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Abstract. Computations in dynamical triangulation models of four-dimensional
Quantum Gravity involve weighted averaging over sets of all distinct triangula-
tions of compact four-dimensional manifolds. In order to be able to perform such
computations one needs an algorithm which for any given N and a given compact
four-dimensional manifold M constructs all possible triangulations of M with < N
simplices. Our first result is that such algorithm does not exist. Then we discuss
recursion-theoretic limitations of any algorithm designed to perform approximate
calculations of sums over all possible triangulations of a compact four-dimensional
manifold.

A well-known problem in physics is to unify Quantum Theory with General
Relativity. One of the proposed approaches involves integration over the space of
metrics on all compact four dimensional manifolds. The integration is done
separately for any particular topological type of the four dimensional manifolds.
Then one would like to sum over all topological types attributing an appropriate
weight to every topological type.

Although there is no mathematically rigorous definition of a measure with the
required properties on the (infinite dimensional) space of all metrics on a four
dimensional manifold (but see [Po] for the two dimensional case), recently the
following idea to do this computation was proposed. One considers a kind of grid
in the space of all metrics. This grid is formed by metrics which are defined as
follows: One starts from a triangulation of the smooth four dimensional manifold
of interest. Then one considers all possible triangulations of the manifold combina-
torially equivalent to the chosen initial triangulation. One does not distinguish
between simplicially isomorphic triangulations. (From now on we will mean by
a triangulation of a PL-manifold M a simplicial complex K such that the corres-
ponding polyhedron \K\ is PL (piecewise-linearly) homeomorphic to M. This
definition of triangulations somewhat differs from the standard one but is more
convenient for our aims. Usually one requires only that | K | be homeomorphic to
M. We will not distinguish between simplicially isomorphic triangulations.) For
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any of these triangulations one assigns the unit length for any of its 1-dimensional
simplices. In this way one gets for any triangulation a distance function on the
manifold. The metrics corresponding to all possible triangulations are considered
as a uniform grid in the space of all metrics. Afterwards one can approximate the
necessary integrals by means of sums over all the nodes of the grid (see [BKKM,
BD, M, ADF] for the two dimensional case and [AM, V, AJ] for the four
dimensional case). To generate this grid, one uses the following method: One starts
from a prescribed point (i.e. a given triangulation of the manifold). Then one makes
elementary operations in order to move from a point to its neighboring points.
(More precisely, one introduces a finite set of elementary operations. Operations
from this set change any particular triangulation to some other triangulations
which by definition are considered the neighboring triangulations of this particular
triangulation.)

In practice the whole grid is not generated, but rather a probabilistic approx-
imation is introduced. A Markov chain is defined, and the necessary sum is
computed by means of a Monte-Carlo method. In order to validate this procedure
one needs to fulfill in particular the following requirement of ergodicity: Using the
set of elementary moves one should be able to get any triangulation from any other
triangulation.

From the computational point of view it is more sensible to impose the
following stronger constraint of computational ergodicity on the considered set of
elementary moves: There exists a recursive function r such that for any N and any
two prescribed triangulations with < N simplices there exists a sequence of not
more than r(N) elementary moves which transforms one triangulation to the other.

The first main point of this note is the observation that in the dynamical
triangulation model for four dimensional quantum gravity there is no finite set of
elementary operations such that the computational ergodicity will hold (although,
as it was shown in [GV], the set of elementary moves considered in [AM, V, AJ]
satisfies the ergodicity requirement). That is, for every finite set of elementary
operations and for every recursive function r(N\ there always exist some N and
two triangulations with N simplices such that the number of operations needed to
transform one triangulation to the other exceeds r(N).

This observation is based on the classical result of Markov on algorithmic
unrecognizability of a specific four dimensional manifold (cf. [BHP]). (As it follows
from the proof of this result given in [F], Theorem 14.1, this manifold can be taken,
for example, diffeomorphic to the four dimensional sphere with 46 attached
handles of index two. Denote this manifold by So). The proof of this result of
Markov is based on results of Rabin and Adyan on algorithmic unsolvability of the
triviality problem for finitely presented groups. More precisely, Markov proved
that there is no algorithm which for a given, finitely presented, four dimensional
manifold verifies whether or not it is homeomorphic (or diffeomorphic, or PL-
homeomorphic) to So. Furthermore we would like to mention the related result of
S.P. Novikov (published as Ch. 10 of [VKF]), which states the algorithmic
unrecognizability of spheres Sn for any n > 5. Although it is not known now
whether or not the four dimensional sphere can be recognized in the class of all PL
(or smooth) four dimensional manifolds, it seems very plausible that the four
dimensional sphere is also algorithmically unrecognizable. In all these unrecog-
nizability results for PL-manifolds all PL-manifolds can be assumed presented by
some triangulation.
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Proposition 1. Let Mo be a PL-manifold that can not be recognized by any algorithm.
Then there is no finite set of elementary moves on the set of all triangulations ofM0

satisfying the requirement of computational ergodicίty.

Proof One can prove this proposition by contradiction using an argument very
similar to the argument used in [ABB] to prove Theorem 5b) there. Indeed,
suppose that a finite set of elementary moves on the set of all triangulations of M o

satisfying the requirement of computational ergodicity exists. Then, applying all
possible chains of the moves to any fixed given triangulation of M o one can
generate the list of all possible triangulations of M o with < N simplices in time
recursively depending on N. Hence given a manifold M presented by some its
triangulation T with N(T) simplices one can decide whether or not M is PL-
homeomorphic to M o as follows: First, it is necessary to generate the list of all
triangulations of M o with < N(T) simplices. Then, for any triangulation on this
list one checks whether or not it is simplicially isomorphic to T. (This step evidently
can be effectively done; cf. [ABB, Lemma 2.16].) Hence, the assumption that there
exists a computationally ergodic finite set of elementary moves on the set of
triangulations of M o implies the existence of an algorithm checking for any
manifold M presented by some triangulation whether or not M is PL-homeomor-
phic to M o . Q.E.D.

Thus, at least for the mentioned manifold SO there is no computationally
ergodic finite set of elementary moves on the set of its triangulations. Moreover, if
S 4 cannot be effectively recognized in the class of all 4-dimensional manifolds, then
there is no computationally ergodic finite set of elementary moves on the set of
triangulations of S 4 .

Hence, in general, it is natural to expect that a computation of integrals within
to accuracy ε using the described above approach will require an amount of time
growing non-recursively fast with [1/ε]. (Of course, if the integrated function is of
a special form this can be not the case.)

Consider now an ergodic finite set of elementary moves on the space of
triangulations of a compact four-dimensional manifold M o which cannot be
recognized by any algorithm. Let To be an arbitrary triangulation of M o . Proposi-
tion 1 immediately implies that for any recursive function t(N) there exist arbitrary
large N such that some triangulations of M o with N simplices cannot be obtained
from Γo by less than t(N) elementary moves. Taking, for example, t(N) =
[exp(exp(. . . exp(N)))] (the exponentiation is performed N times), we see that from
the practical computational point of view some part of the grid will be out of reach
for large N. Now the following question naturally arises:

Which part of the grid will be out of reach assymptotically, when N tends to
infinity? More precisely, let Λ(N) be an algorithm which for any N produces some
amount of distinct triangulations of M o with < N simplices. Denote the number of
triangulations with < N simplices produced by A by sA(N). Denote by s(N) the
total number of triangulations of M o with < N simplices. Now our problem can be
formulated as determining the value of S defined by the following formula:

S = sup lim sup sA(N)/s(N) . (1)
A N-+oo

(The maximum is taken over the set of all possible algorithms.)
First, note that sA(N) is a recursive function. Now let us prove the following

proposition:
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Proposition 2. s(N) is a non-recursive function.

Proof. In order to see that s(N) is not recursive assume the opposite. Then we have
the following algorithm recognizing for a given polyhedron P whether or not it is
PL-homeomorphic to M o (providing M o and P are presented by some triangula-
tions To of M and T of P):

Put N to be equal to the number of simplices in T. Compute s(N). Apply
successively all possible finite combinations of the Alexander move and its inverse
(see [A], [GV]) to Tθ9 keeping record of the number of distinct triangulations of
Mo, which are already obtained. If this number is equal to s(N), then stop. Since the
Alexander move and its inverse form an ergodic set of moves on the set of
triangulations of any compact manifold ([A]), eventually we shall obtain the list of
all distinct triangulations of M o with < N simplices. The last step of the algorithm
will be to compare T with all s(N) triangulations from the obtained list of
triangulations of M o with N simplices. The existence of this algorithm provides the
desired contradiction which proves the non-recursiveness of s(N). Q.E.D.

(This non-recursiveness result has the following direct physical interpretation.
The partition function defined in [AM] for Quantum Gravity is:

X(24, Jo) = Σ e x P ( - ^ 4 - 2 0 ^o -Λλ4(ΛΓ4 - N 4 ) 2

triangulations of a manifold

-Aλo(R-R)2), (2)

where JV0, Nί9 N2, N3, JV4 are the numbers of 0,1, 2, 3, 4-simplexes in the simplicial
complex respectively, 24, lθ9 Aλ4, Aλθ9 N4 and R are the parameters of the model
and R is defined by:

R = 4π(N0 + iV4 - 2) - 10αiV4 , α = arccos (— — ) . (3)
\Dimensiony

This partition function can be defined for any topological type of compact smooth
four-dimensional manifolds. In [AM] it was considered for S4. Consider it for the
manifold So Note that s(N) equalsthe partition function defined above, where
20 = 24 = Aλ0 = 0 and Aλ4 = oo, iV4 = N).

Our question about the value of S is in a sense equivalent to asking how
asymptotically closely one can minorize the non-recursive function s(N) by a recur-
sive function. Our conjecture is that the value of S defined by (1) is strictly less than
one.

The argument in favour of this conjecture is the following one. Note that the
non-recursiveness of s(N) is a corollary of the unsolvability of the halting problem
for Turing machines. Moreover, the mentioned proofs of unrecognizability of So

and Sn for n > 5 rely on the existence of an effective procedure which for a given
Turing machine τ and its arbitrary input w constructs a triangulation T of
a smooth manifold M in such a manner that τ starting its work from w will
eventually halt if and only if M will be homeomorphic (or PL-homeomorphic, or
diffeomorphic) to So (or, correspondingly, to Sn). Thus, it seems reasonable to
check whether or not the recursion-theoretic analogue of the conjecture S < 1 will
hold. This analogue can be formulated as follows:

Let U be a universal Turing machine. Let HV(N) denote the number of its
inputs w of length < N such that U starting to work from w will eventually halt.
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The unsolvability of the halting problem implies that HV(N) will be a non-recursive
function. Let A be an algorithm which answers for any input w of U whether or not
U starting to work from w eventually halts, but which is permitted to say "do not
know" concerning some inputs. (Such algorithms obviously exist.) Let HUA(N)
denote the number of inputs of length < N for which A tells that U eventually

halts. We are interested in H(U) which is defined as sup^lim supN^o

Moreover, we are interested in "natural" universal Turing machines for which all
inputs are meaningful and which have no redundancy. (Examples of such machines
are given in the book [Cl].) For "natural" Turing machines H(U) < 1. The proof of
this fact was given by Chaitin ([C3]) using algorithmic information theory. (Good
expositions of algorithmic information theory can be found in the book [Cl] and
reviews [LV] and [ZL]). Thus, G. Chaitin proved a recursion-theoretic analogue
of our conjecture "S < 1." We would like to mention a paper [S] which also
contains a related result in logic but uses a different approach.

It should be noted that a possible absence of computability in Quantum
Gravity theories was mentioned in the Geroch and Hartle paper [GH]. In [GH] it
was observed that if one needs to perform a summation over all possible topologi-
cal types of four dimensional PL-manifolds then this can turn out to be impossible
due to the fact that the identification of the topological type of a given manifold is
an unsolvable problem. In this paper we discuss a Markov process for one fixed
topological type of manifolds. Thus, the absence of computability discussed in the
present paper is essentially different from the result of Geroch and Hartle. The
possibility of non-computability arising in Statistical Mechanics models was also
dicussed in [K].
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