A;, one finds that the adjoint representation of Sl(m|n) decomposes under the
superprincipal OSp(1]2) of SI(p + 1|p) = Sl(m|n) as*:

Ad[SI(m|n)]
Sip + 1p) ~ 2o @ Ap-12 @By @ © R12 © 2n — Py
@2m—p— V)R,
@ Lm—p— 1)+ (n— p)*1Ro ® 2(m — p — 1)(n — p)R . (11.4)

Notice that the Wj;.,, superfield corresponding to the representation
Ri=2D;® D;_1, has two component fields w;,; and w;,, of spins j + 1 and
j + 1/2 respectively. If the representation 2; comes from the bosonic (resp. fer-
mionic) part, w;, ; is commuting (resp. anticommuting), whereas w; ., ; ;, is anticom-
muting (resp. commuting). Therefore, if j is integer, the generators w;,; and
w;+1/2 have the “right” statistics, whereas they have the “wrong” statistics if j is
half-integer. The representations #; denoted with a prime are used in the case of
W superfields obeying the “wrong” statistics.

Actually, this decomposition (which was obtained above in a rather heavy way)
can be derived directly from the decomposition of the fundamental representation
of the superalgebra Sl(m|n) with respect to the OSp(1|2) under consideration. From
(11.1), the fundamental representation of Si(m|n), of dimension m + n, decomposes
as

Mt 1= Ry ® (m — p — Do @ (n — P)AF (11.5)

where we have introduced two kinds of OSp(1]2) representations. An OSp(1]2)
representation is denoted #; if the representation &; comes from the decomposi-
tion of the fundamental of SI(m) and %7 if 9; comes from the decomposition of the
fundamental of Si(n).

Then the adjoint representation of Sl(m|n) is obtained from the fundamental one
b -
d Ad[SIm|n)]=(m+n)x(m+n)—1. (11.6)

Ad[¥
4 In the following, we will use gE ! to denote the decomposition of the adjoint representation

of ¥ with respect to the superprincipal OSp(1|2) of dcg
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Using the general formula giving the product of two OSp(1]2) representations
R,, and R,,:
a=q;+q;
Ry xRy, = @D R, with g integer and half-integer , (11.7)
q4=1491~4q2]|
one recovers the decomposition of the adjoint representation of Si(m|n) under the
superprincipal OSp(1]2) of Si(p + 1|p) given by (11.4).
Now, we consider the OSp(1]2) superprincipal embedding of Si(p|p + 1) in
% with p < inf(m, n — 1). Then the decompositions of the representations m and
n of Sl(m) and Sl(n) are:
m=2,-12®(m—p)Po ,

n=9,,,®@0—p—1%, (11.8)

leading to the following decomposition of the fundamental representation m + n of
Sl(m|n):

m+n=Ry; ®m—pR D —p— 1A . (11.9)
Therefore, the decomposition of the adjoint representation reads
Ad[Si(m|n)]
Sl 71 = 2O 120 %1 @ © Ry @ 2m — D)2

@2n—p— )%y
SLm—pP+n—p—121R ®2(m—p)(n —p — )Ry . (11.10)

More generally, if 4 is a sum of SSAs of Sl(p + 1|p) or Sl(plp + 1) type, each
factor Sl(p + 1|p) gives rise to an OSp(1]2) representation #%,,, and each factor
Sl(plp + 1) to an OSp(1]2) representation %, in the decomposition of the funda-
mental m + n of Sl(m|n), completed eventually by singlets £, or £§. Then the
decomposition of the adjoint representation of Sl(m|n) is obtained by applying
(11.6).

Finally, let us consider the case of the superalgebra PSI(n|n) whose bosonic part
is Sl(n) @ Sl(n) and its fermionic part is the (n, n) @ (n, n) representation of the
bosonic subalgebra. If the minimal including regular SSA is Sl(p + 1|p) with
p < n — 1, the fundamental representation of PSl(n|n) decomposes as

=Ry @ —p—1DRo®(n— pAG (11.11)
and the adjoint representation of PSl(n|n) is given by
Ad[PSI(n|n)] = (2n) x (2n) — 21 . (11.12)

One finds therefore
Ad[PSI(nn)]
Sip+1p) R @ Rp-12@ Rp-1D " @ R112D2(n — P)Rp)2

®@2n—p— 1R,
®—p—1P+mn—p*—11%,@200—p— 1)n— p)%s .
(11.13)

The computation is completely analogous if the minimal including regular SSA is
Sl(plp + 1).
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11.2. The Orthosymplectic Superalgebras OSp(M|2n).

11.2.1. Products of OSp(1|2) Irreducible Representations. Consider on OSp(1[2)
SSA of 4 = OSp(M|2n) and let ¢ be the minimal including SSA in 4. Under the
superprincipal 0Sp(1|2) of ¥, the fundamental representation of 4, of dimension
M + 2n, decomposes in a sum of OSp(12) representations, generically denoted as

M+2n=<@ﬂj>@<@@;.>, (11.14)

where the representations #; and £ have the same meaning as in the previous
section: a representation %; (resp. £7.) corresponds here to an OSp(12) representa-
tion where the Z; comes from the decomposition of the SO(M) (resp. Sp(2n)) part.

In order to know how to obtain the decomposition of the adjoint representa-
tion of OSp(M|2n) from the decomposition of the fundamental one, we come back
for a while to the Abelian case [10], specializing for the moment to the super-
algebra OSp(2m + 1]2m). In that case, the fundamental representation of
OSp(2m + 1|2m) of dimension 4m + 1 decomposes under its superprincipal
0Sp(1)2) as

dm+1=%R,, (11.15)
and thus the adjoint representation of OSp(2m + 1|2m) decomposes as

Ad[OSp(2m + 112m)] = (DX D) s B (Dm-12 X Dm—112)s D (D X Dm-1)2) -
(11.16)

The two first terms correspond to the adjoint representations of SO(2m + 1) and
Sp(2m) respectively, and the last one to the fermionic representation (2m + 1, 2m)
of the bosonic part. Therefore, one has

m m 2m—1/2
Ad[OSp(2m + 12m)] = ((‘D 92k—1) @ <<‘D 92k—1> @ < @ «@k)
k=1 k=1 k=1/2

=( @2k—1@92k—3/2>@<®@2k—1/2@@M—l)
k=1

=1

(Pak-1 D Roi-1)2) - (11.17)
k=1
By analogy with the bosonic SO(2m) case (cf. 4.5), we set (with m integer)

m

(ﬂmx '%m)A = («%2](_1 @%2;‘_1/2) with keZ . (1118)
1

k=

Now we specialize to the superalgebra OSp(2m — 1]2m). In that case, the
fundamental representation of OSp(2m — 1|2m) of dimension 4m — 1 decomposes
under its superprincipal OSp(1]2) as

dm—1=Rn-1p2 (11.19)
and thus the adjoint representation of OSp(2m — 1|2m) decomposes as
Ad[OSp(2m — 112m)] = (Dm-1 X Dm-1)a @ (Dm-1/2 X Dm—1/2)s
@ (Dn—1 X Dm-1/2) - (11.20)



W-Algebras and Superalgebras from Constrained WZW Models 529

m—1 m 2m—3/2
@21:—1)@(@9%—1)@( P 9k>
k=1

k= k=1/2

Therefore, one has

Ad[OSp(2m — 12m)]

m—1
92k—1 @9%—3/2)@(@ ng—l/Z@QZk—l>
k=1

1

(8
ki

By analogy with the bosonic p(2m) case (cf. 4.8), we set (with m integer)

| =
.-nll

('%2k 1D Zok-1/2) @ Ram-1 - (11.21)

m—1

(Rr-1p %X Rp-1/2)s = D (RBok—1 ® Rok—-1)2) ® Bym—1 WithkeZ . (11.22)
k=1

Using Egs. (11.7), (11.18) and (11.22), one obtains also the useful formulae (with
k and m integer)

m—1
(Bm-1/2%X Rm—1/2)a = (‘D (Zok @ Rak+1)2) (11.23)
k=0
and
m—1
(B X Rr)s = D (Rok @ Ro+1/2) D Rom - (11.24)
k=0

The products between #; and 7 representations are given by
@, if j, +j, is integer
@;, if j; +j, is half-integer ’
@P;, if j, +j, is integer
@%;, if j, +j, is hal-integer ’
@ %;, if j; +j, is integer
@R;, if j; +j, is half-integer ’

'@h X'@jz = {
a7 <ot = |

Rj, X R, = { (11.25)
where the representations #;, and £, correspond to W superfields which obey to
“right” or “wrong” statistics respectively.

Finally, one has

"t Dty 0

(0, x nR;)5 = (R, x R)s , (11.26)

n(n + 1) ( 1)

(nR; x nR)s = @), (1127)

(#;x Rj)s ®

and
(Z;, @ Rj,)x (R, ® Rj)a = (Bj, X Rj,)a @ (R, x Rj,)a D (Rj, X R},)
(11.28)
(R, @ R;,) < (R, @ R;j,))s = (R, X R))s D (R, X R),)s D (R}, X Rj,) -
(11.29)

Of course, the same formulae hold for " representations.
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It remains to obtain the decompositions of the adjoint representations of the
simple Lie superalgebras from the decompositions of their fundamental repre-
sentations for the different possible OSp(1]2) embeddings in order to classify the
super-Toda theories. The following subsections are devoted to the study of the
superalgebras OSp(2m|2n), OSp(2m + 12n), OSp(2|2n) and to the irregular
embeddings.

11.2.2. The Superalgebras OSp(2m|2n). The regular SSAs of ¢ = OSp(2m|2n) (with
m = 2) which admit a superprincipal embedding are of the type OSp(2k|2k),
OSp(2k + 2|2k) and Si(p + 1|p).

Let 9 = OSp(2k|2k) with 1 < k < inf(m, n). Under the superprincipal OSp(1|2)
of ¢, the fundamental representation of OSp(2m|2n) of dimension 2m + 2n decom-
poses as follows:

2m+2n=RE_ 1, ® (2m — 2k + 1)Ro @ (2n — 2k) R . (11.30)

The decomposition of the adjoint representation of OSp(2m|2n) is obtained from
the decomposition of the fundamental representation by taking the antisymmetric
product of the orthogonal part and the symmetric product of the symplectic part;
more precisely, one has

%’% =(2m — 2k + 1)Ry) x ((2m — 2k + 1)Ry)|a

D (Zi-1/2 ® (2n — 2k)RT) X (R~ 1/2 © (2n — 2k) A7) s

@ (2m — 2k + D)Ro) X (RF-1)2 ® 2n — 2k)A5) . (11.31)
Using the formulae (11.18) and (11.22-11.29), one finds

% = Rok-1 D Rok-52D@ Rok-3D Rop-02 @ - © A3, D %
S C2m—2k + DRyx—1® 200 — k) Ri— 12
®@22m — 2k + 1)(n — k) %o
@ [(2m — 2k + 1)(m — k) + 2n — 2k + 1)(n — k)] %, . (11.32)

Now, let 4 = OSp(2k + 2)2k). Under the superprincipal OSp(1|2) of g, the
fundamental representation of OSp(2m|2n) decomposes as:

2m+ 2n =R, ® 2m — 2k — )Ry ® 2n — 2k)R] . (11.33)
Therefore, one has

A[OSpQm2n)]

@ ((2n — 2k)Z5) x ((2n — 2k) R5) s
@ (B ® 2m — 2k — 1)Ro) x ((2n — 2k)%E) , (11.34)
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and one obtains in that case

Ad[OSp(2m2n)]

0Sp(2k 1 22k) Rok-12D® Bok—1D Rok—52D Roi—3®D" -~ D R32D X,

® (2m — 2k — 1)B ® 2(n — k)R, ® 2(2m — k — 1)(n — k) R}

®[@m — 2k — 1)(m — k — 1) + 2n — 2k + 1)(n — k)] R, .
(11.35)

Finally, let us consider the case where 4 belongs to the unitary series. First, we
study the case ¥ = SI(2k + 1|2k) with 4k < m + n — 2. The decomposition of the
fundamental representation of OSp(2m|2n) under the superprincipal OSp(1]2) of
% is given by

2m+ 2n = 2R, ® 2(m — 2k — )Ry @ 2(n — 2k) AT . (11.36)
Therefore, one has

%ﬂ = (2% ® 2(m — 2k — )R) x 2% ® 2(m — 2k — 1))l
@ (2(n — 26)R5) x (2n — 2K)RE)|s
D 2% @ 2(m — 2k — 1)Ro) x (2(n — 2k)Z5) . (11.37)
One obtains here

%=%k@mzm@%k—z@ OB @ IR D Ao
D 3Ro-1)2® P32 D3Rok-52 D D 3R32 D Ry
@ 4(m — 2k — )Ry @ 4(n — 2) s
@ 4(m — 2k — 1)(n — 2k) Ry

@ [2m — 4k — 3)(m — 2k — 1) + (2n — 4k + 1)(n — 2k)] R, .
(11.38)

The other cases are similar. One finds easily the following results. If & =
SI2k — 1|2k) with 4k < m + n, one has

2m 4+ 2n = 2%;_ 1, ®2(m — 2k + 1)Ro @ 2(n — 2k) AT (11.39)
and

% =3RBu-1 D Bpu-2 P3R5 -3D " DA, D3R, D R
@ Rok-32DP3R2k-52D Rok-72D "+ - @3R3, D R1)2
@4(m — 2k + DRBy— 12 ® 4(n — 2k) Bi— 12
@ 4(m — 2k + 1)(n — 2k) R,

@® [(2m — 4k + 1)(m — 2k + 1) + (2n — 4k + 1)(n — 2k)]1 %R, .
(11.40)



532 L. Frappat, E. Ragoucy, and P. Sorba
If = SI(2k|2k + 1), one has

2m + 2n = 2R ® 2(m — 2k)Ro ® 2(n — 2k — 1)) A3 (11.41)
and

%= 3By @D Bop-1 D3Rt @ D 3B, D Ry D 3R,
D Rok-12D3R2k-32 D@ Rok-52D " D@ R3)2 D 3%1)2
® d(m — 2K, ® 4(n — 2k — ),

@ 4(m — 2k)(n — 2k — 1)%,

@ [(2m — 4k — 1)(m — 2k) + (2n — 4k — 1)(n — 2k — 1)]1%, .
(11.42)

Finally, if 4 = SI(2k|2k — 1), one has
2m + 21 = 2Ry 1, ® 2(m — 2k) Ro ® 2(n — 2k + 1) A% (11.43)
and

%l[(%]%@_‘lz%)] =Rou-1D3Rok-2 D Ru—3D " D32, ® %1 D3R
®3Rok-32D Rok—52D3Rok—72 D D R, D 3R,
@ 4(m — 2011 ® 4(n — 2k + D Fe_1)2
@ 4(m — 2k)(n — 2k + )%,
@ [2m — 4k — 1)(m — 2k) + (21 — 4k + 3)(n — 2k + 1)]%, .
(11.44)

11.2.3. The Superalgebras OSp(2m + 1|2n). The regular SSAs of ¥ = OSp(2m + 1|2n)
which admit a superprincipal embedding are of the type OSp(2k|2k),
OSp(2k + 2|2k), OSp(2k + 1|2k) and Si(p + 1|p).

Let 4 = 0Sp(2k|2k). Under the superprincipal OSp(1|2) of 4, the fundamental
representation of OSp(2m + 1|2n), of dimension 2m + 2n + 1, decomposes as fol-
lows: .

2m+2n+1=R5_ 1, ®2n — 2b) A5 D 2m — 2k + 2)%, . (11.45)
The decomposition of the adjoint representation is then

Ad[OSp(2m + 1]2n)]
0Sp(2k|2k)

= ((2m — 2k + 2)Ro) x ((2m — 2k + 2)%o)|a

@ (Zri- 12D 2n —2K)RE) X (Ri- 12 ® 2n — 2k)RF)|s
@ ((2m — 2k + ) Ro) X (Bi-1)2 @ (2n — 2k)A5) ,  (11.46)
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ie.
Ad[OSp(2m + 1|2n)]
0Sp(2k|2k)

=Rok-1 P RBok-512 D Rok-3D Rok—02®D " D R3)0D %4

@2m—k+ D)Ry—12 D 2n — k) Ric—1)2
@4m —k + 1)(n — k)%

® [2m — 2k + 1)(m —k +1) + (2n — 2k + 1)(n — k)] R, .
(11.47)

Now, let 4 = OSp(2k + 2|2k). Under the superprincipal OSp(1|2) of 4, the
fundamental representation of OSp(2m + 1|2n) decomposes as:

2m+2n+ 1= R, ® Q2m — 2k Ry D 2n — 2k) AT . (11.48)
Then one obtains

Ad[OSp(2m + 1]2n)]
0Sp(2k + 2/2k)

= (% @ 2m — 2k)Ro) X (% ® (2m — 2k)Ro)|a

@ ((2n — 2k)#5) x ((2n — 2k)A5)|s
@D (R, ®(2m — 2k)Ro) x (2n — 2k)R]) , (11.49)
ie.
Ad[OSp(2m + 12n)]
OSp(2k + 2|2k)

= @2k—1/2 @ %2k—1 ® ng—S/Z ® %2k—3

D DR, DR
D2 — k)R @ 2(m — k)R, @ 4(m — k)(n — k)R

@ [2m — 2k — 1)(m — k) + 2n — 2k + 1)(n — k)] %, .
(11.50)

Finally, let G = OSp(2k — 1)2k). Under the superprincipal OSp(1]2) of 4, the
fundamental representation of OSp(2m + 1|2n) decomposes as

2m+2n+1=RE_ 1, ®Qn—2K)RED(2m — 2k + 2)R,,  (11.51)

which is the same decomposition as the case G = OSp(2k|2k). Therefore, the two
SSAs OSp(2k|2k) and OSp(2k — 1|2k) (when both can be embedded in ¥) lead to the
same decomposition of the adjoint representation of ¢ and consequently to the
same theory. On the same lines, one finds that the two SSAs OSp(2k + 2|2k) and
OSp(2k + 1|2k) lead to the same theory.

The last case is 4 = Sl(p + 1|p). We leave the different decompositions to the
reader. The results are summarized in the table of Sect. 11.3.

11.2.4. The Irregular Embeddings. We will study now the irregular embeddings,
which are present in OSp(2n + 2|2n) and OSp(2n|2n).

Consider first the superalgebra ¢ = OSp(2n + 2|2n) and take the OSp(1]2) SSA
of ¢ such that the minimal including SSA in ¢ (which is now singular) is

N —1
G = 0Sp(2k + 112k) ® OSp(2n — 2k + 12n — 2k) and 1 <k < [" ] Under
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the superprincipal OSp(1]2) of 4, the fundamental representation of ¥, of dimen-
sion 4n + 2, decomposes as

n+2=%D R, (11.52)
and we get for the OSp(2n + 2|2n) adjoint representation
Ad[OSp(2n + 2|2n)]

= (%D Ru—1) X (% D Ru—i)|a »
(11.53)

0Sp(2k + 112k) @ OSp(2n — 2k + 1[2n — 2K)

which leads to the following decomposition:

Ad[OSp(2n + 2|2n)]
0Sp(2k + 112k) @ OSp(2n — 2k + 12n — 2Kk)

= Rom-2k-1D Ron-2-3@" D%,
® '%Zn—Zk—l/Z @'@2n—2k—3/2 @ @«@3/2 D Rok-1 D Rop—3®D @ %y
D Rok-12®@ Rok-32D DR3P Ry D Ry 1 D+ D R
DR 12DP RBp-32D" "D Ru—2k+1/2 - (11.54)
Consider then the superalgebra ¢ = OSp(2n — 2|2n) with G = OSp(2k — 1]2k)
@0Sp2n — 2k —12n—2k)and 1 £k < n_;é] The fundamental representa-

tion of ¥, of dimension 4n — 2, decomposes under the superprincipal OSp(1|2) of
9 as

4n-2=.@:_1/2@.@;‘_k_1/2 . (1155)
The adjoint representation of OSp(2n — 2|2n) is given by

Ad[0Sp(2n — 22n)]
0Sp(2k — 1]2k) @ OSp(2n — 2k — 12n — 2k)

= (@f—1/2 @ @f—k—l/z)

X(Ri-12® Rr—k-12)ls» (11.56)
ie.
Ad[OSp(2n — 2|2n)]
OSp(2k — 1|2k) ® OSp(2n — 2k — 1|2n — 2k)

=Ron-2k-1D Ron-2k-3@" " @ %1
D Ron-2k-52D Bon-2k-12D O R3)p ®Rop-1 © Rop—3D - D%y
@ Rok—52D Rok-12®@ DRy DRy 1 @Ry 2@ D Rp— i
D@ Rn-32D@ Rn-52@ " D Bn-21+1)2 - (11.57)
Consider finally the superalgebra ¥ = OSp(2n|2n) with G = 0Sp(2k + 112k) @
OSp(2n — 2k — 12n—2k) and 1<k<|"=
0Sp(1]2) of 97, the fundamental representation of ¥, of dimension 4n, decomposes as
An=R D Ri-k-12 (11.58)

Under the superprincipal
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and we get for the OSp(2n|2n) adjoint representation

Ad[OSp(2n|2n)]
0Sp(2k + 112k) @ 0Sp(2n — 2k — 1121 — 2k)
= (B X Ri)a D (Ry—x— 172 X R —x—112)s D (R X R —x—1)2) (11.59)
which leads to
Ad[OSp(2n2n)]

OSp(2k + 112k) ® OSp(2n — 2k — 1|2n — 2k)
= Ron-2k-1 D Ron-2k-3D " DX,
D@ Ron-2k-52D Bon-2k-12D@ " D R32 D Rop—1 D Rok—3 D~ D %
D Ro-12D@ Rok-32@ @ R3p D Rn-1 @ Rn—2®D D Ry
DRu-12D@ Rn-32D" D Rn—24-12 - (11.60)
n—2

If 4 = 0Sp(2k — 12k) ® OSp(2n — 2k + 1|21 — 2Kk) , the

fundamental representation of ¢, of dimension 4n, decomposes under the super-
principal OSp(1]2) of % as

4n=Ry @R )2 (11.61)

and we have the following decomposition of the adjoint representation of
OSp(2n|2n):

Ad[0Sp(2n|2n)]
0Sp(2k — 112k) @ OSp(2n — 2k + 112n — 2k)

= Ron-2k-1D Ron-2k-3@" D%y
D Ron-2k-12D@ RBon-2k-32D@ " " RB3)2 D Bop-1 D Bop—3® - D%,
DRok-52D Rok-72@ " DR3P Ry-1DBn—2® D Ry 241
DR-12D Rn-32®@ " D Ry—2k+1/2 - (11.62)

11.2.5. The Superalgebras OSp(2|2n). The superalgebra OSp(2|2n) requires special
attention. Actually, the regular SSAs of ¥ = OSp(2|2n) which admit a super-
principal embedding are only OSp(2[2) and SI(1]2).

Let ¥ = OSp(2|2). Under the superprincipal OSp(1]2) of 4, the fundamental
representation of OSp(2|2n), of dimension 2n + 2, decomposes as follows:

M+2=RY, D Ro®(2n — 2R . (11.63)

Therefore, the decomposition of the adjoint representation of OSp(2|2n) under the
superprincipal OSp(1]2) of OSp(2]2) = OSp(2|2n) is
Ad[OSp(22n)]

ospep) - 1 © % ©Qn =R, © Qn — D(n = 1R © 21 — %o -

(11.64)
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Now, let 4 = SI(1]2). Under the superprincipal 0Sp(1]2) of 4, the fundamental
representation of OSp(2|2n) decomposes as:

2n =27, ® 2n — H ARG . (11.65)
In that case, the decomposition of the adjoint representation is
Ad[OSp(2|2n
) = 38 ® B2 @ (4n — 90,5 © (20— 3o — 2)+ 1k

(11.66)

11.3. Summary of the Results. The previous results can be easily extended to the
case of sums of simple Lie SSAs. The decomposition of the fundamental representa-
tion is obtained by taking the corresponding OSp(1]2) representation for each
factor of the sum, which can be read in the following tableau. Then, starting from
a decomposition of the fundamental representation of the form

F= (@92) @ (@@,) (11.67)

the decomposition of the adjoint is given, in the orthosymplectic series, by
() (o), o(55)- () o(4)- ().
i i A j j s i j
(11.68)
and in the unitary series, by

Ad = (C—B@, @9?}') X ((—D%, (—Bﬂ;‘) — Ry for SLimn)m=+n, (11.69)

Ad = <@gzi @@;) x (@% @92}-’) — 2%, for PSi(mim).  (11.70)

For explicit formulae, one has to apply the product rules given in (11.18) and
(11.22-11.29).

~

Y 9 Fund. Rep. of ¢
Sl(mn) Si(p + 1|p) Rp2 @ (m —p — )R ® (n — p)AG
Sl(plp + 1) Rp2® (m —p)Ro @ (n — p — DAG

Ri-12® (2n — 2k) 25

OSp(2m|2n) OSp(2k|2k) e
Si(p + 1|p) 2R 12 S 22(f1m—_p§),9?_6‘ D)%,
Si(plp + 1) 2R3, @ 2(n —p — V)RS

® 2(m — p)Zo
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0Sp(2m + 1]2n) O0Sp(2ki2k) }

0Sp(2k — 1[2k)
0Sp(2k + 2/2k)
0Sp(2k + 1]2k)

Sl(p + 1|p)

Sl(plp + 1)

RE- 112 ® (2n — 20) A3
® (2m — 2k + 2)R,
R ® (2m — 2k) R,

@ (2n — 2k)R#5
2Rp @ 2(m — p — 1)Ro
DR ®2(n — p)%s
2R3, @20 —p — D)%
@ Ro ® 2(m — p) %o

0Sp(2[2n) 0Sp(2]2)

SI(1]2)

Rij2 ® Ao ® (2n — 2) K5
2R, @ (2n — 4 RG

0Sp(2k + 1]2k) ®

OSp(2n + 2|2
pRn+2R2M o sh@n — 2k + 1121 — 2K)

'@k @ @n—k

0Sp(2k — 112k) @

2n — 2|2
OSp(2n — 2|2n) OSp(2n — 2k — 1|2n — 2k)

Ri-12D® Rr—k-1)2

0Sp(2k + 1[2k) @
0Sp(2n — 2k — 112n — 2k)

0Sp(2k — 1)2k) ®
0Sp(2n — 2k + 112n — 2k)

OSp(2n|2n)

R ® Rr—k—1)2
Rk D@ Rig-1)2

!

11.4. The Exceptional Superalgebra G(3). The superalgebra G(3) has dimension 31
and rank 3, with ¥ = G, ® SI(2) as bosonic part and the representation (7, 2) of
%3 as fermionic part. The Dynkin diagrams of G(3) are

R}—O=0 ®@—B==0 =—R==0 E>O

leading to the following regular sub(super)algebras:

GZ @Ala Gla A2> Al

B(1,1)® 4,, B(1,1), C(2), B(0, 1), A, ® B(0, 1)

A(0,2), 400, 1), A(1,0), D(2, 1;3), G(3) .

poses under the principal SI(2) of SO(3) @ SI(2) as
Ad[Gz @ Sl(2)] = 93/2 @ 9?3/2 @ 2@1 @ 390 s

(11.71)

Only the superalgebras B(0, 1), C(2), B(1, 1), A(0, 1), A(1, 0) and D(2, 1; 3) admit
a super-principal embedding. As an example, we will treat the case of
B(1, 1) = OSp(3|2). From the results of Sect. 8, the bosonic part G, @ SI(2) decom-

(11.72)
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and the fermionic part (7, 2) as
(z, 2)=@3/2@2@1@@1/2@290 . (1173)

Putting together the SI(2) representations into OSp(1|2) ones, one obtains the
following decomposition under the superprincipal OSp(1|2) of OSp(3|2) = G(3):

Ad[G(3)]
0Sp(312)

The other cases are similar and are summarized in Table 15.

= Ry @ 2R3, D Ry D 3R ® 2R . (11.74)

11.5. The Exceptional Superalgebra F(4). The superalgebra F(4) has dimension 40
and rank 4, with ¥ = SI(2) @ O(7) as bosonic part and the representation (2, 8) of
%3 as fermionic part. Its Dynkin diagrams are:

O=R=(0—"0 @ —0O0<0—0 ®—=<0—70
O
O2=®—0=£0 E>®=éo #v

The SSAs of F(4) which admit a superprincipal embedding are 4(0, 1), A(1, 0),
C(2) and D(2, 1; 2) (the extended Dynkin diagrams of F(4) can be found in [18]). As
an example, we will treat the case of C(2) = OSp(2|2). The bosonic part SI(2) ® 0(7)

decomposes then as
Ad[SIQ)® 0(7)] =59, ®99, (11.75)

and the fermionic part (2, 8) as
(2,8) =89y, . (11.76)

Putting together the SI(2) representations into OSp(1|2) ones, one obtains the
following decomposition under the superprincipal OSp(1]2) of OSp(2|2) < F(4):

Ad[F@)] _
W = 5:@1 @ 3%1/2 @ 6%0 . (11.77)

The other cases are analogous and are summarized in Table 16.

12. OSp(1|2) ® U(1) Decompositions of Simple Lie Superalgebras

12.1. Introduction of the U(1). Now, we are in position to introduce the U(1)
factor. In the case of the unitary superalgebras, since the formulae for Si(p + 1|p)
are completely analogous to those of SI(n) (the £; representations replacing the 9;
ones), one can write the following statement.

A decomposition of the fundamental representation F of 4 = Sl(m|n) under the
superprincipal OSp(1]2) of ¢ = ¥ being given,

F = ((—Dni%,) ® (@nj%}‘ , (12.1)
the corresponding decompositiorll under 0Sp(i|2) @® U(1) has the form
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F = <(—Bm %(J’i)> @ <@nj*@}r(yj)> ) (12.2)

identical representations (i.e. labelled by the same index i or j) having the same
value of y. Moreover, one has to impose the supertraceless condition

Zniyi — anyj = O . (12.3)
i Jj

Then the decomposition of the adjoint is given by

Ad = <@ni«%(yz') @nj‘%}t(yj)> X (@ni@i( - »i) C‘an'@}‘( - J’j)> — R0(0) .

(124
For an explicit calculation of this expression, one uses the fact that
i+j
(mRi(y:)) x (n; R;(y;)) =mn; @ Ri(y; + y;) with k integer and half-integer
k=li=j|
! (12.5)

and the same formula for £ representations.
In the case of the orthosymplectic superalgebras, one considers the following
decomposition of the OSp(M|2n) fundamental representation:

F= <@n,~@i> ® (@ njgz;f> (12.6)

which implies for the fundamental representations of SO(M) and Sp(2n):
M = (@ni9i> @ <@nj@j_1/2> .
2n = (@ni@i_m) @ (@nj@j) . (12.7)
i j

For the SO(M) part, one can introduce a non-zero U(l) eigenvalue y; only for
representations &; with i integer, which appear twice and only twice. For the Sp(2n)
part, a non-zero U(1) eigenvalue y; is allowed only for representations &; with
i half-integer, which appear twice and only twice.

For the superalgebra % itself, one has to group the SI(2) @ U(1) representations
2,(y;) into OSp(1]2) @ U(1) representations Z;(y;) = Dj(y;) ® Z;-1,2(y;). There-
fore, if the decomposition of the OSp(M|2n) fundamental representation F under
a certain OSp(1]2) is given by (12.6), non-zero values y of the U (1) factor are allowed
for the following combinations:

— the representation £; appears twice and only twice (n; = 2), and i is integer,
— the representation £7 appears twice and only twice (n; = 2), and i is half-integer.

Moreover, y can only take the values 0, 1/4 or 1/2 if i & 0 (which lead to the values
0, +1/2 or + 1 for the U(1) factor in the adjoint representation of ¢). Finally,
starting from a decomposition of the fundamental representation of OSp(M|2n)



540 L. Frappat, E. Ragoucy, and P. Sorba

under OSp(1]2) ® U(1) of the form

= (@%(yi) D (- .Vi)) ® (@'%ﬂyj) @ %j(— yj)> ® ( @ ni%i(0)>

J iLni 2
@< ) nj%}‘(o)) , (12.8)
Jonj + 2
the decomposition of the adjoint is given by

(@’@(y)®'@(_yl) @ n; 1(0))

i,ni+ 2

X (@%i()’i) @ Z:(— y:) @ n; R «»)}

iyni + 2

@(@W(J’, )® RF(—y) D nﬂ"@)

Jony + 2

X <€I—)9?"(y,) SR —y) P n ?/?"(0)>|

J Jonj+ 2

® <@9? (V) ®2(—y) P nj%@))

in, £ 2
X <@9?}'(yj) @R (—y;) D znjgi’}'(o)> : (12.9)
Jj Jnj *

The (anti)symmetric products of # representations are given by the formulae
(11.18) and (11.22-11.29) modulo the following modifications due to the U(1)
eigenvalue:

(Ri(y:) © Zi( — yi) X (Ri(y:)) D i — yi))la
= (R X Ri)a (29:) © (B x Ri)a( — 2y:) @ (i x #:)(0) (12.10)
and
(RF(y) ® AT — 7)) % (RH(3) @ RH — yi)s
= (R7 x A7)s (2y:) @ (%7 x £D)s ( — 2y:) @ (%7 x %) (0) . (12.11)

Finally, considering D (2, 1; ), G(3) and F(4), a direct calculation shows that no
U(1)y can be added to any of the OSp(1|2) subsuperalgebras of these exceptional
superalgebras.

12.2. Superdefining Vector. The determination of the grading H from the
OSp(1]2) ® U(1) decomposition of the fundamental representation is strictly the
same as for the algebras case. One just has to “double the calculation” since the
bosonic part of ¢ is in general the direct sum of two simple algebras. Using the
same basis for the Cartan algebras (see Sect. 6.1), we will denote the defining vector as

f=(f17"'7f;l; fll,"'nf;:)5 (1212)
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where f; refers to the first simple algebra and the f; to the second. For example, for
the case of Sl(m|n) superalgebras, the contribution of a representation is:

. . . o1
%(y)—>(1+y,1—1+y,.-,—J+y,0,...,0;1—5+y,
3 1
i— = =it 0,..,0),
J=5+y —jt5 400 0>

o1 .3 1
«%’}‘(y)—><1—§+y,1—§+y,..,—J+5+y,0,..,0;

]+y’]_1+yrs _J+y50,,0>

The other cases are analogous.

13. W Superalgebras from Lie Superalgebras of Rank up to 4

In the following tables, we present an exhaustive classification of super W algebras
arising from super Toda models based on classical superalgebras of rank up to 4.
The classification is listed in Tables 10 to 17.

For the infinite series ¥ = A(m,n) = Sl(m + 1jn + 1) with m +n, A(n, n)
=Sl(n + 1jn + 1)/U(1), B(m,n) = OSp(2m + 1|2n), C(n + 1) = OSp(2|2n) and
D(m, n) = OSp(2m|2n), We give the decomposition of the fundamental representa-
tion of ¢ with respect to OSp(1]2) @ U(1), the minimal (i.e. the lowest dimensional)
regular SSAs containing the OSp(1|2) or (for the irregular cases) the corresponding

Table 10. A(m, n) superalgebras up to rank 4

Y SSA Decomposition of the Superconformal spin
in¥% fundamental of ¢ of the W superfields
(Hypercharge)
A, 1) A@©, 1) R 31

L1103

40, 2) A0, 1) Ri2(9) @ A5(— y) 0,0, 2y, — 2y, 0)

A(l’ 1) A(O’ 1) '%11:/2 @g?o %a 1: 1> 1
31, 451, 453
A0,3) A0 1) R ® 25— y/2) 3 3y 3y
0305_,_9—9—'5030’070
22 2 2
ALY ALY & £2,31
A(O 1) '%?/2(0) %’ 19 1’1’1/’ 1’;%5%9%’7%’
’ R RT - -
O A A) 00,222 20000
222 2
3,5 1, 4%}
A0 By,()) @ 2R5(32) oL T ,
0,022 =2 =2 00,000
222 2
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Table 11. B(m, n) superalgebras of rank 2 and 3

9 SSA Decomposition of the Superconformal spin
in¥% fundamental of ¢ of the W superfields
(Hypercharge)
B(0,2) B(0,1) Rz ® 2% 1,1,5 4%
B(1,1) B(1,1) 2 2,3
CQ) %113
4 R Ro(—
B, 1)} L )
B(O, 3) B(09 1) ’%11;/2@4‘%15 %’ 1,’ ll, 1,’ l,a 10*%
B(L 2) B(la 2) 2/2 %y 27 %
B(L 1) ‘%l ('B 2'%3 23 %y %l, %,9 %, %) %
C(2) } ’%11[/2 @ Qo()’) @ '%0( —Y) %5 1’ 1’ 11’ 1” *%’4*%
B(0,1) D 2% ©O,y, =y, 60, y, 5, =y, —)
C2)@ B(@,1) 3331113
RT R p(— R
A, 1) 12(3) ® Z12( —y) @ %o 2y, =23, 0, 3, —3 0, 0)
DR, 1) 23,333
B(2,1 R DR Ro( —
2,1 B(, 1)} 1@ Ro(y) ® Zo(—Y) 0,2y, —25,0,0)
CQ
BO, 1)} Ri, ® 4R 3, 4%1, 6%%
A(I? 0) 2‘@1/2 (-B QO %’ 11 1’ 15 1’, 1,3 %) %y %

Table 12. B(m, n) superalgebras of rank 4

4 SSA Decomposition of the Superconformal spin
in9 fundamental of ¢ of the W superfields
(Hypercharge)
B(0,4) B(0,1) A7, @ 67 3, 6+1', 21+%
B(1,3) B(1,2) 32 ® 2R5 322,23 %343
B(l’ 1) .@1 @4@6‘ 21 %’ %,’ %ly %ly %,’ 10*%
C(2 @ B(, 1) RT12()) ® #72(—) 3%3,1,1,1'1, 1,1/, 1,455, 2+F
A(O? 1) @v%o ('BZQ(’)‘ (2)” _zyv 0’ 3*)/, 3% - 7*0)
CQ2) Rz ® AR5 3,251, 451, 1153, 944
B(O’ 1) 6'%0(,")@'@0(_})) (O,J’, =) 15*0’ 4*}’, 4% - ) 0)
B(2,2) B(22) R; 43,23
D(2,2) i 32,2233
B(1, 2)} Hip®ANSA(=)) o'y 00,0
D, 1)} Ry @ 295 23333.3.443 444
B(1,1) DRo(y)® Zo( — ¥) ©, 2y, —2y,0,6%0,y,y, —y, —)
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Table 12. (continued)

3 SSA Decomposition of the Superconformal spin
in¥% fundamental of ¢ of the W superfields
(Hypercharge)
D2, 1)@ B0, 1)
R @R, DR 22,5333 1,1
B(L 1)@ CQ) 1® &) ) 2253
CQaCQ R112(y) © Ri2(— ) %335 71,5 453, %
A0, 1) @ 3% 2y, =2y, 0, 3%y, 3x —y, 0, 4x0)
C(2) , .
B0, 1)} Rl © 4%R0 @ 29} 3, 41, 241, 9x}, 843
A(1,0) 2%, ® Ao @ 245 3, 71, 1, 1, 643, 243
D(2,1)
B@3,1 R, D4R 2, 53, 6x%
G.1 BQ, 1)} 1© 4%, *3, 6%3
CcQ) .
B(O, 1)} '%1/2 @ 6'%0 %a 6*13 15*%
A(1,0) 221/, ® 3%o 3, 31, 61/, 6x3

Table 13. D(m, n) superalgebras up to rank 4

4 SSA Decomposition of the Superconformal spin
in¥% fundamental of ¥ of the W superfields
(Hypercharge)
D(2, 1) D(2, 1) '@l @'%0 2’ %5 %
C(z) '%11‘/2 @ 3'@0 %’ 1’ 1’ 1’ %9 %, %
A(1,0) 2R, 3L1,1,4 %%
D(2, 2) D(Z’ 2) 923‘/2 ('B '%0 %7 2’ 2’ %
D(Z, 1) '%1 @ '%0 @2'%6 23 %, %7 %’5 %,a 5*%
C(2) RT, D 3Ro ® 2RE 21, 1,1, 1, 1, 6%%, 6%
cQeCQ %335, % %
R R Ro( —
A0, e
B(LL)®BO,1) % ®%%p 22,3331
A(1,0) 2Ry, @ 2RG 3, T*1, 6%
D(3’ 1) D(zs 1) '%1 @ 3'@0 2» 4*%} %, %a %
C(Q2) RT), @ 5Ro 2 5%1, 10%%
A(1,0) 2R, ® 2R, 31,1, 1, 451, 453

singular embedding. Then, we give the superspin content with the same convention
as for the bosonic tables. We recall that to a W superfield correspond two fields
ws and wgy1,,. When the superspin is marked with a prime ('), the corresponding
superfield W has the “wrong” statistics (commuting fermions and anticommuting
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Table 14. C(n + 1) superalgebras up to rank 4

3 SSA Decomposition of the Superconformal spin of the
in¥% fundamental of ¥ W superfields (Hypercharge)
CQ3) A4(0,1) ‘%1{/2(}’) @ 9?71:/2( -) 3331 3
0, 2y, —2y,0,0)
C(2) ‘%11‘/2 @ @0 @ 2’@3 %’ 19 1’3 1” JZ; %’ %s %,’ %’
C@) A0, 1) R12(Y) @ Rip(— y) ®2H5 3%3, 1, 4x1', 4%}
0,2y, —2y,0,y,y, —y, — y,4%0)
C(2) R, ® Ro D 45 3, 1, 4x1', 1043, 444

Table 15. The exceptional superalgebra G(3)

SSA 0Sp(1]2) decomposition of G(3) Superconformal spin

of the W superfields
A(1,0) R D3R, ® AR, D 3R D 2R, 3L, 1, 1,4x1, 5,4, 5,4, %
A(1, 0 2R3, @ R D 3R, ® 3%, 2,2,31,1,1,%, 4,4
B(, 1) Ro D 624, ® 8%, 3, 6%1, 8%}
B(1,1) R D 2R3, ® Ry @ 3% @ 245 2,2,2,5,5 53 3.%
D(2,1;3) R, ® %3/2 @ 3%, %, 2, %, %’ %

Table 16. The exceptional superalgebra F(4)

SSA 0Sp(1]2) decomposition of F(4) Superconformal spin

of the W superfields
A(1,0) R @ TRy, ® 149, 3, 71, 14x%
A0, 1) R D3Ry, ®6Ry), @ 6ZRo D 2%, 2 3x1, 6%1', 6%3, 4/, &
cQ 5% ® 3R, ® 6%, 5%3, 3x1, 6%
D2 1;2) B2 @ 2R, ® 29, @ 2’ ), ® 3R 2,2,2,3,3 1,1, 54,3

Table 17. The exceptional superalgebra D(2, 1; a)

SSA Decomposition of the Superconformal spin
fundamental of D(2, 1; «) of the W superfields

D(z’ 1) '%1 ('BQO 2s %7%

C(2) QY/Z @ 3‘%0 %’ 1> 1; la é’ %a %

A(l, 0) 2'%1/2 %s 1’ 1; 1’ ‘ZL’ ‘ZLa %

bosons). In the same column, we give under the superspin s the hypercharge(s)
y when they exist.

For the two exceptional superalgebras ¥ = G(3) and F(4), we give the minimal
regular SSA containing the OSp(1/2) embedding, the decomposition of the adjoint
representation of ¢, and the superspin content.
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14. Quadratic-, Quasi- and Z, x Z,-Superconformal Algebras

We have a natural framework to study superconformal algebras. Let us first recall
that a quadratic-superconformal algebra is a Zamolodchikov superalgebra made
of one spin 2 field corresponding to 7(x) (and forming a Virasoro algebra),
N fermionic supersymmetry charges G*(x) which are spin 3 primary fields with
respect to T(x), and a Kac-Moody (KM) algebra (i.e. spin 1 primary fields). The
spin 3 generators are required to form a representation of the KM algebra, but the
quadratic-superconformal superalgebra is not (in general) a Lie superalgebra in the
sense that the PB {G%(x), G#(x")}pp contains quadratic terms in the KM currents
[16, 19].

The “usual” superconformal algebras, i.e. the Ademollo et al. algebras [20] and
the one parameter algebra found in [21], are the only closed Lie superconformal
algebras we know. We will refer to them as Lie superconformal algebras and call
the corresponding supersymmetries “true” supersymmetries.

The same definition holds for a quasi-superconformal algebra [16], except that
its spin % fields G*(x) are bosonic (“wrong” statistics). As an example, the algebra
made explicit in Sect. 7.3, possessing two spin-3 and one spin-1 fields, is quasi-
superconformal.

An algebra with both bosonic and fermionic spin 3 currents is called Z, x Z,
superconformal algebra. In that case, spin 1 fermions may also appear.

It should be clear to the reader that Part I contains all the tools necessary for
the determination of the quasi-superconformal algebras, whereas the quadratic and
Z, x Z, superconformal algebras can be obtained from Part II. Note however, that
the supersymmetric treatment we have used (and which naturally makes appear
a N = 1 Lie superconformal algebra) leads to the emergence of spin £ fields. As it is
now well-known, to avoid these fermions, one can factorize them [22]. These
algebras (without spin 4 fermions) have already been classified at the quantum level
in [16]. We show hereafter that all the algebras of [16] can be realized at the

Table 18. Classification of quasi-superconformal algebras

Algebra Decomposition of Conformal spin Residual Kac-Moody
Y the fundamental of ¢ of the W generators algebra

2, 2(n — 2)%3,
Sl(n) n=2,,®n—22 (n— 2e1 Slin —2)@® U(1)

21 2(" - 4)*%7
SO (n) n=29,+n—492, SO(n—4)® SI(2)

- [(n —4)n -9 ]
—+3 |x1
2
Sp(2n) =Dy, +@n—2) 2 (an— 43, Sp(2n —2)
n= n— n—
pian L= (n— 2)2n — 3)x1 i

G2 z = 291/2 + 390 27 %7 %’ %7 %7 19 17 1 Sl(z)
F, 26 =694, + 149, 2, 143, 211 Sp(6)
Es 27 =69y, + 159, 2, 20%3, 35%1 SI(6)
E, 56 = 129, + 329, 2, 32%3, 66%1 S0(12)

Eq 248 = D, + 569, , + 1339, 2, 56%3, 133x1 E,
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classical level as symmetries of Toda models. Moreover, two new (with respect to
[16]) Z, x Z, superconformal algebras can be identified from the study of G(3) and
F(4).

14.1. Quasi-Superconformal Algebras. From the study of Part I, we can see that
such algebras, with only one spin 2 and no spin s > 2, are obtained when the
fundamental representation of SI(n) and Sp(2n) (resp. SO(n)) algebras contains only
one (resp. two) 9,, representation(s). This means that we are reducing these Lie
algebras with respect to a regular A;. Using the results of Part I and [17] for the
exceptional algebras Eg ;. , We obtain the classification of Table 18.

14.2. Quadratic-Superconformal Algebras. They are obtained from the reduction
of a superalgebra with respect to an OSp(1]2) SSA. Note that “wrong” statistic
superfields may appear and lead to Z, x Z, superconformal algebras. From the
rules given in Sect. 11.2.1, relating £’ representations of the adjoint, to £ and £*
representations of the fundamental, it is easy to compute the allowed reductions. As
an example, let us study the Sl(m|n) algebras: the reduction with respect to SI(1]2)
reads n + m = X7, + (m — )%y + (n — 2)4§, so that we must set n = 2 to avoid
“wrong” statistics. Thus, only the SI(n|2) (or SI(2|n)) algebra leads to quadratic-
superconformal algebras. The same calculation leads to the list:

SI(n2), OSp(2n), OSp(nj2), F@), G@). (14.1)

We summarize the results in Table 19. Note that the regular superalgebra
which characterizes the OSp(1/2), provides the number N of “true” supersymmet-
ries of the W algebra: N, = 1 for a regular OSp(1]2), N, = 2 for the superprincipal
OSp(1]2) of SI(1]2) and OSp(2]2), Ny = 3 if the previous SI(1]2) or OSp(2|2) can be

Table 19. Quadratic-superconformal algebras

4 Min. includ. Ny Superconformal spin Super KM
regular SSA of the W generators algebra

All,m)  A(L,0) 2 3 2n + Dxl, ns3 A, ®UWD)

D(2,n) A(1,0) 4 3,@n—1)x1,[(n— )2r —1)+ 3]+  C,_, ®3U()

D@m,1)  CQ) 4 3, @m — 1)x1, (m — )2m — )} B,_,

Im=1)

B(m,1)  C(2) {4(m ) 3, 2mx1, m2m — 1)x} Dy,

G(3) B(0, 1) 1 3, 6%1, 843 A,

F(4) A(1,0) 2 3, 7x1, 1443 G,

Table 20. Z, x Z, superconformal algebras (no superspin % bosonic superfield)

Min. includ. N,  Superconformal spin Super KM
g regular SSA of the W generators algebra
D(m,1) A(1,0) 4 3, 3%1, 4(m — 2)*1, [(m — 2)2m — 5) + 3]*3 D, ®3U(1)
B(m,1) A(1,0) 4 3, 3%1, 2(2m — 3)*1, [(m — 2)2m — 3) + 3]+3  B,_, ®3U(1)

B(O,n B, 1) 1 3 Qn—2xl, (n— 1)2n — s} B,_,
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Table 21. Z, x Z, superalgebras (with superspin 4 bosons)

9 Min. includ. Ny Superconformal spin
regular SSA of the W generators

3 (2n+ Dxl, 20m — Ds1',

[m — 1)* + n?]+3, 2(m — Dn+d

3 (2m — D)x1, 2n — 2+ 1/,

D(m, n) CQ) 4 [(m — D2m — 1) + (n — 1)2n — 1)]*3,
@m — 1)@2n — 2%k
2 (4n — 1)x1, 4(m — 2)*1’,

A(l, 0) 4 [(m—2)(2m —5) +(n — 1)2n — 1) + 3] 3,

4m — 2)(n — 1

3 2msl, 2n — 2)x1’

A(m, n) A(1, 0) 2

Bmn)  CQ) {43122 y g [m2m — 1) + (1 — 1)2n — )]+,
dm(n — )4
3, (4n — Dx1, 22m — 31,
A(l, 0) 4 [(m — 2)(2m — 3) +I(n — 1)2n — 1) + 3]+4,

202m — 3) (n — 1)x%
3,1, 2n— 21’

Cn+1) CQ 2 ,
e (n— )2 — 1)xd, 2n — 2l

G(3) A1, 0) 4 3, 3x1, 4x1', 3%, 253

F4) A0, 1) 4 3 341, 6417, 633, 268

embedded in an OSp(3|2) SSA, and N, = 4 if the SI(2|1) or OSp(2]2) is contained in
OSp(4]2) or D(2, 1; o) SSAs.

14.3. Z, x Z, Superconformal Algebras. Their classification is easily deduced from
the previous section. We begin with the Z, x Z, superconformal algebras that do
not contain superspin 3 bosons, so that we can define a (right statistic) super-KM
algebra). These algebras are listed in Table 20.

If now one introduces the superspin 3 bosons, the number of allowed superal-
gebras is much larger. In fact, in accordance with [16], we find one (resp. two)
Z, x Z, superconformal algebras from each A(m, n) and C(n + 1) (resp. B(m, n) and
D(m, n)) superalgebras. However, for F(4) and G(3), we find two new Z, xZ,
superconformal algebras, different from the two quadratic-superconformal alge-
bras of [16], already listed in Table 19. This seems to indicate that these two
algebras exist only at the classical level. The results are summarized in Table 21.

15. Conclusion

In the classification we have obtained, each W (super)algebra is characterized by its
(super) conformal spin content and the couple (S/(2), %) if 4 is a simple Lie algebra,
respectively (OSp(1]2), %) if 4 is a Lie superalgebra. The PB of the corresponding
W (super)algebra can then be determined via the general method recalled in Sect.
2.1. However, rather important simplifications occur when the U(1) factor com-
muting with SI(2), resp. OSp(1/2), exists: the admitted Y values are also provided in
our tables.
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It has seemed to us necessary to reconsider in a first step the problem of the
S1(2) subalgebras in a simple Lie algebra %, in order to make explicit our results in
the algebraic case, and also to propose the generalization we have obtained for the
supersymmetric one. We hope that the tables in which our results are gathered are
presented in a convenient enough way to allow direct use. This has been at least the
case for us to easily recognize the superconformal algebras of [16].

Among the different problems one can immediately think of, an urgent one is of
course the quantum case. Some interesting works [19, 23-26] already exist, but
a general treatment would be necessary. Another question we wish could answer is
how large is the class of W (super)algebras which are symmetries of Toda theories,
in the complete set of W algebras.

Acknowledgements. It is a pleasure to thank A. Deckmyn, F. Delduc, K. Hornfeck and A. Saveliev
for fruitful discussions.

References

1. Bilal, A., Gervais, J.L.: Phys. Lett. 206B, 412 (1988); Nucl. Phys. B314, 646 (1989); ibid B318,
579 (1989)

. Babelon, O.: Phys. Lett. B215, 523 (1988)

. Balog, J., Feher, L., Forgacs, P., O’Raifeartaigh, L., Wipf, A.: Phys. Lett. B227, 214 (989); ibid
B244, 435 (1990); Ann. Phys. 203, 76 (1990); Feher, L., O’Raifeartaigh, L., Ruelle, P., Tsutsui,
I, Wipf, A.: Ann. Phys. 213, 1 (1992); O’Raifeartaigh, L., Ruelle, P., Tsutsui, I., Wipf, A.:
Commun. Math. Phys. 143, 333 (1992)

4. Leznov, AN, Saveliev, M.V.: Commun. Math. Phys. 89, 59 (1983); Saveliev, M.V.: Commun.
Math. Phys. 95, 199 (1984); Leznov, A.N., Saveliev, M.V.: Act. Appl. Math. 16, 1 (1989);
Saveliev, M.V.: Mod. Phys. Lett. 5A, 27 (1990) 2223

5. Bais, F.A,, Tjin, T., van Driel, P.: Nucl. Phys. B357, 632 (1991)

6. Bowcock, P., Watts, G.M.T.: Nucl. Phys. 379, 63 (1992)

7. Feher, L., O’Raifeartaigh, L., Ruelle, P., Tsutsui, I, Wipf, A.: Dublin preprint DIAS-STP-
91-29

8. Delduc, F., Ragoucy, E., Sorba, P.: Phys. Lett. B279, 319 (1992)

9. Leites, D.A., Saveliev, M.V., Serganova, V.V.: In: Proceedings of the Third Yurmale Seminar
(VUN Science, Utrecht, The Netherlands, 1986), p. 255

10. Delduc, F., Ragoucy, E., Sorba, P.. Commun. Math. Phys. 146, 403 (1992)

11. Polyakov, A.M.: Int. Jour. Mod. Phys. AS, 833 (1990)

12. Bershadsky, M.: Commun. Math. Phys. 139, 71 (1991)

13. Drinfeld, V., Sokolov, V.: J. Sov. Math. 30, 1975 (1984)

14. Dynkin, E.. Am. Math. Soc. Transl. Ser. 2 6, 111 (1957)

15. Lorente, M., Gruber, B.: J. Math. Phys. 13, 1639 (1972)

16. Fradkin, E.S., Linestsky, V.Y.: Phys. Lett. B291, 71 (1992)

17. Slansky, R.: Phys. Rep. 79 no. 1 (1981)

18. Frappat, L., Sciarrino, A., Sorba, P.: Commun. Math. Phys. 121, 457 (1989)

19. Bowcock, P.: Nucl. Phys. B381, 415 (1992)

20. Ademollo, M. et al.: Phys. Lett. B62, 105 (1976)

21. Sevrin, A., Troost, W., Van Proeyen, A.: Phys. Lett. B208, 447 (1988)

22. Goddard, P., Schwimmer, A.: Phys. Lett. B214, 209 (1988)

23. Yao-Zhong Zhang,: Phys. Lett. B283, 237 (1992); Toppan, F., Yao-Zhong Zhang,: Phys. Lett.

B292, 67 (1992)

24, Delius, G.W., Grisaru, M.T., Van Nieuwenhuizen, P.: Nucl. Phys. B389, 25 (1993)

25. Penati, S.,, Zanon, D.: Phys. Lett. B288, 297 (1992)

26. Ito, K., Madsen, J.O., Petersen, J.L.: preprint NBI-HE-92-42

w N

Communicated by G. Felder





