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Abstract. Unbounded superderivations are used to construct non-commutative
elliptic operators on semi-finite von Neumann algebras. The method exploits the
interplay between dynamical semigroups and Dirichlet forms. The elliptic oper-
ators may be viewed as generators of irreversible dynamics for fermion systems
with infinite degrees of freedom.

Introduction

A new link between Markov semigroups and superderivations is demonstrated. By
establishing a Dirichlet property for a class of superderivations we are able to apply
the theory of non-commutative symmetric Markov semigroups ([AH-K, DL]) to
the construction of dynamical semigroups on Z2-graded algebras of quantum
observables. Such a theory is required for describing the irreversible dynamics of
infinite systems of fermionic particles (cf. [Dl, D2]). The theory described here is
applicable to tracial states, and thus involves an infinite temperature assumption.
To deal with non-tracial KMS states requires extensive generalisation of [AH-K]
and [DL]. In particular the non-commutative ZΛspaces of Segal ([Seg]) must be
replaced by those of Haagerup ([Haa]). A theory of KMS-symmetric Markov
semigroups has recently been developed ([GL1, 2]).

Derivations have long played a part in the construction of dynamical semi-
groups, stemming from the fact that if a derivation generates an automorphism
group, then its square generates a completely positive semigroup which may be
expressed as a gaussian average of the automorphisms ([Ev, D]). The possibility of
exploiting superderivations arises from a change in point of view. If one considers
Markov semigroups acting on the ZΛspace of the algebra with respect to
a semifinite trace, and views the generator as a quadratic form, then the positivity
and contractivity of the semigroup is reflected in a Dirichlet property for the form,
as in the classical theory ([Fuk]). Superderivations now yield Dirichlet forms as
obligingly as derivations do, moreover the powerful analytic tool of quadratic
forms is well suited to dealing with infinite families of superderivations.
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We first develop the elementary theory of superderivations. In the second
section some useful results about Hubert algebras are collected. Next unbounded
superderivations are analysed, and in the final section the techniques developed in
([DL]) are applied to superderivations.

1. Superderivations on a Z2-Graded Algebra

Let (si, Γ) be a Z2-graded associative algebra, so that Γ is an automorphism of
si which is involutive: Γ2 = id. Thus si is a direct sum of si+ := {x e si: xΓ = x}
and si- := {x e si: xΓ = — x}. The elements of si+ are called even and those of
si- odd. If the algebra has an identity element e, then e is even. When the algebra is
unital, the 2£2-grading is called inner if there is an invertible element yes/ such that

y ~1 = y and xΓ = yxy V x e si .

Note that any implementing y is necessarily even.

A superderivation on (si, Γ) is a linear map δ on si satisfying:

(i) δ(xy) = δx y + xΓδy

(ii) δ(xΓ) = - (δx)Γ V x j e i . (1.1)

Thus δ(s/ +) <= si + and, if si has a unit e, then δe = 0. Whereas (i) appears to
generalise the notion of a derivation to take into account non-trivial gradings of the
algebra (si- φ {0}), (ii) implies that the only superderivation on a trivially graded
algebra (Γ = id) is the zero map. A superderivation δ is not usually a derivation
itself - necessary and sufficient conditions on δ being

x Sy = 0 Vxe si-, y e si

- however its square δ2 is always a derivation. We wish to know when a super-
derivation is inner - that is when there is a e si such that

δx = ax — xΓa Vxe si .

First we show that a may be assumed to be odd.

Lemma 1.1. Let δ be an inner superderivation on a unital Έ2-graded algebra (si, Γ\
then δ = δa where a e si is odd.

Proof. Since δ is inner, δ = δc for some c e si. By (1.1) c must satisfy

ex xΓc = - {δc(xΓ))Γ = ~ (cxΓ - xcf = -cΓx + xΓcτ V x ε r f .

In other words δ^+c^ = 0. Thus if a = %(c — cΓ\ then δ = δa and a is odd. •

Lemma 1.2. Let (si, Γ) be a unital Z2-graded algebra. If Γ is inner then every
superderivation on (si, Γ) is inner.

Proof. Let δ be a superderivation and suppose that yes/ implements the grading
involution, then

Γ= -γδy.
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Therefore, for x e i ,

δx = - (δ(xΓ))Γ = - yδ(yxy)y

= -y{δyxy + yΓδ(xy)}y

= — yδym x — (δx y + xΓδy)y

— δyyx — δx — xΓδy y .

In other words, δ = δa where a = %δy y. Note that a is odd since it is the product of
an even element and an odd one. •

2. Hubert Algebras

Let si be a fixed von Neumann algebra with faithful, normal semi-finite trace τ.
For p e [1, oo], let LP denote the corresponding non-commutative ZΛspace in the
sense of I.E. Segal ([Seg, Kun, Yea]), and let si denote the associated topological
*-algebra of τ-measurable operators ([Nel]). Thus si consists of closed, densely
defined operators, and the algebraic operations are "strong sense":

(x9 y) H-> x + y, x — y, xy; (λ9x)\->λx x,yesi,λe(C.

All sums, products etc. of elements from j / are to be understood in this strong
sense. The topology of si is given by convergence in measure ([Sti, Nel]). si con-
tains all the J7-spaces and, most conveniently, the Hubert space on which the
elements of si act is L2 itself- the action being strong sense (left) multiplication. L00

is then a faithful normal representation of si, and L00 n L2 is a Hilbert algebra
([Dix]). The inner product (x, y)\->τ(x*y) on L2 extends to a sesquilinear pairing
<, > on LP x LP\ for each p e [1, oo ]. These satisfy

whenever the expressions are defined - axe Lp, ye LP for some p, etc. The
following result is a consequence of this representation.

Lemma 2.1. If a e si satisfies

ax = 0 MxeS),

where Sf is a dense subspace of L2, then a = 0.

We mention next a density result which will be useful in our analysis of unbounded
superderivations.

Proposition 2.2. Let 3) be a dense subspace of L2 contained in L2 n L00. Then
3)'S)\= linear span {xy: x,ye@} is dense in L1 n L2 for the norm

Proof Let a e L°° + L2 satisfy

<α,

Then, for each t; e 3),
0 = <(α, uυ) = τ(a*uv)

= τ(va*u) = (av*9 u)
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Since av* e (L2 n L 0 0 ) - ^ 0 0 + I2) c L2, and 0 is ZΛdense, aυ* = 0. By Lemma
2Λ a = 0 and, since L00 + L2 = (L1 n L2)*, the assertion follows from the Hahn-
Banach theorem. •

Proposition 2.3. Let aeL00 + L2. Then, for sufficiently large N, αe | α | [N, oo) e L2,
where e | α | ( ) is the spectral measure of\a\.

Proof Since | a\ 2 = α*α e (L00 + L2) (L00 + L2) = L00 + L\ we may write
I a | 2 = 6 + c, where fteL1 and c e L00. Choose an integer N such that

(i) N2 ^ 2HCIL + 1; (ii) τ(e | α | 2[M, M + 1)) < oo for M ^ iV2 .

(ii) is ensured for some N since | α | G J / , but in fact (i) implies (ii). By Holder's
inequality

Σ fcτ(e|Λ|2[fc, k + 1)) ^ τ(| α | 2e | α | 2[iV2, M + 1))

so, by (ii) and (i),

k|α| 2 e M 2 [iV 2 ,M+l))^ Σ ( ^)«ewlk> k + 1))
1 \ l ]

By the normality of τ if we let M H^ oo we obtain

Thus elements of L00 + L2 may be expressed as a sum of an L°°-part and an ZΛpart
in the most straightforward fashion. [DL] includes a summary of ZΛtheory, and
we recommend [Nel] for a nice full account.

3. Superderivations on Z2-Graded Hubert Algebras

From now on #0 will be a fixed von Neumann algebra with Z2-grading involution
Γ and faithful, normal, semi-finite trace τ. The trace is assumed to be Γ-invariant,
and the grading involution is assumed to be a *-automorphism: (x*)Γ = (xΓ)*.
Involutions, which we continue to denote by x ι-> xΓ, are induced on each U where
they satisfy

\\XΓ\\LP=\\X\\LP; <χΓ,yΓ> = <χ,y>

for p E [1, oo ], x e U and y e LP.
We are primarily interested in unbounded superderivations on Z2-graded

Hubert algebras. These are pairs (δ, 3)\ where 2 is a Γ-invariant *-subalgebra of
the full Hubert algebra L2 n L00, which is dense in L2, and δ: 3ι -> L2 is a linear
map satisfying the superderivation properties (1.1). (δ, 2) is a *-super derivation if it
satisfies the further property

δx* = ((δx)Γ)* V x e § .
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Notice that if δ is a superderivation, then so is

δx*)Γ)*, (3.1)

thus δ is a *-superderivation precisely when δ and δ' coincide. Moreover every
superderivation (δ, @) may be written δ = δ^ + i<S2, where (δl9 3)) and (<S2, @>) are

*-superderivations, by putting δx = -(δ + δr) and (52 = —(δ — δ').

Definition 3.1. A superderivation (δ, 2)) on a Έ2-graded Hilbert algebra is inner if
there is ae L°° + L2 such that

δ = δa: x h-> ax — xΓa .

By the argument of Lemma 1.1, a may always be chosen to be odd. It is easily
checked that

δ'a = δa* (3.2)

therefore inner *-superderivations are all of the form δa where α* = a =
- α Γ e L ° ° + Z A

Definition 3.2. A superderivation on a 7L2-graded Hilbert algebra is smooth if for
some element b of L°° + L2,

<l,<5w> = (b,u) V w e ^ ® .

By Proposition 2.2 when such a b exists, it is uniquely determined and, by an abuse
of notation we shall denote it by (5*1. We first show that (5*1 is necessarily odd.

Lemma 3.3. Let (δ, &) be a superderivation on a Έ2-graded Hilbert algebra. If δ is
smooth then (5*1 is odd. Moreover, if δ is a *-superderivation, then δ*l is self-adjoint
also.

Proof For x e ^ ^ ,

Therefore b is odd by Proposition 2.2. If δ is a *-superderivation, then

so Proposition 2.2 implies that b is self-adjoint. •

The next result is in contrast to the situation with derivations. Inner derivations
are clearly smooth in the sense of Definition 3.2 (b = 0), however commutative
algebras such as L2 n L°°(IR, Leb) carry plenty of smooth derivations (vector fields
with bounded derivative).
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Theorem 3.4. A superderivation (δ, 2i) on a Έ2-graded Hilbert algebra is inner if and
only if it is smooth. In this case

δ = δa and δ* => Lδ*x — δ' ,

where a = j(δ*l)*, δ' is given by (3.1) and Lx denotes left multiplication by x. In
particular δ is closable. Moreover a is odd and, if(δ, Qi) is a *-superderivation then a is
also self-adjoint.

Proof First assume that {δ, 9) is smooth and let b = δ*l eL2 + L00. Then, for
x, y e 9,

= (l,δ(yx*)-yΓδx*)

= {bx-δ'x,y}. (3.3)

Thus (5* => Lb — δ', whose ZΛdomain is Sf which is ZΛdense. In particular δ is
closable. On the other hand, for x, y e β,

= <l,δ((x*)Γy)-δ((x*)Γ) y)

= (b,(x*)Γyy + <δ'x,yy

= (xΓb + δ'x, y} .

Subtracting this from (3.3) gives

δ'x = hbx - xΓb) .

Thus δ' is inner and so, by (3.2) δ = δa where a = i(<5*l)* e Γ + L2.
On the other hand, if (δ, 9) is inner, then δ = δa, where a = - aΓ e L00 + L2,

so that

<1, δx} = τ(ax - xΓa)

= τ(ax — aΓx)

In other words, (δ, 9) is smooth. The rest of the result therefore follows from
Lemma 3.3. •

As a corollary we may characterise the ZΛbounded superderivations.

Theorem 3.5. A superderivation (δ, 21) on a TL2-graded Hilbert algebra is L2-norm
bounded if and only if δ = δa, where aeU°. In this case a is odd and, if(δ, 2)) is
a *-superderivation, then a is self-adjoint too.
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Proof. We first show that (δ, @) extends to a superderivation on L2 n L00. Let (5 be
the continuous extension of δ to L2. Then for x, y, z e L2 n L00,

= lim <x*δ*z,yn)
«-*00

= lim lim (x*δ*z,yn)
n~* oo tn~* oo

= lim lim <z, δ(xmyn)} ,
w-> oo m~* oo

where (xm) and (yn) are sequences in @ which converge to x and y respectively, in
the iΛnqrm. Applying the super-Leibnitz property and unravelling the limits we
see that (<5, L2 n L00) is a superderivation. We may therefore assume without loss
that 9 = L2 n L00.

The linear functional

is ZΛdensely defined since 2 Q) = L1 n L00 is dense in L1. Moreover, by means of
the polar decomposition u = v\u\, each u e ^ ^ may be written as a product
w = xy, where x = v\u\* e@9 y = \u\^ e<3 and | |M| | L I = II^IIL2 = II^IIL2- Then

\φ(u)\ = \<lδyx + y

ύ\\δ\\ \ \ x \ \ L 2 \ \ y \ \ L 2 = \ \ δ \ \ \\u\\Ll9

where || δ \\ is the ZΛoperator norm of δ, so φ has unique continuous extension to
ZA The duality theory of non-commutative ZΛspaces ensures the existence of
be L™ such that <1, δu} = (b, u} V u e 2 Q) - in other words δ is smooth. By
Theorem 3.4 δ = δa, where a = i(<5*l)* eL°° + L2, moreover the relation
(5* => L((5*i) — <S' implies that

since δ* and <5' are L2-bounded and L2 n L00 is a core for L(δ*ίy But a (left)
multiplication operator Lb can only be bounded if b e L00 - this follows from the
duality relation (L1)* = L00. Hence (5*leL°° and the result follows. •

4. Symmetric Markov Semigroups

We recall the basic definition from ([DL]). A c0-semigroup (Pt) on L2 is called
a Markov semigroup if

(i) Pt ^ 0 whenever x ^ 0;
(ii) Ppc ^ 1 whenever x ^ 1.

In other words, each P f is positivity preserving and L00-contractive on
(L2 n L°°)s.a.. A Markov semigroup is symmetric if each Pt is a self-adjoint operator
on L2. Symmetric Markov semigroups extend to semigroups (P(

t

p)) on Z/, which are
strongly continuous for 1 ^ p < oo, and pointwise weak *-continuous for p = oo .
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The extensions are consistent: if x e LP n Lq then P\p)x = P\q)x, therefore we may
drop the superscripts. A symmetric Markov semigroup is called conservative if

(ii)' Ptl = 1 for t ^ 0 ,

and completely positive if

n

(i)' Σ yTPt(xfxj)yj ^ 0 for t ^ 0, n e N, * ! , ? ! , . . . , xn9yH e L00 .
i,j=ί

On the otherhand if (Pt) is a pointwise weak *-continuous semigroup of normal
maps on s/ satisfying (i), (ii) and tracial symmetry:

τ{x-Pty) = τ(Ptx y) V

then (Pt) determines a symmetric Markov semigroup on L2. Thus we have equiva-
lent algebra and Hubert space pictures for (tracially) symmetric Markov semi-
groups.

We shall see that inner *-superderivations lead to symmetric Markov semigroups
in a similar way to inner *-derivations ([DL]). We begin with the bounded case.

Theorem 4.1. Let H = (5*<5, where (<5, 3) is a *-super derivation on a Z2-graded
Hilbert algebra. If δ is L2-norm bounded then (e~tH) is a completely positive,
conservative, symmetric Markov semigroup.

Proof. By Theorem 3.5 δ = δa, where asL00 is odd and self-adjoint. Therefore
δ*:xeL2\-^ax + xΓa. For p e [ l , o o ] let (Pt

ip) = e~tH{P)\ where

H{p): x e Z/ι-> a2x + xa2 - 2axΓa .

A direct computation verifies that H{2) = H, that is δ*δ. {(P,(p)): P e [1, oo]} form
a consistent family of uniformly continuous semigroups. Since H is manifestly
self-adjoint and also real: # ( * * ) = (tfx)*, τ(χ-H(cΌ)y) = τ{χ-H(2)y) = τ(H{1)χ-y)
V x,ye L1 n L00 so that (Pf

(Q0)) is τ-symmetric and is the dual semigroup to (P{υ) -
in particular it consists of normal maps. Now H(co) = L + M, where

e : x\->e xe and e . c i—• > — — a x a .
nΊΌ n-

Since Γ is an automorphism, the Trotter product formula implies that P{00) is
completely positive for each t. Finally P^H = I for each t since H(co)l = 0 and so
each P | o o ) is conservative and Markov. •

Notice that the above Markov semigroup also preserves parity: Pt(xΓ) =
(Ptx)Γ. There is a very nice stochastic description of Markov semigroups of the
above form. Namely the semigroup may be viewed as a quantum average of
a stochastic flow:

e~tHx = Έ[utxu?]9 t ^ 0 ,

where ut satisfies a stochastic differential equation involving Fermionic Brownian
motion (see [ApH], Theorem 7.l(b)). In fact quantum stochastics has an alterna-
tive, more algebraic view of such semigroups. Let (̂ 4*, Λ9 A) be the creation,
preservation, annihilation process triple of quantum stochastic calculus ([HuP,
Par]). Then, for any element b of L00, there is a family of unital *-homomorphisms
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(Λ)ί^ o from L00 into a larger algebra satisfying the quantum stochastic differential
equation

djt =jt o(Γ - \ά)dA +jtoδdA* +jtoδfdA +jtoAdt,

where δ = δb, δ^: xh>(fa*)*, and

is a completely positive, conservative Markov semigroup with generator

A : x h+ b*bx - 2b*xΓb + xb*b ,

([Ev, M; Par]). This semigroup will not be (τ-) symmetric unless

bΓx{bΓ)* = b*xb V x e L 0 0 .

To go beyond the bounded case we exploit Dirichlet forms. Define Liρ0 to be the
class of functions φ: R -> R such that

φ(0) = 0 and | φ(s) - φ(t) | ^ | s - ί | V s , ί e R .

Proposition 4.2. Let (δ, Qi) be an L2-norm bounded *-superderivation. Then the
following relations hold for xe L2:

\\SX*\\L>=\\SX\\L>,

\\δφ(x)\\L2^\\δx\\L2 (x = x*, φ e Lip0). (4.1)

Proof Since (e~tδ**) is a symmetric Markov semigroup, and is 2-positive, the
bounds (4.1) hold on L2 n L00 by Propositions 2.12, 3.3 and 3.4 of [DL]. The full
result follows from the density of L2 n L00 in L2 and the ZΛcontinuity of the
absolute value map ([ArY]) and Lipschitz maps ([AH-K]) - see Propositions 1.2
and 2.5 of [DL]. •

We now extend these results to unbounded inner *-superderivations.

Proposition 4.3. Let (δ, 2) be an inner *-super derivation (Definition 3.1) with
2 = L2 n U°. Then the non-negative quadratic form Q = (||<5 | | L 2 ) 2 is closable and
completely Dirichlet - that is, for each n e N and Xe(L2 n L° ° ) (J/(X)M M (C)) ,

Q(")χ* = Q(")X; Q(n)\X\ ^ 2Qin)X

Q(n)φ(X) SQ(n)X (X = X*, ψ e Lipo), (4.2)

where Q(n) is the quadratic form on L2®(Mn(<L\ tr) given by

n

Proof The closability of Q is equivalent to the closability of δ which follows from
Theorem 3.4. If δ = δa, where a = a* = - aΓ e L00 + L2, let ak = fk(a), where

-k if t < - k

t if 111 ^ k

k if t > k, k = 1, 2 ,
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Then the bounded, self-adjoint element ak is also odd, since fk is an odd function.
Now_ define Qk

n) on ( L 2 n Γ ) ( i 0 M B ( ( C ) ) by Q(

k

n)X = \\AkX - XΓAk\\h
= \\$AkX\\h, where Λ = diag(αk,. . . ,αk)> {xij}Γ = {4j} and the trace on

( j/® MW(C)) is given by τ{xo } = Σ " = i τ : x » Since Λk e L00, Proposition 4.2 implies
the completely Dirichlet relations (4.2) for Qk

n). By Proposition 2.3 {A- Ak)eL2

for sufficiently large fc, moreover

M — Ak II£2 = J (λ — k)2dτ o eΛ(λ) -• 0 as fc -> 00 ,

so δAkX-+δAX for each X in (L2 n L 0 0 )(J/ <g> MB(C)). Therefore β ( π )X =
limfĉ oo Qfc

n)X, and the result follows. •

Since the closure of a (completely) Lipschitz form is a (completely) Lipschitz
form ([DL] Proposition 2.6), the relations (4.1) and (4.2) remain valid on the
domains of the closures of δ and Q(n) respectively. The following theorem provides
a precise technical condition under which one can assert that the expression

Hx = Σ (ah ~ 2anx
Γan + xa2) (4.3)

determines a non-negative self-adjoint operator H on L2 which generates a sym-
metric Markov semigroup.

Theorem 4.4. Let (δk, 2k) be a sequence of closable *-super derivations on
a Έ2-graded Hίlbert algebra, let

Σ ( I I ^ ^ I I L 2 ) 2 if xe Pi Dom((5k)
fe^ 1 fe^ 1

00 otherwise ,

suppose that 1 := {x e L2: Qx < 00 } is L2-dense. Then the quadratic form
(<2, Ά) is closed. If each (δk9 Slk) is smooth then (β, J ) is completely Dirichlet.
Consequently the associated non-negative operator H generates a completely positive
symmetric Markov semigroup.

Proof Q, being a sum of lower semi-continuous functions, is lower semi-continu-
ous and so the quadratic form (Q, 1) is closed. For each n e N define

Qin): f] D o m ( ^ k ) ® M π ( C ) ^ [ 0 , o o ]
k ^ 1

^ ~,u , r - 2

δ (")/v \ V II β\ v II (A A\

\Xij) — 2J \\ύkxij\\L2 9 V+ T J
ί,j,k

and write J ( M ) for its natural domain - the set of X = {xtj} for which (4.4) is finite.
Then, by Proposition 4.3 and [DL] Proposition 6.4, (Q(w), J ( w ) ) is a closed Dirichlet
form. An appeal to [DL] Theorem 3.3 therefore completes the proof. •

Thus, if ak = at = - a{ e L2 + L°° for k = 1,2,. . . , then (4.3) is a well-defined
Markov generator provided only that

Σ τ{x2a2 + xan(xan)
Γ} < 00

for a dense set of x in L2 .



Superderivations and Symmetric Markov Semigroups 369

Formal generators are sometimes given by integrals rather than sums. Our final
result shows how these may also be rigorously defined by means of non-com-
mutative Dirichlet forms.

Theorem 4.5. Suppose that the von Neumann algebra s/ has separable pre-dual, and
let M be a σ-finite measure space. Define

Qb* = \\δbi.)X\\h(M;m^)) = ί (\\δb(m)X\\L2w)2dm ,
M

lb = {xeL2(stf):Qbx<oo], (4.5)

where b: M -> (L00 + L2){stf) takes odd, self-adjoint values, and satisfies the measur-
ability conditions

b(')x,xb(-): M^L2{^) are strongly measurable Vxe(L2 nL°

is measurable .

Then {Qb,%) *5 a closed, completely Dirichlet form on L2(s/) providing only that
% is L2-norm dense.

Proof. Let & = J / ® L ° ° ( M ) . First notice that if M is finite and b is essentially
bounded, in the sense that there is K < oo such that ||b(m)||(Loo+L2)Cs/) < K for
almost all m, then be(L°° + L2)(β) and Qb is the restriction of the closed,
completely Dirichlet form /1—• || δbf \\h{@) to constant functions / . Qb is thus closed
and completely Dirichlet (cf. [DL] Proposition 6.11). For σ-finite M and un-
bounded b let (MN) be a sequence of finite measure subsets increasing to M, and let
bN be b times the indicator function of MN n {m: ||&(m)|| ( L 0 0+L2 ) ( i^ ) ^ N}. Then
Qb = supNQbN, and so is closed and completely Dirichlet. •

The generator defined rigorously by (4.5) has formal expression

Hx = Bx + xB - 2 f b(m)xΓb(m) dm ,
M

where B = J b(m)2 dm. Such generators were previously considered in connection
with neutron diffusion equations ([Dl, D2]).
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