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Abstract. We investigate spectral properties of random Schrédinger operators
H,= —4 + & (w)(1 + |n]*) acting on [*(Z?), where &, are independent random
variables uniformly distributed on [0, 1].

1. Introduction

It is already a part of folklore that multiplicative perturbations of the Anderson
model show rather “unusual” spectral behavior. The basic paradigm is the discrete
Schrédinger operator on [%(Z1),

H,um) = 2u(m) —u(n + 1) —u(n — 1) + V,(n)u(n),
Vo(n) = 28, (w)|n]",

where £,(w) are independent random variables with a bounded, compactly sup-
ported density r(x), and 4 is a parameter. For o« < 0 the above model has been
extensively studied in [5, 7, 8, 18] and their main results can be summarized as
follows (note that for o < 0, V,(n) — 0 as |n| —» co and thus ¢ (H,) = [0, 4]).

Theorem. With probability 1:

(i) For —1/)2 <a <0, the spectrum in [0,4] is pure point with eigenfunctions
decaying as exp(—C|n|'*?).
(i) For o < —1/2, the spectrum in [0, 4] is purely absolutely continuous.
(i) For o = —1/2 and A large, the spectrum in [0, 4] is pure point with polynomially
decaying eigenfunctions, while for A small H, will have some singular continuous
spectrum.
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For a > 0, |n|* — oo, but this does not imply that the spectrum is necessarily
discrete: If r(x) does not vanish in some neighborhood of 0, £, can get arbitrarily
small with positive probability and thus eventually compensate for the growth of
|n|* within infinitely many sites. That in turn can lead to nontrivial spectral
behavior. Consider the simplest case when &, are independent random variables
uniformly distributed on [0, 1]: It was shown in [9] that for a.e. w, H, will have
a discrete spectrum if and only if o > 1. Furthermore, if 1/k = a > 1/(k + 1),
Oess(Ho) = [y, o0), where a, is a strictly decreasing nonrandom sequence of posit-
ive numbers, o(H,,) = 0,,(H,,), and the eigenfunctions decay superexponentially.
Thus, while for a < 0 the essential spectrum is always [0, 4] with a transition in its
nature at a, = —1/2, for « > 0 the essential spectrum is always pure point but its
end-point is piecewise constant function of the parameter «(!). In this paper we are
interested in obtaining the multidimensional analog of the above results when
o > 0, namely we will study the operator

H, =Ho + &)1 + [nf*), a>0, (L1

acting on [*(Z9). In (1.1), |n| = (3_n?)"/?, &,(w) are independent random variables
uniformly distributed on [0, 1], and

Ho(n) = | ; () — ¢(m), [Hol =4d, (1.2)
n—-mly=1
where |n|, =) |n;|. We view &,(w) as a random field on &®),ez¢[0, 1] = ©, and
denote by P the corresponding probability measure, and by E the mathematical
expectation on Q. Before stating our main results, we introduce some notation. For
X <= Z* denote by C(X) the set of all ¢ el2(Z*) with support in X. Let 2 be the
form associated to Hy,

2@)= Y |¢m—omI*, (1.3)
|n —(Z,lyzL 1
where {n, m) reminds one that each pair appears in the summation only once.
Denote

AX)= inf 2(¢).

lloll=1
¢eC(X)

If #X <00, A(X) is the smallest eigenvalue of the spectral problem H,¢ = A¢,
¢(n) =0if ne Z*\X. A path between points n, me Z“ is a sequence of sites

T=Ny, Ny, .., M), =0 Me=m, |0 —nly=1. (1.4)

Set X = Z“is connected if any two points in X can be connected with a path which
lies within X. Following [10], we say that a set 4, = Z% is a k-animal (or just
animal) if 4, is connected and # A, = k. Modulo translation, there are only finitely
many animals of any given size k. Let

ay = ian(Ak) . (1.5)
Ay
It is obvious that g, is a strictly decreasing sequence of positive numbers. The
animals for which the infimum in (1.5) is attained we will denote by A ; and call
the tamed animals. As we will see later, taming the animals (namely, obtaining
control over a;, Ar ) is not an easy task at all.
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In the sequel, f(x) ~ g(x) stands for lim,, ., f (x)/g(x) = 1, and 7, for the volume
of a unit ball in R¢. With the above notation, our main results are stated as follows.

Theorem 1.1. H, has a discrete spectrum P-a.s. if and only if « > d. Furthermore, if
N, (E) denotes the number of eigenvalues of H,, which are less than E, we have that for
o> d and for ae. w

N (E) ~ a%’d-EW“ as E— oo . (1.6)

Theorem 1.2. If d/k = o > d/(k + 1) for positive integer k, for a.e. ® we have

(i) o(H,) = 0,,(H,) and eigenfunctions of H, decay at least exponentially,
(ll) o-ess(Hw) = [aka OO)’
(111) #O-disc(Hw) < .

Theorem 1.3. Let Ay, be the lowest eigenvalue of a Dirichlet Laplacian of a unit ball in
R4 Then

ap~k™2}, ask— o0 .

Remark 1. Only affecting the values of constants, we can suppose that the random
variables £, have common nonnegative absolutely continuous density which is of
the form x? on [0, §) for some B, 8 > 0. On the other hand if ¢, are uniformly
distributed on [ — 1, 1], Theorem 1.1 remains valid (with appropriate reformulation
of (1.6)). Part (i) of Theorem 1.2 also holds, while part (ii) has to be replaced with
o(H,)=(— o, ©).

Remark 2. By the exponential decay of the eigenfunctions we mean that the
eigenfunction of H,, corresponded to an eigenvalue E satisfies

|¢o, (M| = Co pexp(—aln) 1.7

for some fixed a > 0. Our argument can be easily modified to show that eigenfun-
ctions decay as

[¢0.5(M)] = Co,pexp(—aln|-In|nf) .

The constant Ap, introduced in Theorem 1.3, coincides with the smallest zero of the
Bessel function Jy,-;. Thus Ap =24048 ... for d =2, Ap =n for d =3, and
Ap ~ dJ2 for d large.

Remark 3. We will give two proofs that the spectrum of H,, is pure point. The first
one is rather simple and is based on the recent results on localization obtained in
[14, 15]. The first proof does not yield the satisfactory decay of the eigenfunctions,
nor can its strategy be used to investigate the discrete spectrum. The second proof,
although more complicated and relying heavily on the particular structure of our
potential, yields immediately (1.7) and part (iii) of Theorem 1.2.

For the model (1.1) when « < d, one can also investigate the natural analog of
the integrated density of states. Let C;, = {n: max|n;) < L} be the box of side
L centered at the origin. The form on C(C;) (recall (1.3))

2(9) + Vo, ¢)
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yields a finite matrix (it is just a restriction of H, to C with Dirichlet boundary
condition) whose number of eigenvalues which are less than E we denote by
Nw,L(E)' Set dg = 0.

Theorem 1.4.
() If d/k > o > df(k + 1) and E€(a;, a;~1), 1 £ j =<k, then

= N,(E) (18)

L- oo
exists for a.e. w and is a non-random function.
(i) If « = d/k and E€(aj,a;-1), 1 < j <k, (1.8) is valid. If E€(ay, ax—-,) then
Nw,L(E)
InL

lim

L-w

= Ny(E) (1.9

exists for a.e. w and is a non-random function.
In both cases, N;(E) is a continuous function on (a;, a;- ), and
N{E)~ C{(E —a;) asE—a;.
The constants C; are of combinatorial nature.

The continuous analog of the model (1.1) is discussed in [11].

The paper is organized as follows. In Chapter 2 we prove Theorem 1.1, part (ii)
of Theorem 1.2, and give a simple proof that ¢(H,,) = 6,,(H,) P-a.s. In Chapter 3
we prove Theorem 1.3 and in Chapter 4 we finish the proof of Theorem 1.2. In
Chapter 5 we prove Theorem 1.4. Finally, in the Appendix we prove the result
(announced in [16]) which has been used in the simple proof of localization.

2. On the Discrete and Essential Spectrum

2.1. Proof of Theorem 1.1. A sufficient and necessary condition for Hy + V,,(n) to
have discrete spectrum is that

le(n)l—)w aS|n|—»oo . (2.1)
Let ¢ > 0 be fixed and denote
A; = {0 &) (L + ) < ¢} .

P(4;) =c¢/(1 + |n|*) and ), P(4;) converges if and only if « > d. The Borel-
Cantelli lemma implies that (2.1) is valid for a.e. w iff « > d, and the first part of
Theorem 1.1 follows.

To calculate the eigenvalue asymptotics, first note that monotonicity of N, (E)
implies that it is enough to consider the case when E — o0 as an integer. We
proceed as follows. Denote by

L if w) (I +[n)SE+4d;
0, otherwise .

1i (n, ) = {

and set S (w) =Y. ,eza xi (n, ). Because || Hol| = 4d, we have
Sg () £ No(E) £ S¢ () -



Spectral Properties of Random Schrédinger Operators 27

Since

E +4d
ESF)=#{m(+n)SE+dd}+ Y tad
nil+iroptaa 1+ (0

one easily obtains

llm E_d/aE(SE ) = T4 + j p x
E- o Jx|>1 [x]|
Tq
= . 2.2
v —d 22
It remains to show that
E~ S —E(SF))—»0 as E— o P-as. (23)

First note that
E((SF)) <2+ '<(# {n:(1 + [n|") < E + 4d})*

oy E +4d )
s mﬂ (1 )

.....

ni>E

and thus limsupg., E “*"E((S§)*) < C, where C is a uniform constant. Let
ni (n, ) = xif (n, w) — E(x (n, w)). ni (n) is a sequence of independent (but not
identically distributed) random variables satisfying |5 (n)| < 2, E(y# (n)) = 0. We

have
E((SE E(SE ) Zk) = (( Z ’15 () > >

neZ?
< C-E((S£))
< C- e 2.4)

for a uniform constant C. The first inequality in (2.4) follows from simple combina-
torics and observations that

# {n:ng (n, ) £ 0} < S, E< Y n%(n)>=

neZd
For ¢ > 0, Chebyshev’s inequality yields
E “2UE((S — E(S))™)

82k

Py =P{E""|Sg —ESi)| > ¢} <

E —dk/a

SC—5—
= o2k

If dkjo > 1, F-44+1 Pg < 0, and the Borel-Cantelli Lemma yields (2.3).

2.2. On the Essential Spectrum. In this section we prove that for d/k = o>
d/(k + 1), Oess(Ho,) = La OO)
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Denote I = 4k Z* and decompose Z¢ = ( ),e; 7,, where 7, is the cube of
volume (4k) centered at n. Let A7 be an arbitrary tamed k-animal which contains 0,
and denote by A% its translation for the vector nel. To show that

Oess(Hy) @ [ar, 0) P-as. (2.5)

it suffices (using Weyl’s criterion and fact that essential spectrum is closed set) to
construct for every rational 4 > 0 and for a.e. w a sequence ¢; satisfying

lim [[(H, — 4 — a)eil| = 0. (2.6)

i= o
Fix a sequence b; — 0, and denote for nel
Al = {w: A —b; < V,(x) <A+ b; for xe A}} .

P(AY) 2 Cb;/(1 + |n|*)* for a suitable uniform constant C, and thus Y ,.; P(A}")
diverges. The Borel-Cantelli lemma and diagonal argument implies that there exist
with probability 1 a strictly increasing (w-dependent) sequence n; such that

| Vo) — Al < b; for ne Ay .

If ¢, is eigenfunction corresponded to a;, set @, to be zero outside A7 and denote
;(n) = @o(n — n;). It is trivial to check that (2.6) is satisfied and (2.5) follows. It
remains to show that

info.(H,) = a;, P-as. 2.7

Let B(n, 1) = {m;|n —m|, <1}. We will over and over again make use of the
following

Lemma 2.1. For y > 0 let
B, = {w: in the box B(n, |n|") there exists k + 1 points n; such that V,(n;) < |n;|"} .
(2.8)
Then, for y small enough, with probability 1, only finitely many events B, take place.
Proof. 1t is easy to show that for y small enough
P(B,) < C+[n|*TD@* 170 < Cn| 472,

where C is a uniform constant. Thus, for such v, ), P(B,) < co and the Borel-
Cantelli lemma yields the statement. |

The discrete version of Persson’s theorem ([4], Theorem 3.12) states

inf O.ess(Hw) = sup inf ((pa Hw (,0) .
K c Z¢ ¢eCrin(Z\K)
#K<cwo  |pll=1

Let K = K(w) be a box, centered at 0, of large enough side so that outside K no
event B, takes place for a.e. w. Let

R = inf |n|”,
n¢K

and let
A, ={neZ"\K:V,(m) <1} .
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For ae. w, A4, is a disjoint union of animals of the size # <k. Let
B =Z%(KuUA,), and for ¢ € C4;,(Z*\K), || ¢|| = 1 denote

¢1 — {(ﬁ(n)a if nEAw; ¢2 - {45(71) if neBw;

0, otherwise; 0, - otherwise .
Obviously,
(@1,62)=0, l¢1]* + l2lI>=1.
For R > a, we have
(Hot, §) = (Ho®1, ¢1) + (Ho2, $2) + 2Re(Hy 1, ¢2)
Z all¢i? + Rl §2 1% + 2Re(H, ¢, ¢2)
za+ R —a)l 21> = 21 Holl " o111 - | 2]

164>
gak_R a
- Uk

Consequently

16d*
info-ess(I{w) Z- A — R

P-as.

— ay
By taking K big enough, R can be made arbitrarily large and (2.7) follows.

2.3. A Simple Proof of Localization. We first fix some notation. Let 0X be defined
as

0X ={neX:(AmeZ\X)|\m —n|, =1} . 2.9)
For X, YeZ¢ let
d(X,Y)=min{|n —m|,: neX, meY}.
The matrix elements of the resolvent of H = Hy + ¥ we denote by
R(n,m; z) = (,, (H — 2)"16,,) .

The following (deterministic) result, which we will prove in the Appendix, has been
announced in [16].

Theorem 2.2. Suppose that we have ascending sequence of connected sets in Z*°
I'cltcl'ycI'fc...cl'y cltc...
such that
#IE =08 #ol,F=0DIY), d,=dI,,I,}), (2.10)

where D, — o0 is a sequence of integers satisfying D, < ", for some c. Let V be
a potential satisfying

V(m)z C(Dy~'nt P ifme I\, 2.11)
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for some C,5 > 0. Then, for every ne Z* and for a.e. EcR (with respect to the
Lebesgue measure)

limsup Y |R(n,m;E + ig)|* < o . (2.12)

e>0 meZd

The above theorem is a by-product of some recent results [14-16] on the
localization in one dimension. On the intuitive level [15, 19], high-potential walls
in I',F\I',” are under conditions (2.10), (2.11) effective in stopping tunneling at large
distances. An immediate consequence of (2.12) is that o,.(H) = 0.

To see how model (1.1) fits in the above picture we proceed as follows. Let C;,
Ci be boxes of the sides 2¢ — [2¥7717], 2¥ + [2¥~ 1] where y is chosen as in (2.8). It is
easy to show (using Lemma 2.1) that for a.e. w there exists connected sets I, (w),
It (w), such that for k > kg (w)

Cea Iy (@ eI (@) = G, dy=dI (), I (@) 2 C,27,

and that V,(m) > C,2¥ for meI'; (w)\I'y (w). Thus, (2.10), (2.11) are obviously
satisfied, and we have that for a.e. w and a.e. E and for every ne Z*¢

limsup Y |R,(n,m;E + ie)|> < oo . (2.13)

e>0 mezd

Equation (2.13) and the Simon-Wolff theorem [2, 20] yields that ¢(H,,) = 0,,(H,,)
for ae. w.

Using Theorem 2.2 we get an easy proof that for the non-stationary model (1.1)
(and for many others with unbounded potential) we have pure point spectrum. On
the other hand, by their very nature, the theorems of the above type [16] cannot be
used to prove exponential decay of eigenfunctions or to analyse the discrete
spectrum. For that, one has to rely more heavily on the particular structure of our
potential, and we will do it in Chapter 4.

3. Taming the Animals

This chapter is devoted to the proof of Theorem 1.3. We start by introducing the
continuous analog of (1.3). If Q is a region in R the Dirichlet Laplacian — A} is
the unique self-adjoint operator whose quadratic form is given by the closure of

D)= | | Vul*dx

on C§ (). In the sequel we will suppose that all regions under consideration have
a piecewise smooth boundary. If |2/, the Lebesgue measure of Q, is finite, — 4§ has
a compact resolvent and its smallest eigenvalue is given by

A@)= inf D). (3.1)
ueC;‘;(Q)
llull =1

The corresponding eigenfunction u is a C®(€2) function satisfying

—Au(x) = A(Q)u(x) for xeQ, u(x)=0,if xedQ .
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It is also known that u(x) > 0 if xe Q. For positive r let
Ay =Inf{A(2):]12| =r} . (3.2

The infimum in (3.2) is achieved when Q is a ball of volume r [4], 4; = 4, and
A, = Ap/r*!. For notational simplicity, in the sequel we will suppose that d = 2. We
will prove

Lemma 3.1.

A
a2 (14 0(1/4/k)) -
Lemma 3.2.

s/, 1+00 1+ 00/ /k)
cZ2 Ty #0Ar Jk
Lemma 3.3. If Ay, k = 1 is a sequence of tamed k-animals, we have

#aAT,k
k

lim

k— 0

=0.

Theorem 1.3 is an immediate consequence of the above three lemmas. Their
proofs are somewhat subtle and we devote to each a separate section.

3.1. Proof of Lemma 3.1. To avoid confusion, throughout the chapter we use Latin
letters to denote elements of L?(R ‘i) and Greek letters for elements of [2(Z¢). By
Il* | we denote the norm on R? glven by [](sl, &)l = max{lsll Iszl} To any
subset X of Z? we correspond a region X, in R? whose closure is given by

)Za={xeR2:supI|x——y]|w§a}. (3.3)

yeX

If A, is an arbitrary animal, 4; ,,, the region given by (3.3) with a = 1/2. For
A(Ayx,1,2) given by (3.1), we denote the corresponding eigenfunction by u and set
u(x) =0 if x¢ Ay 1/2. To every xeF = {xeR?:| x|, < 1/2} we associate a func-
tion ¢, on Z? as ¢.(n) = u(n + x), ne Z2. Obviously, ¢.(n) + 0 iff n¢ A,. Further-
more,

flol?dx =Y un+ x)?dx =Y [ u(n + x)*dx = |ul?*. (3.4)
F F n n F

Let e; =(1,0), e, = (0, 1). We have fori = 1,2,
[ Y (@ + &) — ¢u(n)*dx = Z f (u(n + x + ¢;) — u(n + x))*dx

B <1 ou(n + x + te,)dt)2 i
|
F

<6u(n +x + te)) dxdt

Xi

du(x)\?
R2 < 0xl
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Summing over i we obtain

| 2(¢,)dx < D(u), (3.5)

and consequently there exists at least one x, € F such that
D($xo) < D(W) = A(Ax, 12) |ull* = A(Ax, 12) [ d, I
It is immediate that
a S A(Ar) < A(Ay, 1) -

Leta>1 /\/E be arbitrary, and denote by B(r) the ball of radius r centered at 0. For
k large enough let S = B(\/k/n — a)n Z*. We have

#S = 1S12] < 1B(/k/m — a + 1//2) < |B(/k/m)| = k , (3.6)

and so there exists a k-animal A, that contains S. We have

Ai 12 2 812 2 B(/k/n — a — 1/\/5) ,

and consequently

e < A(Ay, 12) £ AB(Jk/n — a — 1//2)
Ao

TSk —a—1./2°
A
=2+ 0(1//k)) .

The lemma follows.

3.2. Proof of Lemma 3.2. Let A, = Z? be an arbitrary animal, and let ¢ be the
normalized eigenfunction corresponding to A(A4;). We extend ¢ to a continuous
function u: R? - R in the following way: u(k) = ¢ (k) if ke Z2, and on the each
quadrant Q;; = {(x;,X2): i <x; <i+1,j< x, < j+ 1}, uis of the form

u(xl, XZ) = Qj + bijxl + CijX2 + dijxle .

Such extension exists and is unique. We divide the rest of the argument into three
steps.

Step 1. D(u) < 2(¢). The change of variable ¢; = x; —i — 1/2, 6, = x5 —j — 1/2,
transforms Q;; into the quadrant Q = {(ey, &2):|e1| < 1/2, €| < 1/2}, and u(x) into
the function

U(e) =h+ agy + be, + ceq8, ,
for suitable i, j-dependent constants h, a, b, c. We have

| <8_u)2 dx = | <€g> de = [ (a + cey)*de = a* + ¢*/12, (3.7
2

¢, \0x1 o \0¢:
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and

S+ 1,7) — uli )+ i+ Lj+ 1)~ uliy j+ 1))

=S (UAR ~1/2) = U(=172 ~1/2)7
HUOR 1D - U-12,12))
- %((a —¢/2? 4 (a+c/2P) = d® + /b . (38)

From (3.7), (3.8) we obtain, summing over i, j,

0
j ((;) dx < Z(u(l +1,) —uli,j)?, (3.9)
R2
and similarly
ou 2 .. NN
[} o dx 23 (u@,j+ 1) —u(i,j))>. (3.10)
Rr2 \0X2 i

The result follows by adding (3.9), (3.10).
Step 2. |u||®> = 1 — 34(A,)/4. First, note that

[ u(x)?dx = [ (h + ag; + be, + cey ;) dey dey
Qi,j Q

=h% + (a® + b?)/12 + ¢*/124
=h?=u(i+1/2,j+ 1/2)*.
Consequently,

lull> =Y ul + 1/2,j + 1/2)* . (3.11)
i,
Let Z2 be a dual lattice of Z2, obtained by translating Z? by the vector (1/2, 1/2).
Let T: 12(Z2) > 12(Z?) be the averaging operator defined as
TY(i+1/2,)+1/2) = Z S WG+ 1/2 % 1/2,)+ 1/2 + 1/2).
£+

From its very definition, u|z. = T¢, and
lull = llullzzll = [Tl . (3.12)
The adjoint T*: 12(Z%) — [%(Z?) is given by
wors o1 . :
+,

and we have | T|| = | T*|,
lul 2 I T*Te| . (3.13)
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Let B,(a) be a ball of radius a centered at » (in the euclidean metric), and denote
by B(a) the n-independent number of integer points contained in B,(a). Let
K,: 12(Z*) - 1%(Z?) be defined as

1
K,un) = — u(m) .
( ) B(a) me%}.(a) ( )
For example, Hy = 4(K; — 1). For any k we have A(4;) <4, ¢ =0 on A4,, and
consequently
K1) = (1 — A(A4)/4)p(n), Kid(n) = (1 — A(4)/4 ¢ (n) .
A direct calculation yields

1, 1 1
T*T= 1+ K + K,

1 1
K;3=2K} - K51

Thus, using (3.12) we obtain
1 1
lul 2 IT*Té1l 2 (T*Te, ¢) 2 5 (1 — A(A)/4) + 5 (1 — A(A/4))*,  (3.14)

and consequently,
ul® = 1 = 34(4,)/4 .
Step 3
ay = — .
k 1+3-#0Ar,/k
From the above two steps we obtain, if A4(4;) < 4/3,
D _ 9 _ A
ful =1—=34(4/4 1 —34(4)/4
Let A4, be given by (3.3) with a = 1. u belongs to the quadratic form domain of the
Dirichlet Laplacian in the region A4, ;, and from (3.15) we get

A(Ay)
Aer) S T30

o, L+ 0(1//k)

(3.15)

Consequently,

A(Ax,1) > AplAy 1|71
3A(Ak,1)/4) T 1+ 3Ap| Ay (17 1/4

= Jpl i, 1|7 (1 + O(1/k)) . (3.16)

Equation (3.16) is trivially satisfied if A(4;) > 4/3, and so is true for all k. We also
have [A; 1| < # A, + 3+ #0A, and consequently

A(Ay) 2 iz

b o 1+ 0(1//k)
A(Ay) 2 KT 3 404, (I +0(1/k) =z T K3 £04, (3.17)
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Equation (3.17) is true for any k-animal, and in particular for any tamed k-animal
At The lemma follows.

3.3. Proof of Lemma 3.3. For X < Z denote

0,X = {me X: there exists a path of length < n starting at m
and ending at me Z>\X } .

Obviously, 0; X = 0X. If Az, k > 0, is a chosen sequence of tamed animals, we
will prove

lim # A

k—= + k

=0. (3.18)

The lemma follows by setting n = 1 in (3.18). As before, ¢ denotes the normalized
eigenfunction corresponded to a, = A(Ar ;). For X < Z4 let

Il% =2 lom)*.

neX

Again, we split the proof into three steps.

Step 1. || ¢13,4,, = Olax) = O(1/k).
If med,Ary, there exists a path of length I<n, m=my,m,,...,m,
|mj_y —m;ly =1, m¢Ar . We have

1
lpm) = 3 [¢(m;—1) — d(m))*

j=1

1
lpm)> <n Y, [¢pm;-1) — dp(m))|* .

i=1

Any couple (m, m’), [m — m'|. = 1 can belong only to finitely many paths of length.
n, the number depending only on n, and consequently there exists a uniform
constant C, so that

Y skP<=C, Y lom)—dm)|* =C,ra=0(1/k).

mednAr i | ,<m’,|m> .
m —mj+ =

Step 2. Denote Of = Ar \0,Ar, and let y(m) = max{0, ¢(m) — b/\/lz} for
0 < b <1 Then

(@) 2(y) = 2(¢).
(b) lyll=1—0>.
() If Z} = Of u {me Ar .. (m) > 0} then # (Z;\O}) = O(1) as k — 0.

The part (a) is trivial. To prove (b), let d(m) = max {¢(m), b/\/E }. Then
1la.= X 1mPE<1gI>=1, ym=dm) —b//k,

meAr i
and the Minkowski inequality yields
~ 1/2
IWH;H¢MN—< » wm> >1-b.

meAr
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To prove (c), note that from Step 1 we have

# {med,Ar,: p(m) > b/ /k} = 0(1).
On the other hand, y(m) > 0 iff ¢(m) > b/ﬁ and (c) follows.

Step 3. If o, = lim supy, o, (# 0, A1 1)/k then lim,_, , o, = 0.
We first remark that 0 < oy <oy £... =1, and consequently lim,_, , &, = «

exists. Let 6 = 1 — « and suppose that 6 < 1. Let pe(6, 1) be arbitrary, and denote

6, = liminf 22
k— 0
From Step 2 we have that
#Z; _0(1) #0,A7
PRl +1- p , (3.19)

and consequently 6, = 1 — a, < p for n large enough. Step 2 also implies that for
any b > 0 and any ko e N, there exist k, m, k > ko, m < pk, so that # A} = m and

AZ}) £ a/(1 = b)* . (3.20)

First, (3.20) implies that 6 = 1/4. Otherwise, we can choose p < 1/4 and derive from
(3.17), (3.20)

y
ﬁ-(l + 0(1/m)) £ a, < A(Z})

A
(1 fkb)z = - e (Lt oK), (2

IIA

m/k < p, and so when k — co0, m — co as well, and we obtain 1/4 < p(1 — b)? for all
b > 0, which contradicts the choice p < 1/4.

Let 0 < ¢ < 1 be chosen in such a way that p/8 < 1/(1 — ¢). For nlarge enough,
6, < p and consequently 6/6, = 1 — &. There exists a sequence k; - oo so that

1- #anAT,k,
m —k— =, .

Jjo J

On the other hand, from (3.19) we derive

#O0n+1 AT K, <«

limsup——k—— Sapp <1,
jo o j
. #O0k . #O0k
lim L =0, lminff——"—=>0,.,=0.
j—= oo J Jj—o oo J

Because 00} = 0;\O%. 1, we have

v 0, —
lim sup #00, 6.~ 0

= <éE€.
jo oo #OZJ On
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Again, Step 2 (c) yields

n

lim su #0Zi, <
* j—.oop #Z;:j '

For j large enough, to any k; we correspond m; with m; < pk; so that #Z; = m;
and (3.20) is true. It follows from (3.17) that for any 6 > 0 and large enough j

Ip(1 = 3) o Jp(1 =)
my(1 + 3+ #0Zf Jm;) = pk;(1 + 36)

On the other hand, from (12.1) and Lemma 12.1 we obtain

AZi) 2

A(Zy) =

a, Ap .
RN

and consequently for a large j we ha\'/e
1-9
(1+3e)(1+9)

The numbers b, ¢, 6 can be chosen to be arbitrarily small and so p = 1, which
contradicts the choice of p, namely that § < p < 1. So, 8 = 1, and for all n, a, = 0.
The lemma follows.

pz(l—b)?

4. On the Pure Point and the Discrete Spectrum

The following simple consequences of Lemma 2.1 will be of essential importance
below. Let d/k = o > d/(k + 1), and for suitable y let

A, ={n:V,m < |n’} .
According to Lemma 2.1, we have a decomposition

Ao =) An,w), An, w)n Am, w)=9, 4.1)

nz0

for a.e. . (In the sequel we drop the w dependence whenever it is clear within the
context.) 4(0) is a finite region chosen in such a way that for n¢ A(0) no events B,
take place (see (2.8)), and A(n) are animals of size < k. Let ~ be a relation of
equivalence on {A(n):n > 0} defined as

Am)~ Am)<3Iny =n,n,,...,my=msuch thatfor 1 <igl—1,
d(A(n;), A(niv 1)) £ Cmax{[s], |s'|":s€ A(n;), ' € A(ny4 1)} .

We order classes of equivalence by their distance from the origin (viewing classes as
subsets of Z?), ordering arbitrarily the equidistant ones. Let G® be a union of the
elements of the i* class. By taking C small enough, it is easy to show that #G® < k
(otherwise some event B, happens for n¢ A(0)) and that

d(GY, GY) > Cmax {|s[",|s]":5eGY, s e GV} .

We will refer to G® as a connected group of animals.
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The point of the above is the following: if we think about G as potential wells,
then, for typical w and outside a finite (w-dependent) set, these wells have no more
than k points and are separated by high and long potential barriers. The probabil-
istic framework differs now from the one in Sect. 2.3, where we were interested only
in potential wells encircling each other successively and thus preventing tunneling.
By taking into account the structure of G, one should be able to obtain better
control of the resolvent matrix elements, and that will be our main concern below.
We will prove

Theorem 4.1. Let I = (0, E). Then for every Eq > O there exists a > 0 such that for
every ne Z* and for a.e. weQ and a.e. E€l (with respect to the Lebesgue measure)

sup |R,(n,m; E +ig)| = C,, 0, gexp(—alml|) . (4.2)

O<e<1

The above theorem is certainly expected on intuitive grounds. (Actually, more is
expected, namely that |m| can be replaced with |m|? for some > 1, although we
will not try to prove that.) Simple modification of our argument can improve decay
in (4.2) by a factor In |m|.) Once proven, Theorem 4.1 yields part (i) of Theorem 1.2
by the well-known argument of Simon-Wolff [20] or Delyon-Levy—Souillard [6]
(see also [2]).

The rest of this chapter is devoted to the proof of Theorem 4.1. Part (iii) of
Theorem 1.2 is a simple by-product of the analysis below, and necessary modifi-
cations in the argument are outlined in Sect. 4.2.

The following decomposition of a probability space Q = Qyezal,, I, = [0, 1],
will be useful. If y > 0 is the constant from Lemma 2.1, writing

L=1uly, I7=[0,Inl"/(1 +n)], I =T[Inl/1 + |n"), 1],
we obtain the decomposition

o=@

c

indexed by all possible sequences of 0 and 1’s. One simple consequence of dis-
cussion in the beginning of this section is that one can pick countably many {€;};>;
out of {Q,} such that Ui Q; has a full P measure, and that every Q; has the following
form: for n outside finite set F; (which can be chosen once for all we Q;), I2’s are
exactly corresponded to the »’s which belong to the connected groups of animals,
or more precisely, at site n we have I.2 iff ne G® for some i. Furthermore, G®’s are
independent of the choice w € Q;, and thus our decomposition fixes the position of
“potential wells,” although potential within them can vary (at site n, between 0 and
[n|”). We will prove below that (4.2) is valid for a.e. we Q, and a.e. E€ . Since our
argument does not depend on the choice of Q, (it also applies to any @, k > 1, all
what we use is the fixed position of “wells”), it yields the statement. In the sequel
any o, unless otherwise stated, will refer to an event in Q;.

Let L>1 be a positive constant and define a new potential (Cp =
{n: max|n;| < L})

Vo= Vo(n), if n¢Cp;
>l L, if neCy,.
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The right choice of L will circumvent technical problems with convergence of the
resolvent cluster expansion constructed below. First, by making L large enough, we
can suppose that C; o F;. If

Ha),L = HO + Va),L
we have that H,, is a finite rank, L-dependent perturbation of H, ;. Denote by
Rw,L(”a m; Z) = (5ns (Ha),L - Z)—lam)

the matrix elements of the resolvent of H,, ;. The main technical ingredient in our
proof is the following

Lemma 4.2. To every L large enough we can correspond Q; < Q;, Q; — Q; as
L — o0, such that for a.e. weQ;,ie Cy, me Z* and for every fixed E € I, we have for
some fixed a > 0,

sup |Roy, (i, m; E + ig)] < C,,, Lexp(—alm]) . (4.3)

0<e<1

Lemma 4.1 yields (4.2) as follows. Since

H,—H, = Z Ai(*, 0;)0; ,
ieCy

where A;eI? — L or I} — L, we have that for we Q, and L large enough

R,(n,m;z) = R, p(n,m;z) — Y AR, (i, mz)R,(n, i z) . (4.4)

ieCy,

Since R, (n, i; z) is a difference of two Herglotz functions in the upper half plane, we
have that for a.e. weQ, and for ae. E€l,

max sup |R,(n,i;E +ie)| <D, ok,

ieC, 0<e<1

where D, ,, ¢ is a finite constant (whose dependence on L is comprised within ).
Thus, (4.2) is valid for a.e. weQ; and a.e. E€l. Since Q; - Q; as L - o0, (4.2)
follows.

It remains to prove Lemma 4.2.

4.2. Proof of Lemma 4.2. For arbitrary X < Z¢ denote
O X = {meZ\X:(AneX)|m —n|, = 1},
O X = {meX:@neZ\X)|m —n|, =1},
0X = {(m,n):medeu X, n€0in X, Im —n|y =1} .

If H=H,+ V, we say that Hj is the operator H with Dirichlet boundary
condition along 0X if

Hp,—H= Z ('96m)5n+(.55n)5m . (45)

(m,n)edX

Hp, is a direct sum of two operators, one on [*(X) and one on [?(Z\X). The part
which acts on [2(X) will be referred to as the restriction of H to X.
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Fori = i(L) all connected groups .G“’ have empty intersection with C,.. Denote
by HY | the restriction of H,, ; to G? for i = i(L), and by RY | (n, m; z) the matrix
element of the (HY, — z)~*. Let

© — 7d 0]
GO =2 U 6@).
izi(L)

The size of L will be fixed by requirements below (recall that the statement of
lemma is valid for L large enough). We denote by H{”, and R{Y, the restrictions of
H, 1, R, to G From now on, let neCy, meZ" be two fixed sites. For
definiteness we will suppose that meGY for some j = i(L), the discussion of the
case when me G© is analogous.

For Im(z) > 2d we have expansion

w L(n m, Z ;gm_—z (46)

where series on the right converges uniformly, and sum is over all paths connecting
n and m. By regrouping the terms in the series, we can write

Ronmz)=—3% % > Y RO si52) ROL(EL 3 2) -
k=0 (ifs..., ir) (s1,1)€dG™ (g yeoG!)
izi(L) (s}, t))edG™

“ROL(SY, 525 2)* RGA(Ea, t3 2)* ROL(s2, 5352) -
RE(ths tis 2) REu(k, 85 2)* R (t, my 2) (4.7)

The above formula clearly follows from (4.6), separating the contribution of the
paths within different G®s, and using the formula analogous to the (4.6) for each
RY,. Fori>0,j>0 we set

d(i,j) = max{|n —m|;neGY, meGY}, d,(i) = max|n—m|.
meG®

The following lemma gives the basic estimates needed to control (4.7).
Lemma 4.3. For Ecl, 0 <& < 1 and L suffciently large:

(i) There exist random variables A’ (w) for every i = i(L) such that for t € 0;,, G,
teGo,

IROL(t, ¢ E + ie)] < AP () .
(ii)
PlweQ,: AP (w) > M} < C/M

for a uniform constant C independent of i.
(iii) If €0y G® and s' €0, GY) we have

ROL(s, s; E + ig) £ Crexp(—ad(i,j)) ,
ROL(n, 3 E + ie) < Crexp(—ada(j)) -

Constants C;, a; depend only on L and furthermore C;, — 0, a;, - 00 as L — 0.
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Proof. Let H= H, + V be a discrete Schrodinger operator, and let Hy be its
restriction to a set X < Z4, If § = dist(z, a(H)p)), it is a standard result (see e.g. [2],
Exercise 111.6.8) that for m, ne X we have

|Rp(m, n; z)| < %exp(—ln(l + 6/4d)|\m — nl) . (4.8)

Defining
AP (@) = 2/dist(E, s(HP1)) ,

we observe that part (i) follows from (4.8). Part (ii) is an immediate consequence of
Propositions VIIL.1.8 and VII1.4.8 in [2]. Part (iii) follows from (4.8) and observa-
tion that for L large enough

dist(E,oc(HS )2 L' —E;—4d. W
The sets 2, are defined as
Q= {we; AP(w) < |m|** for i 2 i(L)} .
Part (ii) of the above lemma yields
P(Qy) 2 P(2y) - _>Z(L) C/In|"*" = P(Q,) — O(1/i(L)) .

Since i(L) - o0 as L — oo sets Q; are as required by Lemma 4.1. For L large
enough, weQ;, E€l and for 1 > ¢ > 0 we have

|Ro,(n, m; E + ie)] < Crexp[—(ar/2)*[n —m|] Y (ow)", (4.9)

nz0
where

— d+1 0 . :
op = sup sup |ml D sup  |REL(s, 515 E + ie)
i2i(L) s€dextG" jzi(L) (s1,t1)edG?
tzeﬁime

"RPL(t1, 123 E +ig)| 2
In (49) C, —> 0 as L - o0. One can easily estimate

exp(—Din;l), (4.10)

ap < sup Cln*?

i2i(L)
where constants C and D are uniform. For L large enough, o; < 1, and statement
follows from (4.10).

4.2. Discrete Spectrum is Finite. To prove that for a.e. w the number of eigenvalues
lying in [0, a;) is finite, in the notation of Lemma 4.1, it suffices to show that to
every L large enough we can correspond Q; < Q;, | )@, = Q,, such that for we Q,,
H,, 1 has no spectrum in [0, a;) (since H,, ;, — H,, is an operator of rank (2L + 1),
we then have og4;.(H,) < (2L + 1)%).

H,, . has no eigenvalues in [0, @) if for all n, me Z*,

sup sup |R,, 1(n, m; E + ig)] < oo . 4.11)

E<ar >0



42 Y.A. Gordon, V. Jaksi¢, S. Mol¢anov, and B. Simon

We write the cluster expansion (4.7) of R,, 1, and estimate for E < g,
IR LE, U5 E + ig)| < 2/dist(ay, a(HSL)) = AL(0) .

The rest of the argument follows line by line that of the previous section.

5. Proof of Theorem 1.4

We will prove Theorem 1.4 in the case d = 1, the argument being essentially the
same for d > 1. For a purpose of this section it is convenient to redefine Hj
(operator with Dirichlet boundary condition) by subtracting (*, 9,)5, + (*, 0)0m
from (4.5), ensuring that H < Hj. For L a positive integer, let C;, be an interval of
size 2L centered at the origin, and let H, ; be the restriction of H, to C,. We
suppose that 1/k > o> 1/(k + 1), and that Ee(a;, a;-,) (ao = ) for some
1 £ j = k. The case o = 1/k, we treat separately.

Let 0 <6 <1 — jo, and for fixed w suppose that Cp ; = Cps+1 2 A(0) (see
(4.1), [-] stands for the greatest integer part). Define H), | from H,, , by setting
the potential to be of the size L within C; ;. In the sequel Ng(H) stands for the
number of eigenvalues of an operator H which are less than E. Since
[Ng(H,, 1) — Ng(HS, )| = O(L?), it suffices to prove the statement for Ng(HJ .).
We numerate the connected group of animals by their distance from the origin, and
set

ZP (@) = GY@)n(CL\Crs), Ziw) =)ZP(), ZP()=C\Z ().

Let H Lo be the operator obtained from H, ; by putting the Dirichlet boundary
condition along 0Z(w).

Lemma 5.1. There exist ¢ > 0 such that for a.e. w,

s -
lim iﬁ%ﬁ > 11m1nfw : (5.1)
L—ow L - L— L "
N o(H, . Ng(H?
lim sup ——(—E—%—L—) 2 lim sup —EL(lfja—L—) . (5.2)
L—- o L

Proof. (5.1) is immediate since Hw L = HJ ;. To prove (5.2) we proceed as follows.
Let R(n, m), R(n, m) be matrix elements of R = (Hor+1) ", R=(H, +1).
First, we have that

|R(n, m) — R(n, m)| < ché exp(—aln —ml), (5.3)

for uniform constants C and a (y is as in (2.8)). We will prove (5.2) in the case ne Z®,
meZ Y, the other cases having similar proofs. We have

R(,m)=Rmm) + Y S R(n, s)R(t, $)R(t, m) .

(5,1)e0Z® (s',1")e0Z"
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Using (4.8) we estimate

C
| < Faexp(—alt =),

IR(n, 5)| < Cexp(—aln —s|), |R(t,m)| < Cexp(—alt —m|),

IR, s)

where C and a are uniform constants, and (5.3) follows. .
R splits into direct sum of operators (after eventually renumerating Z“’s)

1

@ R® @R acting on @ 12ZYPI1*z?).

By permuting the basis of [?(C.) we can write R in the matrix form

RY 0 ... 0
R 0 R® ... 0
R=| | i ) )
o 0 .. RO

For 1 <i <1, R" is a matrix of dimension k; x k; for some k; < k. Let R be the
operator R in permuted basis, and let (ko = 0)

pi= max Y |RP(n,m)— R(n,m)|.
ki-1=nski m
It follows from (5.3) that p; < C/L" for uniform constant C.

Let 1/(4 + 1) be an eigenvalue of R and let ¢ be corresponding eigenvector If
max,cc, | (n)| is achieved for some ne Z ®i > 0, then proceeding as in the proof of
Gershorgin’s theorem [21], one can show that there exist eigenvalue E{¥ of R®
such that

|E — 2| < C/L”. (5.4)

If max | ¢(n)| is achieved for ne Z?, it is elementary to show that 1 = cL” for some
¢ > 0. Thus, for L large enough, the eigenvalues of HJ ; which are less than E are
on the distance C/L* from the eigenvalues of H,, ; which are less than E, and
statement follows.

_ The probabilistic part of the proof goes as follows. Let H be the restriction of
H, 1 to Z% and let y, be random variables defined on the following way:

() = Ng(H®), if neZ® and d(Z9,0) = |n|;
D) = 0, otherwise .

¥ are independent random variables for L large enough.

Lemma 5.2. If neCysyyj or ||n| — L] <j, E(x,(w)) = 0. Otherwise, there exist
constant ¢(L), e(L) — 0 as L — oo, such that

(1~ o(t) 7 < B 5 1+ o) A5 65)

where N,(E) is a continuous function on (aj, a;-,). Furthermore, N;(E)~
D(E — a;)’ as E — a; for a suitable constant D;.
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Proof. To show that E(y,) = 0 under the conditions |n| < [L°]+jor|n|—L|<j
is trivial. To prove (5.5), note that Ng(H®) = 0 unless Z contains an animal of the
size j or bigger. Let A be the operator on [-dimensional space (I = j) defined by

1
A(ll’}'25 cees }'l)z HO + z li(',éi)&i s
i=1

i=

where H is a finite dimensional Laplacian (see (1.3)). Ordering eigenvalues of 4 in
the increasing order,

Ei(di,22, .., W) <Ex(Ai, Ay, o, W) S S Eld, 4g, 05 A,

we observe that E; are continuous functions of (1, 4,, . . ., 4;), and if any 4, is large
enough, E; > E [12]. If A, = {(41, ..., 4):Ng(4) = p}, then 4,, 1 Sp <1, are
disjoint bounded measurable sets. The estimates (5.5) are now obvious (we remark
that ¢(L) part contains contribution from the animals within Z@ of the size strictly
bigger than j, if any). The continuity of function N;(E) is a consequence of
Proposition VII1.4.10 in [2].

Finally, let ¢ be the ground state corresponded to the eigenvalue a;. The regular
perturbation theory [17] yields that

Ei(A1, A2y ..., Aj)) = a; + Z)vi|¢(")|2 + O(Z [4:]%) .

Furthermore, for E — a; small enough we have
NJE) = pu{(k1, 22, . . ., &)1 Y1dOPA + O |4l*) < E —a;}

where u stands for a Labesgue measure. It is now elementary to show that as
E— aj,

1
TG

Remark. For d > 1, the constants D; have a more complicated form, and are
intrinsically of combinatorial nature.
Since Ng(Hy, 1) = Y nec, Xn(®), We have

ENsHor) _ i) 5 EG(®)

lim ———>=2 = :
Ll—flzo Ll*ﬂl L—w neCyp LI_N
LN.(E
=2 i .a) dx
0 (x|’
2
=———N(E).
1 — jo /E)
It remains to show that
1. 1) — Ne(H
lim ENe(Ho1)) = NeHor) _ o o0 ae o (5.6)

Ll—ja

L— o



Spectral Properties of Random Schrddinger Operators 45

Let #7,(®) = y.(w) — E(x,(w)). Then, if p is a positive integer, we get as in (2.4)

E<zmwf§a(zmwf

neCyp neCy,
<crtTmg (5.7)

where constant C does not depend on L. Defining
A(@) = |E(N5(Ho,1) = Ne(Ho,1)| (5.8)

we have as in Sect. 2.1,
Plo: QL)"* 14 (w)2 e} < < ¢ szua . p =i

C .
< 7 —p(1—jo)
= 82pL .

For p large enough, p(1 — ja) > 1, and the Borel-Cantelli Lemma yields (5.6).

When o = 1/k and Ee€(a;, a;—1), j > k, the above argument applies without
changes. The case o = 1/k, Ee(ay, a1 ), is special, and to prove (1.9) we argue as
follows. In the construction in the beginning of section interval Czs ., is replaced
by an interval Cy, )2+ for 6 small enough. Lemma 5.1 is valid after replacement
of L* with (In L), and Lemma 5.2 is valid as it stands. Thus

. E(Ng(Ho,1))
Iim ————== = 2N, (E) .
Llj?o InL K(E)
It remains to show that for a.e. w
lim @) _
Lo INL

with 4;(w) given by (5.6). First, one can show that
E((AL(@))*’) < CP(In Ly,
where C is a uniform constant independent of p and L. Thus

E(AL(w)zk)

E(exp(4AL(@)?) <Y <L,

We have
P{w:(InL) 'A.(w) 2 ¢} < P{w: exp(4.(w)/e)* = exp((In L)*)}

1
= xp(an L7 E (exp (4. (w)/e?))

LCley

é LlnL ’

and the Borel-Cantelli Lemma again yields the statement.
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Appendix

Proof of Theorem 2.2. For simplicity of notation we set no = 0. It suffices to prove
that under the conditions of theorem, (2.12) is valid for a.e. E €(a, b) where (a, b) is
a fixed interval of finite size. We introduce boundary blocks B, and main blocks M,
aSB():(b,Mo:o,

Bk=rk+\rk-, M, =(Fk+\Mk—-1)UBk—1 .

The restrictions of H to M,, B, we denote by Hy,, Hp,, and by Ry, (n, m; z),
Ry, (n, m; z) the kernels of (Hy;, — z) ™1, (Hp, — z)~ 1. For me Z* let M, be the main
block such that me My, m¢ M, .. Let’s suppose that me M\ By -, the treatment
of the case me B, is analogous. Our first goal is to obtain a suitable cluster
expansion with respect to the blocks M, B,. For Im(z) > 2d we have

1

R(O,m;2)=—Zﬂm’

T S€T

where summation is over all paths T connecting 0 and m. We will divide set of all
such paths into disjoint classes on the following way. Let I" be graph whose vertices
are positive integers and whose bonds connect only successive integers. To every
path 7 in Z* connecting 0 and m we correspond a unique path y on I' connecting
0 and k on the following way: y starts at 0 and whenever 7 leaves M; and crosses to
M;+ \M; or M;_\M;, y jumps from vertex i to respectively vertex i + 1 or i — 1.
Thus, the set of all paths connecting 0 and m can be divided into disjoint classes,
associated to the paths on I' connecting 0 and k. We denote by y the class
corresponding to y.

For any j, the boundary 0B; can be divided into two parts, the inner boundary

OinBj = {(n,m): (n,m)€dB;, meI; },
and outer boundary 0, B; = 0B;\0;, B;. If path y is given by (1, i, i5, . . . , i}, k) (in

fact, one has i; =2 unless the path is of length 1), we define a new sequence
(L, ji>j2> - - - » Ju) such that

]. _ is’ lf is+1 >ls’
k — . .
is—1, otherwise ,

and a sequence of boundaries L; = 0;,B;, L = 0, B,

L. = {ainBis, if is+1 > ls,
Js — .
OouBi,_,, otherwise ,

L. = aoutBis’ lf is+1 > iS9
% | OumBi,_, otherwise .
If
ROO,mz)=—Y T[] IR ,
te(y) set V(S) +2d—-z
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we can write

R(Y)(O’ m; Z) = Z z RM)(Oa [l;z).RBx(Sl’S’l’Z)RMi‘(t,l’ti;;Z) .
(t1,s1)€0Ly (tiJ,Si/)eﬁL,J
(t9,s})edL] (1, si)edL;,
15j=1

: RB.‘](Sil ) Sil; Z) Tt RMil(t;1-13 tiz)RBi'(sin Sliz)RMk(tlin m) .

(If m = 0 the term 1/(V(0) + 2d — z)) should be added.) The strategy of controlling
R™ is now clear: the resolvents of boundary blocks are small and will compensate
for the size of resolvents of main blocks. The following lemma, proven in [15], is the
main technical ingredient in establishing (2.12). We give proof for readers conveni-
ence.

Lemma A.l. Let M, be arbitrary main block.
(i) For any L > 0 and any n,me M,,
u{Ee(ab); | Ry, (n, m; E)| > L} < C/L ,

where i is a Lebesgue measure and C a uniform constant.
(ii) For any ne My,

u{Ee(a,b): Y. |Rug(n,m; E)* > L} < 4(#M,/L)'? .

meM;j

Proof. (i) Let L, = # M,. Then

where ¢; are eigenfunctions and E; eigenvalues of H,,. We can write

dv(4)
Ry (n,mE)=| ——,
M £E—A

where measure v has atoms ¢;(n)¢;(m) at points E;. Since
Ly Ly 1/2 Ly 1/2
2 | Bul* |l é( > |¢.-(n)lz> ( > |¢>i(rn)|2>
i=1 i=1 i=1

Soull-loull =1,

we have |ul,.r = 1, and (i) follows from Kolmogorov’s theorem (see [15] for an
elementary proof due to T. Wolff).

(i) Let
L 2
5 ¢i(n)]
_ SN2 — A
a(E)'—m;Mk|RMk(na m, E)| i=zl IE-—Ellz s
and let

A;={E€(a,b):|E — E;| < |$:(n)|/L*?} .
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First, we have that

Ly

> u(4) = 20712 Y 14| 2L/

i=1 i

On the other hand

Ly X 2
R\({J 4, i=1 (g (m)|/L)12 E

= % 2L i(m)
i=1

<2(L Ly

Chebyshev’s inequality yields

1
W{EeR\(J4):a(E)> Ly <+ | a(E)E = 2(Ly/L)""
L R\ 4)
and result follows.
We now finish the proof of Theorem 2.2 as follows. Equation (2.11) implies that
for E€(a, b) and for j large enough,

|Rg,(n,m; E)| < CDj @™ D=7, (A.1)

where C is a uniform constant. Without loss of generality we can assume that (A.1)
holds for j = 1. The part (i) of Lemma A.1 yields that for ¢ > 0,

Y u{E€(a, b): max |Ry,(n,mE)|>¢'"°} <(Cle)yj " < a0 .

n,meM;
Thus, for a.e. E€(a, b) and for j = j(E),

max |Ry,(n,mE)| <¢&j**°.
n,meM;

Without loss of generality we can assume that j(E) = 1.
We now have that for any ¢ > 0

IRDO,m E + i) < [Cel" ¥ |Ry(t,m E)|,

(t, s)e(iL}'s

where C is a uniform constant and |y| is the length of path y. Thus,

IR, m; E + ie)|* < 3 #0Be|Cel™ Y [Rpg(t, m E)? (A.2)
v

(t,5)ed0L],

where summation is over all paths y on I" connecting 0 and k. The inequality (A.2) is
derived under the condition that me M \B;_,. When me B, _, arguing on an
analogous way, one can derive (A.2) (some care is required since path can connect
0 and m without leaving M, _, but with right conventions such ambiguities are
easily resolved). If Ce¢ < 1/2 it is elementary to show that

2 (Ce"t < Cy(Cef,

Y
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where C; is uniform constant. Thus

Y |R(0,m; E + ig)|*> < #0B,C#(Ce)* Y. Y. Ry, (t,mE)

meM;j meM;. (t,s)edLj,

S (#0By)*CE(Ce)*  max ), [Rag(t, m E)|? .

t  meMp

Since # M; < CD{ for uniform C, part (i) of Lemma A.1 yields
u{E€(a, b max Y, |Ry,(t,m E)* > Djj> "0} < 4/j1 %0,

t meM;

and thus for a.e. E€(a, b) and for j = j(E),

max Z |RM_,(t9 m; E)|2 < D;gjzu +9)
teM; meM,

Again, without loss of generality we can assume j(E) = 1. Then, using that D, < ¢,
we can derive that for a.e. E€(a, b) and ¢ small enough
Y, IR0, m; E + ie)|* < C(Cpe)**,
meMy

where C,, C, are uniform constants. Choosing ¢ small enough, we obtain that for
a.e. E€(a, b) there exists o, 0 < « < 1, such that

Y IR, m; E + ig)|> < a? .

meM;

Consequently, for ¢ small enough

Y [ROmE+ig)> <Y Y |RO,mE+i> <Y a** <o,

meZd k meM; k

and result follows.
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