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Abstract. Critical circle homeomorphisms have an invariant measure totally sin-
gular with respect to the Lebesgue measure. We prove that singularities of the
invariant measure are of Holder type. The Hausdorff dimension of the invariant
measure is less than 1 but greater than 0.

1. Preliminaries

1.1. Discussion of the Results. The long time behavior of nonlinear dynamical
systems can be often characterized by means of invariant measures. A variety of
“multifractal formalisms” have been developed recently to study statistical proper-
ties of singular measures (see [4, 2] for more details) which appear as a natural
description of many physical phenomena. One of the characteristic quantities
describing the multifractal structure of a singular measure p is a singularity
spectrum g(«) which is usually defined in an informal way (see [4, 2] and many
others) as follows:

Cover the support of u by small boxes L; of size I. Then define the singularity
strength o; of u in the i'® box by the relation:

P(Li) ~ 1%

We count the number of boxes N () where u has singularity strength between « and
o + da (Whatever that is to mean). Then g(«) is defined by the requirement that

N(@) ~ 199

Unfortunately, many “multifractal formalisms” suffer from mathematical
ambiguities (see [2] for a fuller discussion of this problem; for example, is g()
a Hausdorff or a box dimension or something else?) even if they provide qualitative
information on a given dynamical system. In the present paper we would like to
propose a method of describing the dynamics of critical circle homeomorphisms.

* Partially supported by NSF grant #431-3604A
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Our method is more general than the method relying on the scalings exponents (see
[3]), and on the other hand, mathematically rigorous unlike the “multifractal
formalism” in its present shape.

Description of the method. Unlike typical smooth difftomorphisms, which were
treated in [5], all critical circle homeomorphisms have singular invariant measures
(see [7]). Moreover, it turns out that the unique normalized invariant measure is
always completely singular with respect to the Lebesgue measure. We introduce
two singularity exponents, the lower and the upper one, to measure the increments
of distribution of the invariant measure in the logarithmic scale. We study these
exponents with respect to two natural measures on the circle: the invariant measure
u and the Lebesgue measure A. By ergodicity, these exponents are constants on sets
of full measure y or A, respectively.

Our main achievement is to prove uniform bounds for the exponents in the
class of circle maps with a critical point of polynomial type and an irrational
rotation number of constant type.*

Universality. We should mention here that for critical maps with all critical points
of polynomial type and rotation numbers of algebraical degree 2, the universality
conjecture implies that the upper and the lower exponents coincide. The reader may
consult [11] for more information about circle map universality and its conse-
quences. There are strong computer-based arguments in favor of the conjecture (see
[8], also for the list of other references). However, in the absence of a definite
rigorous proof, we continue to regard the conjecture as just that, and will refrain
from using it in our discussion.

Another important quantity which describes a singular measure yu is the
Hausdorff dimension HD () of the measure theoretical support (i.e., the infimum of
the dimensions of the sets of the full measure). Using the singularity exponents we
immediately obtain universal bounds on HD(y) in our class of circle maps.

Hausdorff dimension. The renormalization group analysis applied to study high
iterates of circle maps with special rotation numbers (like the golden mean) lead to
several universality conjectures (see for example [4, 8, 11]).

We state one which is certainly true provided the golden mean universality
conjecture holds.

Conjecture 1. HD(u) is constant in any topological conjugacy class of cubic critical
homeomorphisms with rotation number of algebraical degree 2.

An intriguing question remains about universal properties for more general
irrationals. We think that the same conjecture should be true for any irrational
rotation number, even of Liouville type. However, the evidence for that is scarce
and we leave this merely as an interesting open question.

1.2. Introduction

Assumptions. All results in this paper are true for C3 smooth circle homeomor-
phisms with finitely many critical points of polynomial type and an irrational
rotation number of constant type.

! Constant type irrational number means that coefficients in the continued fraction representa-
tion are bounded
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For simplicity of our presentation we will give detailed proofs of our resuits
only for maps with exactly one critical point which after a C? change of coordinate
system can be written in the proximity of the critical point x = 0 in the form
x; — (x — x;)® + & As a consequence, the circle can be covered by two overlapping
sets: in the vicinity of the critical point x =0 by a symmetric interval U and
a “remote” interval ¥ on which the first derivative is bounded away from zero. On
the interval ¥ the map has strictly negative Schwarzian derivative. We reserve the
letter ffor maps from the class defined above. The real line is projected to the unit
circle by means of the map

X > exp(2nxi) .

Denote by |x — y| the distance between points x and y on the circle in the metric
induced by the projection.

Uniform Constants. Following the convention of [13] we will mean by a uniform
constant a function on our class of maps which continuously depends on the
quasisymmetric norm of the map, the logarithm the size of U, the lower bound of
the derivative on the remote arc and the C3 norm. Uniform constants will be
always denoted by the letter K. Whenever confusion can arise we specify uniform
constants by adding subscripts.

Continued Fractions and Dynamics. Let p,/q, be the n™ continued fraction approxi-
mant of the rotation number p of f. The numbers g, and the coefficients a, in the
continued fraction representation of p are related by the recurrence formula:

qn+1=anqn+qn—19 ngz’ q0=1a q: = a; .

Dynamically g, is that iterate of the rotation by p for which the orbit of any point
makes the closest return so far to the point itself. According to the Yoccoz Theorem
(see [15]) a homeomorphism from our class is conjugated to a rotation. In
particular, it implies the same order of orbits both for f'and the rotation by p. The
numbers g, are called closest returns.

Continued Fractions and Partitions. We will use the orbit of a critical point 0 to
define a system of partitions of the circle. First, we define two sets of closed intervals
of order n:

gn—1 “short” intervals: (zf™@2), ..., [ " (),
and
q» “lengthy” intervals: @ f7r 2. . f " e [ 1(2) .

The “lengthy” and “short” intervals are mutually disjoint except for the endpoints
and cover the whole circle. The partition obtained by the above construction will
be denoted by #(n; ) and called the dynamical partition of the n'™ order.

We will briefly explain the structure of the dynamical partitions. Take two
subsequent dynamical partitions of order n and n + 1. The latter is clearly a refine-
ment of the former. All “short” intervals of %#(n; f) become the “lengthy” intervals
of #(n + 1;f) while all “lengthy” intervals of %#(n) are split into a, “lengthy”
intervals and 1 “short” interval of the next partition Z(n + 1;f). An interval of the
n'™ dynamical partition will be denoted by (I"(f) or by I*(f) if we want to
emphasize that the interval contains a given point x.

We will drop fin the notation when no confusion can arise.
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Bounded Geometry. Let us quote a few basic results about the geometry of dynam-
ical partitions which are commonly referred to as “bounded geometry” (see for the
proof [6 and 13]).

o The ratio of lengths of two adjacent elements of any dynamical partition is
bounded by a uniform constant.

o For any element of any dynamical partition, the ratios of its length to the
lengths of extreme intervals of the next partition subdividing it are bounded
by a uniform constant.

As a corollary we obtain that the elements of the n'® dynamical partition are
exponentially small.

Fact 1.1. There are uniform constants K;, K, < 1, K3 £ 1 so that
K, K5 <|0" =K K}

holds for all natural numbers n.

2. Technical Tools

Distortion Lemma. We will call a chain of intervals a sequence of intervals such that
each is mapped onto the next by the map f. Denote by Cr(q, b, ¢, d) a cross-ratio of
the quadruple (a, b, ¢, d), a < b < ¢ < d given by the formula

|b—al|d—c|

Cr(a, b, C, d) = m .

Here is one possible stating of the Distortion Lemma for critical circle homeomor-
phisms:

Lemma 2.1. Take a chain of disjoint intervals
(ao, bO)a ey (ama bm)

which do not contain a critical point of f. Then, for arbitrary points x, y € (a,, by), the
uniform estimate

(" )
™ )

log ’ = K Cr(f™(@o),f™(x), /™), (bo))

holds.

The Pure Singularity Property. To have a “dynamical measure” of size of an
interval we will make the following definition:

Definition 2.1. An interval J will be said to be of the j* order of size if
j=max{i:V,., fix)¢J} + 1.

Note that each interval of a chain is of the same order of size.
Let us introduce a one form
fl/
ﬁ/V‘ f= - dX
f
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called the nonlinearity of f. As opposed to diffeomorphisms, the nonlinearity of
critical circle maps which measures the distortion on chains of disjoint intervals, is
non-integrable.

One of the main achievements of [14] was that the distortion coming from
parts of the circle far away from cirtical points can be neglected with an almost
exponentially small error with the order of size of a given chain. It means that
asymptotically only what happens in the small neighborhood of a critical point

matters.
We pass to a detailed formulation of the Pure Singularity Property. Suppose we
have a chain of disjoint intervals

(a0> bO): LR 9(am9 bm)

of the k'™ order of size and symmetric neighborhood U; with size of the order j.
Then

[ NS
Cj
where C;is a union of these intervals of the chain which are not contained in U; and
a constant K is uniform

S Kexp(—+/k—j),

Integral Formula. We introduce another cross-ratio Poin(a, b, ¢, d) of a given
quadruple (a, b, ¢, d), a < b < ¢ < d, by the following formula:

|b—c||d — a|
lc—alld—b|
By the distortion of the cross-ratio Poin(a, b, ¢, d) by f we mean
Poin(f(a), f(b), f(c),f(d))
Poin(a, b, ¢, d) '
There is a very simple relation between cross-ratios Cr and Poin. Namely,

1
1 + Poin

Poin(a, b, ¢, d) =

DPoin(a, b, c,d;f) =

Cr =

The logarithm of the distortion of the cross-ratio Poin can be expressed by the
integral formula. The formula is due to Sullivan [12]:

dxdy

— log(Poin(a, b, ¢, d)) = ﬂ vl

where S = {(x,y) a<x<band c <y <d}.
Consequently,

log DPoin(a, b, c, d; f) = ”d,u——(f*xf*)dy,

Calculating the integrand we get the

where u is equal to ( — )2
[ () dxdy
du = (f*>f*)du < ®) f(y)) (x —y)?

(x—y)
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For maps with negative Schwarzian derivative the integrand is positive and, as
a consequence, the cross-ratio is not decreased by f. In the next paragraph we
estimate how much the cross-ratio Poin is expanded by maps with strictly negative
Schwarzian.

Expansion Lemma. Let a < b < ¢ < d. Suppose we have a chain of disjoint intervals
(ao, b0)> L) (arm bm)

of the n™ order of size which omit a critical point 0. Then

. . @~ 10140 ~ 1)
BRI @b 6 B 2K ma( Tl @)

+ K, exp(— \/;) ,

where K, and K, are uniform constants.

Proof. By the Pure Singularity Property we get that
Y. log(DPoin(ay, bi, ci, di; /) < K exp(—/n) ,
14
where the sum ), is over all these indexes i for which f*(a, d) intersects V. Next we

use Integral Formula to estimate the expansion of the cross-ratio for quadruples
(a;, by, c;, d;) contained in U,

9x2 dxd
log(DPoin(a;, by ci, i) = [f |1 a yy3 ; (xiyy)z' (1)
(=)

Here, S, is defined by: §; = {(x,):'(@) < x S f(b).f () S y <f(d)} .
By algebra, the right-hand of Eq. (1) is rewritten as:

1]

(x% + xy + y?)? — (3xy)? dxdy “ x2 + 4xy + y?
5. (P Hxy+y)? o (x—y)

L (X7 4+ xy + y?)?
If(a) =B fie) — fi(d)]
= 3max (| f*(a), | f1(d)])?

which immediately gives the claim of the Expansion Lemma. The last inequality
follows if we forget the numerator while dropping the power of the denominator by
1, and next estimate the denominator by

3 max(|f*(a)l, |f'(@d)])* . O

dxdy

@

3. Singularity of the Invariant Measure

It is a well known fact that homeomorphisms of the circle have exactly one
invariant measure u. In this section we will investigate the properties of this
measure for critical circle homeomorphisms. We will start with the following
observation.
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Proposition 1. The invariant measure p is totally singular with respect to the
Lebesgue measure.

Proof. Let ¢ be the conjugacy between fand a rotation p, p° ¢ = ¢ of. It is enough
to show that ¢ has the first derivative equal to zero on a set of full Lebesgue
measure. To the contrary, suppose that at some point x the first derivative exists
and is non-zero. Consider a first return g,. The ¢, — 1 images of (x, f~"(x)) are
disjoint. Clearly, there is an infinite sequence of first returns so that f%"** on this
interval is not a difffomorphism. By our conjugacy assumption, this map must be
arbitrarily C° close to a linear map for large values of n. On the other hand, by
bounded geometry, it is a composition of a few bounded distortion diffeomor-
phisms and a bounded number of critical iterates which are not diffeomorphisms.
But maps of this type can not be arbitrarily C° close to linear. O

Another important property is ergodicity.
Proposition 2. The map fis ergodic with respect to the Lebesgue measure A.

Proof. Suppose that there exist an invariant set 4 of positive but not full the
Lebesgue measure 4(A).

We fix ¢ > 0. Then by the Lebesgue Density Theorem we can find a point z and
a number n, so that for all n = n, the Lebesgue measure of an interval of n®
partition which contains z satisfies the inequality

A0znA4)z (1 —gl07
or, equivalently,
AMOznA) =el07,

where A° denotes the complement of 4.
Taking ¢,+: + g, or ¢, + g,-, images of 07 depending whether (J} is
a “short” or a “long” interval of the n'® dynamical partition we obtain a cover of the
circle. One can check that each point of the circle belongs to at most two intervals
of this cover. We want to estimate A(f*(0") nf "(A‘)) for each interval of the cover.
If f{(d") contains a critical point then there is a uniform constant K; so that
MO0 AY) _ o MF(OENAY)
i n =1 i n
|f 1@y (A (E2)]
The above inequality and the Distortion Lemma implies that
ASHOD N A7) MOz N A
P S K, S
L)1 I(C32)]

Since A° is invariant we obtain that

AA) = ; ASHOA NfEA))

MO A9

<K,e¢
[0 ’

< K, Y 14 (@)

in contradiction to our assumption that A(A°) is positive. O
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Singularity Exponents. We are going to study the nature of singularities of an
invariant measure p using some ideas underlying the concept of multifractal
measures and multifractals, the objects which are intensively studied by physicists.
Let us discuss briefly the concept of a singularity exponent of an invariant measure
which can be loosely defined in the following way: Let M(x) = [i du be the
distribution function of measure u. If the increments in M(x) between two close
points x and x + ¢ are of the order &*™ then we will say that the distribution M (x)
has in the point x an exponent of singularity 7(x).

For mathematical exactness we will introduce two exponents of singularity, the
upper and the lower one.

Definition 3.1. Let pu be a measure completely singular with respect to A with
distribution function M(x). Then by the upper and the lower singularity exponents we
mean respectively

N log(M(x + &) — M(x))
7() = lim sup og(|z))

and

—-M
£(x) = lim inf 2B+ &) = M)
=0 log(le)
Taking into consideration that the Lebesgue measure is the imge of u by the

conjugating homeomorphism ¢, we can rewrite the exponents 7 and 7 in the
language of the dynamical partitions®

log|¢(O1%)I

T(x) = lim sup log 007

n—o

and

209 =hm il 1o

The Exponents are Constants. The Distortion Lemma immediately implies that
Lemma 3.1. The exponents t(x) and T(x) are f invariant.

By Proposition 2 and the uniqueness of the invariant measure u we get that

e For almost all points with respect to the Lebesgue measure the exponents are
constants. We will denote these constants by 7(4) and 7(A) respectively.

e The above statement holds verbatim if “the Lebesgue measure” is replaced
by p. Denote these new constants by z(u) and 7(u) respectively.

We pass to the formulation of our Main Theorem.

The Main Theorem. The singularities of the invariant measure p are of Holder type.
It means that there exist uniform constants K, and K, so that for almost all x in the
sense of the measure u the following estimates

O0<K;<iw=sr(w<K;<l1
hold.

2 Here we use the fact that the rotation number p is of bounded type
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Remark. We should mention here that t(4) and 7(4) are uniformly greater than
1 and less than infinity.
The proof of the Main theorem will occupy the whole next section.

Reformulation of the Main Theorem. For technical reasons we introduce new
exponents y(x) and y(x) which live in the phase space of the rotation p

) =7"1(¢7'(x)) and F(x)=1"'($ ' (x))

and state the Main Theorem in the following equivalent form:
There are uniform constants K; and K, so that for almost all points x with
respect to the Lebesgue measure 4 the estimates

1 <K;<yplx)=7(x) <K; <0
hold.

4. Proof of the Main Theorem

4.1. Discrepancy. Our main object in this paragraph is to establish a quantity
which would measure nonlinear behavior of critical maps. We want to show that
critical maps stay away in a certain uniform distance from diffeomorphisms. To
this end we will introduce a notion of discrepancy.

Discrepancy between Partitions. We always assume that the length of the interval
being partitioned is less than 1.

Definition 4.1. A partition of I, denoted with Py, is a set (possibly infinite) of closed
subintervals of 1, disjoint except for the endpoints, whose union is I. In addition, we
assume that the entropy H(P;) is finite.

Given J c [I. Partition P; induces in natural way a partition of J denoted by
[Py:J].
There is a probabilistic measure on P; defined by

wx)=y ™

' weX ’II

for every X < P;, where |*| stands for the Lebesgue measure.
Two partitions, P; and P; will be called corresponding if there is a homeomor-
phism A from I to J which maps each element of P; onto an element of P;.

Definition 4.2. The discrepancy between partitions P; and P; corresponding under
h is denoted by 6(P;, Py) and defined to be

dh
o(Py, Py) = £110g+ @ )
dh . .
where @ is the Jacobian of h, while log ., means max (0, log).

The reader may note that §(P;, P;) cannot be arbitrarily large regardless of the
partitions involved.
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The Discrepancy Lemma. For any n and r the partitions
[B((n + r;f): O™ ()] [B((n + Dr; p): 0" (p)]

are corresponding and the correspondence is given by the conjugation ¢. As it turns
out the discrepancy between these partitions is uniformly bounded away from zero.

Lemma 4.1. We can choose r so that the inequality
O([#((n+ Dr;f):0" ()], [£(n+ Dr;p):0"(p)] 2 K
is satisfied for large n and a uniform constant K.

Proof. The interval (1" (f) contains at most two critical points of the map f .
Bounded Geometry implies that we can choose a number r in the definition of the
refined dynamical partition [#((rn + 1)r; f)] so that:

o There exist three consecutive elements
(a,b), (b, c),(c,d) of [B((n+ Vr;f):0"(f)T

which do not contain a critical point of f?~ and the length of the interval
(a, d) is at least comparable to | 3™ (f)], i.e. :

(@, d)| > K|O™(f)

with uniform K.
e The intervals f((a, b)), f*((b, c)), f%((c,d)) belong to the partition

[#(m+ Dr; f):O0"(N)]
From the Expansion Lemma we have that
| fi(@) —f'@)?
Lfi @)

where f((a, b)) is the closest interval to 0 amongst all g, images of (a, d) by f.
Therefore, the distortion of the cross-ratio Poin(a, b, ¢, d) by f is by a definite
amount greater than 1 since » which controls the relative size of the elements of
[%((n + Dr;f):0O™(f)] is not too large.

But the distortion of the cross-ratio Poin(¢(a), ¢(b), ¢(c), ¢(d)) by any iterate of
p is equal to 1 since p is an isometry. Hence, the discrepancy between partitions
under consideration must be uniformly separated from zero, provided n is large
enough. This concludes the proof. O

log(DPoin(a, b, c, d; f)) 2 K, + Ky exp(— /),

4.2. Partition Lemma. Here, we have a lemma about partitions:
Proposition 3. Consider intervals 1 and J with corresponding partitions P; and
P; respectively. Assume the following:

1 h
f'c]i)l;i(lt;‘lwl))' [log u(w)|du(w) < K30*(Py, Py) .

If

[log |J|| _ . ( K, ., )
<min(2,1+ 6%(Py, Py) |,
llog |1]] = a(p,)° P b
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then
|log [h(w)]| [log IJ|I< o%(Py, PJ)>
—— uw) > 1+ K,————= ).
2, Toghwll “™ > Tiogmy \' = Tiog 17
We will first work to approximate the sum
[log |h(w)]|
> tog TAOWIT ) 3)

[log [w||

wePr

by a sum easier to deal with. Let us consider an individual term:

|log pu(h(w))|
Iloglh(W)II#(W) _ IIOglJH#(w) [log [
[log [wl| [log [1]] | ;. Hog u(w)|
+._—
[log |1]|
Now, an expression of the type
1+x
I+y

for positive x, y can be approximated with 1 + x — y so that

14+ x y(x—y)>1+x

+ yx. 4
14+y 1+y 1+y yx @

l+x—y=

Inequality (4) allows us to bound a term of sum (3) from below by

[log ||| [log u(h(w))| — u(w) +Q>
[log 1| [log [J]| [log |1

u(w) <1 +

where the “quadratic correction” Q equals

|log u(h(w))| |log pu(w)|
llog|J|]  |log|Il]

Let us now bound the contribution of all quadratic corrections to the sum (3). It
is equal to
|log | [log u(h(w))| |log u(w)|
) (W) :
[log [1]] [Hog|JI[  [log 1]
Now we use the first assumption of the proposition to see that this quantity is
not greater than

we Py

llog |91] , 3*(P1, Py)
3
llog 1]] ~* "Tlog 1]

We can see that to prove Proposition 3 it is sufficient to show that
1 h 1 6%(P,, P
<I og u(h(w))|  [log “(W)]>u(w)> K. (Pr, Py)
wePr

_ , 5
log Il Jlog ] log 1] ©
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that is, to neglect the quadratic corrections. Indeed, we will just need to pick
K3:= K,4/2 to ensure that the quadratic corrections will not spoil the estimate.
We claim that estimate (5) follows from the following:

Y. llog u(h(w))Iu(w) — 3. Ilog u(w)lu(w) = Ks3*(Py, Py) . (©)

wePr wePy

Indeed, assume that (6) holds. The left-hand side of estimate (5) is
[log u(h(w))|  |log u(w)|
- H(w)
wePr

[log ]| [log |1|
1 [log |1]]
= [log p (h(w))| — [log u(w)| ) . (7
IlogIIII<|log|J|I 2, o u 0N = 2, llog :
We know by hypotheses of Proposition 3 that
log 71l _; | g 0%(Pp, Py)
- 27 17Dy °
llog 1] H(Pr)

where K is not greater than a certain constant K; which we are free to specify, and,
in addition, this quantity is not greater than 2.
From this and estimate (6) we can bound expression (7) from below by

1 H(P;) + K56%(Py, P;) — H(P;) — K662 (Py, Py)
[log |1|] 2 '

It is evident that if we choose K¢ < K; < K, estimate (5) follows.

Proof of Estimate (6). We need to show that

Y. llog u(h(w)|u(w) — Y. |log u(w)|u(w) = Ks3*(Pr, Py) .
wePr wePr
Here, we notice that it is a well-known fact that the difference on the left-hand
side is non-negative. It can be checked directly by calculus, or deduced from the
variational principle for Gibbs measures (see [1]).
Thus, we are trying to prove that this is a “sharp” inequality.
The idea is to split P; between two sets, called E and C, so that h expands on
E and contracts on C. We define

E={wePI:%(w)> 1},

then C is the complement of E.
By Jensen’s inequality
dh
log —
fog 2 < log M (ED
wE) ~ K(E)

This allows an estimate of the average rate of expansion of 4 on E:

w(h(E)) . 8(Py, Py)
WE) =P TuE)

)
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Let us now look at the sum

Y. |log u(h(w))|u(w) .
wePr
Its value given P; as well as sets C, E, h(C), h(C) will be the smallest if the
Jacobian of & is constant on both 4 and C. Hence,

Y. log u(h(w))[u(w) — 3. [log u(w)|u(w)

wePy we Py

2 w(E)[log u(h(E))[ + (1 — u(E))log(1 — u(h(E)))|
— WE)|log u(E)| — (1 — u(E))[log(l — u(E))! .

To finish the proof of estimate (6), we need to compare the value of this
difference (which must be non-negative) with 62(P;, Py).

Until the end of this proof we adopt notations x:= u(E) and y:= u(h(E)). We
have y > x. First of all, we see that

xlog x + (1 — x)log(1 — x) — xlog y — (1 — x) log(1 —y)gx<§—1—log-§>

provided that y = x. To see this, we notice that the equality holds when y = x, and
next we compare derivatives with respect to y. As x is fixed, the right-hand side of
the preceding inequality grows with y/x. This enables us to use estimate (8) and
bound the right-hand side of last inequality by

exp M —x—0(Py, Py).

X
As we neglect the terms of the exponential higher than the quadratic, we get
another estimate from below by

52(P15PJ)
2x

which is what was needed to prove estimate (6).

4.3. The Upper Exponent 3. We begin with the observation that Fact 1.1 implies

that the upper exponent 7(x) is bounded from above by a uniform constant. Here is
the main result of this subsection.

Proposition 4. For almost all points of the circle the upper exponent 7(x) is greater
than 1 and the estimate is uniform for maps from our class.

Checking Procedure. Consider a sequence of nested partitions %(nr;f) and
B(nr; p). Take an arbitrary interval (7} of the nr'™ dynamical partition. We will
apply Proposition 3 to partitions Z((n + 1)r;f) and Z((n + 1)r; p) restricted to
O™ (f) and (™ (p) respectively.

For rotation numbers of constant type Bounded Geometry implies that
the logarithms of conditional measures of atoms of our partitions are bounded
by a uniform constant. The same is with the logarithm of the Jacobian
of the isomorphism. So the hypothesis of Proposition 3 is verified. We will
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keep the following scheme of checking the elements of the partitions
[#((n + Dr; p): 0" (p)]1:

o If the hypothesis of the implication in the thesis of Proposition 3 is not
satisfied for an element of [%#((n + 1)r; p): 0™ (p)] then we will call this
element a “good” one. We stop checking.

o Otherwise, we call an element of [%((n + 1)r; p): 0™(p)] a “bad” one,
denote by I®*1)r and pass to the subdivision of this interval by the next
partition %((n + 2)r; p). We repeat the whole procedure.

Denote by A4 a set of points which are covered infinitely many times by “bad”
elements of partitions % (nr; p).

Lemma 4.2. The Lebesgue measure of A must be zero.

Proof. Suppose that the assertion of the lemma is false. Then there is an arbitrary
fine cover of the set A by “bad” elements of the partition %(nr; p) (i.e. n is large)
which total length is greater than A(4) > 0. We will apply Proposition 3 step by
step to the partitions #((n + 1)r; p) restricted to elements I"™. However, first we
will make some preparation.

From Fact 1.1 it follows easily that

-1 Jr
max 2197 07
ired (jr;p) |log |177]

decreases up to a uniform constant as 1/j.
By the Discrepancy Lemma,

SX[A((j + Dr; p): 1)), [B(( + Drsf): ¢~ I D Z K .

Finally, repeated application of Proposition 3 yields

llogl¢~ (™) log 16~ "5t
— " |I" =2 KA —_— —
e logirmy TTEKAA Y e ;

The right-hand side of the above inequality tends to infinity with n while the
left-hand side is bounded as we noticed at the beginning of this subsection. This
contradiction completes the proof. O

As a consequence, we see that the total length of “good” intervals of the
partitions %(nr; p) is equal to 1. Since now we will refer to “good” intervals as
“good” intervals of the first generation. We pass to a subdivision of each “good”
interval of the first generation and repeat the procedure of checking for all intervals
of the subdivision. By the same way as above we find “good” intervals of second
generation which occupy again the whole space up to a set of the Lebesgue measure
zero. Repeating the procedure of checking countably many times we will obtain
a sequence of sets of “good” intervals of different generations. By the construction
a “good” interval of n't generation must be finer than any element of the partition
B((n—1)7; p).

Denote by G a “good” interval which belong to #(nr; p) and contains a point
x of the circle. Let B be a set of points which belong to infinitely many “good”
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intervals. Then for any x € and infinitely many n Proposition 3 implies the follow-
ing estimate:

— 1 K
7(x) 2 mm<2’ b H([%((n + Dr; p): G?c'])> '

But the entropy H([%#((n + 1)r; p): G%]) is bounded from above by a uniform
constant. Hence,
7(x) g 1 + KZ )

where K > 0 is an uniform constant.

4.4. Lower Exponent. Statement. Now we are in a position to prove
Proposition 5. For a constant K > 1, we have
¥z K
for a full Lebesgue measure set of points x.
Preliminaries of the Proof. Since
0*([B((n+ Dr; p: O™ (p)], [2((n + Dr; f): O™ (f)]) 2 K4

and the entropy of [Z((n + 1)r; p): (0™ (p)] is uniformly bounded away from O, it
follows that whenever

log ¢~ *(1J1)

K
10g|J| <1+ 2

for uniform K,, the assumptions of Proposition 3 are fulfilled for subpartitions
generated by #(n + 1,r; p) and #(n + 1,r; p) on J and ¢~ *(J) respectively. Now
choose a number a which is less than the a.e. upper exponent and does not exceed
1 + K, either. Almost every trajectory will spend an infinite amount of time above
a.

Suppose that the lower exponent less or equal to b — ¢ for some b and ¢ > 0 on
a positive measure set B. Our proof will consist in showing that b = a.

The Exponent as a Random Process. We define a random process (T)u1.....00 SO
that each Y, is measurable with respect to #(nr;p). If J is an element of
B((n + V)r; p), Y, is constant on J and equal to

log|¢~'(J)|
log |J]

Then X, will be the increments of ¥, i.e.
X, =Y -1
We will use the following information about ¥,:

1. X,is uniformly bounded by K/n. This follows immediately from the defini-
tion of Y, and bounded geometry.

!

~ o~ K ~
2. E(X,|Y,-1) 2= " for a positive K’ provided that Y, _; is less than a. This

follows from Proposition 3.
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The Beginning of the Proof. Suppose that b < a. Almost every trajectory of ( ¥,) on
B must oscillate infinitely many times between a and b. For a time k, define an event

b ~ b
and Yk+1§a+

A, as follows: ¥, > at and the trajectory hits b before hitting

a. We will show that the series of probabilities
Y, P(4)
k=1
is summable which will immediately give us the desired contradiction.

A Supermartingale. We modify the process (¥,) by making it constant after it hits
a for the first time with n = k (k is fixed). The new process will be denoted with
(Yu)nzx, with increments (X,),zx. Formally, (Y,).=x also depends on k, but since
k is fixed in our discussion we choose not to emphasize that in our notation. The
event 4, is defined analogously to 4, with Y replaced by Y. We observe that the
probability of A, remains the same as the probability of A4,.

The increments X, are still bounded by K/n, and Y, becomes a submartingale
(increasing conditional mean).

Definition 4.3. We define a family of processes (M(C, k, n)),=r. ... indexed by k by
LA |
M(C, k,n) = exp<\/ﬁ(c ~Y)—-kC Y 3>,
j=k+1J
where ¢ was used to denote (a + b)/2.

Lemma 4.3. One can choose uniform constants K, and K5 so that for all k = K, the
process M(K s, k, n) is a supermartingale.

Proof. We compute:
E(M(C, k,n)|Y,_1) = E(M(C, k,n — 1)) E(exp(— \/kX,)| ¥, ) exp(— kC/n?) .
One has to show that
kC

log E(exp(— v/kX,) <~ ©
if k and C are large. Since X, is of the order of 1/n < 1/k, one can bound the
exponent from above for large k by

1— kX, + k(X,)* <1 — /kX, + kK3 /n* .
Since E(X,|Y,-1) = 0 we get
E(exp(— kX,)) £ 1 + kKy/n? .

Thus, whenever k is large and C = K5, Estimate (9) holds true, and the lemma
immediately follows. O

The Bound for P(Ax). We substitute A, with a larger event B, which occurs when
Y, = c and the trajectory by (Y, ).» €ventually hits b. We define the stopping time
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j as the time of the first crossing of b by Y,, n > k. By the optional sampling
theorem, (see [9])

| M(C,k,j)< [ M(C, k, k) £1
By By
since M(C, k, k) < 1 everywhere on B;. On the other hand,

M(C, kJ)gexp(ﬁ(c—b)—nc ) ié)zexp(ﬁ(c—b)—o

I=k+1

on B,. Thus, the measure of B, decreases like K ~ Vk which is summable.

In the consequence Proposition 5 follows and completes the proof of the Main
Theorem. Changing the roles of p and fin the proof we immediately obtain the
claim of the Remark.

5. Hausdorff Dimension of x«

The Holder type of singularity implies natural bounds on the Hausdorff dimension
of the measure u.

Proposition 6. The Hausdorff dimension of the invariant measure p is equal to the
lower exponent t(u) and, consequently, is uniformly bounded away from 0 and 1.

Proof. The proof the Proposition 6 is based on the following Frostman’s Lemma
(see [10]):

Fact 5.1. Suppose that v is a probabilistic Borel measure on the interval and
for v-a.e. x

lim inf log (v(x — ¢, x + &)/log(e) = k .

e—0
Then the Hausdorff dimension of v is equal to k.

By the Main Theorem follows that
which completes the argument.

6. Open Questions

In the end of our presentation we would like to pose a few open questions which we
believe to be of natural interest and importance.

e Assuming that the rotation number is algebraic of degree 2, prove that the
lower exponent is equal to its upper counterpart. This should hold for the
exponents related to A as well as ¢ and would give us just one exponent with
respect to each measure.

o In the same situation, establish a relation between exponents t(u) and t(A).

e Prove that 7(u) and t(4) are universal given the rotation number (algebraic
of degree 2? any irrational?).
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e Do there. exist critical circle homeomorphisms with a rotation number of
constant type for which t(u) + 7(x) and z(4) + 7(4)? We suspect so.

o What is the situation for unbounded rotation numbers? Are the main results
of this paper still valid? We suspect not.
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