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Abstract. We introduce the notion of moment maps for quantum groups acting on
their module algebras. When the module algebras are quantizations of Poisson
manifolds, we prove that the construction at the quantum level is a quantization of
that at the semi-classical level. We also prove that the corresponding smashed
product algebras are quantizations of the semi-direct product Poisson structures.

1. Introduction

The concept of moment maps for Hamiltonian actions is a very important one in
symplectic geometry. In particular, it is a crucial tool in the study of symplectic
reduced spaces, on which the reduced Hamiltonian systems live [Ms-We]. In the
theory of Hopf algebras, a very important notion is that of inner actions (see
[B-C-M] and the references therein). In the first part of this paper, we relate these
two concepts in the two different fields. We show that by taking semi-classical
limits, inner actions of Hopf algebras give rise to Poisson actions of Poisson groups
with moment maps. This leads to the definition of moment maps for quantum
group actions, the first step in carrying out quantum reduction.

An equally important concept in Hopf algebra theory is that of crossed
products [B-C-M]. We show that in symplectic and Poisson geometry, this
corresponds to semi-direct products of Poisson manifolds and Poisson groups.

Recall that if P is a symplectic manifold equipped with an action of a group
G preserving the symplectic structure, then the space of G-invariant functions on
P is closed under the Poisson bracket on functions on P, and thus the quotient
space P/G, when it is a manifold, has a naturally defined Poisson structure. Flows
of G-invariant Hamiltonians can be considered as living on P/G. More precisely,
they live on the symplectic leaves in P/G. When the action is generated by
a moment map φ: P -> g*, where g is the Lie algebra of G, the reduction procedure
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of Marsden-Weinstein [Ms-We] gives a way of describing symplectic leaves in P/G
as the quotients φ~1(Θ)/G, where Θ is a co-adjoint orbit in 9*. This description
gives a one-one correspondence between symplectic leaves in P/G and co-adjoint
orbits in g*.

In the theory of quantum spaces, symmetries are provided by quantum group
actions.

Definition 1.1. Let Abe a Hopf algebra. By a left ^-module algebra we mean a left
Λ-module V which is an algebra at the same time and the action of A on V respects the
algebra structure on V in the following sense:

1) a l v = ε(a) l v for all ae A,
2) a (vu) = (fl(1) u)(«(2)*u)for all ae A and v,ueV, where 1A is the unit element of
A, l v is the unit element in F, and Λa = Yβ{1)®a{2) is the co-product of a.

In [Sw], A is said to "measure" V to V if these two conditions are satisfied.
Condition 1) says that the map k -> F: α 1—• αl v is an ^4-module map. Condition 2)
says that the multiplication map mv: V® V -» Fis an ^4-module map, where A acts
on F ® F via the co-product map A.

Semi-classical limits of quantum groups are the so-called Poisson groups, and
semi-classical limits of quantum group actions on module algebras are Poisson
actions of Poisson groups on Poisson manifolds (see Sect. 2 for the definitions). The
theory of moment maps and reduction for Poisson actions has been studied in
[Lulj. In particular, a moment map for a Poisson action of G on P is a Poisson
map from P to the dual Poisson group G* of G. For an action of G on P with such
a moment map, there is again the Marsden-Weinstein reduction procedure that
constructs symplectic leaves of the quotient space P/G from symplectic leaves in
G*.

Let A be a Hopf algebra and let A* be its dual Hopf algebra. If A is
a quantization of a Poisson group G (see the definition in Sect. 2), then according to
the Quantum Duality Principle in [STS2], A* ^ Uh$ is a quantization of the dual
group G*, and ,4*-module algebras are quantum analogs of Poisson actions of G.
Now suppose Fis a left v4*-module algebra. It is easy to show (see Sect. 3) that the
space of ,4*-invariant elements in Fform a subalgebra VA* of V. If we think of Fas
quantizing a symplectic manifold P (see definition in Sect. 2), then the algebra VA*
should be considered as quantizing the manifold P/G. If we take the general
principle of the "orbit method" that symplectic leaves of a Poisson manifold
correspond to irreducible representations of its quantized algebra, it is natural to
want to describe irreducible representations of the algebra VA* from that of A*. It is
here where we need the notion of moment maps at the quantum level.

In this paper, we propose the following definition of moment maps for quantum
actions.

Definition 1.2. Let D: A* (x) F -> V be an action of A* on V making V into a left
A*-module. An algebra homomorphism Φ: A* —> V is called a moment map for D if

D(x®υ) = Φ(x(1))υΦ(S(xi2))), (1)

where Ax = x(i)®X(2) denotes the co-product ofx, and S denotes the antipode map
of A*.

It is well-known in Hopf algebra theory [B-C-M] that an algebra homomor-
phism from A* to F always defines a left ,4*-module structure on Fby the above
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formula. In this paper, we show that this is the correct notion of moment maps for
quantum actions. We do this by showing that when A is a quantum group and
when Vis a quantization of a symplectic (or Poisson) manifold, the "semi-classical
limit of this concept" coincides with the one for Poisson group actions given in
[Lul]. This is the content of Theorem 3.10.

Once we have the correct notion of moment maps, the next step will be to find
a quantum analog of the Marsden-Weinstein procedure for quantum actions with
moment maps. This amounts to relating irreducible representations of the algebra
VA* to that of the algebra A*. It is easy to show that the two subalgebras VA* and
Φ(A*) of V commute with each other in V. In fact, the subalgebra VΛ* is the
centralizer of Φ(A*) in V. If Φ(A*) is also the centralizer of VΛ* in V9 then we are in
the situation of a "Howe Pair" [Ho]. Recall that the principle for relating irredu-
cible representations of the two subalgebras in a "Howe pair" situation is to
decompose a "good" irreducible representation of V with respect to the tensor
product of the two subalgebras. Each irreducible component in this decomposition
will be a tensor product of irreducible representations of the two subalgebras, and
this, in good cases, will enable us to get a one-one correspondence between all
irreducible representations of the two subalgebras. This principle has only been
checked for special cases. For this reason, we do not think that one can formulate
a general quantum analog of the Marsden-Weinstein reduction procedure. In-
stead, one can try to work with concrete examples. We hope to be able to do this
when we study quantum groupoids.

It is typical in quantum group theory that subgroups at the classical level
do not correspond to quantum subgroups. At the semi-classical level, they are
the so-called coisotropic subgroups [Lul]. A general question is: if a Poisson
manifold P is quantized to an algebra V, what should coisotropic submani-
folds in P correspond to in V? An answer to this question is needed when
studying quantum groupoids. We answer this question by proposing the follow-
ing "Poisson creed" (compare to the "symplectic creed" stated in [Wei] by
Weinstein).

Creed. Coisotropic submanifolds of P correspond to one-sided ideals in V.

In Sect. 3, we give examples where this is verified. The quantum analog of
a coisotropic subgroup of a Poisson group is then a subspace of a Hopf algebra
which is a one-sided ideal with respect to the product and a co-ideal with respect to
the co-product. We describe reductions with respect to such "one-sided Hopf
ideals" in Sect. 3.

The last part of the paper deals with smash products, where moment maps
appear naturally. It is well-known in Hopf algebra theory [Sw] that if V is a left
,4*-module algebra, then there is a naturally defined algebra structure on V®A*,
the so-called smash product or semi-direct product or cross-product, which encodes
the algebra structures on Fand A* as well as the action of A* on V. We show that
when A is a quantum group and when V is a quantization of a Poisson manifold,
the semi-classical limit of the smash product algebra is the so-called semi-direct
product Poisson structure as defined in [Lul]. As a special example, if we take the
left regular action of A* on A9 the resulting smash product structure on A® A* is
called the Heisenberg double of A in [STS2], which quantizes a canonical symplec-
tic structure on GxG*. This symplectic structure is compatible with a natural
groupoid structure on GxG* over G [Lu-We2]. This is our main motivating
example of quantum groupoids.
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2. Semi-Classical Limits

Recall that a Poisson algebra is a commutative algebra A together with a Lie
bracket { }, also called a Poisson bracket, such that

[ab, c] = a{b, c} + b{a, c}, a,b,ce A .

A Poisson manifold is a manifold P together with a Poisson algebra structure on
the algebra Fun(P) of functions on P. Here functions on P are understood to be C °°
or algebraic depending on whether P is C 0 0 or algebraic. A Poisson map from
a Poisson manifold to another is a map whose pull-back on functions is a Lie
algebra homomorphism with respect to the Poisson brackets.

Definition 2.1. By a quantization of the Poisson structure {} on P we mean a one
parameter family of non-commutative algebra structures, denoted by *Λ, on the vector
space Fun(P) such that

1) *o corresponds to the commutative multiplication, and
2) the "derivative of *h at h = 0" is the Poisson bracket, i.e.,

{fg} = lϊmτ(f*hg-g*hf)

forfgeFun(P).

We note that any one parameter family of non-commutative algebra structures
*h on Fun(P) which satisfies 1) in the above definition will define a Poisson bracket
{ } on P given by the formula in 2). This Poisson bracket is called the semi-classical
limit of *Λ.

Definition 2.2. By a quantum group we mean a Hopf algebra (Fun(G), *Λ, A, Sh,εh)
consisting of

1) a one parameter family of associative algebra structures *Λ on the space of
functions Fun(G) of a group G (here G can be C 0 0 , algebraic or formal);

2) the map

A:Fun(G) -> Fun(G)(χ)Fun(G): A(f)(gl9 g2) =f(g1g2), gl9g2eG,

which is the pull-back of the group multiplication map of G;
3) (the antipode) a map Sh from Fun(G) to itself such that So is given by

S0(f)(g)=f(g-1);and
4) (the co-unit) a map εhfrom Fun(G) to the ground field k such that ε0 is given by

εo(f) =f(e), where eeG is the unit element of G.

We emphasize here that in our definition of a quantum group the co-product
A is "not quantized" in the sense that it is simply the pull-back on functions of the
group multiplication map. In general, If P and Q are two Poisson manifolds and if
(Fun(P), *ft) and (F\xn(Q\ *h) are quantizations of P and Q respectively, we say that
a Poisson map φ: P -• Q is compatible with the two quantizations if the map

φ*: Fun(β) -+ Fun(P): /ι->/°0, fe F u n ( β ) ,

which is the pull-back of φ on functions, is an algebra homomorphism from
(Fun(β), *Λ) to (Fun(P), *Λ). For example, the identity map from P to itself is
compatible with any quantization of P.
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//(Fun(G), *Λ, A, Sh, εh) is a quantum group, the semi-classical limit of *Λ is then
a Poisson structure on G with the property that the group multiplication map

GxG -> G:(g9h)\-+ gh

is a Poisson map, where G x G is equipped with the direct product Poisson
structure. Groups with such Poisson structures are called Poisson groups. We say
that the quantum group (Fun(G), *h9A9 Sh,εh) is a quantization of the Poisson
group G. For simplicity, we will simply use FunΛ(G) to denote the Hopf algebra
(Fun(G)9*h,A,Sh9εh).

Definition 2.3. Let A be a Hopf algebra. By a right A-co-module algebra, we mean
a right A-co-module V which is an algebra at the same time such that

1) the co-module map

σ: F-> V®A

is an algebra homomorphίsm, where V®A is equipped with the tensor product
algebra structure, and

2) (idv(x)β)oσ = idv.

Let A be a quantum group quantizing a Poisson group G. Let V be a quanti-
zation of a Poisson manifold P. Assume that σ: V -• V®A defines a right A-
co-module structure on V. If the map σ coincides with the pull-back on functions of
some map σ0: PxG -• P, then σ0 defines a right action of G on P and it is
a Poisson map with the direct Poisson structure on G x P. Actions of G with this
property are called Poisson actions. In this case, we say that the yl-co-action on Fis
a quantization of the Poisson action σ0.

According to this definition, the right A-comodule structure on a quantum
group A itself given by the co-product of A is a quantization of right action of the
corresponding Poisson group on itself by right translations. Other examples are
the vector co-representations of the quantum groups A = fun^(G), where G is
a complex semi-simple Lie group of type An9 Bni Cn or Dn, as are given in [R-T-F].

We now recall the theory of moment maps and reduction of Poisson actions
[Lul]. Their quantum counterparts will be discussed in Sect. 3.

One way of generating Poisson actions of Poisson groups is through Poisson
maps to their dual groups. Let P be a Poisson manifold and φ: P -• G* a Poisson
map. For each X e g, let X1 (resp. Xr) be the left (resp. right) invariant 1-forms on
G* whose value at e is X. Define a vector field σx (resp. σ'x) on P by

σx = π?(φ*Xι) (resp.σ;= -π?(φ*X'))9 (2)

where π? is the bundle map 77*P -> TP: π(ξ9 η) = ζ(π? η). Then the map X \—• σx

(resp. the map X i—• σ'x) defines a Lie algebra anti-homomorphism (resp.
homomorphism) from g to the Lie algebra of vector fields on P with the commuta-
tor bracket. Assume that it can be integrated to an action of G on P. It is then a left
(resp. right) Poisson action of G on P. See [Lul] for more details.

Definition 2.4. A left (resp. right) Poisson action ofGonP is said to have a moment
map φ: P -> G* if it is generated by φ as described above.

Definition 2.5. The left and right actions of G on G* generated by the identity map
G* -• G* are respectively called the left and right dressing actions of G on G*.
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Similarly, the left and right dressing actions ofG* on G are generated by the identity
map of G.

Recall that symplectic leaves of a Poisson manifold (P, πP) are defined to be the
integral submanifolds of the distribution defined by the image of the bundle map
π*. It is clear from the definition that

1) a Poisson action on P with a moment map necessarily leaves the symplectic
leaves in P invariant. Consequently, the left action of G on itself by left translations
can not have a moment map;

2) the dressing oribits of G* in G coincide with its symplectic leaves of G.
3) the Poisson map φ: P -• G* is G-equivariant with respect the left (resp.

right) action σ (resp. σ') of G on P induced by φ and the left (resp. right) dressing
action of G on G*.

Let P x G -• P be a Poisson action of G on P. Then it is easy to show that the
space of G-invariant functions on P is invariant with respect to the Poisson bracket
on functions on P. Therefore when the quotient space P/G is a manifold, it inherits
a Poisson structure such that the projection map P -• P/G is a Poisson map. This
procedure is usually referred to as Poisson reduction.

Sometimes we need reduction by subgroups of G. For example, given a right
Poisson action of G on P and a left Poisson action of G on Q, the diagonal action of
G o n P x β given by g: (p9 q) i—• (p g, g~1 q) is in general not a Poisson action, so
the Poisson reduction procedure does not apply to the space (P xQ)/G. But the
group GxG acts naturally o n P x g from the right, and it is a Poisson action if we
equip the second factory G with minus the Poisson structure on G. We denote this
Poisson group by G x G. We can think of G aŝ  sitting inside G x G as the diagonal.
As such, it is a coisotropic subgroup of G x G.

In general, a subgroup H of a Poisson group G is called a coisotropic subgroup
if as a submanifold of G it is coisotropic, i.e., if the space of functions on G that
vanish on H is closed under the Poisson bracket on G. The Poisson reduction
procedure described above can also be carried out with respect to coisotropic
subgroups of G, namely, if P x G -> P is a Poisson action of G on P and if H is
a coisotropic subgroup of G, then the space of //-invariant functions on P is closed
under the Poisson bracket on P. Such a procedure is usually referred to, as reduction
by coisotropic subgroups. In Sect. 3, we will give a quantum analog of it.

3. Moment Maps and Reduction at the Quantum Level

In this section, we assume that A is a Hopf algebra and A* is its dual Hopf algebra.
The pairing < > between A and A* then has the following properties:

(ab, x> = <

and

<α, 1A*> = ε(a), <α, S(x)} = <S(a\x} ,

where a, be A, x j e i * , and we are using the simplified notation a{1)®a(2) to
denote the element Δ(a) = Xfl(i)®fl(2)

Although the theory in this section is true for general Hopf algebras, we will
think of A as a quantum group quantizing a Poisson group G and think of A* as
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quantizing the dual group G* of G. Similarly, y4-co-module algebras or ̂ 4*-module
algebras should be thought of as quantizations of some Poisson manifolds on
which the Poisson group G acts in a Poisson fashion. This enables us to use the
concepts and constructions at the semi-classical level to motivate those at the
quantum level.

We first look at the quantum analog of Poisson reduction.
Let Kbe an ̂ 4*-module algebra. An element v of Fis said to be ̂ -invariant if

x v = ε(x)v, MxeA*.

Set

VA* = {v e V: v is A*-invariant} .

The proof of the following proposition follows directly from the definitions.

Proposition 3.1. VA* is a subalgebra of V containing the unit element l v .

We now discuss the quantum analog of reduction by coisotropic subgroups as
discussed in Sect. 2. To do this, we have to answer the following question first:

Question 3.2. IfG is a Poisson group and A = FunΛ(G) is a quantization ofG, what
do coisotropic subgroups of G correspond to in A?

More generally,

Question 3.3. Suppose that AP is a quantization of the Poisson maniflold P, what
should coisotropic submanίfolds of P correspond to in APΊ

Semi-classically, a coisotropic submanifold P x of P can be described by the
subspace of Fun(P) consisting of functions that vanish on Pλ. It is an ideal with
respect to the commutative multiplication and a subalgebra with respect to the
Poisson bracket. Its quantum counterpart in AP should be "more than" just
a subalgebra since the classical limit of a subalgebra would only be a subalgebra
with respect to the commutative multiplication. It should also be "less than"
a (two-sided) ideal since the semi-classical limit of a two-sided ideal would be an
ideal with respect to the Poisson bracket. A natural candidate is then a one-sided
ideal in AP. On the other hand, one-sided ideals in AP indeed have the correct
classical and semi-classical limits. We state this in the form of the following "creed"
(compare to the "sympletic creed" stated in [Wei] by Weinstein).

Creed. Coisotropic submanifolds of P correspond to one-sided ideals in AP.

We now give one example of this correspondence.

Example 3.4. Let ( P ί ? { }±) and (P 2 , { }2) be two Poisson manifolds, and let φ:
P2 -> Pi be a Poisson map. Then the graph Γ of φ, described by the embedding of
P 2 into P1xP2:

P2 -+P1xP2:x\^(φ(x),x),

is a coisotropic submanifold of Pί xP2 [We2], where P J means the manifold
P 2 equipped with the Poisson structure — { }2. The above embedding induces
a map

and the space of functions on P1 x P 2 that vanish on the graph Γ, is clearly the
kernel of the map λ. Assume now that Ax and A2 are quantizations of {P1, { } 1) and
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(P2, 1)2) respectively. Assume also that the Poisson map φ9 or rather, the Poisson
algebra homomorphism C^iP^ -» CCO(P2): f\ *->fi°φ, is quantized to an alge-
bra homomorphism Φ: A1 -> A2. Then the quantum counterpart of λ is the map

A: A1®Af -• A2: a1®a2\-^Φ(a1)a2 ,

where A°2

P is the space A2 equipped with the algebra structure opposite to that of
A2, and the kernel / of the map A should clearly be the quantum analog of the
coisotropic submanifold Γ in Aγ ® A°2

P. It is easy to check that / is a left ideal of

Returning to Question 3.2, it is now clear that a coisotropic subgroup of
G should correspond to a subspace of A which is a one-sided ideal with respect to
the product and a co-ideal with respect to the co-product. We propose to call such
subspaces one-sided Hopf ideals. The author would like to thank Y. Soibelman for
suggesting this name.

Proposition 3.5. Suppose that I a A is a left Hopf ideal Set

Iλ = {xe A*: <x, fl) = OVίiG/}ci*. (3)

The I1 is a left coideal subalgebra of A*9 i.e., it is a subalgebra of A* and
ΔI1 1

Proof Let x, y e I1. Then for any a e /, since Δa e A*(x)/ + I® ̂ 4*, we have

= 0 .

Hence xy e I1 and IL is a subalgebra oίA*. Let x e 7 1. Then for any ae A,be I,we
have

<Jx, α®ί?> = <

Since / is a left ideal, ab e /. Hence

<Zlx, a®b} = 0 .

It follows that J x e A*® 71. Q.E.D.

We now have the following reduction by one-sided coideal subalgebras. It is the
quantum analog of reduction by coisotropic subgroups.

Proposition 3.6. Let V be an A*-module algebra. Let J a A* be a left co-ideal
subalgebra of A*. Set

VJ = {ve V:χ v = ε(x)v\/xeJ} .

Then VJ is a subalgebra of V containing the unit element l v .

Proof That VJ contains the unit element follows directly from the definition. Let
v, u e VJ. Then for any x e J, we have

= (x(1) ι?)(x(2) w),

where Δx = £x(i)®x (2) and is written as x(i)®x(2) for simplicity. From Proposi-
tion 3.5, Δx eA*®J, SO X (2) e J. Thus x ( 2 ) u = ε(x{2))u. Therefore

χ (vu) = (x{1) v)ε(xi2))u
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But ε(x(2))X(i) = x. Hence

x (υu) = (x v)u = ε(x)vu .

Hence υu e VJ. This shows that VJ is a subalgebra of F. Q.E.D.

Example 3.7. If V and W are two left ,4*-module algebras, the V® W is a left
,4*®v4*-module algebra. Reduction of V®W with respect to the "diagonal"
J : = A (A*) of ^4*(χ)v4* is then a quantum analog of reduction by the diagonal
subgroups in the classical and semi-classical cases.

We now turn to the study of quantum moment maps. Recall that a Poisson
map φ: P -» G* from a Poisson manifold P to the dual group G* of a Poisson
group G induces a left (or right) Poisson action of G on P by Formula (2), and the
map φ is called its moment map.

Analogously, we have the following well-known fact in Hopf algebra theory
(see, for example, [B-C-M, Mj]).

Proposition 3.8. // V is an algebra and ifΦ.A* -• V is an algebra homopmorphism,
then the following map

DΦ:A*®V -> V: x ® υ M> X(V) := Φ(x(1))vΦ(S(x(2))), (4)

where Ax = x ( 1 ) ® x ( 2), defines a left action of A* on V and it makes V into a left
A*-module algebra.

Definition 3.9. The map Φ: A* -• V is called the moment map for the action Dφ of
A* on V given by Formula (4).

Similarly, one can define a right action of A* on V by

F®i*-^F:ί)(x)xH Φ(S(x(ί)))vΦ(xi2)) ,

and Φ: A* -• Fi s called its moment map.
To justify the name "moment map" for the map Φ, we now study the semi-

classical limit of the action Dφ. To this end, we assume that A* is a quantization of
G*, the dual group of a Poisson group G. Assume also that Fis a quantization of
the Poisson manifold P, and that the map Φ: A* -> Fcoincides with the pull-back
of a map φ: P -• G*. Then the fact that Φ is an algebra homomorphism implies
that φ is a Poisson map. We have

lim -(x(v) - ε(x)υ) = Um-(Φ(x{1))vΦ(S(x(2))) - vΦ(x(1))Φ(S(x(2))))

= lim (Φ(x(1))υ - vΦ{x(1)))Φ(S(xi2)))

= {φ*x{i),v}Φ*{S{xi2))).

Here for simplicity, we are omitting the */,-symbols in the first two identities, and
we are using S to denote both Sh and So. The multiplication in the last identity is
the commutative one on Fun(P). Denote by σx the vector field on P given by

Fun(P)Bv^{φ*xw,v}φ*(S(xi2))),

or

σx= -φ*{S(x{2)))Hφ,Xm, (5)
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where for u e Fun(P), Hu: υ h-> {v, u) denotes the Hamiltonian vector field of u.
Therefore each x e Fun(G*) defines a vector field σx on P. The fact that Dφ is a left
action of A* on V implies that the map x H-> σx is a Lie algebra homomorphism
from (Fun(G*), { }) to the Lie algebra of vector fields on P with the commutator
bracket.

Theorem 3.10. The infinitesimal action x h-> σx o/(Fun(G*), { })onP is the same as
the right infinitesimal action X i—• σ'x of g on P induced by the Poisson map φ:
P -> G* as given by Formula (2). Therefore, the action Dφ of A* on V is a quanti-
zation of the Poisson action of G on P induced by φ.

Proof For x e Fun(G*), consider the 1-form θ x on G* given by

Clearly, the vector field σx on P is given by

σx= -π$φ*(θx).

Comparing with Formula (2) for the vector field σ'x, where I e g, we see that it
remains to show that the 1-form θx is right invariant. This is indeed so, for let ξ e g*
and g e G*, then we have

= — x(1)(Qxptξ'g)x(2)(g-ί)
ul t — Q

= - xiεxptξ g-g-1)
dt ί = 0

= <dx(e),ξ).

This shows that the 1-form θx on G* is right invariant and that its value at the
identity element e of G* is equal to dx(e). Let X = dx(e) e g*. Then σx = σ'x. This
correspondence allows us to say that the infinitesimal action of (Fun(P), { }) on
P is the same as that of cj on P given by X \-> σ'x.

Q.E.D.

Having seen the justification for the map Φ: A* -* V to be called the moment
map for the action Dφ , we now study some properties of Dφ and Φ, which, again,
are obvious quantum analogs of those at the semi-classical level.

Definition 3.11. The left (resp. right) action of A* on itself induced by the identity
map id^*: A* -» A* is called the left (resp. right) adjoint action of A* on itself. It is
given by

ad*: A*® A* -> A*: x<g)y \-> x(1)yS(x{2)) , (6)

(resp. ad r: A*® A* i—• A*: x®y H> S(y(1))xy(2)) . (7)

The left and right adjoint actions of A* on itself are also called the left and right
quantum dressing actions in quantum group theory (compare with Definition 2.5).
By Theorem 3.10, the left (resp. right) adjoint action of A* on itself is a quantization
of the right (resp. left) dressing action of G on G*.
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The proof of the following proposition follows immediately from the definition
of the action Dφ. At the semi-classical level, it corresponds to the fact that a Poisson
action on a Poisson manifold P with a moment leaves symplectic leaves of
P invariant.

Proposition 3.12. The action Dφ of A* on V leaves every two-sided ideal of V
invariant.

Proposition 3.13. The map Φ: A* -+ V is A*-equivarίant with respect to the left
adjoint action of A* on A* and the left action Dφ of A* on V,

Proof Let x,yeA*,ve V. Then

Φ{zdxy) = Φ(x(1)yS(x(2))) = Φ(x(1))Φ(y)Φ(S(x(2))) = x(Φ(y)) .

This proves the statement. Q.E.D.

4. Quantization of Semi-Direct Product Poisson Structures

In this section, we give an example where quantum moment maps and reduction
appear naturally. This example is also of its own interest, because it contains as
a special case the Heisenberg double of a Hopf algebra as constructed by Semenov-
Tian-Shansky in [STS2].

We start from the semi-classical picture. It is proved in [Lul] that associated to
each right Poisson action σ: PxG -> P of a Poisson group G on a Poisson
manifold P there is a so-called semi-direct product Poisson structure on the
manifold P x G * , where G* is the dual group of G, which encodes the Poisson
structures on both P and G*, as well as the Poisson action σ of G on P. Denote by
πG* and πP the Poisson structures on G* and on P respectively, and for l e g ,
denote by σx the infinitestimal generator of the action σ in the direction of X. The
semi-direct product Poisson structure on PxG* is described in the following
proposition.

Proposition 4.1. The following bi-vector field πσ defines a Poisson structure on the
manifold P x G*:for p e P, u e G*, θp9 θ'p e TPP and θUi θ'u e ΓM*G*,

πσ(p, u)((θp, θu\ (θ'p, θ'u)) = πP(p)(θpi θ'p) + πG*(u)(θu, θ'u)

+ <σ r * θ u , θ'py - (σrtfl.u9 θp} , (8)

where r*θue cj is the right translate ofθu eT*G*.

In the case when P is the group G itself and when the action σ is the right action
of G on itself by right translations, we get a Poisson structure on the manifold
G x G*. We will denote it by π+.

We list some properties of the Poisson structure πσ in the following proposition.
See [Lu2] and [Lul] for proofs.

Proposition 4.2. 1) With the semi-direct Poisson structure πσ on P x G*, the projec-
tions from PxG* to the two factors P and G* are both Poisson maps.

2) Let e e G * be the identity element of G*. Then Pc P x G * : p\-^(p,e) is
a coisotropic submanifold of(P x G*, πσ).
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3) The projection P x G * -» G*: (p, u) i—> w induces a right Poisson action of
G on PxG*. It is given by

g:(p,ύ)h->(σ(p,g),u9),

where (u, g) i—• ŵ  is the right dressing action ofG onG* \_Lu-We\~\. In other words, it
is the diagonal action of σ and the right dressing action of G on G*.

4) The Poisson structure can be obtained as reduction by the diagonal subgroup
of the action of(Gx G, π G © ( — πG)) on (Px(Gx G*), π P © π + ) given by

GxG3(hl9h2): (x,g,u) ι-> (x-h1,h2~
1g,u).

As a result, it is the unique Poisson structure on PxG* such that the map

p: (P x (G x G*), π P θ π + ) ^ (P x G*, πσ): (p, g9 u)\-+(p g9 u)

is a Poisson map.

We now give a construction of a quantization of the semi-direct product
Poisson structure πσ on PxG*, provided that the Poisson Lie group G, the
Poisson manifold P and the Poisson action σ of G on P can be appropriately
quantized. In fact, this will be the well-known construction in Hopf algebra theory,
the so-called crossed product construction.

Let A = F\mq(G) be the quantization of G with A* = UQ(Q). Assume that
AF = Fun^(P) is a quantization of the Poisson structure on P and that the right
Poisson action σ: P x G -> P is quantized to a co-module map, also denoted by σ:

σ: AP -> AP (x) A ,

making AP into a right yl-co-module algebra. Then the following map defines a left
,4*-module structure on AP\

Σ:A*®Ap -> AP:x®f\-^x(f):= f{1)(ai2),xy ,

where x e A*,fe AP and σ(f) =f(i)®a(2) e AP® A. Under this action, AP becomes
a left ^4*-module algebra. We will also denote the operator /ι—• x(f) by Σx for
xeA*.

Consider now the two types of operators on AP: the operators Σx,xe A* and
the multiplication operators μf: g \-+fg,fg e AP. The fact that

implies the following commutation relations between these two types of operators:

Σxμf = μX(l){f) Σx{2) . (9)

This suggests that following definition of the algebra AP#σA*, which we will later
show to be a quantization of the semi-direct product Poisson structure πσ.

Definition 4.3 ([Sw] [B-C-M]). As vector spaces, AP#σA* ^ Ap®A*, but we use
fφx rather thanf®x, wherefe AP and xe A*,to denote its elements. Multiplication
in ApΦσA* is defined by the formula

where fgeAp and x,yeA*. The fact that this defines an associative algebra
structure on AP(x) A* with unit lAp # 1A*. (which we will denote simply by 1) is readily
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verified. The algebra ApφσA* is called the semi-direct or smash or crossed product of
Ap and A* with respect to Σ.

Note that via the embeddings AP3f\-^fΦlA* and A*3x \-+ lApΦx, the alge-
bras Ap and A* are naturally subalgebras of AP#σA*. From the discussion above,
it is clear that the map

AP#σA* -> Endμ P ):/#x ^ μfΣx

defines a left ,4P#σ;4*-module structure on Ap.

Theorem 4.4. The algebra ApΦσA* is a quantization of the Poίsson structure πσ on
PxGt

Proof. From the definition of the Poisson structure πσ, the Poisson bracket
between x e Fun(G*) and/e Fun(P) is given by

{*,/} (p, u) = (σ<dx{u) (/))(/>), peP,ueG* .

Now consider x and/as in AP#σA*. It suffices to show that

\im\{xf-fx) = {xj).

Since the pairing between A and A* satisfies

<α, x} = ε(a)ε(x) + h(da(e\ dx(e)} + , a e A, x e A* ,

where e denotes the identity elements in both G and G*, the action Σ of A* on
Ap has the following expansion with respect to h:

\ dx(e)) ±

= e(x)f+hσdxie){f)+ ••••

Therefore,

(2) + hσdXlίΛe)(f)#x(2) + - '

= fx + hσdX(i){e){f)φx{2) + * .

Now X(2)dx(ί)(e) is a g-valued function on G* given by w H^ r*dx(u). Hence

(°dX{l)(e)(f) #X(2))(P, u) = σr*dx(u) (f)(p) = {x,f}{p, u).

Therefore,

\im\(xf-fx) = {xj).

This shows that the algebra Ap # σA* is a quantization of the Poisson structure
πσ on PxG*.

Q.RD.

We now study the quantum analogs of the properties of πσ as stated in
Proposition 4.2.
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First, the fact that the projections from (PxG*, πσ) to the two factors P and G*
are both Poisson obviously correspond to the fact that the embeddings

and

A* ^ APΦσA*:x^lAΐφx

are algebra homomorphisms.
Secondly, the coisotropic embedding of P into PxG* given by p i—• (p, e) can

be described by the kernel of the map

Fun(P)®Fun(G*) -> Fun(P): / 0 χ κ x(e)f.

According to the "Poisson Creed" stated earlier, its quantum counterpart should
be a left ideal of the algebra AP φσA*.

Proposition 4.5. The kernel of the map

λ:APΦσA* -> AP:fΦx^ε(x)f,

is a left ideal of the algebra APΦσA*.

Proof The statement can be proved directly from the definition: if
Hf# x) = ε(χ)f= 0> then for any g φ y e AP φσA*, we have

λ((gΦy)(fΦx)) = λ(gy{1) (/) # yi2)x)

= ε(y(2))ε(x)gy{ί)(f)

= gy(s(χ)f)

= o.
This shows that the kernel of the map λ is a left ideal of the algebra AP # σA*.

A more illustrating proof is by considering the representation of AP#σA* on
AP given by

AP Φ σA* sfΦ x H> μfΣx .

Since x(lAp) = ε(x)l^p, we have

Consequently, the kernel of λ consists of exactly the annihilators of the element
ίAp in AP φσA*, and it is thus a left ideal of APΦσA*.

Q.E.D.

Corresponding to 3) of Proposition 4.2, we have

Proposition 4.6. The left A *-module algebra structure onAPΦσA* with moment map

A* ^ip#σi*:xκl#x,

where 1 denotes the identity element of AP, is given by the following (diagonal) action:

x'.fΦy^x{i)(f)Φadι

xJy\ x,y e A*Je APΦσA* ,

where ad' denotes the left adjoint action of A* on itself By Theorem 3.10, it is
a quantization of the right dressing action of G on G*.
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Proof. By Definition 3.9, the left action of A* on AfΦσA* induced by the map
x i—• 1 # x is given by

where

Let

Ax{1) =

By the co-associativity of A, we have

Therefore,

Before studying the quantum analog of 4) in Proposition 4.2, we first introduce
the following definition.

Definition 4.7. The semi-direct product algebra A#ΔA*9 where A: A -» A® A is the
co-product of A, considered as defining a right A-co-module structure on A, is called
the Heisenberg Double of A [STS2], By Theorem 3.10, it is a quantization of the
Poisson structure π+, the semi-direct product Poisson structure on GxG* defined by
the right action of G on itself by right translations.

Semi-classically, the action of G on (G x G*, π + ) given by

g: (A, u) \-> (gh, u)

is a Poisson action. The following proposition of the quantum analog of this action
can be proved directly from the definition.

Proposition 4.8. The map

(Δ®iά)\ AΦΔA* -> A®(AΦAA*)

makes AφΔA* into a left A-co-module algebra.

Consider now the left action of A* on AF and the right action of A* on A ΦΔA*
given by

A* 3 x: aφy H-> <X, α ( 1 ) > α ( 2 ) # j ; .

The latter is the right action of A * on A ΦΔ A * induced by A (x) id. These two actions
together define a left action of A*® A* on Aγ®(AΦΔA*)\

A*® A*3x®y:f®{aφz) ^ x(f)®<S(y\ α(1)>α(2)#z . (10)

This action makes the algebra A?®{AΦΔA*) into a left ,4*(x),4*-module algebra
but with the co-product on ̂ 4*® A* being A ® Aop. As in the semi-classical case,
the algebra ^4P#σ,4* can be obtained as reduction by the "diagonal" J : = A(A*) of
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A*® A* (see Example 3.7). As a result, the algebra structure of APφσA* is the

unique one on the vector space AP®A* such that the map

σ®id:AP®A* -» AF®(A#ΔA*)

is an algebra homomorphism.

Acknowledgement. The author would like to thank Viktor Ginzburg, Alan Weinstein, Ping Xu
and Ilya Zakharevich for helpful discussions.

References

[B-C-M] Blattner, R.J., Cohen, M., Montgomery, S.: Crossed products and inner actions of
Hopf algebras. Trans. Am. Math. Soc. 298, 671-711 (1986)

[Dr] DrinfeΓd, V.G.: Hamiltonian structures on Lie groups, Lie bialgebras and the geomet-
ric meaning of the classical Yang-Baxter equations. Sov. Math. Dokl. 27 (1), 68-71
(1983)

[Ho] Howe, R.: Dual pairs in physics. Harmonic Oscillators, Photons, Electrons, and
Singletons, Lectures in Applied Mathematics 21, 179-207 (1985)

[Lu-Wel] Lu, J.H., Weinstein, A.: Poisson Lie groups, dressing transformations, and Bruhat
decompositions. J. Diff. Geom. 31, 501-526 (1990)

[Lu-We2] Lu, J.H., Weinstein, A.: Groupoϊdes symplectiques doubles des groupes de Lie-
Poisson. C. R. Acad. Sc. Paris 309, 951-954 (1989)

[Lul] Lu, J.H.: Momentum mappings and reductions of Poisson Lie group actions. Pro-
ceedings of the Seminaire Sud-Rhodanien de Geometrie a Berkeley, 1989, 1991
Springer-MSRI series

[Lu2] Lu, J.H., Multiplicative and affine Poisson structures on Lie groups. PhD thesis,
University of California, Berkeley (1990)

[Mj] Majid, S.: Quasitriangular Hopf algebras and Yang-Baxter equations. Int. J. Mod.
Phys. A 5 (1), 1-91 (1990)

[Ms-We] Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep.
Math. Phys. 5, 121-129 (1974)

[R-T-F] Reshetikhin, N.Y., Takhtajan, LA., and Faddeev, L.D.: Quantization of Lie groups
and Lie algebras. Leningrad Math. J. 1, 193-225 (1990)

[STS1] Semenov-Tian-Shansky, MA.: Dressing transformations and Poisson Lie group
actions. Publ. RIMS, Kyoto University 21, 1237-1260 (1985)

[STS2] Semenov-Tian-Shansky, M.A.: Poisson Lie groups, quantum duality principle and
twisted quantum double. Preprint (1992) (in Russian)

[Sw] Sweedler, M.E.: Hopf algebras. New York: Benjamin (1969)
[Wei] Weinstein, A: The symplectic category. Lecture Notes in Math. 905 (1982)
[We2] Weinstein, A.: Coisotropic calculus and Poisson groupoids. J. Math. Soc. Japan 40 (4),

705-727 (1988)

Communicated by N.Yu. Reshetikhin




