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Abstract. We investigate spectral properties of random Schrόdinger operators
Hω = — A + £π(ω)(l + |n|α) acting on l2{Zd\ where ξn are independent random
variables uniformly distributed on [0, 1].

1. Introduction

It is already a part of folklore that multiplicative perturbations of the Anderson
model show rather "unusual" spectral behavior. The basic paradigm is the discrete
Schrόdinger operator on 12(Z1\

Hωu(n) = 2u(n) - u(n + 1) - u(n - 1) + Vω{n)u{n) ,

Vω(n) = λξn(ω)\n\\

where ξn(ω) are independent random variables with a bounded, compactly sup-
ported density r(x), and λ is a parameter. For α < 0 the above model has been
extensively studied in [5, 7, 8,18] and their main results can be summarized as
follows (note that for α < 0, Vω(n) -* 0 as |n| -> oo and thus σess(Hω) = [0, 4]).

Theorem. With probability 1:

(i) For —1/2 < a < 0, the spectrum in [0,4] is pure point with eigenfunctions
decaying as exp( — C | n | 1 + 2 α ) .

(ii) For a < —1/2, the spectrum in [0, 4] is purely absolutely continuous.
(iii) For a = —1/2 and λ large, the spectrum in [0, 4] is pure point with polynomially

decaying eigenfunctions, while for λ small Hω will have some singular continuous
spectrum.
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For α > 0, \n\* -• oo, but this does not imply that the spectrum is necessarily
discrete: If r(x) does not vanish in some neighborhood of 0, ξn can get arbitrarily
small with positive probability and thus eventually compensate for the growth of
\n\* within infinitely many sites. That in turn can lead to nontrivial spectral
behavior. Consider the simplest case when ξn are independent random variables
uniformly distributed on [0,1]: It was shown in [9] that for a.e. ω, Hω will have
a discrete spectrum if and only if α > 1. Furthermore, if 1/fc ^ α > l/(fe + 1),
0"ess(#ω) = [flit, oo), where ak is a strictly decreasing nonrandom sequence of posit-
ive numbers, σ(Hω) = σpp(Hω), and the eigenfunctions decay superexponentially.
Thus, while for α < 0 the essential spectrum is always [0, 4] with a transition in its
nature at αc = —1/2, for α > 0 the essential spectrum is always pure point but its
end-point is piece wise constant function of the parameter α(!). In this paper we are
interested in obtaining the multidimensional analog of the above results when
oc > 0, namely we will study the operator

Hω = H0 + ξn(ω){l + \nn α > 0 , (1.1)

acting on l2(Zd). In (1.1), \n\ = (Σn?)112, ξn(ω) are independent random variables
uniformly distributed on [0,1], and

Hoφ{n)= Σ Φ(n)-Φ(m\ | | H 0 | | = 4 d , (1.2)
\n — m\ + = 1

where \n\+ = Σ\ni\- We view ζn(cϋ>) as a random field on ® W 6 z d [0, 1] = Ωf and
denote by P the corresponding probability measure, and by E the mathematical
expectation on Ω. Before stating our main results, we introduce some notation. For
X aZd denote by C(X) the set of all φel2(Zd) with support in X. Let 3) be the
form associated to Hθ9

- Φ(n)\2 , (1.3)
(n,m)

\n-m\+ = 1

where (j%9 πi) reminds one that each pair appears in the summation only once.
Denote

Λ(X)= inf 9{φ).
IIΦII = i
φeC(X)

If φX <oo, Λ(X) is the smallest eigenvalue of the spectral problem Hoφ = λφ9

φ(ή) = 0 if neZd\X. A path between points n, meZd is a sequence of sites

τ = (nun2,...9nk), nγ = n, nk = m, \nj+1 - nj\+ = 1 . (1.4)

Set X cz Zd is connected if any two points in X can be connected with a path which
lies within X. Following [10], we say that a set Ak a Zd is a fe-animal (or just
animal) if Λk is connected and #Ak = k. Modulo translation, there are only finitely
many animals of any given size k. Let

ak = inΐΛ(Ak). (1.5)

It is obvious that ak is a strictly decreasing sequence of positive numbers. The
animals for which the infimum in (1.5) is attained we will denote by ATΛ and call
the tamed animals. As we will see later, taming the animals (namely, obtaining
control over aki ATtk) is not an easy task at all.



Spectral Properties of Random Schrόdinger Operators 25

In the sequel,/(x) ~ g(x) stands for limx-,o0f(x)/g(x) = 1, and τd for the volume
of a unit ball in Rd. With the above notation, our main results are stated as follows.

Theorem 1.1. Hω has a discrete spectrum P-a.s. if and only if a > d. Furthermore, if
Nω(E) denotes the number of eigenvalues ofHω which are less than E, we have that for
a > d and for a.e. ω

Nω(E)~-^— Ed/« asE-^oo. (1.6)
α — d

Theorem 1.2. If d/k ^ α > d/(k + I) for positive integer k.for a.e. ω we have

(i) σ(Hω) = σpp(Hω) and eigenfunctions of Hω decay at least exponentially,
(ϋ) σess(Hω) = [ak9 oo),

(iii) # σ d i s c ( # ω ) < oo .

Theorem 1.3. Let λD be the lowest eigenvalue of a Dίrichlet Laplacian of a unit ball in
Rd. Then

ak ~ k~d/2 λD as/c->αo .

Remark L Only affecting the values of constants, we can suppose that the random
variables ξn have common nonnegative absolutely continuous density which is of
the form xβ on [0, δ) for some β,δ>0. On the other hand if ξn are uniformly
distributed on [— 1,1], Theorem 1.1 remains valid (with appropriate reformulation
of (1.6)). Part (i) of Theorem 1.2 also holds, while part (ii) has to be replaced with
σ(Hω) = (- oo, oo).

Remark 2. By the exponential decay of the eigenfunctions we mean that the
eigenfunction of Hω corresponded to an eigenvalue E satisfies

(1.7)

for some fixed a > 0. Our argument can be easily modified to show that eigenfun-
ctions decay as

\Φω,E(n)\ S C ω , E e x p ( - φ | ln|n|) .

The constant λD, introduced in Theorem 1.3, coincides with the smallest zero of the
Bessel function Jd/2 -1. Thus λD = 2.4048 . . . for d = 2, λD = π for d = 3, and
λD — d/2 for d large.

Remark 3. We will give two proofs that the spectrum of Hω is pure point. The first
one is rather simple and is based on the recent results on localization obtained in
[14, 15]. The first proof does not yield the satisfactory decay of the eigenfunctions,
nor can its strategy be used to investigate the discrete spectrum. The second proof,
although more complicated and relying heavily on the particular structure of our
potential, yields immediately (1.7) and part (iii) of Theorem 1.2.

For the model (1.1) when α ^ d, one can also investigate the natural analog of
the integrated density of states. Let CL = {n: maxl^l ^ L] be the box of side
L centered at the origin. The form on C(CL) (recall (1.3))
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yields a finite matrix (it is just a restriction of Hω to CL with Dirichlet boundary
condition) whose number of eigenvalues which are less than E we denote by
Nω,L(E). Set a0 = oo.

Theorem 1.4.
(i) Ifd/k >oί> d/(k + 1) and Ee(a^ as-x\ l^j^K then

Km % ? ^ = #,(£) (1.8)

exists for a.e. ω and is a non-random function.
(ii) If a = d/k and Ee(aj9 α^-x), 1 :g j < k, (1.8) is ι?α/id. If Ee(ak, ak-λ) then

lim % ^ = tfk(£) (1.9)

exists for a.e. ω and is a non-random function.

In both cases, Nj(E) is a continuous function on (α,-, α, - i ) , and

Nj(E) ~ Cj(E - aj)j as E-+ aj.

The constants Cj are of combinatorial nature.

The continuous analog of the model (1.1) is discussed in [11].
The paper is organized as follows. In Chapter 2 we prove Theorem 1.1, part (ii)

of Theorem 1.2, and give a simple proof that σ(Hω) = σpp(Hω) P-a.s. In Chapter 3
we prove Theorem 1.3 and in Chapter 4 we finish the proof of Theorem 1.2. In
Chapter 5 we prove Theorem 1.4. Finally, in the Appendix we prove the result
(announced in [16]) which has been used in the simple proof of localization.

2. On the Discrete and Essential Spectrum

2.1. Proof of Theorem 1.1. A sufficient and necessary condition for Ho -f Vω(n) to
have discrete spectrum is that

I F'ωOΌI -* oo as \n\ -• oo . (2.1)

Let c > 0 be fixed and denote

P{Λc

n) = c/(l + \n\a) and ΣnP(A%) converges if and only if α > d. The Borel-
Cantelli lemma implies that (2.1) is valid for a.e. ω iff α > d, and the first part of
Theorem 1.1 follows.

To calculate the eigenvalue asymptotics, first note that monotonicity of Nω(E)
implies that it is enough to consider the case when E -> oo as an integer. We
proceed as follows. Denote by

, if ξn(ω)-(l + |n | α ) ^ E ± 4d

0, otherwise .

and set S^(ω) = Σnez*XE(n> ω) Because | | H 0 | | = 4d, we have
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Since

_, E±4d

n : l + \ n \ a > E ± 4 - d •*• "^ I W I

one easily obtains

(2.2)
OL-d'

It remains to show that

E -"'"(Si - E(S£)) -> 0 as £ ^ oo P-a.s. (2.3)

First note that

E((Si)k) ^ 2*-1 ((# {n: (1 + \n\«) <E± 4d}f

y E±4d

and thus limsup^oois ~dk/aΈ((SE)k) S C, where C is a uniform constant. Let
*?£(/*> ω) = xi(n, oή — E(χ£ (w, &>)). ^ ( n ) is a sequence of independent (but not
identically distributed) random variables satisfying \η£(n)\ ^ 2, E(η£(ή)) = 0. We
have

- E(Si))2k) = E ( ( Σd

(2.4)

for a uniform constant C. The first inequality in (2.4) follows from simple combina-
torics and observations that

# {m η£(n, ω J Φ O j g S l , E ( £ ι,|(n)) = 0 .

For ε > 0, Chebyshev's inequality yields

-dk/a

If dk/oί > 1, y^=4d + i P £ < oo, and the Borel-Cantelli Lemma yields (2.3).

2.2. On the Essential Spectrum. In this section we prove that for d/k ^ α >
d/(k + 1), σ e s s (# ω ) = [ak9 oo).
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Denote / = 4fc Z d , and decompose Zd = ( J n e / &~n, where 3~n is the cube of
volume (4/c)d centered at n. Let Aτ be an arbitrary tamed /c-animal which contains 0,
and denote by A\ its translation for the vector nel. To show that

tfess(#ω) ^ [flfc> °°) P " a S ( 2 5 )

it suffices (using WeyΓs criterion and fact that essential spectrum is closed set) to
construct for every rational λ > 0 and for a.e. ω a sequence φt satisfying

lim \\(Hω-λ-ak)φi\\=0. (2.6)
ΐ-*oo

Fix a sequence bt -> 0, and denote for nel

Ab

n* = {ω:λ-bi< Vω(x) < λ + b{ for xeAn

τ} .

^) ^ Cbi/(ί + |n|α)* for a suitable uniform constant C, and thus £ M e

diverges. The Borel-Cantelli lemma and diagonal argument implies that there exist
with probability 1 a strictly increasing (ω-dependent) sequence nf such that

\Vω(n)-λ\<bi for neAψ.

If φ0 is eigenfunction corresponded to ak, set φ0 to be zero outside Aτ and denote
ψi(n) = φo(ft — Wf). It is trivial to check that (2.6) is satisfied and (2.5) follows. It
remains to show that

inf σess(Hω) = ak P-a.s. (2.7)

Let B(n, I) = {m; \n — m\+ ^ /}. We will over and over again make use of the
following

Lemma 2.1. For γ > 0 let

Bn = {ω: in the box B(n, \n\y) there exists k + 1 points nt such that Vω(ni) ^ \nt\
y}.

(2.8)

Then, for y small enough, with probability 1, only finitely many events Bn take place.

Proof. It is easy to show that for y small enough

P(Bn) g C

where C is a uniform constant. Thus, for such y, YjnP{Bn) < oo and the Borel-
Cantelli lemma yields the statement. |

The discrete version of Persson's theorem ([4], Theorem 3.12) states

inf σ e s s(Hω) = sup inf (φ, Hωφ) .
KcZd φeCfin(Zd\K)
#K<co ||0|| = 1

Let K = K(ω) be a box, centered at 0, of large enough side so that outside K no
event Bn takes place for a.e. ω. Let

R= inf \n\γ ,
nφK

and let

Aω = {neZd\K:Vω(n)<l} .
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For a.e. ω, Λω is a disjoint union of animals of the size # g k. Let
B = Zd\(K u Aω), and for φ e C f i n (Z d \X), || 01| = 1 denote

Obviously,

= f0(n), if n e A ω ; , = |

(0, otherwise; 2 (0, otherwise .

For R > ak we have

(Hωφ, φ) = (Hωφl9 φ,) + ( # ω φ 2 , </>2) + 2Re(Hωφ1,φ2)

£ ^ H φ i l l 2 + Λ | | φ 2 | | 2 + 2Re(Hωφ1,φ2)

^ak + (R-ak)\\φ2\\2-2\\H0\\-\\φί\\ \\φ2\\

16d2

R-ak

Consequently

inf σess(Hω) ^ ak - P-a.s.
R-ak

By taking K big enough, R can be made arbitrarily large and (2.7) follows.

23. A Simple Proof of Localization. We first fix some notation. Let dX be defined
as

dX = {neX: (3meZd\X)\m - n\+ = 1} . (2.9)

ForX, YeZd, let

d(X, 7) = min{|n - m\+ : π e l , me Y) .

The matrix elements of the resolvent of H = Ho + F we denote by

R(n,m;z) = (δn,(H-zΓίδm).

The following (deterministic) result, which we will prove in the Appendix, has been
announced in [16].

Theorem 2.2. Suppose that we have ascending sequence of connected sets in Zd

ΓΓ cz Γΐ c Γ2 cz Γί c . . . c Γ- c: ΓM

+ c . . .

SMC/Ϊ ί/iαί

n

d - 1 ) , dn = d(Γ~,Γn

+), (2.10)

where Dn -> oo is α sequence of integers satisfying Dn ^ cM, /or some c. Lβί F
a potential satisfying

(2.11)
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for some C, δ > 0. Then, for every neZd and for a.e. EeR (with respect to the
Lebesgue measure)

limsup Σ \R(n, m; E + ίε)\2 < oo . (2.12)
ε^O meZd

The above theorem is a by-product of some recent results [14-16] on the
localization in one dimension. On the intuitive level [15,19], high-potential walls
in Γn

+ \ / γ are under conditions (2.10), (2.11) effective in stopping tunneling at large
distances. An immediate consequence of (2.12) is that σac(/f) = 0.

To see how model (1.1) fits in the above picture we proceed as follows. Let Ck,
C'k be boxes of the sides 2k - [2ky "" * ], 2* + [_2ky"ι ] where y is chosen as in (2.8). It is
easy to show (using Lemma 2.1) that for a.e. ω there exists connected sets Γk~(ω),
Γk (ω), such that for k> k0 (ω)

Ck cz Γk (ω) c Γk

+ (ω) cz Q , dk = d{Γk

+ (ω), Γk (ω)) ^ Cx 2ky,

and that Vω(m) > C22
ky for meΓk

+ (ω)\Γk~(ω). Thus, (2.10), (2.11) are obviously
satisfied, and we have that for a.e. ω and a.e. E and for every neZd

limsup ^ \Rω(n, m;E + iε)\2 < oo . (2.13)

Equation (2.13) and the Simon-Wolff theorem [2, 20] yields that σ(Hω) = σ p p(iίω)
for a.e. ω.

Using Theorem 2.2 we get an easy proof that for the non-stationary model (1.1)
(and for many others with unbounded potential) we have pure point spectrum. On
the other hand, by their very nature, the theorems of the above type [16] cannot be
used to prove exponential decay of eigenfunctions or to analyse the discrete
spectrum. For that, one has to rely more heavily on the particular structure of our
potential, and we will do it in Chapter 4.

3. Taming the Animals

This chapter is devoted to the proof of Theorem 1.3. We start by introducing the
continuous analog of (1.3). If Ω is a region in Rd, the Dirichlet Laplacian — Δ% is
the unique self-adjoint operator whose quadratic form is given by the closure of

D(u) = \\Vu\2dx
Ω

on Co°(Ω). In the sequel we will suppose that all regions under consideration have
a piecewise smooth boundary. If | Ω |, the Lebesgue measure of Ω, is finite, — A% has
a compact resolvent and its smallest eigenvalue is given by

Λ(Ω)= inf D(u). (3.1)
ueC™(Ω)

IMI = 1

The corresponding eigenfunction u is a C°°(Ω) function satisfying

-Δu(x) = Λ(Ω)u(x) for xeΩ, u(x) = 0, if xedΩ .
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It is also known that u(x) > 0 if xeΩ. For positive r let

λr = inϊ{Λ(Ω):\Ω\=r} . (3.2)

The infimum in (3.2) is achieved when Ω is a ball of volume r [4], λγ — λD and
Xr = λD/r2/d. For notational simplicity, in the sequel we will suppose that d = 2. We
will prove

Lemma 3.1.

Lemma 3.2.

α f c = k ί + 3 φdATΛ/k'

Lemma 3.3. If Aτ<k, k ί: 1 is a sequence of tamed /c-animals, we have

Theorem 1.3 is an immediate consequence of the above three lemmas. Their
proofs are somewhat subtle and we devote to each a separate section.

3.1. Proof of Lemma 3.1. To avoid confusion, throughout the chapter we use Latin
letters to denote elements of L2(Rd), and Greek letters for elements of l2(Zd). By
|| ||oo we denote the norm on R2 given by ||(βi5 ε2)IIoo = m a x l ^ l , |ε2 |} To any
subset X of Z 2 we correspond a region Xa in R2 whose closure is given by

^ a] .
)

Xa = \ x e R 2 : s u p \\x - yW^ ^ a] . (3.3)
I yeX )

If Λk is an arbitrary animal, Ak> 1 / 2 the region given by (3.3) with a = 1/2. For
Λ(/4fc,i/2) given by (3.1), we denote the corresponding eigenfunction by u and set
u(x) = 0 if xφAkΛ/2. To every xeF = {xeR2: \\x\\ao < 1/2} we associate a func-
tion φx on Z 2 as φx(ή) = u(n + x), neZ2. Obviously, φx(n) Φ 0 iff nφAk. Further-
more,

f \\φx\\2dx = f Σ Φ + xfdx = £ J Φ + x)2dx = ||u||2 . (3.4)
F F n n F

Let e1 = (1,0), e2 = (0,1). We have for i = 1, 2,

" + ed - φMfdx = Σ ί Hn + x + et) - u(n + x))2dx

n F \ 0

55
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Summing over i we obtain

\ (3.5)
F

and consequently there exists at least one xoeF such that

@(φxo) ^ D(u) = Λ(AkΛ/2)\\u\\2 =

It is immediate that

Let a > 1/Λ/2 be arbitrary, and denote by B(r) the ball of radius r centered at 0. For

k large enough let S = B(*Jkjπ — a) n Z2. We have

#S = | S 1 / 2 | g \B(y/lφι -a+ 1/̂ /2)1 < \B(y/ϊφt)\ = k , (3.6)

and so there exists a /c-animal Ak that contains S. We have

A , i/2 => S 1 / 2 => B i ^ / k / π - a -

and consequently

α* ^ Λ(Ak, 1 / 2 ) ^ ^ ( 5 ( 7 ^ - a -

- a -

The lemma follows.

3.2. Proof of Lemma 3.2. Let Ak a Z2 be an arbitrary animal, and let φ be the
normalized eigenfunction corresponding to Λ(Λk). We extend φ to a continuous
function w: R2 -+ R in the following way: u(k) = φ(k) if /CGZ 2 , and on the each
quadrant Q^ = {( q, x2): i ^ Xi ^ Ϊ + 1,7 ^ x 2 ^ j ; + 1}> w is °f the form

U{XUX2) = fly + fty*! + CyX2 + ί/yX^i .

Such extension exists and is unique. We divide the rest of the argument into three
steps.

Step 1. D(u) ^ 3f{φ). The change of variable ε t = xλ — i — 1/2, ε2 = x2 —j — 1/2,
transforms Qtjinto the quadrant Q = {(βi,ε 2): |ε 1 | S 1/2, |e21 ^ 1/2},and u(x)into
the function

U(ε) = /i + aex + foε2 + ^ ε i ε 2 ?

for suitable f, j-dependent constants /ι, α, fo, c. We have

p-Y dx = I (ψλ dε = f (a + cε2)
2dε = a2 + c2/12 , (3.7)
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and

l-{{u(i + I,;) - u(i,j))2 + («(/ + I,; + 1) - u(i, j + I))2)

= -((1/(1/2, -1/2)-C/(-1/2, -

+ (1/(1/2,1/2) -U(-1/2,1/2))2)

= i ((a - c/2)2 + (a + c/2)2) = a2 + c2/4 . (3.8)

From (3.7), (3.8) we obtain, summing over i, j,

J (~)2dx £ Σ(u(i + 1,7) - " ( U ) ) 2 , (3.9)
R2\Vχl/ i,j

ίdu}2

and similarly

J ( £ H d χ ^ Σ ( « ( U + D - « ( U ) ) 2 . (3-10)
R2\OX2J ij

The result follows by adding (3.9), (3.10).

Step 2. || u | |2 ^ 1 - 3Λ(;4k)/4. First, note that

j u(x)2dx = J (/z + asx + bε2 + cε1ε2)
2dε1dε2

= /i2 + (α2 + &2)/12 + c2/124

Consequently,

Let Z 2 be a dual lattice of Z 2 , obtained by translating Z 2 by the vector (1/2, 1/2).
Let T: 12(Z2) -> / 2 (Z 2 ) be the averaging operator defined as

Tψ(i + 1/2,7 + 1/2) = \ Σ Ψ(i + 1/2 ± 1/2,7 + 1/2 ± 1/2).
±, +

From its very definition, w|f2 = Tφ, and

(3.12)

The adjoint Γ*: / 2 (Z 2 ) -> / 2 (Z 2 ) is given by

Γ*ηftj) = i Σ »ί(i± I A J ±1/2),

and we have | |Γ | | = | |Γ*| |,

(3.13)
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Let Bn(a) be a ball of radius a centered at n (in the euclidean metric), and denote
by B(μ) the π-independent number of integer points contained in Bn(a). Let
Ka: 12{Z2) -> 12(Z2) be defined as

Kau(n) = —— £ u(m) .
Byβ) msBn(a)

For example, Ho = 4(KX — 1). For any k we have Λ(Ak) ̂  4, φ ̂  0 on i4k, and
consequently

A direct calculation yields

Thus, using (3.12) we obtain

Hull £ | | Γ * Γ φ | | ^ (Γ*Γφ, φ)^-{i - Λ(Ak)/4) + ~(l - ^ μ t / 4 ) ) 2 , (3.14)

and consequently,

\\u\\2^ί-3Λ(Ak)/4.

Step 3

α ( c = k l + 3 φ T t k /

From the above two steps we obtain, if Λ(Ak) ^ 4/3,

D(u) ^ 9{φ) Λ(Ak)

\u\\ ~ I - 3Λ(Ak)/4 l-3Λ(Ak)/4
(3.15)

Let Ak< x be given by (3.3) with a = ί.u belongs to the quadratic form domain of the
Dirichlet Laplacian in the region AkΛ, and from (3.15) we get

^ Λ{Λk)

' - 1 - 3Λ(Λk)/4

Consequently,

Λ(ΛkΛ) ^ λD\.
Λ(Ak)^-^^^

= Λ - D I ^ / C I Γ 1 ^ + O(l/k)) . (3.16)

Equation (3.16) is trivially satisfied if Λ(Ak) > 4/3, and so is true for all k. We also
have \AkΛ\ ^ #Ak + 3' #dAk and consequently

k + 3 # oAk k k -f 3
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Equation (3.17) is true for any fc-animal, and in particular for any tamed fc-animal
ATΛ. The lemma follows.

3.3. Proof of Lemma 3.3. For- X c Z denote

dnX = {meX: there exists a path of length ^ n starting at m
and ending at nϊeZ2\X] .

Obviously, d±X = δX. If ATyki k > 0, is a chosen sequence of tamed animals, we
will prove

The lemma follows by setting n = 1 in (3.18). As before, φ denotes the normalized
eigenfunction corresponded to ak = Λ(ATΛ). For X a Zd let

\\Φ\\2χ= Σ \ΦW\2

neX

Again, we split the proof into three steps.

Stepl. τk

If mednAτk, there exists a path of length / ̂  n, m = mum2i . . , Wj,
Im^-i — 7W/I+ = 1, πiιφATΛ. We have

7 = 1

Any couple (m, m'), |m — m'| + = 1 can belong only to finitely many paths of length,
rc, the number depending only on n, and consequently there exists a uniform
constant Cn so that

Σ Φ(k)2 SCn Σ \ΦW) - ΦNI 2 = Cn-ak = O(l/k) .
mednATk (m',m)

\m' — m\ + = 1

Step 2. Denote Ok = ATΛ\dnATΛ, and let φ(m) = max{0, φ(m) — b/^/k} for
0 < b < 1. Then

(a)
(b) || ψ || ^ 1 — b.

(c) If Zl = 0n

ku {meATΛ:ιl/(m) > 0} then # {Zΐ\On

k) = 0(1) as k -> oo.

The part (a) is trivial. To prove (b), let φ(m) — max{^(m), b/^/k}. Then

\ \ Φ \ \ A T k

= Σ \ Φ ( m ) \ 2 = WΦW2 = 1 J Ψ(™) = Φ(™)--b/y/k ,
meATk

and the Minkowski inequality yields

v l / 2

-»- Σ
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To prove (c), note that from Step 1 we have

# {mednAτχ. φ(m) > b/^/k} = 0(1) .

On the other hand, ιl/(m) > 0 iff φ(m) > b/^/k and (c) follows.

Step 3. If αM = limsupfc^ (#dnΛTfk)/k then l im,,^ ocn = 0.
We first remark that 0 ^ ax ^ a 2 ^ . . . ^ 1, and consequently lim^oo an = α

exists. Let 0 = 1 — α and suppose that 0 < 1. Let pe(0,1) be arbitrary, and denote

fc^oo

From Step 2 we have that

k k k
,3,9)

and consequently 0n = 1 — ocn S P for n large enough. Step 2 also implies that for
any b > 0 and any k0 e 9i, there exist k,m,k>ko,m< pk9 so that #ylfe = m and

J) ^ ak/(l - bf . (3.20)

First, (3.20) implies that 0 ^ 1/4. Otherwise, we can choose p < 1/4 and derive from
(3.17), (3.20)

m/fc < p, and so when k -» oo, m -> oo as well, and we obtain 1/4 ^ p(l — b)2 for all
b > 0, which contradicts the choice p < 1/4.

Let 0 < ε < 1 be chosen in such a way that p/θ < 1/(1 — ε). For n large enough,
θn< p and consequently 0/0π ^ 1 — ε. There exists a sequence kj -^ oo so that

Γ #dnΛTΛj

hm 7 — ^ = απ .

On the other hand, from (3.19) we derive

#dn + 1ATik
h m s u p ; ^ ^ α M + 1 < 1 ,

Because dθ\ = On

k\On

k + u we have

#eon

k.θn-θ

Ί ί : s —
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Again, Step 2 (c) yields

lunsup

For j large enough, to any k} we correspond m7- with m7- < pkj so that # Z£, =
and (3.20) is true. It follows from (3.17) that for any δ > 0 and large enough;

= mj(l + 3 ΦdZίJmj) ~ pkj(l + 3e)

On the other hand, from (12.1) and Lemma 12.1 we obtain

and consequently for a large j we have

1 -δ
P ^ (1 -

(1 + 3ε)(l + δ)

The numbers b, ε, δ can be chosen to be arbitrarily small and so p ^ 1, which
contradicts the choice of p, namely that 0 < p < 1. So, 0 = 1, and for all n, an = 0.
The lemma follows.

4. On the Pure Point and the Discrete Spectrum

The following simple consequences of Lemma 2.1 will be of essential importance
below. Let d/k ^ α > d/(k + 1), and for suitable y let

According to Lemma 2.1, we have a decomposition

Aω = [j A(n9 ω), A(n9 ω) n A(m, ω) = 0 , (4.1)

for a.e. ω. (In the sequel we drop the ω dependence whenever it is clear within the
context.) ,4(0) is a finite region chosen in such a way that for nφA(0) no events Bn

take place (see (2.8)), and A(n) are animals of size ^ fe. Let ~ be a relation of
equivalence on {A(n):n > 0} defined as

A(ή) ~ A(m)o3n1 = n, n2, . . . , fy = m such that for 1 ^ i ^ / — 1 ,

We order classes of equivalence by their distance from the origin (viewing classes as
subsets of Zd), ordering arbitrarily the equidistant ones. Let G ( i ) be a union of the
elements of the ιth class. By taking C small enough, it is easy to show that # G ( ί ) ^ k
(otherwise some event Bn happens for nφA(0)) and that

d(G{i\G{k))>CrMLx{\s\\\sf\y\seGii\s'eG(k)} .

We will refer to G ( ι ) as a connected group of animals.
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The point of the above is the following: if we think about G{i) as potential wells,
then, for typical ω and outside a finite (ω-dependent) set, these wells have no more
than k points and are separated by high and long potential barriers. The probabil-
istic framework differs now from the one in Sect. 2.3, where we were interested only
in potential wells encircling each other successively and thus preventing tunneling.
By taking into account the structure of G(ί\ one should be able to obtain better
control of the resolvent matrix elements, and that will be our main concern below.
We will prove

Theorem 4.1. Let I — (0, Eo). Then for every Eo > 0 there exists a > 0 such that for
every neZd and for a.e. ωeΩ and a.e. Eel (with respect to the Lebesgue measure)

sup \Rω(n9 m;E + iε)\ ̂  C n , ω , £ exp(-α|m|) . (4.2)
0<ε<l

The above theorem is certainly expected on intuitive grounds. (Actually, more is
expected, namely that \m\ can be replaced with \m\β for some β > 1, although we
will not try to prove that.) Simple modification of our argument can improve decay
in (4.2) by a factor In |m|.) Once proven, Theorem 4.1 yields part (i) of Theorem 1.2
by the well-known argument of Simon-Wolff [20] or Delyon-Levy-Souillard [6]
(see also [2]).

The rest of this chapter is devoted to the proof of Theorem 4.1. Part (iii) of
Theorem 1.2 is a simple by-product of the analysis below, and necessary modifi-
cations in the argument are outlined in Sect. 4.2.

The following decomposition of a probability space Ω = ®neZdIm ln = [0,1],
will be useful. If y > 0 is the constant from Lemma 2.1, writing

In = In°uIn\ /B

o = [0,|n|V(l + | π r ) ] , h1 = [|n|V(l + N α ) , 1] ,

we obtain the decomposition

indexed by all possible sequences of 0 and Γs. One simple consequence of dis-
cussion in the beginning of this section is that one can pick countably many { Ώ j ^ x

out of {Ωc} such that [jt Ω{ has a full P measure, and that every Ωt has the following
form: for n outside finite set Ft (which can be chosen once for all ωeΩ/), /n°'s are
exactly corresponded to the rc's which belong to the connected groups of animals,
or more precisely, at site n we have Jn° iff n e G{i) for some I Furthermore, G(ι)'s are
independent of the choice ωeί2 ί 5 and thus our decomposition fixes the position of
"potential wells," although potential within them can vary (at site n, between 0 and
\n\y). We will prove below that (4.2) is valid for a.e. ωeΩx and a.e. Eel. Since our
argument does not depend on the choice of Ωι (it also applies to any Ωk, k > 1, all
what we use is the fixed position of "wells"), it yields the statement. In the sequel
any ω, unless otherwise stated, will refer to an event in Ωx.

Let L > 1 be a positive constant and define a new potential (CL =
{n: maxl^l ^ L})

ω(n), iίnφCL;

, iineCL.
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The right choice of L will circumvent technical problems with convergence of the
resolvent cluster expansion constructed below. First, by making L large enough, we
can suppose that CL => F1. If

we have that Hω is a finite rank, L-dependent perturbation of HωL. Denote by

Rω,L{n, m; z) = {δn9 (HωtL - z)'1δm)

the matrix elements of the resolvent of HωL. The main technical ingredient in our
proof is the following

Lemma 4.2. To every L large enough we can correspond Ω L c Ω b ΩL->Ω1 as
L ->• oo, such that for a.e. ω e ΩL, ίeCL,me Zd, and for every fixed Eel, we have for
some fixed a > 0,

sup \Rω,L(U m E + iε)\ <. Cω,Lexp(-α|m|) . (4.3)
0<ε<l

Lemma 4.1 yields (4.2) as follows. Since

Hω — HωL = Σ λi( ,δi)δi,
ieCL

where λtel? — L or if — L, we have that for ωeΩL and L large enough

Rω(n, m; z) = Rω,L(n, m z)- £ ^RWiL(U m; z)Rω(n, ί; z) . (4.4)
iεCL

Since Rω(n, ί; z) is a difference of two Herglotz functions in the upper half plane, we
have that for a.e. ωeΩL and for a.e. Eel,

m a x s u p \ R ω ( n , i;E + iε)\ ̂  Dn>ω>E ,
ieCL 0<ε< 1

where DnωE is a finite constant (whose dependence on L is comprised within ω).
Thus, (4.2) is valid for a.e. ωeΩL and a.e. Eel. Since ΩL^Ω1 as L-» oo, (4.2)
follows.

It remains to prove Lemma 4.2.

4.2. Proof of Lemma 4.2. For arbitrary X a Zd denote

dextX = {meZd\X:(lneX)\m-n\+ = 1} ,

dintX = {meX:(3neZd\X)\m - n\+ = 1} ,

dX = {(m,n):medextX, nedintX, \m-n\+ = 1} .

If H = Ho + V, we say that HD is the operator H with Dirichlet boundary
condition along dX if

HD-H= X (%aw)a» + ( A)<S». (4.5)
(m,n)eax

Hβ is a direct sum of two operators, one on 12(X) and one on l2(Zd\X). The part
which acts on 12(X) will be referred to as the restriction of H to X.
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For i ^ i(L) all connected groups G ( ί ) have empty intersection with CL. Denote
by H®L the restriction of # ω > L to G{i) for i ^ i{L\ and by R!£tL(n9 m; z) the matrix
element of the (H%]L - z)~ι. Let

The size of L will be fixed by requirements below (recall that the statement of
lemma is valid for L large enough). We denote by H{^L and R^L the restrictions of
Hω,L, R<O,L to G ( 0 ). From now on, let neCL, meZd be two fixed sites. For
definiteness we will suppose that meGU) for some j ^ i(L\ the discussion of the
case when meG(0) is analogous.

For Im(z) > Id we have expansion

where series on the right converges uniformly, and sum is over all paths connecting
n and m. By regrouping the terms in the series, we can write

**.L(*, m;z)=-Σ Σ Σ Σ RiΆ(n, s,; z ) - < l i ( i l f ίj z) .

W, 52; z) R£?l(ί2, ί
;

2; z) R g ^ s i , 53; z) . . .

• . RΆ(h, t'k; z) <>L(s'fc, s; z) R$L(t9 m; z) . (4.7)

The above formula clearly follows from (4.6), separating the contribution of the
paths within different G(I)'s, and using the formula analogous to the (4.6) for each
R&]L. For ί > 0, j > 0 we set

d(i, j) = max{|n — m\; neG(ι\ meGU)}, dn(i) = max \n — m\ .
meG(i)

The following lemma gives the basic estimates needed to control (4.7).

Lemma 4.3. For Eel, 0 < ε < 1 and L sujfciently large:

(i) There exist random variables AiE)(ω)for every i ^ i(L) such that for tediniG
iι\

t'eG(ί\

(ϋ)

P{ωeΩλ\A^(ω) > M} ^ C/M

for a uniform constant C independent of i.
(iii) IfsedexiG

{i) and s'edextG
U) we have

\ S;E + is) S CLεxp(-aLd(iJ)),

^L(n, sT; E + is) S CLexp(-aLdn(j)) .

Constants CL, aL depend only on L and furthermore CL -> 0, aL -* oo as L^> co.
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Proof. Let H = Ho + V be a discrete Schrodinger operator, and let HD be its
restriction to a set I c Zd. If <5 = dist(z, σ(HD)\ it is a standard result (see e.g. [2],
Exercise III.6.8) that for m,neX we have

Defining

^ \exp(-ln(l + δ/4d)\m - n\) . (4.8)
o

Af(ω) = 2/dist(£,

we observe that part (i) follows from (4.8). Part (ii) is an immediate consequence of
Propositions VIII. 1.8 and VIΠ.4.8 in [2]. Part (iii) follows from (4.8) and observa-
tion that for L large enough

dist(£, σ(H°tL)) £ U - Eo - Ad . •

The sets ΩL are defined as

ΩL = {ωεΩuAφiω) g | n , | d + 1 for i ̂  i

Part (ii) of the above lemma yields

Since i(L)-* oo as L-> oo sets ΩL are as required by Lemma 4.1. For L large
enough, ωeΩL, Eel and for 1 > ε > 0 we have

|^ ω , L (n,m;£ + iε) |<C L exp[-(α L /2) | n - m | ] £ (α L )", (4.9)

where

α L = sup sup |Wi|d + 1 Σ S U P l ^ i fe s t ; E + ie)
ί^t(L) seaeχtG(0 j^ί(L) (sι,tι)edGU)

ω

In (4.9) CL -> 0 as L -• oo. One can easily estimate

α L ^ sup C k |d + 1 e x p ( - D N ) , (4.10)

where constants C and D are uniform. For L large enough, αL < 1, and statement
follows from (4.10).

4.2. Discrete Spectrum is Finite. To prove that for a.e. ω the number of eigenvalues
lying in [0, ak) is finite, in the notation of Lemma 4.1, it suffices to show that to
every L large enough we can correspond ΩL c Ω1, (J ΩL = Ω1, such that for ωeΩL

HωL has no spectrum in [0, ak) (since HωL — Hω is an operator of rank (2L 4- l)d,
we 'then have σdiβc(ffω) g {2L + l)d).

HωL has no eigenvalues in [0, ak) if for all n, meZd,

sup sup |jRω,L(^ m; E + iε)\ < oo . (4.11)
E<ak ε>0
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We write the cluster expansion (4.7) of Rω,L, and estimate for E < ak

\R$L(t, t'; E + ίε)| ^ 2/dist(αk, σ(H$L)) = A^(ω) .

The rest of the argument follows line by line that of the previous section.

5. Proof of Theorem 1.4

We will prove Theorem 1.4 in the case d = 1, the argument being essentially the
same for d > 1. For a purpose of this section it is convenient to redefine HD

(operator with Dirichlet boundary condition) by subtracting ( , δn)δn + (#, δm)δm

from (4.5), ensuring that H ^ HD. For L a positive integer, let CL be an interval of
size 2L centered at the origin, and let HωL be the restriction of Hω to CL. We
suppose that l//c > α > l/(/c + 1), and that Es(aj9 a/-i) (α0 = oo) for some
1 ^ j ^ L The case oc = l//c, we treat separately.

Let 0 < δ < 1 — jα, and for fixed ω suppose that Cuδ = C[L«] + 1 => ^4(0) (see
(4-1), [*] stands for the greatest integer part). Define //£,L from HωL by setting
the potential to be of the size L within CLfδ. In the sequel NE(H) stands for the
number of eigenvalues of an operator H which are less than E. Since
\NE(Hω,L) - NE(Hi9L)\ = O(Lδ\ it suffices to prove the statement for NE(Hδ

ω,L).
We numerate the connected group of animals by their distance from the origin, and
set

Z£\ω) = G ( ί )(ω)n(CL\CL t δ)9 ZL(ω) = |JZf(ω), Z?\ω) = CL\ZL(ω) .

Let HLω be the operator obtained from HωL by putting the Dirichlet boundary
condition along δZ{ω).

Lemma 5.1. There exist ε > 0 such that for a.e. ω,

?W#> N(E-1

τ

l?_f"> L), (5.1)
L-̂ oo L L->oo

7 ^ ^

Proof. (5.1) is immediate since H ω > L ^ iϊω,L To prove (5.2) we proceed as follows.
Let R(n, m), R(n, m) be matrix elements of JR = (ifω>L -f I ) " 1 , K = (Hω,L + I ) " 1 .
First, we have that

| l φ , m) - J φ , m)| ^ - ^ exp(-α |n - m\), (5.3)

for uniform constants C and a (y is as in (2.8)). We will prove (5.2) in the case n e Z ( I ),
meZ{ί\ the other cases having similar proofs. We have

i φ , m) = R(n, m) + £ £ i φ , s)JR(ί, 5')#(ί', m) .
(s,ί)eaZ(/) (s',ί')eθZ(ι)
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Using (4.8) we estimate

\R(n, s)\ S C Qxp(-a\n - s\), \R(t', m)\ S C exp(-α | ί ' - m\),

where C and a are uniform constants, and (5.3) follows.
R splits into direct sum of operators (after eventually renumerating Z ( 0 's)

i

R= 0#(O0#(O) a c t i n g

12{By permuting the basis of 12{CL) we can write R in the matrix form

AR(1) 0 . . . 0

0 # ( 2 ) . . . 0

\ o o ...

For l ^ z ^ / , # ( 0 is a matrix of dimension fet x /ct for some fef ^ k. Let ^ be the
operator K in permuted basis, and let (fe0 = 0)

Pi= max Σ|i ( ί )(n,m)-^(π,m)|.
ki- i^n^ki m

It follows from (5.3) that pt ^ C/Lyδ for uniform constant C.
Let \/(λ + 1) be an eigenvalue of R and let φ be corresponding eigenvector. If

maxn6Cί, IΦ(w)| is achieved for some neZ(i\ ί > 0, then proceeding as in the proof of
Gershorgin's theorem [21], one can show that there exist eigenvalue £j° of R{i)

such that

\Ef)-λ\^C/Uδ . (5.4)

If max \φ(ή) | is achieved for neZ{0\ it is elementary to show that λ ^ cU for some
c > 0. Thus, for L large enough, the eigenvalues of HitL which are less than E are
on the distance C/Lγδ from the eigenvalues of HωJL which are less than £, and
statement follows.

The probabilistic part of the proof goes as follows. Let H(i) be the restriction of
HωL to Z ( ι ) and let χn be random variables defined on the following way:

if neZ(i) and d(Z ( i ),0) = \n\

0, otherwise .

χπ are independent random variables for L large enough.

Lemma 5.2. If neC[L^]+j or \\n\ — L\ <j, E(χn(ω)) = 0. Otherwise, there exist
constant ε(L% ε(L) ->0 as L -> oo, swc/z that

^ , (5.5)

where Nj(E) is a continuous function on (a^aj-ι). Furthermore, Nj(E)
Dj(E — aj)j as E -• ajfor a suitable constant Dy
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Proof. To show that E(χM) = 0 under the conditions \n\ ̂  [Z/5] + j or | \n\ — L\ < j
is trivial. To prove (5.5), note that NE(H(i)) = 0 unless Z ( ί ) contains an animal of the
size j or bigger. Let A be the operator on /-dimensional space (l^j) defined by

A(λl9λ2,...9λι) = H0+ Σ U ,δι)δi9
ί=i

where Ho is a finite dimensional Laplacian (see (1.3)). Ordering eigenvalues of A in
the increasing order,

EΛλuλ2, . . . , λt) < E2(λl9λ29 . . . , λι) ̂  . . . S Eι(λl9 λ29 . . . , λι),

we observe that Et are continuous functions of (λ1, λ2, . . . , λt), and if any λt is large
enough, E1 > E [12]. If Ap = {(λl9 . . . , ̂ ) :ΛΓ £ μ) = p}, then X,, 1 g p ̂  /, are
disjoint bounded measurable sets. The estimates (5.5) are now obvious (we remark
that ε(L) part contains contribution from the animals within Z ( I ) of the size strictly
bigger than j , if any). The continuity of function Nj(E) is a consequence of
Proposition VIIL4.10 in [2].

Finally, let φ be the ground state corresponded to the eigenvalue α, . The regular
perturbation theory [17] yields that

E±(λl9 λ29 . . . , λj) = aj + Σ λi\ΦW\2

Furthermore, for E — a^ small enough we have

Nj(E) = μ{(λl9λ29 ...9λj): Σ l Φ ί O I 2 ^ + O ( Σ | A , | 2 ) < E - Uj} ,

where μ stands for a Labesgue measure. It is now elementary to show that as
E -» aj9

Nj(E)~Dj(E-aj)J

9 Dj = - 1

Remark. For d > 1, the constants Dj have a more complicated form, and are
intrinsically of combinatorial nature.

Since NE(Hω,L) = ΣnecLXn(ωl we have

Έ(NE(Hω,L)) v E(χ.(ω))
hm -yrj; = hm ^ j α

L-»oo ^ L-^oo neCL ^

l - j α '

It remains to show that

l i m _
L-^oo ^
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Let ηn(ω) = χn(ω) — E(χn(ω)). Then, if p is a positive integer, we get as in (2.4)

Σ η Λ ) (
neCL / \n<=CL

j(ί\ (5.7)

where constant C does not depend on L. Defining

AL(ω) = |E(N £ (i ί ω , L )) - N £ ( H ω t L ) | , (5.8)

we have as in Sect. 2.1,

P{ω: (2L) /β"1>4L(ω) ^ ε} ^ ^-L2pUa-luLp{1~J!t)

o

C
< _ T -P(l-ja)

For p large enough, p(l — j&) > 1, and the Borel-Cantelli Lemma yields (5.6).
When α = l//c and Ee(aj, α^-x), j > fe, the above argument applies without

changes. The case α = l//c, Ee(ak, α k _ i ) , is special, and to prove (1.9) we argue as
follows. In the construction in the beginning of section interval C [ L* ] + 1 is replaced
by an interval C [ ( l n I y ] + 1 for δ small enough. Lemma 5.1 is valid after replacement
of U with (In Lf, and Lemma 5.2 is valid as it stands. Thus

L-oo l n ^

It remains to show that for a.e. ω

L-co

with AL(ω) given by (5.6). First, one can show that

where C is a uniform constant independent of p and L. Thus

We have

P{ω: (lnL)~1AL(ω) ^ ε} ^ P{ω: exp(^L(ω)/ε)2 ^ exp((lnL)2)}

1
!exp(0nL)2 )

= L l n L '

and the Borel-Cantelli Lemma again yields the statement.
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Appendix

Proof of Theorem 2.2. For simplicity of notation we set n0 = 0. It suffices to prove
that under the conditions of theorem, (2.12) is valid for a.e. Ee(a, b) where (α, b) is
a fixed interval of finite size. We introduce boundary blocks Bk and main blocks Mk

as Bo = 0, M o = 0,

The restrictions of H to Mfc, Bk we denote by HMk, HBk, and by RMk(
n> m:> z\

RBk(n, m; z) the kernels of (HMk — z)~\ (HBk — z)Γ1. For meZd, let Mk be the main
block such that meMk, mφMk+1. Let's suppose that meMk\Bk-u the treatment
of the case meBk-x is analogous. Our first goal is to obtain a suitable cluster
expansion with respect to the blocks Mfc, Bk. For Im(z) > Id we have

where summation is over all paths τ connecting 0 and m. We will divide set of all
such paths into disjoint classes on the following way. Let Γ be graph whose vertices
are positive integers and whose bonds connect only successive integers. To every
path τ in Zd connecting 0 and m we correspond a unique path γ on Γ connecting
0 and k on the following way: y starts at 0 and whenever τ leaves Mt and crosses to
Mi+1\Mi or Mi-ι\Mh y jumps from vertex i to respectively vertex i + 1 or i — 1.
Thus, the set of all paths connecting 0 and m can be divided into disjoint classes,
associated to the paths on Γ connecting 0 and k. We denote by y the class
corresponding to y.

For any 7, the boundary dBj can be divided into two parts, the inner boundary

d-lnBj = {(n, m): (n, m) e dBj9 me Γf} ,

and outer boundary dontBj = dBj\dinBj. If path y is given by (1, i u i2, . . . , iu k) (in
fact, one has i1 = 2 unless the path is of length 1), we define a new sequence
(Ui>j2> ,jι) such that

. _ (is, if i s + 1 > is

k } i s -i, otherwise ,

and a sequence of boundaries Lί = dinBί, L\ = d0XltBu

L =(dinBis, if is + 1 > is;
Js \dOVLtBiE_i9 otherwise ,

L, =\doutBίs, if is+ί

js"'' I dint U^., otherwise .

If
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we can write

0, m; z) = Σ Σ ^ ( 0 , h;z) RBι(su *Ί, z)RMiι(fu ttι; z) .
(ίi,si)€5Li (ti^siJedL^
(t[, s[)edL[ (t'lJ3 s'iJedLί,

(If m = 0 the term l/(F(0) + Id - z)) should be added.) The strategy of controlling
Riy) is now clear: the resolvents of boundary blocks are small and will compensate
for the size of resolvents of main blocks. The following lemma, proven in [15], is the
main technical ingredient in establishing (2.12). We give proof for readers conveni-
ence.

Lemma A.I. Let Mk be arbitrary main block.

(i) For any L > 0 and any n, meMk,

μ{Ee(a, b); \RMic(n, m; E)\ > L] g C/L ,

where μ is a Lebesgue measure and C a uniform constant.
(ii) For any neMk,

μ{Ee(a,b): £ |KMk(n, m; E)\2 > L) ̂  4(#Mk/Ly/2 .
meMk

Proof, (i) Let Lk= ΦMk. Then

R
Mk

where φt are eigenfunctions and Et eigenvalues of HMk. We can write

ί ,
where measure v has atoms φi(ri)φi(m) at points Et. Since

Lk / Lk \ l / 2 / Lk \ l / 2

Σ IΦJ IΦml^ Σ I4Φ)I2 ' Σ I ^ H I 2

/

we have |μ | v a r ^ 1, and (i) follows from Kolmogorov's theorem (see [15] for an
elementary proof due to T. Wolff).

(ii) Let

and let

a{E)= Σ \RMM^E)\ = Σ
meMk i=l
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First, we have that

| μiAt) = 2L-1'2 § | ^ ( n ) | ^ 2 (Lfe/L)1'2 .

On the other hand

Chebyshev's inequality yields

1

and result follows.
We now finish the proof of Theorem 2.2 as follows. Equation (2.11) implies that

for E e (α, b) and for j large enough,

\κBj(n, m, ϋ j | s CDj }j , (A.ij

where C is a uniform constant. Without loss of generality we can assume that (A.I)
holds for j ^ 1. The part (i) of Lemma A.I yields that for ε > 0,

Σμ{£e(α,fc): max \RMj(n9 m; E)\ > εj1+δ} ^ ( C / ε ) Σ Γ ( 1 + < 5 ) < oo .
j n, meMj

Thus, for a.e. Ee(a, b) and for; ^j{E\

max \RMj(n,m;E)\^εj1 + δ .
n,meMj

Without loss of generality we can assume that j(E) = 1.
We now have that for any ε > 0

|R ( y )(0, m; E + iε)| ̂  |Cε|' y ' Σ I^M k (^ m ?^)U

where C is a uniform constant and |y| is the length of path y. Thus,

, m; £ + iε)|2 ̂  Σ #δBfc|Cβ|"y» Σ \RMh{t9 m; £ ) | 2 , (A.2)
γ (t,s)edL'Js

where summation is over all paths y on Γ connecting 0 and k. The inequality (A.2) is
derived under the condition that meMk\Bk-1. When meBk-1, arguing on an
analogous way, one can derive (A.2) (some care is required since path can connect
0 and m without leaving Mk-ί9 but with right conventions such ambiguities are
easily resolved). If Cε < 1/2 it is elementary to show that
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where Cί is uniform constant. Thus

X |K(0, m; E + ιε)|2 rg #dBkC
2(Cέ)2k X Σ *M f c(ί, m; E)

meMk meMk (t, s)edL'js

max £ \RMk(t,m; E)\2 .
t meMk

Since ΦMJ ^ CD^ for uniform C, part (ii) of Lemma A.I yields

μ{£e(α,b):max X \RMj(t,m;E)\2 > Djj*1***} £4/j1+δ,
t meMj

and thus for a.e. Ee(a, b) and for j ^j{E),

max X \RMj(t,m;E)\2SDdjjw+δK
teMj meMj

Again, without loss of generality we can assume j (E) = 1. Then, using that Dk ^ cfc,

we can derive that for a.e. E e (α, b) and ε small enough

where CUC2 are uniform constants. Choosing ε small enough, we obtain that for

a.e. Ee(a, b) there exists α, 0 < α < 1, such that

meMk

Consequently, for ε small enough

X |#(0,m;£ + iε)|2 < X X \R(09 m; E + iε)|2 < X α 2 k < oo ,
meZd k meMk k

and result follows.
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