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Abstract. The hamiltonian BRST-anti-BRST theory is developed in the general
case of arbitrary reducible first class systems. This is done by extending the
methods of homological perturbation theory, originally based on the use of a single
resolution, to the case of a biresolution. The BRST and the anti-BRST generators
are shown to exist. The respective links with the ordinary BRST formulation and
with the sp(2)-covariant formalism are also established.

1. Introduction

It has been realized recently that the proper algebraic setting for the BRST theory
is that of homological perturbation theory [1,2]. Homological perturbation theory
permits one not only to prove the existence of the BRST transformation, both in
the lagrangian and the hamiltonian cases, but also establishes that the BRST
cohomology at ghost number zero is given by the physical observables (the gauge
invariant functions). These key properties, valid for irreducible or reducible gauge
theories with closed or "open" algebras are what make the BRST formalism of
physical interest [2, 3,4, 5, 6].

The purpose of this paper is to extend the analysis of [2] to cover the
anti-BRST transformation. The anti-BRST symmetry was formulated in the con-
text of Yang-Mills theory immediately after the BRST symmetry was discovered
[7, 8]. Although it does not play a role as fundamental as the BRST symmetry
itself, it is a useful tool in the geometrical (superfield) description of the BRST
transformation, in the investigation of perturbative renormalizability of Yang-
Mills models, as well as in the understanding of the so-called non-minimal sector
[9-15]. For all these reasons, it is of interest to develop the BRST-anti-BRST
formalism in the general case of an arbitrary gauge system.

* Chercheur IRSIA
** Maϊtre de recherches au Fonds National de la Recherche Scientifique. Also at Centro de
Estudios Cientiίicos de Santiago, Casilla 16443. Santiago 9, Chile
Email: henneaux @bbrbfu60



280 P. Gregoire and M. Henneaux

We show in this article that the methods of homological perturbation theory
can be adapted to cover the anti-BRST transformation. This is done by duplicating
each differential appearing in the BRST construction. In particular, the crucial
Koszul-Tate complex [2,16] is replaced by the Koszul-Tate bicomplex. The usual
existence and uniqueness theorems for the BRST generator can then be extended
without difficulty to the BRST-anti-BRST algebra by following the same lines as in
the BRST case. Our results were announced in [17].

Although we consider here only the hamiltonian method, our approach can
also be applied to the antifield formalism. However, the explicit form of the
biresolution is then different, so that we shall reserve the discussion of the antifield
anti-BRST theory for a separate publication [18]1.

Our paper is organized as follows. In the next section, we briefly review the
salient facts of homological perturbation theory in the context of the BRST
symmetry. We then introduce the concept of biresolution and develop its proper-
ties (Sect. 3). Section 4 is devoted to the proof of the main result of this paper,
namely the existence of a Koszul-Tate biresolution associated with any constraint
surface Σ embedded in phase space. In Sect. 5, we prove the existence and
uniqueness of the BRST and the anti-BRST generators. We then establish some
results about the BRST and the anti-BRST cohomologies (Sect. 6). Section 7 is
devoted to the comparison between the BRST-anti-BRST formalism and the
standard BRST theory; as a byproduct of this comparison, the equivalence between
the two formulations is proven. In Sect. 8, we make the comparisons with the
hamiltonian <Sp(2)-formalism of references [27,28].

2. Homological Perturbation Theory in Brief

2.1. Geometrical Ingredients of a Gauge Theory. In either the lagrangian or hamil-
tonian versions, the description of a gauge theory involves the following geometri-
cal data:

1. A smooth manifold Γ with coordinates z1. These are either the canonical
coordinates of the hamiltonian formalism, or the "coordinates" of the
histories of the fields in the lagrangian case.

2. A submanifold Σ a Γ defined by implicit equations

G ^ o ( z ' ) * 0 , Ao = I,..., Mo . (1)

These are the hamiltonian constraints or the Euler-Lagrange equations.

3. A distribution {Xαo; α0 = 1,. . . , m0} tangent to Σ and in involution on it:

X α o [ G ^ o ] ^ 0 , (2)

lXao,Xβo-]*C%βoXyo. (3)

The vector fields Xαo generate the infinitesimal gauge transformations. These
map Σ on itself (Eq. (2)) and are integrable on Σ (Eq. (3)). The corresponding
integral submanifolds are the gauge orbits.

1 The lagrangian BRST-anti-BRST formalism has been considered recently from different view-
points in [19-26]
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The observables of a gauge theory are the functions on Σ that are constant
along the gauge orbits (gauge invariance). Thus, if we denote by Σ/& the "reduced"
space obtained by taking the quotient of Σ by the gauge orbits, the algebra of
observables is just C°°(r/^). In principle, all the physical information about the
gauge system is contained in C

2.2. BRST Differential. In practice, one cannot construct explicitly the algebra
C°°(Σ/&) of physical observables, either because one cannot solve the equations
defining Σ9 or because the integration of the gauge orbits is untractable. The BRST
construction reformulates the concept of observables in an algebra that is more
convenient, as the elements of the zeroth cohomology group of the BRST differen-
tial s,

s2 = 0. (4)

Corresponding to the two ingredients contained in the definition of the observ-
ables, namely the restriction to Σ and the condition of gauge invariance, there are
actually two differentials hidden in s. The first one is known as the Koszul-Tate
differential δ and implements the restriction to Σ. More precisely, it yields a resolu-
tion of the algebra C°°(Γ). The second one is (a model for) the longitudinal exterior
derivative along the gauge orbits and is denoted by D. It imposes the condition of
gauge invariance. One has [1,2,5,6,29]

s = δ + D + "more" (5)

and

(6)

The existence of the additional terms in (5) necessary for the nilpotency (4) of 5 is
a basic result of homological perturbation theory. It follows from the resolution
property of the Koszul-Tate differential. We shall not reproduce the proof here but
shall rather refer to the monograph [6].

Equation (6) provides the basic link between gauge invariance and BRST
invariance. It explains why the BRST symmetry is physically relevant.

3. Biresolutions

3.1. Motivations. In the BRST-anti-BRST theory, the differential s is replaced by
two differentials sx (BRST differential) and s2 (anti-BRST differential) that an-
ticommute,

s\ = sxs2 + s2Si = A = 0 . (7)

The relations (7) define the BRST-anti-BRST algebra. Furthermore, both s1 and s2

are such that

(8)

in a degree that will be made more precise below. This suggests that one should
introduce two resolutions δ1 and δ2 of C°°(Γ) that anticommute, instead of the
single Koszul-Tate resolution δ of the BRST theory. Thus, we are led to the
concept of biresolution.
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3.2. Definition. Let s/0 be an algebra and si be a bigraded algebra with bidegree
called resolution bidegree. We set

bires = (reSi, res2) (9)

and

res = res! + res2 . (10)

We assume that both reSi and res2 are non-negative integers: resx ^ 0 and res2 ^ 0.

Definition 3.1. Let δ: si -> si be a differential of resolution degree — 1,

δ2 = 0, (11)

r e s ( δ ) = - l , (12)

i.e.

TQs(δa) = res(α) — 1 when res(α) ^ 1 , (13)

= 0 when res(α) = 0, (in which case δa = 0) . (14)

One says that the differential complex (si, δ) is a biresolution of the algebra s/0 if and
only if:

1. The differential δ splits as the sum of two derivations only

δ = δx + δ2 (15)

with

bires(5i) = ( - 1 , 0), bires(<52) = (0, - 1 ) (16)

(no extra piece, say, of resolution bidegree ( — 2,1)). It follows from the
nilpotency of δ that

δ2

1=δ1δ2 + δ2δ1=δ2

2=0, (17)

i.e. δ1 and δ2 are differentials that anticommute.

2. One has

Ho,oVi) = *O, Ho,k(δ1) = 0 = Hk^(δ1), (ΛΦ0) (18)

#o,o(<52) = ^ o , Hκo(δ2) = 0 = H*,k(δ2\ ( H O ) (19)

H0(δ) = ^ 0 , Hk(δ) = 0, ( t Φ θ ) . (20)

Remark. The relation (20) is easily seen to be a consequence of (18) and (19).

Definition 3.2. A biresolution is said to be symmetric if there exists an involution
S (S2 = 1) which (i) is an algebra isomorphism; (ii) maps an element ofbidegree (a,b)
on an element ofbidegree (b, a) and (ΐii) maps δx on δ2 and vice-versa:

S ( 5 ! S = < 5 2 , (21)

Sδ2S = δx . (22)

Note that the relations (21) and (22) imply

SδS = δ . (23)
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3.3. Basic Properties of Biresolutions.
(a,b) (a,b)

Theorem 3.1. Let (s/9 δ) be a biresolution and F e i , bires( F ) = (α, b) (with
a + b > 0) be such that

(a,b)

δί F = 0 (a,b)
o δ F = 0 . (24)

Then

(a,b)

δ2 F =0

(a,b) (a+

F =δ2δ, M .

(a,b)

Proof of Theorem 3.1. From δ2 F = 0, one gets

(a,b)

F =δ2 R

(25)

(26)

since Hafb(δ2) = 0 for a + b > 0. But one has also ^ F = 0 , hence <52<Si .R = 0,
(a-l,b + 2)

i.e., there exists R such that

(fl-l.ft + 2)

+ ^ 2 Λ = 0 . (27)

This leads to the descent equations

(a-1,6 + 2) (α-2,6 + 3)

= 0 (28)

(0,a

δ± R +δ2 R =0

(O,a

δx R = 0 .

From the last equation and (18), one obtains
(0,a + b+l) (l,a + b+l)

R =δ1 M .

Injecting this result in Eq. (29), one gets
/(l,a + b) (l,a + b+l)\

δA R -δ2 M J = 0 ,

i.e., from (18)
(2,a + b)

R =δ2 M +δλ M .

(29)

(30)

(31)

(32)

(33)
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(a,b+

Going up the ladder in the same fashion, one finally gets for R

and thus, from (26)

(a,b+ί) (a,b + 2) (a+

R = δ2 M +δ1 M , (34)

(a,b)

F =020, M . (35)

QED
(m) (m)

Theorem 3.2. Let F e j / , with res(F) = m > 0, be such that

(m) {p,q)

F = Σ F (36)
p + q = m

Assume that:
(m)

1. δF = 0 ,

2. In the sum (36), only terms with p ^ a and qf^b occur, for some a and b such
that a + b> m (strictly).

Then,

(m) (m+1)

F = δ P , (37)

where

(m+l) (p,ξ)

P = Σ P (38)
p+q=m+1

<Λ«)

involves only terms P with p ^ a and q^b.

Proof of Theorem 3.2. One has
(m) (α,m-α) (m-b,b)

F = F + + F (39)
(i,j) (m) (fl,m-α)

(with F = 0 if i < 0 or j < 0). From δ F = 0, one gets <52 F = 0 , i.e., using (19),

(a,m — a) (α,m — α + 1 )

F = 5 2 P' (40)

(a,m — a) (a,m — a+ί)

(if m - a < 0, F = 0 and one takes P r = 0). One has m — a + 1 ̂  b

(a,m — α + 1 ) (m)

because m < a + fc. If one subtracts <5 P r from F , one obtains

(m) (a,m-a+ί) (α-l,m-α+l) (m-b,b)

F -δ F = F ' + + ί1 . (41)
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(α-l,m-α+l)

One then keeps going (one removes F , etc. . . .) until one reaches the last
step,

(m) (m-b,b)

F-SP= F' (42)

ί
(m — b, m)

δί F' = 0
(43)

(m — b, m)

δ2 F' = 0 .
From Theorem 3.1, this implies that

(m-b,m) (m-b+l,m+ί)

F' = δxδ2 S

(m-b+ί,m+l)

= (δ, + δ2)δ2 s

(44)

( , ) ( , )

with Q = δ2 S . One has m — b + 1 ̂  a because m< a Λ-b.

QED
(m)

Theorem 3.3. Assume that in Theorem 3.2, F is S-even, i.e.,

(m) (m)

SF = F . (45)

(m+l)

TTzett P m (37) can a/so be chosen to be S-even:

(m+l) (m+l)

S P = P . (46)

(m) (m+l)

Similarly, if F is S-odd, P can be chosen to be S-odd.

(m) (m)

Proof of Theorem 3.3. We treat only the case F S-even. The case F S-odd is treated

(m)

in a similar fashion. Because F is S-even, one can assume a = b in the previous

theorem. Now, from (45), (37) and (23), one gets
(m) Γi /(m+l) (m+l)\ η

F = δ \ - ί P + S P \\. (47)

(m+l) (m+l)

Both P and 5 P fulfill the conditions of Theorem 3.2 since a = b. Clearly,

(m+l) (m+l)

l/2( P +S P ) is S-even. QED
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4. Koszul-Tate Biresolution

4.1. Koszul-Tate Resolution. To warm up, we shall first recall a standard result on
Koszul-Tate resolutions, which has been derived in the context of BRST theory
[2, 5, 6]. To that end, we come back to the geometrical data of Sect. 2.1. Equations
(2) defining the submanifold Σ a Γ,

GAo « 0 (48)

may not be independent, i.e., there may be relations among the GAo's:

Zί°ίGAo = 0 (identically). (49)

The functions ZAl are called the first order reducibility functions and provide
a complete set of relations among the constraints. They may, in turn, be non-
independent, i.e., there may be relations among them

ZA

A\Z% « 0 , (50)

etc. There is thus a tower of reducibility identities of the form

zft-*z%:i*o , (51)

the last one being

Zi^Zi^πO. (52)

Definition 4.1. [2, 5] The set {GAo, ZA°, . . . , Z^- 1 } provides a complete descrip-
tion ofΣ ifz1 EΣOGA^Z1) = 0, and if

ξA°GAo = 0 o ξA° = ξA^Zίl + v** 0 Gj, 0 , (53)

ξA-Zit^ « 0 o ξA*κ ξAk+ίZAϊ+ί . (54)

ξΛLZi^ « 0 o ξALπ0, (55)

where vAoBo = (—)

Theorem 4.1. [2, 5] To each complete description {GAo, Zft9 . . . , Z ^ - 1 } of the
surface Σ a Γ, one can associate a graded differential complex (K%, δ) such that

1. K = C[0>Ao, ..., 0>AJ ® C™(Γ), where2 r e s ( ^ J = n + 1.

2. The operator δ is defined on the generators of the algebra K by

δz1 = 0 , (56)

δ^Ao=-GAo, (57)

2 Among the &*Λo9 . . . , 0*ΛL, some are commuting and some are anticommuting (see [2, 5]). We
denote by C [ ^ o , . . . , &ALΊ the algebra of polynomials in these variables with complex coeffic-
ients. For instance, for θ anticommuting, C[0] = {α + βθ}, a, βeC. Although we allow complex
coefficients, the concept of smoothness is used in the real sense
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δPAι = -Z%PAo, (58)

δ&Λk = -Z%- ^Ak., + MAk \?Mi..., 0>Ak_J , (59)

where the polynomials MAkeK are such that the Koszul-Tate operator δ is
nilpotent, δ2 = 0.

3. Hk(δ) = Ofor k>0and Ho(δ) = C™{Σ\ that is, (K*, δ) provides a homologi-
cal resolution of the algebra C°°(Σ).

The graded differential complex (K%,δ) is the Koszul-Tate differential complex
and the associated resolution of C 0 0 ^ ) is called the Koszul-Tate resolution.
Conversely, if a differential of the form (56)-(60) provides a homological resolution
of C°°(Σ), then, the functions {GAo, Z$?9 . . . , Z ^ 1 } appearing in (56)-(60) consti-
tute a complete description of Σ.

Our purpose in this section is to show that for each complete description of the
constraint surface, one can also associate a Koszul-Tate biresolution, by repeating
an appropriate number of times the constraints and the reducibility functions.

4.2. Results. We have indicated in [17] the way in which one should proceed
when the functions GAo defining Σ are independent (irreducible case). Rather than
the single "ghost momentum" 9>

Ao of resolution degree one, one should introduce
( 1 , 0 ) ( 0 , 1 )

two ghosts momenta 9>Λo and 9>Ao at respective resolution bidegree (1, 0) and (0, 1).

That is, one duplicates the constraints GAo « 0 by simply repeating them a second
time. The description of Σ by means of the duplicated constraints is clearly no

( 1 . 1 )

longer irreducible. One then introduces a ghost momentum λAo to compensate for

the duplication and sets

( 1 , 0 )

δPAo=-GΛo9 (61)

(0,1)

u ^ AQ ^ AQ » V υ ώ /

( 1 , 1 ) ( 0 , 1 ) ( 1 , 0 )

u ΛAo — ^Ao ^ AQ ' VUJ/

This defines the searched-for biresolution in the irreducible hamiltonian case. That
biresolution is symmetric under the involution

( 1 . 0 ) ( 0 , 1 ) ( 0 , 1 ) ( 1 , 0 )

S& = & S& = & ί64)

( 1 . 1 ) ( 1 , 1 )

SλAo = -λAo . (65)
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In the irreducible case, there are higher order ghost momenta 2PAk in the
Koszul-Tate resolution, of resolution degree k + 1. These should be replaced by

(k + 2) ghost of ghost momenta &>Ak9 with i + j = k + 1, i ^ OJ ^ 0. This provides

a spectrum symmetric for the interchange of ί with j . This also amounts to
repeating the reducibility functions k + 2 times, increasing thereby the reducibility.

( i + l . j + l )

One thus needs further ghosts of ghost momenta /^k , with i+j = k9 i ^ 0,
j ^ 0, in order to compensate for that increase in reducibility.

Rather than trying to give a systematic, step-by-step derivation of the corres-
ponding Koszul-Tate biresolution, we shall first state the results and then prove
their correctness.

Theorem 4.2. To each complete description {GAo9 ZA°, . . . , Z^- 1 } of the constraint
surface Σ a Γ, one can associate a symmetric biresolution (K%,δ = δx + δ2) of
C™(Σ) defined as follows.

1. The graded algebra K% is defined by

(io,jo) (iiji) (ΪL>JL) ( i ό + 1 ' /ό + 1 ) ( I L + I . J L + 1 )

with

= * + l , i*^0,Λ^0, (67)

, Ifr έL. U , Jfr έ?L U , \βθj

(ik,Jk)

= ( W * ) , (69)

bires( λAk ) = ft + IJί + 1), (70)

+ fe+l, (71)

= ε ^ + k (72)

(where εAk is defined recursively through ε(GAo) = εAo9 ε(ZAk

c~1) =
£Ak + εΛk-i)

2. ΓΛ^ operator δ = δx + δ2 acts on the generators as

(fc,0) (fe-1,0) (fc-1,0)

Mx ϋ^k2 k,
(*.o) (k ̂  0 ) , (74)



Hamiltonian BRST-anti-BRST Theory 289

(o,fc-i) = 0) j (75)

(76)

1,7+1) <i,7+D J (ί.J+D (>,7+D

.2 = - ^ . 2 + -
(£+1,7+1) (i+1,7) J

2 ^ f c _ 2 = -PAk_2 + - ., + NAk_2

(1,;+1) (0,7+D (0,7+D
i ^ - 2 = ~^Ak-2 + NAk_2

) (k ̂  2). (78)

polynomials MAk_ί, M^k_1 5 NAk_2, NAk_2 depend only on &Au with
u S k — 3 and λAs with s ̂  k — 4. 77zey are determined recursively in such
a way that δ2 = 0 (see below), and are such that

(Uj) CM)

SAf^.^M^.,, (79)

(i.7) (7.J)

5iV^_2 = N^_ 2 , (80)

where S is the symmetry

d,j) (hi)
(81)

+l)

S λAk_2 = - λAk_2 . (82)

.3. Proof of Theorem 4.2. We define

. . . , ^ k , ^ 0 , . . . , λ A k _J ® C°°Γ (83)

and observe that KL+1 = K%. The proof of Theorem 4.2 proceeds in steps.

Step 1. Assume that one has been able to find MAi, MA. up to i = k — 1 and NAi,
NA. up to i = k - 2, in such a way that (i) δ2 = 0 on Kk; (ii) δ contains only pieces of
bidegree ( — 1, 0) and (0, — 1), that is, δ = δ1 + <52; and (iii) SδS = δ. Then, it is easy
to see that if the element aeKt with i < k fulfills both res(α) > 0 and δμa = 0, then
a = δμb with beKi+1. lϊ Kt = K L +i = ̂ fc? then α = δμb with beKL+ί. Here 5μ

stands for either <5l9 (52 or <5.
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Proof of Step 1. (a) We first consider the case δμ = δί. Because c^ is C°°(Γ)-linear,
one can proceed locally on Γ. Now, by a redefinition of the constraints and of the
reducibility functions, one can assume that Z ^ J ^ Z ^ j " 1 = 0 (strongly and not just
weakly), at least locally. In that case, the operator δx takes the simple form

(1.0)

zJ = 0, δ^Ao=-GAo

ϋ,o) (j-i,o) (84)

d,m)
(/ΦθΦm, l + m=j)

(85)

0, / + in = J - 2)

(ί,m)

If one redefines the variables ^Uj-2> w + 0, as follows

(86)

(87)

one can rewrite ^ in the form

U,o)

(1,0)

δ1PAo =-G
Λo

(88)

m=j-2). (89)

= 0

Since μ is the δi -variation of A, the λ — μ pairs cancel in δ1 -homology in Kk, except
(Um)

the unmatched variables μAk (I + m = k + 1), for which the corresponding λ's do
not live in Kk but in Kk + 1. Furthermore, since (88) has the standard form of the

resolution of C™{Σ) given in Theorem 4.1 (with &Ai-> &Aj ), the non-trivial
δ i -cycles in K( are all killed in Ki+1 (or in Kt if i ̂  L). This proves step 1 for δ ί .
(b) Step 1 for δ2 is proved similarly.
(c) The proof of Step 1 for δ = δi + δ2 follows standard spectral sequence ar-

^ (tj-t)
guments. If δa = 0 with res(α) =j>0 and aeKh then a = £ α . The equation
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(fmin.J-ίmin)

δa = 0 implies δ1 a = 0 for the component of a with smallest t. Then,

(ίmin.j-ίmin) (ίmin + 1, J ~ ίmin) (ίmin + 1, j ~ fmin)

a = δι b with b e Kt + x by (a), and the component

(ίmin +1J- ίmin)

with smallest t oϊ a — δ b has ί̂ in = ̂ min + l Going on recursively

along the same line, one easily arrives at the desired result.

Step 2. It is clear if a e Kt fulfills δa = 0, res(α) > 0 and the positivity properties of
Theorem 3.2, then beKί+1 (or KL+1 if i = L + 1) fulfills also the positivity
properties of Theorem 3.2.

Step 3. δ is defined on Ko and Kt by

δz1 = 0 , (90)

(1,0) (0,1)

SPAO = -GAO, S ^ A o = - G A o i (91)

(2,0) (1,0) (0,2) (0,1)

(1,1) 1 (1,0) (0,1)

λφ. = (φ. 4. ^ , )

(1,1) (0,1) (1,0)

â o = ^ i o - ^ o . (94)

It is such that c52 = 0, <5 ̂  ^± H- <52 and SδS = δ. So let us assume that δ has been
defined on Kt up to i = k, and let us show that one can extend δtoKk + ί, i.e., find
MAh+ί9MΛic+ι9NAk3ndNA1eeKk-1 such that δ20>Ak+ι = δ2λAk = 09δ = δx + <52and

(i,Λ
SδS0>Ak+ί = δ&Ak+ι, SδSλAk = δλAk. We shall only show how to define δ&Λk+ι and

U, i)

δ^Au+i 0 ' > 2, j > 2), with ΐ + j = fc + 2. One proceeds along identical

lines for the other variables.
(ί-l,j) (ijj-l) _ U-1,0 (ΛΪ-1)

Let M^ k + 1 be the sum MAk+ί + M^ k + 1 and let MAk+ί be M^ k + 1 + MAk+i. One

must find M^ k + 1 and MAk+ι in Kk-X such that the expressions
(i,j) 1 ( i - l , j ) ( i , J - l )

°^rAk+ι — 2 Λk+ι^ Ak Λk ' mAk+ι 5

δ»^, = - - Z ^ + , ( ^ + ̂ f c ) + M^ k + , (96)

have vanishing δ. Furthermore, MAk+ί can contain only terms of bidegrees (i — ίj)
and (i,7 — 1), and MAk+1 can contain only terms of bidegree (j — 1, i) and (7, i — 1)
(in order for δ to split as the sum of two differentials). Finally, one requires
SMAk+1=MAk+1.
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Let XAk+ίe

%Ak +

where C^;1/0

Set

The unknown

where

:Kk-1 be

, - H-tci:

I (1,0)

4 °

Π (1.0)0

L 4

( 0 , 1 ) ( £ - 1 , 7 -

^ y l o / ^Ak -

are the structure functions

M

M

functions M'AkΛ

^ - 1 = (-)'

Ak+i=M'Λki

Ak+i=MΆk<

, a n d M ^ t +

^ ^ k + 1 =

1

i) i (o, l)(i,7-2)-|

appearing in the identity

., + sx,

t»Ak+1 ,

δSDAk+1

(i--

+ 1 '

are subject to the

ι,Λ (i.j-i)

(97)

(98)

(99)

(100)

equations:

(101)

(102)

belongs to Kk. Because δ is nilpotent in (the already constructed) Kk, one has
δ(δDAk+ί) = 0. Furthermore, a straightforward calculation using identity (98)
shows that δDAk+ιeKk-2. Hence, there exists MAk+ιeKk-1 such that Eq. (101) is
satisfied (see Step 1). Note that M'Ak+ί + DAk+ι because DAk+ίeKk. Since δDAk+ι

contains only terms of bidegrees (ί — 2,j\ (ί — IJ — 1) and (ίj — 2), one infers,
using Step 2 and Theorem 3.2, that M'Ak+ί can be taken to contain only terms of
bidegrees (i — ί,j) and (ij — 1), as required. Finally, one solves the second equa-
tion (102) by taking M'Ak+ί = SM'Ak+ί. This is acceptable because Sδ = δS in the
already constructed Kk.

dJ) CM)

This completes the definition oΐδ^Ak+ι and δ&*Ak+1. By a similar reasoning, one
defines δ on all the other new generators of Kk + l9 with the required properties.
Step 3 and the proof of Theorem 4.2 are thereby finished.

5. BRST and Anti-BRST Generators

5.1. Review of Results from the BRST Theory. The existence of the Koszul-Tate
biresolution is the hard core of the BRST-anti-BRST theory. The rest of this paper
merely takes advantage of this result by applying it in the context of standard
BRST theory.

We recall that in the hamiltonian formulation of gauge theories, the manifold
Γ is the phase space, with canonical coordinates (q\ Pi). The functions GAo defining
the constraint surface are first class,

Co (104)
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(after all the second class have been eliminated, e.g. through the Dirac bracket
method). The observables are the equivalence classes of first class phase space
functions F o that coincide on the constraint surface

9 (105)

Fo ~ Fo + λA°GAo . (106)

One then has the important theorem [1, 2, 5, 6, 29].

Theorem 5.1. To any homological resolution (K%, δ) of the constraint surface, one
can associate a nilpotent function in an extended phase space:

[ β , Ω ] = 0 , e ( O ) = l , (107)

which has the form

β = - Σ niβ&) + " m o r e •" ( 1 0 8)

The BRST generator Ω generates the BRST transformation through

s = [ ,β]. (109)

Equation (107) is equivalent to

s2 = 0 (110)

and one has

H°{s)~ C^iΣ/g) = {observables} . (Ill)

Actually, H *(s) ^ H*(d\ where d is the exterior longitudinal derivative along the
gauge orbits on Σ for non-negative degree and H*(s) = Ofor negative degree.

The variables η appearing in (108) are conjugate to the generators 0* of the
given resolution of C"°{Σ). They are called ghosts. The variables ηAk with k > 0 are
also called ghosts of ghosts.

5.2. Extended Phase Space. The BRST-anti-BRST algebra (7) implies

s2 = (si + s2)
2 = 0 (112)

and conversely, (112) implies (7) provided s splits as a sum of two differentials and
no more (if 5 were to split into more pieces, s1 and s2 would obey equations
involving the extra derivations contained in s). We shall use the previous theorem
and the biresolution of Sect. 4 to establish the existence of the BRST and anti-
BRST generators. The idea is the same as that exposed in [17] for the irreducible
case. Namely, one constructs directly the generator Ω of the sum s?i + s2 by using
the ordinary BRST theory, i.e. Theorem 5.1, but applied to the description of
Σ associated with the differential δ of the previous section. And one controls that
Ω splits as a sum of two terms only by means of Theorem 3.2.
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(i,j) (i+lj+l)

The extended phase space is obtained by associated wth each 0>Ak and λAk

(ij) (i+lj+ί)

of the previous section a conjugate ghost, denoted by ηAk or πAk :

[ »M 9η
Λ"l = δii'δJJ'δ%9 (113)

,-α+D)
[ λAk , πA*> l=δ"Wδ%, (114)

All the other brackets involving the ghosts or the ghost momenta vanish. The
(i,j) (i+ί,j+l)

ghosts ηAk and πAk can be seen as the generators of a model for the longitud-
inal exterior differential complex (L*, d) [2, 5, 6]. Actually, this model (K*, D) has
a bicomplex structure and D = D± + D2. The double differential complex
(K***; Du D2) is bigraded by the pure ghost bidegree, denoted bipgh and defined by:

bipgh A = (i,;), (115)

(£+ 1,7+1)

bipgh( πΛk ) = ( i + l j + l ) . (116)

The original canonical variables have zero bipgh. In so far as this does not play an
important role in our construction, we will not elaborate more here on this aspect
of the geometrical interpretation of the BRST-anti-BRST theory.

Following what is done in the usual BRST context, we also define ghost
bidegree, denoted bigh to be

bigh = bipgh - bires = (gh l 5 gh2) . (117)

It is such that one has ghi(si) = 1 = gh2(s2) and ghi(s2) = 0 = gh1(s2). Also, one
defines the ghost degree gh = ghx + gh2. From now on the superscript (ij) will

always indicates the ghost bidegree. So &>Ak becomes 0>Ak as already anticipated
in (113). We denote the bigraded polynomial algebra of polynomials in the ghosts
and the ghosts momenta with coefficients that are functions of the original canoni-
cal variables by J Γ * ' * . One extends the definition of δ on Jf *'* by requiring that
δη = 0 = δπ; with this definition of δ, one has that bigh ((5 J = (1,0) and
bigh(<52) = (0,1). From the point of view of the BRST theory based on δ, the
variables ηAk with k > 0 and πAk are the ghosts of ghosts associated with the
reducible description of Σ defined by δ. The degrees res and gh are respectively the
corresponding resolution degree and ghost number.

5.5. A Posίtίvity Theorem.

Definition 5.1. Let FeJf*'*. If the polynomial F satisfied gh(F) = k > 0 (respec-
tively gh(F) = k ^ 0), then F is said to be of positive ghost bidegree (respectively
non-negative ghost bidegree) if it can be decomposed as

(ij)

F= Σ F > (US)
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(ij)

where i ^ 0, j ^ 0 and bigh( F ) = (ίj). The algebra of polynomials of positive ghost
bidegree (respectively non-negative ghost bίdegree) is denoted by Jf%'f (respectively
Jf t * ) In particular, one has X^% c j f *'*.

We have the following important theorem

Theorem 5.2. Let FeJΓ%'f be such that (i) TQS(F) = m > 0 and (ii) δF = 0. Then,
3Pe Jf t * swc/z ίftαί δP = F.

Proof of Theorem 5.2. Let F [α, β; r, 5] be the component of F satisfying
bipgh(F[α, β; r, 5]) = (α, β) and bires(F[α, β; r9s]) = (r, 5). The condition δF = 0
implies ^r+s=kF\jx, β; r, s] = 0, while the condition F e J f ΐ ' * implies r ^ a
and 5 ^ /? with oc + β > m. Applying Theorem 3.2, one obtains that there
exists P[α, jff] = Σ F + s - = m + x P[α, jS; f, s] such that f ^ α and 5 ^ )8. Thus

*. QED

5.^. BRST and Anti-BRST Generators. Let us consider the homological resolution
δ = δγ + δ2 of Theorem 4.2. By Theorem 5.1, we know that there exists a total
BRST charge Ω, that starts as

( 1 , 0 ) ( 0 , 1 ) ( 0 , - 1 ) ( - 1 , 0 ) ( 1 , 1 )

O = GAo(ηA° + ^ ° ) + ( ^ 0 - ^ 0 )π^° + . (119)

However, we want more than just a mere solution of [Ω, £2] = 0. We want this
solution to incorporate the full BRST-anti-BRST algebra. As stressed already
above, this means that the total BRST transformation s = [ , Ώ] must split in two
pieces 5X and s2 of different degrees. Accordingly, we require the total BRST
generator Ω itself to split also in two pieces Ωx and Ω2 with bigh(Ωi) = (1,0) and
bigh(ί22) = (0,1). If this is the case, then the differentials sx and s2 defined by
si = [ *, Ωi] and s2 = [ , Ω 2 ] fulfill (7).

Theorem 5.3. Suppose that Ω = Ω1 + Ω2 with bigh(Ωi) = (1, 0) and bigh(ί22)
= (0,1), then [Ω, Ω] = 0 if and only if[Ωu Ω J = 0 = [Ω2, Ω 2 ] αwrf [Ω l 9 Ω 2 ] = 0.

of Theorem 5.3. Obvious by degree counting arguments:

[Ω 2, Ω 2 ] + 2[Ω 1 ? Ω 2 ] . (120)

Clearly, bigh[Ω l 9 Ω J ) = (2,0), bigh([Ω 2,Ω 2]) = (0,1) and b i g h ( ^ 1 ? Ω 2 ]) =
(1,1). Thus, [Ω, Ω] = 0 if and only if each term of the right-hand side of (120)
vanishes, that is, if and only if [Ω 1 ? Ω J = 0 = [Ω2, Ω 2 ] and [Ω l 9 Ω 2 ] = 0. QED

We now prove that the total BRST charge can be split in just two pieces Ω1

and Ω2.

Theorem 5.4. One can choose the extra terms in (119) such that (i) Ω splits as a sum of
two terms of definite ghost bidegree, Ω = Ω1 + Ω2 with bigh(^i) = (1,0) and
bigh(Ω2) = (0,1) and (ii) [Ω, Ω] = 0.

Proof of Theorem 5.4. Using homological perturbation theory, the equation
[Ω, Ω~] = 0 is equivalent to the family

(n) (n-1) (0) (n-1)

δΩ= D [Ω, . . . , Ω ], n > 0 , (121)
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(n) (n-l)

where res(β) = n. The explicit form of D , given in [2], is

(n-l) (0) (n-l) 1 Γn-1 (n-m-1) (m)

D [ Ω , . . . , Ω ] = - ] Σ [ o >Ω]ori8
Z l

n — 1 m — 1 C (n — m + k) (m)

+ Σ Σ [ a , Ω λ ηAη
m = l fe = O I Ak

(n+ί-m + k) (m) ϊ ")

+ [ Ω >Ω\λAk,π*«)\\> (122)

where [ v ] 0 Γ i g refers to the original Poisson bracket not involving the ghosts,
[ , ] ^ ηAk) and [ , ] ( A^ π^k) denote respectively the Poisson bracket with respect

to the ghost pairs (^Uk, η
Ak) and (AAk, π^k). Clearly, one has Ω = Ωx + Ω2. Suppose

(j) U) (j) (n)

now that Ω = Ωx + Ω2, for; < n, then let us prove that Ω can be chosen such that
(n) (n) (n)

Ω = Ωx + Ω2 with bigh(i2i) = (1,0) and bigh(Ω2) = (0,1). Actually, using Defini-

tion 5.3, one can reformulate this properly as follows. Suppose that Ω is of positive

ghost bidegree for j < n, then, we must show that Ω may be chosen to be of positive
ghost bidegree.

(j) (n-l)

Lemma 5.5. Suppose that Ω is of positive ghost bidegree for j < n, then D is of
positive ghost bidegree.

(n-l)

Proof of Lemma 5.5. We observe that D is as follows:

(n-l) (0) (n-l) (n-l) (0) (n-l)

D [Ω, . . . , Ω ] = D n [ β l 9 . . . , Ωx ]

(n-l) (0) (n-l)

+ D 2 2 [O 2 , . . . , Ω2 ]

(n-l) (0) (n-l) (0) (n-l)

+ D 1 2 [ θ ! , . . . , Ω i ; O 2 , . . . , Ω 2 ] , (123)

(n-l) (j) (n-l)

w h e r e DX1 s t a n d s for t h e t e r m s c o m p u t e d f r o m t h e s o l e Ωl9j< n, D22 f r o m t h e
(j) (n-l)

sole Ω2J <n and Dί2 for the mixed terms. Using (122), it is then easy to see that

(n-l)

) = (2 ,0) , (124)

) = (0, 2 ) , (125)

(n-l)

bigh(D 1 2 ) = (l, 1). (126)

(n-l)

This clearly shows that D is of positive ghost bidegree. <\
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(n) (n-l) (0) (n-l)

Thus, in equation (5Ω = D [Ω, . . . , Ω ], the right-hand side is of positive
(n-l) (n) (n) (n-l)

ghost bidegree and because δ D = 0, there exists Ω such that (i) δΩ = D and
(n)

(ii) Ω is of postive ghost bidegree (by Theorem 5.2). So, we have proven by
induction on the resolution degree that Ω is of positive ghost bidegree and this, in
turn, implies that

Ω = Ωx + Ω2 (127)

with bigh(Ωx) = (1,0) and bigh(Ω2) = (0,1). QED

A nice consequence of this theorem is that the family of Eqs. (121) can be
decomposed in three pieces:

δ2Ω2

δ2θ\

(n-l)

(n-l)

= D22

(n-l)

(0)

(0)

(0)

( n -

( n -

( n -

1)

i 3 ,

1)

1) (0)

i Ω 2 , . .
( n -

. , Ω
1)

2]

(128)

(129)

(130)

which are equivalent to the three equations

[fli, fli] = 0 = [Ω2, Ω 2 ] and [Ω l 5 Ω 2 ] = 0 . (131)

As mentioned above, these last equations are equivalent to the BRST-anti-BRST
defining equations for the derivations Si = [*,Ωi] and s2 = [*,Ω 2 ] . Thus, we
have proved the existence of the BRST-anti-BRST transformation for any com-
plete description of the constraint surface Σ. This was done not by trying to solve
directly (128-130), but rather by solving the sum (121) and controlling that it splits
appropriately.

5.5. Uniqueness of the BRST and Anti-BRST Generators. By the standard BRST
theory, the total BRST generator is unique up to canonical transformation in the
extended phase space. In its infinitesimal form, this result states that if Ω and Ω' are
two nilpotent generators satisfying the same boundary conditions, then
Ω' = Ω + [M, Ω], where the function M is of ghost number zero [2]. More
explicitly, if one decomposes M according to the resolution degree, one has
(r) (r) (r+1)

Ω' = Ω + δ M . Actually, one can assume that the function M is of homogeneous
ghost bidegree (0,0), bigh(M) = (0,0). Indeed, suppose that one has
Ωi + Ω2 = ΩΊ + Ώr2> with the same boundary conditions. Suppose that until
resolution degree /?,

(r) (r)

Ωi = Ω x , (132)

(r) (r)

Ω 2 = Ω 2 , r^p. (133)
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Let us prove that there exist a canonical transformation

(P + 2)

Ω -> Ω + [ M , Ω] (134)

(p+l) (p+1) (p+1) (p+1)

such that Ω\ = Ω1 and Ω2 = Ω2 . By construction, one has

(p + 2)

Thus, there exist M such that

(P)

=D = δ Ω' . (135)

(p+l) (p+1) (p + 2)

Ω' = Ω + (5 M . (136)

(p+l) (p+1) (p + 2)

Furthermore, because { Ωr — Ω )e Jf ?.'$, one can take M in Jf^'*, that is,
(p + 2) (p + 2)

bigh( M ) = (0,0). The canonical transformation (134) with that solution M of
(136) is the searched-for canonical transformation. Equation (134) splits as

(p + 2) (p+2)

Ω, -» Ωx + [ M , Ox] = Oχ + sx M , (137)

(p + 2) (p + 2)

Ω 2 -• Ω 2 + [ M , Ω 2 ] = Ω 2 + s2 M . (138)

6. Classical BRST Cohomology

In order to construct a gauge fixed (hamiltonian) action, it is necessary to define the
total BRST extension H of the canonical (gauge invariant) hamiltonian Ho. That is,
one must find a function H with gh(H) = 0 such that H = Ho + and
[//, Ω] = 0. If one decomposes H according to the resolution degree

H = Σ ^ res(H) = r , (139)
r = 0

then, the equation [ff, Ω] = 0 is equivalent to the family of equations

(p+l) (p) (0) (p)

δ H = M[H, . . . , H] , (140)

(P)

where the function M is defined by [6, 30]

(P) P (p-k) (k)

M = £ [ H , Ω ] o r i g
fc = 0

p fc + p - 1 r (Λ) (p + s + l - f c ) (fc) (p + s + 2-fc)

+ Σ Σ \
k=o s=o

The general theorems of BRST theory guarantee the existence of H. Again, one has
here a stronger result, namely, H can be chosen to be of ghost bidegree (0, 0).
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(0) (1) (-1,0) (1,0)

Clearly, one has H = Ho. It is also easy to see that 3 H = 0>Ao V^nA° +
(0,-1) (0,1) (0) (1)

9Ao

 VBo nAo- This shows that bigh(#) = high (if) = (0, 0). As in Lemma 5.5, one
(1) (1)

can conclude that M in (141) belongs to Jf t + Because δM = 0, by Theorem 5.2,
(2) (2) (2) (1)

there exists H such that bigh(H) = (0,0) and δH = M. Continuing in the same

fashion, one finally obtains the following theorem

Theorem 6.1. The total BRST invariant extension H of the canonical hamiltonian Ho

may be chosen in such a way that bigh(H) = (0,0). The equation [ff, Ω] = 0 imply
then that H is both BRST and anti-BRST invariant, that is, sλH = 0 = s2H.

By standard BRST arguments one also obtains easily the

Theorem 6.2. The total BRST extension H of the canonical hamiltonian Ho is unique
(0) (0)

up to BRST-exact term: the equations [ # , £2] = 0 = [H\ β ] , with H = H' = Ho

imply the existence of a junction K such that H = H' + [K, Ω~\.

The gauge fixed hamiltonian HΨ = H + sΨ is simply a choice of a representant in
the equivalence class of BRST invariant extensions of the canonical hamiltonian

7. Comparison with the Standard BRST Formalism

It is clear that the above approach yields the same physical results as the standard
BRST formalism. Indeed, it is known that these physical results do not depend on
the particular resolution of C°°(Σ) that is adopted. However, it is of interest to
make a more explicit contact with the standard BRST construction. To that end,
we observe that the BRST generator Ωx given here starts as

(fc+1,0) (-(/c+l),0)

« i = - Σ nΛk <5i 9A* + "more", [ β ^ Q{\ = 0 , (142)
fc = 0

where the operator δx provides a homological resolution of the algebra C°°(Σ).
Equations (142) precisely define the standard BRST of the standard theory charge

(-(fc+l),0) (fc+1,0)

with a non-minimal sector: besides the minimal variables 0>Au and ηΛk ,
there are extra non-minimal variables (all the others). Hence, we can indeed identify

( i . i )

Ωγ with the standard (non-minimal) BRST generator. The ghosts πAo, which

appear in our approach as ghosts of ghosts related to the duplication of the
constraints, are viewed as non-minimal variables in the standard BRST context.
Note that this non-minimal sector turns out to be the non-minimal sector required

3 As usual, we define [HOi GAo] = V%°oGBo; that is the first class condition on the canonical
hamiltonian Ho
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for convenient gauge fixing (for instance, the Feynman gauge for the Yang-Mills
action).

The ghost number of the standard BRST formalism can be expressed as

ghstandard = ghl ~ gh 2 (143)

Hence, one has ghstandard(&i) = + 1 and gh s t a n d a r d(ί22) = - 1 . Moreover, the total
BRST extension of the canonical hamiltonian is also a standard BRST extension
for the standard BRST charge Ωί: [H, ί2χ] = 0. The ambiguity in H explained in
Theorem 6.2 may be rewritten as H -• H + [K\ Ω{\y where K' is such that [K\ Ω x ]
is anti-BRST invariant. Thus, it is of the standard form from the BRST point of
view based on Ωx. Indeed, because bigh(sK) = (0,0), one has that sK is BRST and
anti-BRST invariant. On the other hand, sKy=λ^G=0 = 0. Thus, sK is (i) Sx-closed
and (ii) an extension of zero. Hence, it is sx-exact (see [6]), sK = SiK' for some Kr

with s1K
f anti-BRST invariant.

Actually, from the standard BRST viewpoint, one only requires the standard
ghost number of the BRST extension of Ho to be zero, i.e., H may contain also
terms of bidegree (fe, k) with k Φ 0. We have the following general theorem that
allows one to make the link between the standard BRST theory and the BRST-
anti-BRST theory at the gauge fixing level:

Theorem 7.1. Let Ψ be a fermίonίc function such that sΨ contains only terms of ghost
bidegree of the form (k, k). Then sΨ is BRST and anti-BRST invariant and sΨ = sx Ψ'
for some fermίonic function Ψf. Conversely, if sx Ψ' is anti-BRST invariant and
contains only terms of ghost bidegree of the form (k, fc), then it can be written as sΨfor
some fermionic function Ψ.

Proof of Theorem 7.1. Let us expand the function Ψ according to the standard
ghost number: Ψ = £ B Ψn, where g h ^ ^ d ^ , , ) = n. The requirement that
ghstandard(( Si + 82)^) = 0 translates into the following family of equations:

(144)

(145)

(146)

Hence, we have s1(s1Ψ-1 -\- s2Ψi) = s1s2Ψ = -s2sίΨ1 = s2Ψ3 = 0, and sim-
ilarly, one can see that s2(sί Ψ -x -\- s2Ψ1) = sfΨ-3 = 0. One can also see that
$2^1 is Si-exact, because it is sx -closed, of standard ghost number zero and it
vanishes when 9 = λ = G = 0. Thus, one finds that

(Sl + s2)Ψ = sΨ', (147)

where the function Ψ' is of standard ghost number minus one and such that

Conversely, suppose that one has SiΨr with s2s1Ψ' = 0 and
ardPH = ~ 1 Then, one can find Ψ such that sxΨ

r = (sί + s ^ - s2Ψ'.
But sx s2 Ψ' = 0 and s2 Ψ is of standard ghost number — 2. Hence, s2 Ψ is sγ -trivial
(no Si-cohomology at standard negative ghost degrees): 52^' = —5x^-3 and so
one obtains Ψ = (si + s2)(Ψ' + Ψ-3) — s2Ψ-3. Going on recursively in the same
fashion at lower standard ghost numbers, one concludes that Si Ψr = (si +
QED
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Those gauge fixed hamiltonians are to be used in the path integral in order to
quantize gauge systems. The fact that the path integral does not depend on the
choice of the fermionic function Ψ follows from the Fradkin and Vilkovisky
theorem [31]. On the other hand, the path integral obtained by applying the
BRST-anti-BRST formalism is of the form of the standard BRST path integral,
since SxΨ' = sΨ. Hence, the equivalence of the BRST-anti-BRST formalism with
the standard BRST formalism (at the path integral level) is obvious.

8. Comparison with the sp (2) Formalism

The sp (2) formalism has attracted considerable attention in connection with string
field theory, see [20, 21, 22, 27, 28, 32, 33, 34]. Our BRST-anti-BRST formulation
reproduces the sp(2) formulation of [27, 28] when the ambiguity in Ω is appro-
priately handled. This can be seen as follows. First of all, the spectra of ghosts and
of ghost momenta are the same. Using the notations of [28], one has the following
correspondence for the ghost momenta:

' ( - 1 , 0 )

(148)
( 0 , - 1 )

( - i , - i )

λ A o <-> ^ o (149)

(-2,0)

( - 1 , - D
0> < > 0> — 0* (150)

(0,-2)

( » \ "»Λ*\X...X 1...2 (151)

^i h^l (152)
i j

where 0>Ak\aι...ak+1 &nd ^Ak\aί...ak

 a r e symmetric sp(2) tensors. The identification
for the ghosts are then obvious. Second, the ghost number gh introduced in the
present paper is exactly the new ghost number of [27, 28]. Finally, a close inspection
of Eqs. (128), (129) and (130) shows that one can make the choice SΩt = Ω2 and
SΩ2 = Ωλ (this follows from the fact that SDX1 = D22, SD22 = DlίSD12 = D2ί and
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Theorem 4.2). Then one has

SsxS = s2 (153)

Ss2S = s1 (154)

and

SsS = s . (155)

With that choice, there is a complete symmetry between the BRST and the

anti-BRST generators, as in the sp(2) theory and the generators Ωx and Ω2 coincide

with the generators Ωa (a = 1, 2) of references [27, 28].

9. Conclusions

In this paper we have explored the algebraic structure of the BRST-anti-BRST

formalism. We have proven the existence of the BRST-anti-BRST transformation

for an arbitrary gauge system. To that end, it was found necessary to enlarge the

ghost system and to introduce a Koszul-Tate bίresolution of the algebra of smooth

functions defined on the constraint surface. One can then apply the standard BRST

techniques to the corresponding reducible description of the constraint surface, to

get directly the generator Ω of the sum of the BRST and the anti-BRST transforma-

tions. A crucial positivity theorem controls that Ω indeed splits as a sum of just two

terms (ΩBRST = Ωx and βa n t i"B R S T = Q2\ and no more. This positivity theorem, in

turn, is a consequence of the algebraic properties of the Koszul-Tate biresolution.

Our approach clearly explains the complexity of the ghost-antighost spectrum

necessary for the BRST-anti-BRST formulation and also shows in a straightfor-

ward way the equivalence between the standard BRST formalism and the BRST-

anti-BRST one. The arguments developed in this article can be applied, with some

modifications, to the extended antifield-antibracket formalism. We shall return to

this question in a separate publication [18].
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