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Abstract. We construct in detail a 2 + 1 dimensional gauge field theory with finite
gauge group. In this case the path integral reduces to a finite sum, so there are no
analytic problems with the quantization. The theory was originally introduced by
Dijkgraaf and Witten without details. The point of working it out carefully is to
focus on the algebraic structure, and particularly the construction of quantum
Hubert spaces on closed surfaces by cutting and pasting. This includes the "Ver-
linde formula." The careful development may serve as a model for dealing with
similar issues in more complicated cases.

A typical course in quantum field theory begins with a thorough examination of
a "toy model," usually the φ4 theory. Our purpose here is to provide a detailed
description of a "toy model" for topological quantum field theory, suitable for use
as a foundation for more sophisticated developments. We carry through all the
steps of the path integral quantization: start with a lagrangian, construct the
classical action, construct a measure, and do the integral. When the gauge group is
finite the "path integral" reduces to a finite sum. This remark makes it clear that the
analytical difficulties simplify enormously, and that there should be no essential
problem in carrying out the process. Many interesting features remain, however.
The algebraic and topological structure are essentially unchanged, and are much
clearer when not overshadowed by the analysis. And even the analysis does not
entirely disappear: the details of the construction of the state spaces requires
a much more precise formulation of the classical theory than is usually given, and
reveals some incompleteness in the understanding of the classical theory for
continuous Lie groups [Fl].

Chern-Simons theory with finite gauge group was introduced by Dijkgraaf and
Witten [DW], who essentially cataloged the possible lagrangians and gave some
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sample calculations. Special cases were considered by Segal [S2] and Kontsevich
[K]. More abstract and mathematically-oriented versions are considered in
[Ql, Q2], and connections with the representation-theoretic approach of
Reshetikhin and Turaev are described by Ferguson [Fg] and Yetter [Y].

Let Γ denote the gauge group, which we assume to be finite. In Sects. 1 and 2 we
carry out the quantization: describe the lagrangians, classical actions, and path
integrals. The fields in this version are regular covering spaces P -> X whose group
of deck transformations is Γ. The action is a (torsion) characteristic number
associated to a class in H3 (£Γ; R/Έ). We represent this class in singular cohomol-
ogy by a singular cocycle, and use this to write the action (1.6) as an integral over X.
(The cochain plays the role of the lagrangian.) We caution that the resulting theory
depends in a subtle way on this choice of cocycle: a different choice gives a theory
which is isomorphic in an appropriate sense, but the isomorphism between the two
is not canonical: it depends on further choices. We must also make careful sense of
integration of singular cocycles over manifolds with boundary; this is explained in
Appendix B. The classical theory is somewhat unusual in that the action on
manifolds with boundary is not a number, but rather an element in a complex line
determined by the restriction of the field to the boundary. These lines, which
properly belong to the hamiltonian theory, are the source of much of the structure
in the theory. We defer some of the details of the classical theory to [Fl] and [F3],
which explores the classical Chern-Simons theory for arbitrary compact gauge
groups. The quantization in Sect. 2 is straightforward. Of general interest is Lemma
2.4, which explains the behavior of symmetry groups and measures under gluing,
and (2.18), which proves the gluing law in the quantum theory.

One distinguishing feature of the Chern-Simons theory (with any gauge group)
in 2 + 1 dimensions is its relationship to conformal field theory in 1 + 1 dimen-
sions. As a result one constructs quantum Hubert spaces not only for closed
surfaces, but also for surfaces with boundary,1 and these vector spaces obey
a gluing law related to the gluing law of the path integral. We explore these ideas,
which we term "modular structure," in Sect. 3. (The name derives from the term
"modular functor," which was coined by Segal [SI].) The quantization of the
cylinder produces a semisimple coalgebra A, and the quantum spaces attached to
surfaces with boundary are ,4-comodules. The gluing law (3.26) is expressed in
terms of a cotensor product. (We review the relevant algebra in Appendix A.) In
rational conformal field theories (see [MS], for example) one has a set of "labels"
which index the conformal blocks. They appear in the definition of a modular
functor [SI] and also in most treatments of Chern-Simons theory [W]. Here they
index the irreducible corepresentations of A, as we discuss in Sect. 4. The gluing law
for surfaces with labeled boundary is (4.11). The numerical factors which describe
the behavior of the inner products also appear in Kevin Walker's careful treatment
[Wa] of the SU(2) theory. The Verlinde algebra [V] is easily derived from this
gluing law.

We remark that all of these theories have "level" zero.2 The cohomology class
in H3(BΓ; R/Z) ̂  H\BΓ\ Z), which in the SC7(2) theory gives the level, is pure

1 This requires fixing certain boundary data at the outset. The role of these choices is investigated
in [F5]
2 As a result there are no central extensions of diίfeomorphism groups, as there are in theories
with continuous gauge group
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torsion. In the simplest theory (the "untwisted theory") this class vanishes. Then
the path integral essentially counts representations of the fundamental group into
Γ. We include some computations for the untwisted theory in Sect. 5. Here we also
find an algebra structure on A, and so A becomes a Hopf algebra. It is the dual of
the Hopf algebra considered by Dijkgraaf, Pasquier and Roche [DPR], and plays
the role of the quantum group in these finite theories. In Sect. 5 we also calculate
the action of SL(2; Z) on the quantum space attached to the torus in arbitrary
twisted theories.

In a subsequent paper [F5] we investigate more fully the relationship between
the path integral and the Hopf algebras, or quantum groups, which arise in the field
theory. There we show how to interpret the path integral over manifolds of lower
dimension, and how the quantum group emerges from those considerations.

The axioms for topological quantum field theory were first formulated by
Atiyah [A], who also gives a mathematical perspective on the subject. These ideas
are developed much further in [Ql, Q2] where more examples are pursued. There
is an expository account of gluing laws in topological field theory in [F4].

We warmly thank Joseph Bernstein, Robert Dijkgraaf, Gary Hamrick, Graeme
Segal, Karen Uhlenbeck, and Ed Witten for many conversations touching on the
subject matter of this paper. We understand that Joseph Bernstein and David
Kazhdan independently did work similar to that discussed here.

1. Classical Theory

The basic data of a Lagrangian classical field theory is a space of fields ̂ x for each
spacetime X and a functional Sx: ^x -* IR called the action. The fields and action
must be local, i.e., computable by cutting and pasting. Usually the action is the
integral of a locally defined differential form over spacetime, and so is local by
standard properties of the integral. Also, the action usually depends on a metric on
spacetime. Here the theory is topological so no metric is needed. The formal
properties of a classical topological field theory are carefully stated in Theorem 1.7.
(See [SI, A], and Theorem 2.13 for analogous axiomatizations of topological
quantum field theory.) In the theory we consider here a field is a finite regular
covering space whose group of deck transformations is a fixed finite group Γ.
Unlike fields in ordinary theories, which are usually functions, these fields (covering
spaces) have automorphisms. This complication leads to our use of categorical
language, which is designed to handle mathematical objects with automorphisms.
We must keep track of automorphisms to make proper sense of cutting and
pasting. The action for spacetimes without boundary is a characteristic class which
takes its values in IR/Z. For spacetimes with boundary the characteristic class is not
standardly defined. We introduce an integration theory for singular cocycles in
Appendix B, and express the characteristic class as an integral. Hence as in
standard field theories our action is an integral over spacetime. We remark that we
can also define the action using a refinement of integration in de Rham theory
[F2]. In 2 + 1 dimensions the classical field theory in this section is a special case of
the classical Chern-Simons theory which is defined for arbitrary compact Lie
groups [Fl, F3].

Fix a finite group Γ. A classifying space BΓ for Γ is a connected space with
homotopy groups π1(BΓy *) ̂  Γ and πj(BΓ9 *) = 0, j ^ 2, for any basepoint
* e BΓ. In the topology literature this is also called an Eilenberg-MacLane space
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K(Γ, 1). We construct a classifying space as follows. Denote Γ = {gί9 . . . ,gN}.
Suppose H is an infinite dimensional separable complex Hubert space, and let EΓ
be the Stiefel manifold of ordered orthonormal sets {v9ι, . . . , υθN} c H labeled by
the elements of Γ. Then g e Γ acts on {vβl9 . . . , vβN} by permutation:

This defines a free right action of Γ on EΓ, and we set BΓ = EΓ/Γ. Since EΓ is
contractible, the quotient BΓ has the requisite properties.

Now a principal Γ bundle over a manifold M is a manifold P with a free right
Γ action such that P/Γ — M. Notice that P -> M is a finite regular covering space.
A map of Γ bundles φ: P' -+ P is a smooth map which commutes with the Γ action.
There is an induced map φ: M' -> M on the quotients. If M' = M and φ = id, then
we term φ a morphism. Notice that any morphism has an inverse. Hence if there
exists a morphism φ: P' -> P, we say that P' is equivalent to P. A morphism
φ: P -» P is an automorphism (or gauge transformation or Jβcfc transformation). Let
^M be the category of principal Γ bundles over M and bundle morphisms. Since

every morphism is invertible, this category is a groupoid. Finally, denote by %>M the
set of equivalence classes of Γ bundles over M. It is a finite set if M is compact. In
fact, if M is connected then there is a natural identification

^^Hom(MM,m),r)/r (1.1)

for any basepoint m e M, where Γ acts by conjugation. The identification is via
monodromy.

If P -» M is a Γ bundle, then there exists a bundle map F: P -» £Γ. Such an F is
called a classifying map for P. (This explains the term "classifying space.") To
construct F note that the Γ bundle (P x EΓ)/Γ -> M has contractible fibers. Hence
there exist sections M -+ (P x EΓ)/Γ, or equivalently Γ maps P -> EΓ. All sections
are homotopic, whence all classifying maps are homotopic through Γ maps.

After these preliminaries we are ready to define the classical theory. Fix an
integer d ̂  0. The "spacetimes" in our theory have dimension d + 1 and the
"spaces" have dimension a? The ingredients of such a theory are a space of fields
y>x attached to every compact oriented spacetime X and an action functional Sx

defined on %>x. In our theory we take ^x to be the discrete space of principal
Γ bundles defined above.

Now the action. Fix a class4 α e Hd+1 (BΓ; R/Z) and a singular cocycle
α e Cd+i (BΓ; R/Z) which represents α. The simplest theory has α = α = 0, in
which case the action (and so the whole classical theory) is completely trivial.
Suppose X is a closed oriented (d H- l)-manifold. Fix P e ^x and let F: P ->• EΓ be
a classifying map. There is a quotient map F: X -> BΓ. Set

S*(P) = α(Fφ[X])eR/Z, (1.2)

where [Jf] e #d+ i(Z) is the fundamental class. Since all classifying maps for P are
homotopic through Γ maps, the action (1.2) does not depend on the choice of F.

3 One can consider CW complexes (of arbitrary dimension) instead of manifolds of a fixed
dimension [Ql, Q2, K]. We restrict to manifolds to make contact with standard physical theories
4 Notice that Hd+1(£Γ; 1R/Z) s Hd+2(BΓ) since the real cohomology of BΓ is trivial. We could
consider complex cohomology classes in Hd+1(BΓ', <C/Z), and then the resulting theories are
unitary only if the class is real



Chern-Simons Theory with Finite Gauge Group 439

Also, the action on closed manifolds only depends on the cohomology class α, not
on the particular cocycle ά. We often write the action as e

2πίSx(p) e T; it takes values
in the circle group T of complex numbers with unit norm.

The action on manifolds with boundary is not a number, but rather is an
element in a complex line associated to the boundary. We first abstract the
construction of vector spaces in situations where one must make choices. We like
to call this the invariant section construction.5 Suppose that the set of possible
choices and isomorphisms of these choices forms a groupoid #. Let Sf be the
category whose objects are metrized complex lines (one dimensional inner product
spaces) and whose morphisms are unitary isomorphisms. Suppose we have a fun-
ctor J^: # -> &. Define V& to be the inner product space of invariant sections of the
functor 3?'. An element v e V& is a collection (v(C) e ^(C)}Ce0b^} such that if

C1 -> C2 is a morphism, then ^^l/)v(C^) = v(C2). Supose # is connected, that is,
there is a morphism between any two objects. Then dim V& = 0 or dim V& = 1, the
latter occurring if and only if 3F has no holonomy, i.e., ̂ (\l/) = id for every

automorphism C1 -» C. We will apply this construction many times in this paper,
both in the classical theory and in its quantization.

Return to the finite group Γ and cocycle ά e C d + 1 (BΓ; R/Z). Let Q -> Y be
a principal Γ bundle over a closed oriented d-manifold Y. We now define a met-
rized line LQ. Consider the category ^Q whose objects are classifying maps

/: Q -> EΓ for Q and whose morphisms/ -> /' are homotopy classes rel boundary
of Γ-homotopies h: [0,1] x Q -> EΓ from/to/'. The category ΉQ is connected since
any two classifying maps are Γ-homotopic. Define a functor J^Q: ΉQ-*^ as
follows. Let

^Q(/) = Jy,7 * (1-3)

be the metrized integration line of Proposition B.I, and J^Q (/"-*/')trιe maP

exp (2™ J h*&\IYίf..A^IYίf..d. (1.4)
\ [0, i ] x y /

The integral in (1.4) is also defined in Proposition B.I. That J β̂ *
s a functor follows

from (B.2). That (1.4) only depends on the homotopy class of h follows from (B.3).

Furthermore, ^Q has no holonomy.6 For if f—*f is an automorphism, then

h determines a bundle map h: Sl x Q -> EΓ by gluing. Since the bundle
S1 x Q -> S^ x Y extends over D2 x Y, so too does the map h: S1 x 7-> BΓ extend
to a map H\ D2 x 7-> BΓ, and so

/ \ / \
exp ( 2 π i $ h*& = exp 2πi $ H*ά ) = 1 (1.5)

\ ^ i x Γ / V D2xY /

by Proposition B.l(e), which proves that ^Q has no holonomy. Let LQ be the
metrized line of invariant sections of ̂ .

5 This is a special case of a general construction (the "limit" or "inverse limit" or "project!ve
limit") in category theory [Mac]
6 Here it is crucial that our classifying maps are defined on the bundles and not just on the base
spaces
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Now suppose P -> X is a Γ bundle over a compact oriented (d + l)-manifold Jf .
For each classifying map F: P -> EΓ consider the quantity

2πiSx(P,F] __ eγn / 9 f r*Λ \ r- exp i Z7Π j r α i e L, w,&

\ Λ /

(1.6)

Here dF = F|δP is the restriction of F to the boundary. Suppose F' is another
classifying map for P. Choose a homotopy K: [0, 1] x P -> EΓ with K\^XP = F
and ^|{i}xp = F'. Let fe = K\^^xdP be the induced homotopy from dF to δJF".
Denote / = [0, 1]. There is a product class [/] x [X] e Hd + 2 (I x X, d(I x X)) with

δ( [/] x [X]) = a [/] x [X] u ( - l)dim ' [/] x

= {1} x [Jf] u - {0} x [X] u - [/] x

Choose representative chains i, x for [/] and [X]. Then since ά is closed,

0 = F'*&(x) - F*&(x) - k*&(i x dx) .

Applying exp(2πi ) we see by (1.4) that

PdP (dF^dF1) e2πίS*(p>F} = e2πiS*(p>F>) .

Thus (1.6) determines an invariant section of ̂ δp, i.e., an element (of unit norm)

This defines the action on manifolds with boundary.
The following theorem expresses what we mean by the statement "Sx is the

action of a local Lagrangian field theory."

Theorem 1.7. Let Γ be a finite group and ά e Cd+1 (BΓ; 1R/Z) a cocycle. Then the
assignments

P\-+e2mS*(p>9 PE^X (1.8)

defined above for closed oriented d-manifolds Y and compact oriented (d + 1)-
manίfolds X satisfy.

(a) (Functoriality) Ifψ:Q'-+Qisa bundle map covering an orientation preserving
diffeomorphism ψ: Y' -» 7, then there is an induced isometry

Ψ*:LQ,^LQ (1.9)

and these compose properly. If φ: P' -+ P is a bundle map covering an orientation
preserving diffeomorphism φ: X' -> X, then

where dφ: dP' ->• dP is the induced map over the boundary.
(b) (Orientation) There is a natural isometry

, -y = LQ, Y
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and

β2«S_z(P) = e2*iSx(P) < (L12)

(c) (Additivity1) IfY= Y\ u Y2 is a disjoint union, and Q{ are bundles over Yh then
there is a natural isometry

L = L ® L (1 13)

// X = Xι u X2 is a disjoint union, and Pt are bundles over Xi9 then

(d) (Gluing) Suppose Y q; X is a closed oriented codimension one submanifold and
Xcut is the manifold obtained by cutting X along Y. Then dXcut = dXuYu- Y.
Suppose P is a bundle over X, Pcut the induced bundle over Jfcut, and Q the restriction
ofP to Y. Then

e2πiSx(P) _ jr se2πiSx™*(Pc")\ Q j<j\

where TrQ is the contraction

Tr . T /-v/ r /o\ T /ΓN r . r (1 1 £\\
1 LQ . J-^pcut =r JL-'dP \£y *-^O ^-* Q -*-^dP V W

using the hermitian metric on LQ.

Several comments are in order. We allow the empty set 0 as a manifold: L0 = C
and 50 = 0. From a functorial point of view, (a) implies that Q H-> LQ defines
a functor

and that each X determines an invariant section e2πiSχ(-) of the composite functor
^x -+ ^dx -* 3?) where the first arrow is restriction to the boundary. The invariance
of the action (1.10) on closed manifolds X means that if P'^ P, then
Sχ(P') = Sχ(P) Hence the action passes to a function

S*:^->1R/Z. (1.17)

Bundle morphisms over compact oriented d-manifolds Y act on the corresponding
lines, via (1.9). So there is a line bundle

J*?y->^y (1.18)

with a lift of the morphisms in ^y. (Since ^V is a discrete set of points, &γ is
a discrete union of lines.) If X is a compact oriented (d + l)-manifold, there is an
induced line bundle J£χ-»^χ, obtained by pulling back £?dx via the restriction
map y>x -> ̂ x.The action e2πίSχ('} is an invariant section of 5£x -+ %>x. In particular,
the group of automorphisms Aut P of P -> X acts on the line over P e ^x. If this
action is nontrivial, then e2πίs*(p) = 0. Theorem 1.7 expresses in a (necessarily)
complicated way the fact that "Sy is a local functional of local fields defined as the
integral of a local expression (c), (d); is invariant under symmetries of the fields (a);
and changes sign under orientation reversal (b).

7 Although (1.14) looks like a multiplicative property, it expresses the additivity of the classical
action Sx. However, Sx is not defined if dX =(= 0, which is why we use the exponential notation
e2πiSx( )
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Proof. The proof of Theorem 1.7 is straightforward but tedious. For example, to
construct the map (1.9), choose a classifying mapf':Q'-+EΓ for Q', and let
f°ψ~1:Q-^>EΓ be the induced_ classifying map for Q. Fix a representative
yf 6 Cd(Y') of [y], and let j; = ψ*(yf) e Cd(7) be the corresponding representat-
ive of [7]. These choices determine trivializations LQ> = <C and LQ ̂  (C. Relative to
these trivializations we define ψ# in (1.9) to be the identity. A routine check shows
that this is independent of the choices and composes properly. The constructions of
the isometrics (1.11) and (1.13) are similar. Equations (1.10), (1.12), (1.14), and (1.16)
follow from the corresponding properties of the integral (Proposition B.I).

The metrized line bundle (1.18) passes to a (possibly degenerate) metrized line
bundle

5V-»^ (1.19)

over the finite set of equivalence classes. The fiber L[Q] is the space of invariant
sections of the functor Q ^>LQ as Q ranges over the equivalence class [Q]. If Aut Q
acts nontrivially on LQ then L[Q] = 0; if Aut Q acts trivially then dimL[Q] = 1.

2. Quantum Theory

There is one crucial piece of data which must be added to a classical field theory to
define path integral quantization: a measure on the space of fields. In many
quantum field theories this is only done formally. In our theory this is easy to do
precisely since the space of fields is discrete. We simply count each bundle accord-
ing to the number of its automorphisms (2.1). The path integral for closed space-
times is then defined directly (2.9) as the integral of the action over the space of
(equivalence classes of) fields, whereas for manifolds with boundary the path
integral is a function of the field on the boundary (2.12). In usual field theories the
fields on space (and on spacetime) have continuous parameters; then extra
geometry8 is introduced to carry out "canonical quantization," and again this is
only a formal procedure in many cases of interest. Here no extra geometry is
needed since the space of fields is discrete. The quantum Hubert space is the space
of all functions of fields (2.10) (which respect the symmetry group); here it is finite
dimensional. The path integral and quantum Hubert spaces satisfy a set of axioms
we spell out in Theorem 2.13 (cf. [Se, A]). They mostly follow from the correspond-
ing properties of the classical theory (Theorem 1.7) and the gluing properties of the

measure (Lemma 2.4). We emphasize that since the configuration space #x of
equivalence classes of fields is finite, the path integral reduces to a finite sum.

We introduce a measure μ on the collection ̂ M of principal Γ bundles over any
manifold M. Namely, set

where Aut P is the group of automorphisms of P. If P' ^ P, then Aut P' ^ Aut P,
so that μp> = μp. Hence there is an induced measure on the set of equivalence

classes #M.

In geometric quantization this is called a "polarization"
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Suppose M is a manifold with boundary, and Q e ^dM is a Γ bundle over the
boundary. Define the category

^Λf(β) = {<p> #>: P e *W» ft dP -> β is an isomorphism}

of bundles over M whose boundary has a specified isomorphism to Q. A morphism
φ: <P', 0'> -> <P, 0> is an isomorphism φ: P' -> P such that 0' = θ ° δφ. Two ele-
ments <P', 0'), <P, 0> e %vf(β) are equivalent if there exists a morphism

(P', 0'> -> <P, 0>. We denote the set of equivalence classes by #M(β) Equation
(2.1) defines a measure on ̂ (QX where we now interpret "Aut<P, 0>" in the sense
just described. Notice that such automorphisms are trivial over components of

M with nonempty boundary. Again the measure passes to the quotient ^M(β)
Finally, if \l/\ Q' -> Q is a morphism, there is an induced measure preserving map

^*:^(β')-^(β) (2.2)

Next, we investigate the behavior of these measures under cutting and pasting.
Suppose Nc^M is an oriented codimension one submanifold and Mcut the mani-
fold obtained by cutting M along N. Then dMcut = dM u N u — N. Fix a bundle
Q-+N. Then <gM««(QuQ) is the category of triples <Pcut, Θ l 9 02>, where
pcut _> ^vfcut is a /^ bundle and θ f: P

cut \N -> β are isomorphisms over the two copies
of AT in Mcuί. Consider the gluing map

<P™\θί,θ2y^P™i/(θi = θ2) (2.3)

or equivalence classes.

Lemma 2.4. The gluing map gQ satisfies

(a) gQ maps onto the set of bundles over M whose restriction to N is isomorphic to Q.
(b) Let φ e Aut Q act on <Pcυt, 0 l 9 02> e %M^ (Q u β) foj;

Then the stabilizer of this action at <Pcut, θι,02> ^ ̂  imα^e Aut P-^ Aut β
determined by the θh where P = 0Q«Pcut, Θ 1 ? 02»-
(c) TTzere ΐs aw induced action on equivalence classes %>M™< (Q u β), αwd Aut β

transitively on g^ 1([P])/or απ^ [P] e ̂ M.

(d) For αH [P] e ¥^ we Λαt e
Q . (2.5)

Proof. If P -> M is a bundle and 0: P |# ->• β an isomorphism, then
0Q«Pcut, θ, 0» ^P, where Pcut is the pullback of Pjmder the gluing map
Mcut-^M. This proves (a). If gQ(ζPmt, Θl9 Θ2y) ^ gQ«P^\ §i,§2», then there
exists an isomorphism φ:Pcut-»P^ such that θiφθΓ 1 = θ2ψθ2

1 e Autβ. Call
this element φ. Then φ determines an isomorphism 0 <Pcut, Θl9 Θ2y ̂
<P ,̂ 0 l 9 Θ2>. This proves (c). If <Pcut, Θl9 Θ2y = (P ,̂ Θl9θ2\ then φ determines
an element of Aut P, and φ is the restriction of this element to β. This proves (b).
Now the exact sequence

1 -> Aut <Pcut, 0!, 02> -> AutP -> Autβ
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together with (b) and (c) imply

This is equivalent to (2.5).

We remark that this computation is valid both for automorphisms which are the
identity over dM and automorphisms which are unrestricted on dM.

Now we are ready to carry out the quantization. The quantum theory assigns
a complex inner product space E(Y) to every closed oriented d-manifold Y and
a vector Zx e E(dX) to every compact oriented (d + l)-manifold X. If X is closed,
then Zx is a complex number. We begin with the α = ά = 0 theory, which is surely
the simplest quantum field theory that one could imagine. For X closed the path
integral is

(2.6)

^x

The vector space attached to Y is

(2.7)

If X is a manifold with boundary, then the path integral is

Zχ(Q) = _$ dμ([P]) = vol(^(β)), Qe«dx. (2.8)
«τ(β)

Since (2.2) is a measure preserving map, ZX(Q) only depends on the equivalence
class of β, so defines an element of E(dX) as desired.

The formulae for the twisted case (ά φ 0) are obtained by substituting the
nontrivial action e2πiSχ('} for the trivial action 1 in (2.6)-(2.8). Thus for X closed we
define the partition function

Zx=$_dμ(lPl)e2«iS^, (2.9)
Vx

where SX([P]) is the action (1.17) on the quotient. We emphasize that the (path)
integral in (2.9) is a finite sum. For Y a closed oriented d-manifold we have the
possibly degenerate metrized line bundle (1.19). Set

L2(W~Y,3
Γ

Y). (2.10)

In other words, E(Y) is the space of invariant sections of the functor

If v, vf are invariant sections, then

X μQ(v(Q)9v'(Q))LQ9 (2.11)
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where Q is a bundle in the equivalence class [β]. Finally, if X is a manifold with
boundary, set

Zx(β) = J dμ([P])*2«<s'<™eLQ, β ε t f a x - (2.12)
Vχ(Q)

A simple application of (2.2) and (1.10) proves that (2.12) defines an invariant
section of the functor ^dX9 so an element in E(dX\

The following theorem expresses what we mean by the statement 'Έ(Γ) and Zx

define a (unitary) topological quantum field theory." It is essentially the list of
axioms in [A].

Theorem 2.13. Let Γ be a finite group and ά e Cd+1 (BΓ; R/Z) a cocycle. Then the
assignments

Yt->E(Y),

X^ZX, (2.14)

defined above for closed oriented d-manifolds Y and compact oriented (d + 1)-
manifolds X satisfy:

(a) (Functoriality) Suppose f'.Y'^Yisan orientation preserving diffeomorphism.
Then there is an induced isometry

f+:E(Y')^E(Y) (2.15)

and these compose properly. If F:X' -+X is an orientation preserving diffeomor-
phism, then

(dF),(Zx.) = Zx, (2.16)

where dF: dX' -> dX is the induced map over the boundary.
(b) (Orientation) There is a natural isometry

E(~Y)^ E(Y) ,

and

Z-X = ^~χ.

(c) (Multίplicatίvity) If Y = Yl u Y2 is a disjoint union, then there is a natural
isometry

E(Y1uY2)^E(Y1)®E(Y2).

If X = X1 u X2 is a disjoint union, then

Z χ l U χ 2 = ZXί®ZX2 .

(d) (Gluing) Suppose Y^X is a closed oriented codimension one submanifold and
Xcut is the manifold obtained by cutting X along Y. Write dXcut = dX u Yu - Y.
Then

Zx = TMZ^O , (2.17)

where Try is the contraction

Try: E(dXcut) ^ E(dX) (g) E(Y) ® E(Y) -* E(dX)

using the hermitian metric on E(Y).
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Proof. The map/induces a measure preserving functor/*: ̂ γ -> <βγ>, which lifts to
/*:Ly->Ly in view of (1.9). Then (2.15) is the induced pullback on invariant
sections. The diffeomorphism invariance (2.16) follows from (1.10). The assertions
in (b) are direct consequences of Theorem 1.7(b). For (c) we use Theorem 1.7(c) and
the fact that for any disjoint union

It remains to prove the gluing law (d). Fix a bundle Q' ~> dX. Then for each Q-^Y
and each Pcut e <βx«* (Qf uQuQ) we have

g2πiSx(0f i(Pβut)) _ jr ^e2πiSx^(P^}\

by (1.15). Fix a set of representatives {Q} for ^y. Let ^X(Q')Q denote the equiva-
lence classes of bundles over X whose restriction to dX is Q and to Y is Q. Recall
the gluing map (2.3) and Eq. (2.5) relating the measures. Then

= Σ J
Qe{Q] VX(Q'

= Σ

= Σ jKcTΓQίZjr 'ίβ'uβuβ)). (2.18)
β e {Q}

The definition (2.11) of the inner product shows that this is equivalent to (2.17).

3. Surfaces with Boundary

Now we specialize to d = 2-that is, to the 2 + 1 dimensional theory-and examine
the more detailed structure associated to surfaces with boundary. The classical
theory of Sect. 1 assigns a metrized complex line LQ to each Γ bundle Q -» Y over
a closed oriented 2-manifold. In this section we construct lines when Y has
a boundary, but only after fixing certain choices on the boundary.9 These lines
obey a gluing law, which we state in Theorem 3.2. The basepoints and boundary
parametrizations which appear in that theorem are part of the process of fixing
choices on the boundary. By gluing cylinders these lines lead to certain central
extensions of subgroups of Γ (3.13), which fit together into a central extension of
a certain groupoid (3.9). The quantization then extends the definition of E(Y) to
surfaces with boundary and provides a method for computing this vector space by
cutting and gluing. There is a rich algebraic structure: The vector space attached to
the cylinder is a coalgebra, each boundary component of a surface determines
a comodule structure on its quantum space, and the gluing law appears naturally in

The dependence on these choices leads to a consideration of gerbes [B, BM, F5]
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terms of cotensor products.10 An important point is the behavior of the inner
product under gluing (3.26), which comes quite naturally in our approach. The
properties of these quantum Hubert spaces are stated in Theorem 3.21, which is the
main result in this section. We analyze the algebraic structures more closely in Sect. 4.
Throughout this section we work with a fixed cocycle ά e C3(BΓ; R/Z). We remark
that there are several simplifications if α = 0, some of which we discuss in Sect. 5.

We begin with the classical theory. The important point is to rigidify the data
over the boundary of a surface. Hence fix the standard circle S1 = [0, 1]/0 ~ I.11

Consider first Γ bundles R -> S ί with a basepoint in R chosen over the basepoint in
S1. Morphisms are required to preserve the basepoints. We denote the category of
these pointed bundles and morphisms by ^'s ι . Notice that there are no nontrivial
automorphisms, since a deck transformation which is the identity at one point is
the identity everywhere (on any connected space). Further^ the basepoint deter-

mines a holonomy map ^'s i -» Γ, and the induced map ^'s i -» Γ on equivalence
classes is a bijection. Summarizing, if Rl9 R2 are Γ bundles over S1 with the same
holonomy, then there is a unique isomorphism R1 -» R2 which preserves base-
points.

For each g e Γ fix once and for all a pointed bundle Rg -> S * with holonomy
g and a classifying map

φβ:Rβ^EΓ. (3.1)

Let 7 be a compact oriented 2-manifold. Fix a dΐffeomorphism S 1 -» (d Y)ι for
each component (8Y)i of 57. A boundary component is labeled " + " if the
parametrization preserves orientation and " — " otherwise. The images of the
basepoint in S1 give a basepoint on each component of dY. Then the Γ bundles
Q -> 7 with basepoints chosen over the basepoints of dY form a category ^'Ύ\
morphisms in this category are required to preserve the basepoints.

Theorem 3.2. Let Y be a compact oriented 2-manifold with parametrized boundary.
Then there is a functor

which attaches to each Γ bundle Q -> 7 with basepoints a metrized line LQ. It
generalizes the corresponding functor (1.8) for closed surfaces, and satisfies the
functoriality12 (1.9), orientation (1.11), and additivity (1.13) properties. In addition it
satisfies:

(Gluing) Suppose S c+ Y is a closed oriented codimension one submanifold and 7cυt

the manifold obtained by cutting along S. Then d 7cυt = dYuSu — S and we use
parametrizations which agree on S and — S. Suppose Q e Ήγ is a bundle over Y and
Qcut e ^yc^ the induced bundle over 7cut. (We choose basepoints over S and — S
which agree.) Then there is a natural isometry

LQ * LQ- . (3.3)

10 A more elaborate development of the formal properties gives a tensor product description, see
[Q2, TΠf8, 9] for a treatment of finite gauge groups and an axίomatization
11 For the integration theory of Appendix B we also need to fix a standard cycle s e C1(S1) which
represents the fundamental class
12 The functoriality holds for maps which preserve the basepoints and the boundary parametri-
zations
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Proof. Let Q -> Y be a pointed bundle. Using the boundary parametrizations we
identify d Y as a disjoint union of circles. Since pointed bundles over the circle have
no automorphisms, there is a unique based isomorphism of dQ with a disjoint
union of our standard pointed bundles Rr Then the φg chosen above (3.1)
determine a classifying map φ: dQ -> EΓ. Let ̂ Q denote the category of classifying

maps /: Q -+ EΓ which extend φ. A morphism f-^f is a homotopy h which is

constant on dQ, or better a homotopy class rel boundary of such homotopies. As in
(1.4) we define a functor ^Q:^Q -» X by

and

?b(./Af ) = *-2*ίS '* '< 5 l χ β>exp J2πί f A * α j:/r,/*ά -> IYj,** , (3.4)
I [0, 1] x 7 J

but now we must reinterpret the formulae. First, the integration lines are defined
for manifolds with boundary in Proposition B.5 of Appendix B. If dY = 0, then
Ssι x Y (S 1 x β) = 0 by the argument in (1.5). If dY φ 0, then the prefactor in (3.4) is
an element in the line L sιx δ β, which is trivialized by the classifying map φ and the
trivialization (B.9). (This follows from the construction of L5ιx5β in Sect. 1. The
integration line (1.3) in that construction is trivialized using the parametrization of
d Y and (B.9). So this prefactor is a complex number. Since

d([0, l]x Y) = { I } x 7 u - {0}x 7u - [0,l]xδΓ,

the second factor in (3.4) is an element of

IγJ'*άi ® IγJ*« ® [̂0, 1]xδ7, φ*ά (3-5)

Here we use Proposition B.5, in particular the gluing law (B.6). But the boundary
parametrization and the trivialization (B.8) trivialize the last factor in (3.5). Hence
(3.4) is well-defined. The fact that ̂ Q defines a functor and that this functor has no
holonomy are routine checks. Both use the compatibility of (B.8) and (B.9) under
gluing. Define LQ to be the line of invariant sections of ̂ Q.

We leave the verification of (3.3) to the reader.

As a corollary we obtain a metrized line bundle

which generalizes (1.19). Furthermore, we remark that (2.1) defines a measure on
^y which is invariant under morphisms, so passes to a measure on the set of
equivalence classes #y. If each component of 7 has nonempty boundary, then this
measure has unit mass on each bundle.

The fact that pointed bundles over S 1 have no automorphisms makes gluing
well-defined on equivalence classes of bundles. More precisely, consider a compact
oriented 2-manifold Y with parametrized boundary, an oriented codimension one
submanifold S c; 7, and the resulting cut manifold 7cut. Suppose gcυt e ^7cut

restricts to isomorphic bundles over the two copies of S in 7cut. Then there is a well-
determined bundle g(Qcut) e Ήy obtained by gluing. (Compare (2.3).) In other
words, there is a gluing map

g: ΛΎ«* a ^y- -» %γ
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defined on the subset J*ycut of bundles which are isomorphic on the two copies of S.
Since the isomorphism used to perform the gluing is unique, there is an induced
gluing

g: &Y«* c <eΎ«* -> <g'Ύ (3.6)

on equivalence classes of bundles. Suppose Ycut = Y± u Y2 and Qcut = Qι u β2

Further, suppose the copy of S in Y1 has a + parametrization and the copy in Y2

has a - parametrization. Then we denote the glued bundle over Y as

Theorem 3.2(d) implies that the gluing lifts to the associated lines. In other words,
there is an isometry

LQί®LQ2^LQιΰQ2. (3.7)

As gluing makes sense on the equivalence classes, we write [β]ι ° [β]2 for the glued

element in <&γ. Then (3.7) induces an isometry

L[Q}ί ® L[Q]2 -> Leghorn . (3.8)

(Recall, however, that these "lines" may be the zero vector space.)
We apply this first to the cylinder Y = [0,1] x Sl which we cut along

{1/2} xS1. Then ^'γ^ — ̂ yX^ y , and the gluing provides a groupoid structure
on

# = *['<>. i] xs ' (3.9)

Let {*} e S1 be the basepoint. An element13 [Γ]<X5ί7> e & is given by a pair
<x, #> e ΓxΓ, where x is the holonomy around {0} xS 1 and g is the parallel
transport along [0, 1] x {*}. This parallel transport is well-defined since the bundle
has a basepoint over {0} x {*} and one over {1} x {*}. The groupoid composition is
then

m n ΓTΊ ΓTΊ if v n v AΪ~ i f7 1 π\
<x σ > L-* J<x2 #2> — L J<x #2#ι>' 2 — 9lXldl 9 \3.L\J)

and is undefined if x2 Φ giXigϊ1- Let L<Xjί> = Lm<xg> denote the line attached to
the equivalence class [Γ]<x^>. Note that dimL<x^> = 1 since pointed bundles over
the cylinder have trivial automorphism groups. Then (3.7) in this context is an
isometry

L (x)Z/ L i f x = ί 7 X ί 7 ~ 1 (311)

In particular, for g1 = g2 = e and any x e Γ this gives a trivialization

£<*, e >^C. (3.12)

Restricting to unit vectors the isometries (3.11) define a central extension % of the
groupoid ^ by T. For each x e Γ the set

13 We use "Γ" to denote bundles over the cylinder and "ζ>" to denote bundles over arbitrary
surfaces
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is closed under the composition (3.10) and is isomorphic14 to the centralizer Cx of
x in Γ. The lines (3.11) then give a central extension

1-+T-+CX^CX-+1. (3.13)

The equivalence class of this extension can be expressed in terms of the cohomol-
ogy class [ά] 6 H3(J3Γ; R/2£). Namely, there is a homotopy equivalence

where x runs over representatives of the conjugacy classes in Γ. Let

e:SlxMsφ(S1

9BΓ)-*BΓ

be the evaluation map and

π: S1 x Map (S1, BΓ) -> MapfS1, BΓ)

the projection.

Proposition 3.14. The cohomology class of the extension (3.13) is (a component of)
the transgression

M

Proof. First, we recall that the central extension (3.13) determines a class in
H2(CX; R/Z), the second group cohomology. To construct a cocycle, for each
g G Cx choose an element g e Cx covering g. Then set

c(gι,g2) = g ΐ g 2 g ϊ 1 g ϊ l <= R/z, gl9g2eCx. (3.15)

This is a cocycle for the group cohomology.
Next, the group cohomology js isomorphic to the (singular) cohomology of the

classifying space as follows. Let β e C2 (BCX; R/Z) be a singular cocycle. Then for
each g e BCX fix a based loop γg: S

1 -» £CX whose homotopy class corresponds to
g under the isomorphism πι(BCx) = Cx. Denote Ig = Isι *£ for the integration
line of Proposition B.I. Choose an element εg e Ig of unit norm. For gl9g2 e Cx the
composite loop γgίγ92 is homotopic to γgιg2. Let

feβl>β2:[0,l]xS1-.βCJ(

be a homotopy. By the integration theory of Appendix B this determines an
isometry15

= ί k*ltβj: Igι ® Iβ2 -> Igιg2 . (3.16)
[o.rjxs 1

14 In fact, it is anti-isomorphic to Cx because the composition law (3.10) reverses the order of
multiplication
15 We use the d — 1 case of (B.6) to identify the integration line of yβίyg2 with Igί (x) Igι (cf. the
footnote preceding Proposition B.5). Also, by (B.3) the map Θgitg2 only depends on the homotopy
class of k
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Define c'(gl9 g2) e IR/Z by

p2mc'(gl,g2) β / ^ \ _ Π 1 7^e ugι,92 \bgι ̂  ̂ 92) — bgi92 - ly 1 '/

An easy check shows that c' is a cocycle for group cohomology.
With these preliminaries aside we proceed to the proof. For each g e Cx fix

a pointed bundle Γ<χ>ί7> -> [0, 1] x S1 with the correct holonomy. By gluing to-
gether the two ends of the cylinder, we obtain a bundle f<Xίd> -> S1 x S1. By (3.3) the
lines corresponding T<X}Θ> and Γ<Xsί7> are isomorphic, so we pass freely between
them. Choose a classifying map /<x g> : Γ<x g> -» EΓ which restricts to ^x on each
boundary component. Let/<x^>: Γ<Xjί7>->£Γ be the induced classifying map. By
(1.3),/<JC>0> determines an isometry

Denote this line as /^ and fix an element εg e Ig of unit norm. From the point of
view of the central extension (3.13), it is an element g e Cx which lifts g e Cx.
(Recall that Cx is defined as the set of elements of unit norm in the lines L<x>gy.) For
each gl9 g2 e Cx we have two trivializations of £<x,0 l ί72>, via (3.11); their ratio is
a cocycle c(gly g2) of the central extension (3.15). On the other hand, their ratio may
be computed from (1.4). Namely, choose a homotopy

from the "composite" f<glXg-\g2yf<x,gιy (computed by gluing the first map over
{1} x Sl to the second map over {0} x S1 and rescaling) to/< X 5 0 ι^2 >. Then

0gι.,2 = ί h*ίtβ2&: Ig, ® Ig2 -+ Igi92 , (3.18)
[0, IJxS^S1

and the desired cocycle c ( g ί 9 g 2 ) e 1R/Z is determined by (3.17) as before. Let

be the map hgitg2 as a function of its first two variables. Then (3.18) implies

θn.,2= ί %.»π*e*(&). (3.19)
[0, U x S 1

A comparison of (3.19) and (3.16) shows that c, which is defined as a cocycle in the
group cohomology for the central extension, corresponds to a cocycle for the
cohomology class π#e*[ά], as claimed.

Finally, we remark that the measure (2.1) assigns unit mass of each [Γ]<X50> e ,̂
so is obviously left and right invariant under the groupoίd composition law.

Now suppose Y is a compact oriented 2-manifold with parametrized boundary.

Suppose (dY)i is a + boundary component. Then if [Q] 6 ^'Ύ and [Γ] e ^ agree on

(dY)t c Y and {0} x S1 c [0, 1] x S1 there is a glued bundle [g] ° [Γ] 6 WΎ. Thus

a + boundary component determines a right ^ action on Ήγ. The isometry (3.8)

£[β] ® Lm -> ^[β]o[π (3.20)

is a lift to a right ^ action on an extension of ^'Ύ. Similarly, a — boundary
component determines a left action. It is easy to see that these actions preserve the

measure on ^'Ύ.
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The quantization generalizes (2.10). Namely, for each component oriented
2-manifold Y with parametrized boundary, set

E(Y) = L2 (Φr,#-r) .

The preceding classical structure has quantum implications. To state these we need
the following algebraic notions. (See Appendix A for a more detailed review of
coalgebras and comodules.) Suppose A is a coalgebra over C, ER is a right A-
comodule and EL is a left τ4-comodule. Then the cotensor product ER^AEL is the
vector subspace of ER (g)c EL annihilated by ΔR (x) id — id (x) ΔL, where ΔR, ΔL are
the coproducts. If ER,EL are unitary comodules, then ER$<\AEL inherits the
subspace inner product. More generally, if E has a left ^4-comodule structure ΔL

and a right ^4-comodule structure ΔR, then we define

to be the subspace annihilated by ΔL — PΔR, where P: E ®<c^4 -> A ®<c£ is the
natural isomorphism.

The following generalizes Theorem 2.13.

Theorem 3.21. The assignment

of a hermίtian vector space to a compact oriented 2-manifold with parametrized
boundary agrees with (2.14) on closed manifolds and satisfies:

(a) (Functorialίty) Iff: Y' -» Y is an orientation preserving diffeomorphism which
preserves the boundary parametrizations, then there is an induced isometry

f*: E(Y') -^ E(Y)

and these compose properly.
(b) (Orientation) There is a natural isometry

E(- Y)^E(Y). (3.22)

(c) (Multiplicativίty) If Y = Y± u Y2 is a disjoint union, then there is a natural
isometry

E(YluY2)^E(Y1)®E(Y2). (3.23)

(d) (Coalgebra) Let S be a parametrized closed oriented l-manifold. Then

Λs = E([0,l]xS)

is a unitary16 coalgebra with antiinvolution. There are natural isomorphisms

A-S^A°SP (3.24)

with the opposite coalgebra, and

ASlus2 = ASlxAS2. (3.25)

(e) (Comodule) E(Y) is a unitary right Adγ-comodule. The isometries (3.22) and (3.23)
are compatible with the comodule structure.

16 The notion of unitarity for coalgebras and comodules is denned in (A.3) and (A.4)
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(f) (Gluing) Suppose S <+ Yisa closed embedded circle and 7cut the manifold obtained
by cutting along S. So dYcut = cTuSu — S and we use parametrizations which
agree on S and — S. Thus E(Ycut) is both a right and left As-comodule. Then there is
an ίsometry

II j~ι Λ§ — \ — / \.j.Δ\J)

Since all of our 1-manifolds are parametrized we can identify them with a union of
circles. Let

A = As> (3.27)

be the coalgebra attached to the standard circle. Then (3.24) and (3.25) imply that
any As can be naturally identified with a direct product of copies of A and Aop.
Also, if £ is a hermitian vector space and λ a positive number, then λ E denotes the
same underlying vector space with the hermitian product multiplied by a factor of
λ. Equation (3.26) is the gluing law which allows one to compute the vector space
attached to a surface by cutting and pasting. The isometry (3.26) is compatible with
(a)-(c) and (e).

Proof. We only comment on some of the assertions. As a warmup, consider the
situation where a finite group G acts on a finite set Z. The space of functions J^(G)
is a coalgebra and J^(Z) is a comodule. The coalgebra structure is dual to the
multiplication G x G -> G and the comodule structure is dual to the action
Z x G -> Z. The counit is dual to the inclusion of the identity element 1 -> G. If
G has a bi-invariant measure then L2 (G) has a compatible inner product. If Z has
a measure preserved by the G action, then L2 (Z) also has a compatible inner product.

Our situation is different in two ways: We have a groupoid and we consider
functions with values in complex lines. The latter is not significant, since the lines
form a central extension of the groupoid. But the fact that we only have a groupoid,
and not a group, means that the coproduct of an element is not naturally defined
away from composable elements. In (3.28) we extend by zero. This works.17 Thus if
a e As for some parametrized compact oriented 1-manifold 5, then we define the
coproduct

Λ,rτ -i „ FT -n ,f FT -i „ Γ T Ί „ A^-A . ^^

for [7Ί], [Γ2] e ^0,1] χs Note that this uses the isometry (3.11). The counit is

.e>), (3-29)

where we use the trivialization (3.12). Similarly, if 7 is a compact oriented 2-
manifold with parametrized boundary, then the comodule structure on E(Y) is
defined by

otherwise,

In more complicated situations it is not immediately clear what should be done
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where x E E(Y\ IQ] e ^y, and [Γ] 6 ^.iixar- Here we use the isometry (3.20).
The antiinvolution is

The compatibility of the L2 inner product with these coproducts, expressed by
(A.3) and (A.4), is a simple change of variables. For example, if α, b, c e AS9

then

[Γι],[Γ2]

_ y

= (α (x) c,.

For the gluing law (f), let J^cut c #y°ut denote the subset of bundles which are
isomorphic over the two copies of S. We claim that any function x e lnvAsE(Ycui)

has support in 3ϋγ

c^. This follows since by definition

°-s[βcut]) (3.30)

for all [Qcut] e <&γc™ and [Γ] e ^Ό, ι ] xs, where we understand the evaluation of

x on an undefined composition to vanish. Hence given any [βcut] e ^y

cut we
choose m = [ρcut]|[0,1]x5. Then if [βcυt]|-s£ [βcut]|s, the composition

°-s [Qcut] is undefined, whence

as claimed. Note that if [βcut] |_ s ^ [Qcut] |s then (3.30) is equivalent to

*([7T * °-S [β
cut]

Next, consider the diagram

^ ?y-

^/ '

where g is the gluing map (3.6) and r is restriction. From Lemma 2.4(a) we conclude
that g is surjective. Furthermore, it follows from part (b) of that lemma that if
[βcut] eg-l([Q])9 then any other element of g'^lQ]) is of the form

1 °-s [βcut] °s [2Ί> where [Γ] e «ΐo,i]χs restricts over {0} x S to a bundle
isomorphic to [βcυt] |s. Now Theorem 3.2(d) implies that the pullback of 5£ Ύ via g is

isomorphic to the restriction of &Ύcut to JVcut. It n°w follows that pullback via g is
an isomorphism E(Y) ^ InvSs E(Ycui).

It remains to compare the inner products. We claim that for any [g] e ^V,
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For in our situation (2.5) becomes

volte"1 ([63)) .

Note that [Q]|s is only determined up to isomorphism and has no basepoint;
nevertheless the number # Aut ([Q] \s) is independent of the representative chosen.
The factor #r(g~ί([Q])) counts these representatives. Equation (3.31) follows
immediately from (3.32) since Γ acts transitively on these representatives (changing
the basepoint) with stabilizer the automorphism group. Now consider

Then

This completes the proof of (3.26).

4. The Modular Functor

Our first task in this section is to construct a modular functor [SI] from the
quantum Hubert spaces of Theorem 3.21. 18 We first dualize the coalgebras and
comodules of that theorem to obtain the more familiar algebras and modules, and
so we make contact with standard structure theory of these objects. (It is also
possible to develop an algebra version directly [Ql, Sect. 4].) A key point is
semisimplicity (Proposition 4.2) which leads to a set of labels. Then from the
comodule E ( Y) for Y an oriented surface with boundary we derive the vector space
(4.7) typically attached to a surface with labeled boundary. We also recover the
Verlinde algebra (Proposition 4.14). It is important to notice that not only does
E(Y) have a richer structure than the vector spaces attached to the surfaces with
labeled boundary, but the inner product structure is more natural there. (Compare
the gluing laws (3.26) and (4.11).)

We first analyze the coalgebra A (3.27) in more detail. Since algebras are more
familiar than coalgebras, we switch to the dual algebra A*. We have

(4.1)

where [Γ] ranges over &. If ξ± e L*Tl] and ξ2 e £*r2j, then ξιξ2 e ^cτ1]o[r2] is
obtained from (3.11) if [7Ί] ° [Γ2] exists and is zero if [ΓJ and [Γ2] are not
composable

18 The modular functor encodes the structure of conformal blocks in rational conformal field
theory [MS]
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Proposition 4.2. The algebra A* is semisimple. Hence

A* £ Π MΛ (4.3)
λe Φ

is ίsomorphic to a direct product of matrix algebras.

The proof imitates the standard proof of Maschke's theorem in the theory of finite
group representations.

Proof. It suffices to show that every ,4*-module is completely reducible, or equiva-
lently that any surjective morphism of ,4*-modules.

PI -^ P2 (4.4)

splits. For this suppose that P2 -̂ > PI is a C-linear splitting of/ For each [Γ] e &

fix a nonzero element ξ[T] e L*T] and consider

'- — Y £ ί"1

#^ [Γ]

where ξ^τ] e L*Γ]-1 is the unique element such that ξ[T\ ® ξ[T] e L*Γ]-1 ® L*Γ] ^ (C
is the unit element (cf. (3.12)). Since g is (C-linear, the map g' is independent of the
choice of ξm.We claim that g' is an ,4*-module homomorphism which splits (4.4).
The calculation that g'f= idPl is straightforward. To see that gf commutes with the
,4*-action, suppose that ξ0 E L*Γo]. Set

when the composition makes sense. Only these compositions appear in the calcu-
lation

#'£° = ~^Γ& Σ £m?£m£o = ~ΊΓ& Σ £o<f[r

which completes the proof.

Let Φ = {/I} be the set of labels in (4.3). This set labels the irreducible representa-
tions of A*9 or equivalently the irreducible corepresentations Eλ of A. Fix a her-
mitian structure on Eλ compatible with the A action; it is unique up to a scalar
multiple. The set Φ also labels the irreducible corepresentations of Aopι then
the label λ corresponds to E * . Now suppose Y is a compact oriented 2-manifold
with parametrized boundary. Then using Proposition A.7 we can split the
unitary comodule E(Y) according to the irreducible corepresentations of
Adγ^ Ax- - - xAx Aop x - - x Aop. In other words, there is an isometry

(4.5)
λ

where λ = <A 1 ? . . . , Ak> is a labelling of the boundary components,

(4.6)
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is the corresponding corepresentation of Adγ, and

(4.7)

We use Eλ in (4.6) if the corresponding boundary component is positive, and we use
the dual Eχ * = E * if the corresponding boundary component is negative. So
E(Y, λ) is the inner product space attached to a compact oriented surface with
parametrized labeled boundary. The assignment

) (4.8)

is termed a (reduced) modular functor by Graeme Segal [SI]; in the physics
literature E(Y, λ) is called a conformal block. Theorem 3.21 easily implies the
following properties of these inner product spaces.

Proposition 4.9. The assignment (4.8) satisfies:

(a) (Functoriality) Iff: < Y'9 Λ/> -» < Y9 λy is an orientation preserving dίffeomorphism
which preserves the boundary parametrizations and the labels, then there is an
induced ίsometry

ft .E(Y'9λ')->E(Y9λ)

and these compose properly.

(b) (Orientation) There is a natural isometry

(c) (Multiplicativity) If (Y, λy = (Y\9 λ^) u <y2> ^2) is a disjoint union, then there
is a natural isometry

E(Y, u Y29 λ, u λ2) * E(Yl9λJ (x) E(Y29 λ2) . (4.10)

(d) (Gluing) Suppose 7cuί is the manifold obtained from Y by cutting along an
embedded circle S. Let λ be a labeling of d Y. Then there is an isometry

(4 n)
μe Φ

The extra factor in the gluing law (4.11) does not appear in Segal's work [SI], but it
does appear in Walker's treatment [Wa] of the SU(2) Chern-Simons theory. We
should point out that the inner product in E(Y, λ) can be scaled, as can the
isomorphism in (4.11). There are choices that would eliminate the extra factor in the
gluing law. Our scale choices seem quite natural, nonetheless. The isometry (4.11) is
independent of the choice of hermitian structure on Eλ (which is unique up to scale).

Proof. Equation (4.10) follows immediately from (3.23). For (4.11) we rewrite (3.26)
using (4.5) and (A.8):

E(Y)^

1
0 E(YCU\ λ u μ u v) ® Eλ ® Invy4s (Eμ ® E*)

,λvμvμ)®Eλ. (4>1
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( E \
— — - — , E(Y) L by Proposition

/\./, wmcn compieies me prooi.

Notice that in passing to the last equation in (4.12) we trivialized the complex line
Inv4s(Eμ ® Eμ*} using the natural duality pairing, which has norm square equal to

Next, we introduce a ring structure on F=Z[Φ], the free abelian group
generated by the label set Φ. A typical element of Fis denoted ]Γ λ cλλ, with cλ e Z.
Fix 73 a 2-sphere with three open disks removed. Give parametrizations to the
three boundary circles so that two are - parametrizations and one is a + paramet-
rizaton. Set

N£v = dim£(73, λ u μ u v) , (4.13)

where λ labels the + boundary component. Notice that (4.13) is independent of the
choice of 73. Define multiplication on Fby

μv = Σ Niv λ .
λ

The proof of the next proposition is quite standard.

Proposition 4.14. F is a commutative associative ring with identity.

This ring can be used to compute dim E(Y, λ) quite effectively. Its complexification
AF<c = €[Φ] is called the Verlinde algebra.

We can see the Verlinde algebra as belonging to an auxiliary 1 + 1 dimensional
field theory. Namely, for a closed oriented 1 -manifold S define

S), (4.15)

and for a compact oriented 2-manifold Y define

Zγ = E(Sί x 7) . (4.16)

Then it is easy to see that E, Z determine a 1 + 1 dimensional topological quantum
field theory (as defined by the properties in Theorem 2.13). The Verlinde algebra is

5. Computations

We illustrate the theory of the previous sections with some calculations in the
quantum theory. We begin with an arbitrary twisted theory (determined by
a cocycle ά) in 2 + 1 dimensions. Our first job is to calculate the SL(2; Έ] action on
the vector space E(Sί xSl) attached to the torus (Proposition 5.8). One conse-
quence is that the factor in the gluing law (4.11) is a matrix element (5.12) of the
standard modular transformation S. We then take up the untwisted (ά = 0) theory.
We calculate the theory explicitly in 0 + 1 and 1 + 1 dimensions (Proposition
5.17). We use the 1 + 1 dimensional theory to count the representations of a surface
group into a finite group (5.19). The structure of the 2 + 1 dimensional theory on
surfaces with boundary simplifies somewhat, since the central extensions there are
trivial. The coalgebra in that theory also obtains a natural Hopf algebra structure,
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which we compute directly, and the Verlinde algebra can be derived from this Hopf
algebra (Proposition 5.25).

Fix a cocycle α e C3(£Γ; R/Z). Let E = E(S[ x S1) be the inner product space
attached to the torus. Then SL(2; Έ) acts on £, by (2.15). We will determine the
action of the generators

?) - *-(? -;)•
Cut the torus along {0} x S1 to obtain the cylinder [0, 1] x S1. Note that T defines
a diffeomorphism of the cylinder which fixes the boundary. Recall that the space of
fields on the cylinder is a groupoid ^ = {<x, 0>: x, g e Γ} with composition law
(3.10). The vector space of the cylinder is the space of sections A of a line bundle
L -> ̂ , and Theorem 3.21 identifies E as the subspace of central sections, that is,
sections invariant under conjugation. The coalgebra A is the direct sum

and the dual algebra is

x,g

as in (4.1). Elements of A are then complex-valued functions on A*. Thus we
identify E with the space of complex-valued central functions on the algebra A*.
Since A* is semisimple (Proposition 4.2) there is a basis of character functions χλ,
where λ runs over the set Φ of irreducible representations. Each χλ is supported on

supp χλ = { <x, #>: x e Λ, [x, 0] = 1} (5.2)

for some conjugacy class A a Γ. (Here [x, g] = xgx~ 1 g~ 1 is the group commuta-
tor.) If we fix x0 e A, then χA is determined by its values on { <x0, #>: x00 = 0Xo}>
which is (anti)isomorphic to the centralizer Cx of x in Γ. The restriction of χλ to this
set is a character of Cxo, the central extension (3.13) of Cxo. The Schur ortho-
gonality relations for these characters is

(53)

The integral is simply a sum over the elements of ̂ , since each element of ̂  has unit
mass. Here ( , •) is the hermitian inner product on the line bundle L. We can
rewrite the left-hand side of (5.3) as

M M V ^ c

where the first summation is over representatives of conjugacy classes in Γ and for
each x the second summation is over representatives of conjugacy classes in Cx. But
Cg n Cx ^ Aut Q is isomorphic to the automorphism group of the bundle
Q -> S1 x S1 obtained from <x, 0> by gluing. In view of (2.11) we have shown the
following.

Lemma 5.4. The characters x^farm an orthonormal basis of E.
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We have already noted (3.12) the triviality of L< X j β > for any x e Γ. Let
l<Xt ey G L<x> ey and l*x> ey e L*Xί e> be the trivializing basis elements. We also claim
that there is also a trivialization

L<X.X>*<C9 (5.5)

and corresponding trivializing elements /<*,*> e L<XιXy and /<*,*> e L*x,xy. To see
this we first note

£<*, x> ® L<Xί x> ^ L<x, χ2> (5.6)

by (3.11). Now the diίfeomorphism T: [0, 1] x S1 -* [0, 1] x S1, defined in (5.1),
pulls a bundle with holonomy <x, x) back to a bundle with holonomy <x, x2>, and
so by functoriality (Theorem 3.2) gives an isometry

£<*,*> = £<*,jc2> (5.7)

We obtain (5.5) from (5.6) and (5.7).
We claim that 1<X, x> is a central element of Cx, where Cx is the central extension

of Cx defined in (3Λ13). For suppose g e Cx and / e £<*,#> is an element of unit
norm, so also / E Cx. Let Px,x,g -> ^S1 x S1 x S1 be the Γ bundle with holonomy
x, x, g around the three generating circles. Then Proposition 3.14 implies that the
commutator of l<Xί xy and / in Cx is the exponential of F * [α] ([S1 x S1 x S1] ), where
F' Pχ,x,g -> EΓ is a classifying map. In other words, the commutator is the classical
action evaluated on PXtXtβ. But Px,x>g is the pullback of the bundle f<Xtβy -^ S1 xS1

by the map

from which it follows easily that the action is 1.
Now we can compute the action of 5L(2; Έ) on E. Let pλ denote the representa-

tion whose character is χλ. By the preceding argument and Schur's lemma pχ(l*x, *>)
is a scalar, if χλ is supported on Cx.

Proposition 5.8. The elements T, S e SL (2; Z), defined in (5.1), act on E as follows.
The basis {χλ} diagonalizes T:

T*χλ = pλ(efXtX>)χλ9 (5.9)

where x is chosen as in (5.2). Also,

= Σ Σ ((Xλ)<β-\X>, (Zμ)<x,,>)Xμ - (5.10)
μ χ , g

Note that since χλ is a central function,

Z λ ί ^ X f i f - S f f X g - 1 ) ) = Xλ (C<X,gf>)

where /*^>5> e £<*t,0> is any nonzero element. Hence (5.9) is well-defined. Formulas
(5.9) and '(5. 10) agree with the results in [DVVV].
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Proof. The diffeomorphism T acts on the cylinder, commuting with the boundary
parametrizations, and the induced action on the set of bundles ^ is

To compute the effect on the character, we can suppose g e Cx commutes with x.
Then

in the groupoid .̂ Using (3.11) and the trivialization (5.5) we easily derive (5.9).
The gluing law in Theorem 3.2 allows us to identify the induced action of S on

^xs1 with an action on the subset of the groupoid $ consisting of pairs <x, #> of
commuting elements. That action is

S*<x,^>-<^- 1 ,x>.

Note that this gives an isometry

Now (5.10) follows from the Schur orthogonality relations (5.3). Of course, the first
line of (5.10) holds for any element of SL(2; TL\

There is a distinguished representation 1 e Φ. Its character χx is supported on
{<e, #>} ^ Ce = Γ. Now by (5.11) and (3.12) we have a trivialization of
£<e,0> = £<0-ι,e> Then

is the corresponding trivializing element. (This character corresponds to the repres-
entation of Ce ^ Γ x T which is trivial on the Γ factor and is standard on the
T factor.) Now from (5.10) we compute the matrix element

(5.12)

where Eλ is the representation with character χλ. This is exactly the factor which
occurs in the gluing law (4. II).19 To avoid confusion, we point out that if
<x, 0> e suppχA,_and there^ are k elements in the conjugacy class of x, then
dim Eλ = k dim Eλ, where £λ is the irreducible representation of Cx with character

Xλ\cx

We turn now to the untwisted (α = 0) theory. The quantum theory described in
Sect. 2 makes sense in arbitrary dimensions (and the manifolds do not have to be

19 Walker [Wa] uses this factor (defined as this matrix element of S) in his construction of the
Chern-Simons theory with gauge group SU(2)
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oriented). Formulas (2.6)-(2.8) can be worked out more explicitly. First, for any
closed, connected d-manifold Y we use (2.7) and (1.1) to identify

E(Y) = L2(Άom(πlY9Γ)/Γ)9

where the mass of a representation y e Hom(π! 7, Γ) is

Here Cy is the centralizer of the image of y in Γ and [y] denotes the set of conjugates
of a representation 7. For a closed, connected (d + l)-manifold X we compute from
(2.6):

, Γ ) . (5.14)

If X is a compact, connected (d + l)-manifold with nonempty connected boundary,
and y e Horn (n^dX, Γ), then from (2.8) we deduce

Zx(y)=#(ι*Γ1(y),

where z*: Hom(π!^Γ, Γ) -> Hom^d^, Γ) is the restriction map.
The theory in 0 -I- 1 dimensions is completely trivial. The inner product space

E(pt) = — ; * ̂  and Z[0 l}: - C -> - C is the identity map. From (5.14) we
#Γ ' #Γ #Γ

have Z5ι = 1. Notice that this is consistent with the gluing law (2.17) applied to
[0, 1].

In 1 + 1 dimensions the inner product space E — E(S1) of the circle carries
extra structure. Let 73 denote S2 with three disks removed. Parametrize the
boundary circles so that one is positively oriented and the remaining two are
negatively oriented. Notice that

ZΎ,\E®E-+E (5.15)

is independent of the parametrizations, since the space of orientation preserving
diffeomorphisms of S1 is connected. (We use the inner product on E to write Zy3 in
this form-cf. Theorem 2.13(b).) It is easy to verify from the axioms that (5.15)
defines an algebra structure on E which is commutative and associative. Further-
more, if Yl denotes a disk with positively parametrized boundary, then ZY l e E is
an identity element for this multiplication. The algebra E has an involution a h-> α
induced by any orientation reversing diίfeomorphism of S1, and it is unitary in the
sense dual to (A. 3):

(α, be) = (ac, b) = (ba, c)

for all a,b,ce E. It now follows that £ is a semisimple algebra, and so is
isomorphic to a direct product <C x x <C. Up to isomorphism this unitary
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algebra is determined by the norm squares λϊ > 0 of the identity element in each
factor of the direct product.

The preceding discussion applies to any 1 + 1 dimensional unitary topological
field theory (in the sense of Theorem 2.13). Conversely, such theories can be
constructed from unitary commutative, associative algebras with unit. We compute
the partition function ZY(g} of a closed, oriented surface of genus g in terms of this
algebra:

Zγ(g) = Σ(tf)l-9 (5.16)

These considerations apply to the Verlinde algebra (cf. (4.15)-(4.16)); in that
context (5.16) appears in [V].

Returning to the untwisted theory attached to a finite group we have the
following.

Proposition 5.17. In the untwisted 1 -f 1-dimensional theory E = Eβ1) is naturally
identified with the character ring J^cent(Γ) of complex-valued central functions on Γ.
The multiplication is by convolution. The hermitian structure is

(/I ,/2) = 3Γ? Σ ΛMΛM, X l , 12 e ^cent(Γ) . (5.18)
#1 X 6 Γ

Finally,

2* , (5.19)

where i runs over the irreducible representations Et of Γ.

Formula (5.19), which counts the number of representations of a surface
group in a finite group, can also be derived using standard methods in finite
group theory [Se]. Here we derive it by chopping Y(g) into a union of "pairs
of pants" and annuli. This is a simple illustration of how gluing laws are used
in topological quantum field theory to compute global invariants from local
computations.

Proof. The equivalence classes <%sι of bundles over the circle correspond to con-
jugacy classes in Γ, and for g e Γ the conjugacy class of g is weighted by l/#Cg,
according to (5.13). Now (5.18) follows immediately. To compute the multiplication
(5.15) consider F3 with a basepoint on each boundary component. Then, as in

Fig. 1, the set of equivalence classes #y3 is in 1:1 correspondence with the set of
4-tuples X i , 0ι, X 2 j 02 e Γ. In other words, there is a 1:1 correspondence

(5.20)

The path integral over 73 is defined in (2.12). Then that fact that E consists of
central functions implies that the multiplication (5.15) is the convolution

(Λ*/2)(X) = Σ / l(Xl)/2(*2).
X1X2=X

Note that the factor of (#Γ)2 which comes from the summation over 0ι,02 is
canceled by the factor in the inner product (5.18). The characters of the irreducible
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Fig. 1. The bundle over F3 corresponding to < X ι > ίh) x <*2> #2) e ̂  x ̂

representations, suitably normalized, are commuting idempotents in J^entCO? by
the Schur orthogonality relations. Hence

from which (5.19) follows immediately given (5.16).

The modular structure of Sects. 3 and 4 has an analog here: Consider bundles
over the interval with basepoints over the endpoints. The reader should check the
assertions in Theorem 3.21 and Proposition 4.9 in this 1 + 1 dimensional theory.
They all reduce to standard facts about finite groups. The basic coalgebra A is
simply the coalgebra of functions on Γ. The twisted theory in 1 + 1 dimensions can
also be made quite explicit. Namely, a cocyle α e C2(BΓ: R/Z) determines a cen-
tral extension

Then the basic algebra A& in the corresponding twisted quantum theory is the
coalgebra of functions twisted by the cocycle ά. The representations of this coal-
gebra correspond to representations of Γ which are standard on the central T. The
reader may wish to work out this twisted case in detail.

Finally, we take up the modular structure in the untwisted 2 + 1 dimensional
theory. Consider once more F3, as shown in Fig. 1, with two boundary circles
negatively oriented, one boundary circle positively oriented, and basepoints on
each of the boundary circles. Quantizing (5.20) we find a vector space isomor-
phism

£(F3) = A (x) A , (5.21)

where A = £([0, 1] x S1) is the unitary coalgebra of the untwisted theory. Recall
that this is just the set of functions on .̂ Now £(F3) has a right ,4-comodule
structure A coming from the positively oriented boundary circle. Combining with
the counit (3.29) we obtain a map

m: A (x) A > A (x) A (x) A -̂ -+ A .
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More explicitly, if α, b e A are functions on &, then

Also, there is a canonical element 1 e A as follows. First, if YI is the disk then
E(Y1) ^ (C is the trivial comodule. But we can write Y1 as the union of Yl and
72 = [0, 1] x S1, and by (3.26) this gives an isometry

From this we determine le A:

0, otherwise .

Proposition 5.22. 77i£ multiplication m and unit 1 render the coalgebra A a Hopf
algebra.

This Hopf algebra is the dual of the "quantum double" of Γ considered in [DPR].
We leave the verification of the Hopf algebra axioms to the reader.

The algebra structure can be used to define tensor products of comodules of A.
Namely, if £1? E2 are right comodules, with coproducts Δί9 A2, then the composi-
tion

A, ® AΎ 1 (>ξ) l(χ)m
£ι®£2 - >E±®A®E2®A -> E1®E2®A®A - ̂ E^®E2®A (5.23)

is a coproduct on E^®E2. We denote this comodule by E1 ®AE2. In particular,
we can take tensor products of the irreducible corepresentations. Define non-
negative integers JV^V by

Eμ®AEv^@N^Eλ. (5.24)
λ

Proposition 5.25. We have

Nλ = Nλ

^ Ύ μv ^ ' μv ?

where N*v is defined in (4.13).

In other words, this tensor product on corepresentations reproduces the Verlinde
algebra.

Proof. Recall that £(Γ3) is a right Aop x Aop x ,4-comodule. Further, the isomor-
phism (5.21) is defined in terms of the identification (5.20). Under this isomorphism
A® A becomes a right Aop x Aop x ^-comodule. The right Aop x ̂ op-comodule
structure is simply the natural left A x ^4-comodule structure on A (x) A; the right
A-comodule structure is that of the tensor product A ®AA, as defined by (5.23).
From (4.7), (4.13), and (A.9) we compute

u μ u v )

= dim HonL4<* x ̂  x A (E* ® E * ® £Λ, A (x) A)

£A, Eμ ®A Ev) .



466 D.S. Freed and F. Quinn

But this last expression is exactly NμV9 from the definition (5.24).

A much more complete treatment of the Hopf algebra structure in both the
untwisted and twisted theories appears in [F5].

A. Appendix: Coalgebras and Comodules

Some basic definitions may be found in [MM, Sect. 2]. A coalgebra A over C is
a complex vector space endowed with a comultίplicatίon

A:A-+A®A (A.I)

and a counit

ε: A -» C . (A.2)

The comultiplication is required to be coassociative. A (right) comodule E is
a complex vector space with a coaction

Δ:E->E®A

which is compatible with (A.I) and (A.2).
A natural example is the following. Suppose G is a finite group acting on a finite

set X. Then the vector space J^(G) of complex-valued functions on G is a coalgebra
and the space of functions 3F(X) is a comodule. The comultiplication is dual to the
group multiplication G x G -> G and the coaction is dual to the group action
X x G -> X. The counit is ε(/) =/(!), where 1 e G is the identity element.

Now suppose a h-> a is an antiinvolution of A. Then A is unitary iϊA is endowed
with a hermitian inner product which satisfies

(Δa, b®c} = (a®c, Δb) = (b ® a, Ac) (A.3)

for all α, b, c e A. A right comodule £ is unitary if it has a hermitian inner product
which satisfies

(Ax, y ® a) = (x ® α, zly) (A.4)

for all a e A,x,y E E.
Suppose ER is a right ^-comodule and EL is a left ^4-comodule. Then the

cotensor product ER^A EL is the vector subspace of ER ®€EL annihilated by
AR (x) id-id ® AL. It is not a comodule, but rather is simply a vector space. If ER, EL

are unitary, then ER ^AEL inherits the subspace inner product. More generally, if
E has both a left ^-comodule structure AL and a right A-comodule structure AR,
then we define

Inv^(E) c £

to be the subspace annihilated by ΔL — PAR, where P: E (x)c A -> ,4 ®€£ is tne

natural isomorphism.
The dual ,4* of a coalgebra is an algebra. In finite dimensions the dual of an

algebra is a coalgebra, so we can pass freely between the two. Recall that an algebra
(over (C) is simple if it is isomorphic to a matrix algebra, and it is semisimple if it is
isomorphic to a direct product of matrix algebras. If

A*^Y[Mλ (A.5)
λe Φ
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is a finite direct product of matrix algebras MΛ, then there are commuting
idempotents α* e A* which correspond to the identity matrix in Mλ. Now each Mλ

has a unique nonzero irreducible representation E% (up to isomorphism). Under
the isomorphism (A.5) we view E* as an irreducible representation of A*. Then if
£* is any representation of A*, there is an isomorphism

0Hom^(E*,£*)(g) £*-+£*
λeΦ

(A.6)

Now suppose that A* is a unitary algebra, i.e., has a hermitian inner product
which satisfies the dual of (A. 3):

Then an easy argument with the α* shows that the images of Mλ in A* under the
isomorphism (A. 5) are orthogonal. Since each matrix algebra Mλ has a unique
unitary structure up to scaling, we may assume that (A. 5) is an isometry. The
irreducible module £* also has a unique unitary structure up to scaling. Fix
unitary structures on the £*. Now suppose that E* is unitary structure up to
scaling. Fix unitary structures on the £*. Now suppose that £* is a unitary
A*-module, and/,/7 e Hom^* (£A*, £*). Then for e*, e*' e E% we set

h(e*9e*') = (f(e*)9f'(e*'))E..

This defines a new unitary structure on E*. So by uniqueness,

h(e*9e*') = λ (e*9e*')E*

for some constant λ. Let {e?} be an orthonormal basis of £*. Then the inner
product (//') in HomA* (£*, £*) is

*= A dim E

Using this we see that (A. 6) is an isometry if we scale the inner product on E* in
Hom^*(E*, E*) by a factor I/dim E*. Dually, we have proved the following.

Proposition A.7. Suppose A is a finite dimensional unitary semisimple coalgebra, and
{Eλ}λe Φ a representative set of irreducible corepresentations. Fix unitary structures
on each Eλ. Then for any unitary comodule E the map

.
dιm Eλ

is an isometry.
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17
(Recall that — — — denotes the space Eλ with the inner product scaled by the factor

I/dim £,.)
If E is a right v4-comodule, then E* has a left ^4-comodule structure determined

by the formula

(e,AE*e*y=(AEe9e*yeA, e e £, β* e £* .

If E is unitary, then so is E*. In this way {E*} is a representative list of the
irreducible left A-comodules. Equivalently, it is a representative list of the irredu-
cible right comodules for the opposite coalgebra Aop.

From (A. 5) it follows that a semisimple coalgebra A decomposes as

A*@E*®Eλ. (A.9)
λeΦ

We can interpret (A.9) as an equation for right, left, or bi ^-comodules.
Finally, for λ, μ e Φ we have the formula

Ttw (F <*F^-F K F*^InvA(Eλ®Eμ)-Eλ®AEμ= .f χ + ̂

The factor dim £λ is the norm square of the canonical element (the duality pairing)

B. Appendix: Integration of Singular Cocycles

Fix an integer d, and suppose that X is a compact oriented (d -f l)-manifold with
boundary. Then if α is a differential form of degree d + 1 on Jf , the integral j^ α is
well-defined. Notice that da = 0 since any (d + 2)-form on Jf vanishes. If instead we
consider a (real-valued) singular cocycle α, then the integral j^ α is well-defined if
X is closed. For in this case X has a fundamental class [X] e Jfd + 1(X) and the
integral is the pairing of [Jί] with the cohomology class represented by α. If dX φ 0
we must work a little harder, essentially because α may not vanish on degenerate
chains. (By contrast differential forms vanish on degenerate chains.) Our construc-
tions in this appendix keep track of these degeneracies. Notice that we only define
integration of closed cochains, i.e., cocycles. We work first with manifolds of
arbitrary dimensions d and d + 1, though there is a generalization to CW com-
plexes. Then we specialize to d = 2 and extend the theory to surfaces with bound-
ary by fixing some standard choices on the boundary.

Proposition B.I. Let Y be a closed oriented d-manίfold and α e Cd+1(Y;
a singular cocycle. Then there is a metrized "integration line" IYf(X defined. If X is
a compact oriented (d + l)-manifold, i: dX ^ X the inclusion of the boundary, and
aeCd+1(X; R/Z) a cocycle, then

exp ( 2πi f α ) e /a^f α
\ x /

is defined and has unit norm. These lines and integrals satisfy:
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(a) (Functoriality) If f: Ύ' -» Y is an orientation preserving dίjfeomorphism, then
there is an induced isometry

and these compose properly. If F: X' -> X is an oreintation preserving diffe
phism, then

(dF)J exp(2πί f F*α ) = e x p ( 2 π z f α ) .* \ J / \ J /
L \ X / J \ X /

(b) (Orientation) There is a natural isometry

*-y,α = ^y,α j

eomor-

and

exp ί 2πi J α I = exp ί 2πi J α 1 .
\ -X / \ X /

(c) (Additίvity) IfY= 7X u 72 is a disjoint union, then there is a natural isometry

= AΊ uX2 is a disjoint union, then

exp ί 2πi J αx u α2 1 = exp ί 2πι J o^ j ® exp ί 2πi J α2 1 .
\ XiU^ 2 / \ Xi / \ X2 /

(d) (Gluing) Suppose j: Yt+X is a closed oriented codimension one submanifold and
Xcui is the manifold obtained by cutting X along Y. Then 8Xcut = dX u 7u - 7.
Suppose α e Cd + l(X;Ί&/Z) is a singular (d + l)-cocycle on S, and αcut e
Cd+1(Xcut; R/Z) ίfte indwced cocyc/e on Xcut.

2πi f αcut ) , (B.2)
x V χcut

where Ύrγj*χ is the contraction

using the hermitian metric on /r>7 *α.
(e) (Stokes' Theorem I) Lei α e C^1^; IR/Z) be a singular cocycle on a compact
oriented (d -f 2)-manifold W, Then

exp ( 2πi J α J = 1 . (B.3)
\ ew /

(f) (Stokes" Theorem II) ^ singular d-cochain β e Cd(7;R/Z) on 7 determines
a trivialization

Iγ,δβ = &

A singular d-cochain β E Cd(X; R/Z) on X satisfies

under this isomorphism.
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Proof. We give the constructions and leave the reader to verify the properties.
Consider the category ^γ whose objects are oriented cycles 3; e Cd(Y) which

represent the fundamental class [F] 6 Hd(Y). A morphism y ^+y' is a chain

a e Cd+1(7)suchthat/ = y + da. Define a functor &Ytα: %Ύ -+&by&YtΛ(y) = C

for each object 3; and ^y,α(y—»y') acts as multiplication by e2πία(fl). Now if 3; A y is
an automorphism, then <3α = 0. Since Hd+1(Y) = 0, there is a (d + 2)-chain ft with
3b = α. Hence α(α) = α(δfr) = <5α(fo) = 0. Therefore, the functor J*y has no holo-
nomy, so defines the desired line IΎι α of invariant sections.

For X, choose a chain x e Cd + 1pf) which represents the fundamental class
[Jf] e Hd+ί(X, dX). Then 3x e Cd(dX) is closed and represents the fundamental
class [dX~\ e Hd(dX). Consider the section

dx \-+e2πίΛ(x) (B.4)

of the functor ^dχ,ι*« If *' is another chain representing [J5f] with dx = dx', then
x' = x + dc for some c e Cd+ι(X). But then α(3c) = δoc(c) = 0, so that (B.4) is
well-defined. A similar check shows that (B.4) is an invariant section of ^ex.i*** so

determines an element of unit norm in IdXii*Λ as desired.

We generalize these constructions20 in the case d = 2. Fix once and for all the
standard oriented circle S1 = [0,1]/0 ~ 1 and the standard cycle s e C^S1) which
represents the fundamental class [S1]. (Thus s is the identity map [0,1] -> [0,1]
followed by the quotient map onto S1.) The following proposition generalizes the
construction of integration lines to surfaces with boundary.

Proposition B.5. Let Y be a compact oriented 2-manifold, and suppose that each
component (dY)i of the boundary is endowed with a fixed parametrization S1 -> (37)i
(which may or may not preserve the orientation). Suppose α e C3(Y; R/Z) is a singu-
lar cocycle. Then there is a metrized line / y > α defined. IfdY= 0, then this is the line
defined in Proposition B.I. These lines satisfy properties (a)21, (b), (c) of that proposi-
tion and in addition satisfy:

(d) (Gluing) Suppose S q: Y is a closed embedded i-manifold and Ycut the manifold
obtained by cutting along S. Then 37cut = dYuSu — S and we use parametriz-
ations which agree on S and — S. Let α be a 3-cocyde on Y and αcut the induced
cocycle on 7cut. Then there is an isometry

Iγ.Λ = W (B.6)

These isometrίes compose properly under successive gluings.

Proof. The construction is similar to that in Proposition B.I. Using the boundary
parametrizations we construct from s and — s a cycle z e CΊ (d Y) which represents
the fundamental class [37]. We take %>γ to be the category whose objects are
oriented cycles y e C2(Y) which represent the fundamental class [7, dY~\ and

satisfy dy = z. A morphism y A/ is a chain a e C3(7) with y' = y + da. Notice

that %>γ is connected. The rest of the construction IΎί α is as before.

20 There is a simpler version of what follows for d = 1. In that case there is no need to fix
a standard cycle s nor to parametrize the boundary. The analogue of Proposition B.5 holds, now
for gluings of intervals. We use the d = 1 version in the proof of Proposition 3.14
21 The diίfeomorphisms should commute with the boundary parametrizations
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For the gluing law we proceed as follows. The gluing map g: 7cυt -> Y induces
a map g*. C2(Ycut)-+ C2(Y) on chains, and this in the turn induces a map
0* ^Y cut -> ^V since the boundaries of the chains along S and — S cancel out under
gluing. Then g% extends in an obvious way to a functor, and J^y cut ? α cut = 3FΎ α o g^ .
Thus #* induces the desired isometry on the space of invariant sections.

Suppose β e C3(Sί; R/Z) is a singular cocycle. We also use "/Γ to denote the
induced cocycles on [0, 1] x S1 and S1 x S1, obtained by pullback from the second
factor. Glue two cylinders together to form a single cylinder. Then (B.6) leads to an
isomorphism

*[0,l]xS1,^ ® J [ Q ί ΐ ] x S 1

y β = «CO,l]xS 1 ,/5 (•**•/)

There is a unique trivialization

which is compatible with (B.7). Gluing the two ends of [0, 1] x -S1 together and
applying (B.6) we obtain a trivialization

Wi.^C (B.9)

compatible with (B.8) under gluing.
Finally, we observe that the gluing law in Proposition B.l(d) extends to

a 3-manifold glued along part of its boundary.

Proposition B.10. Let X be a compact oriented 3-manifold and Y a compact oriented
2-manifold with parametrized boundary. Suppose Y^X is an embedding which
restricts to an embedding dY c; dX. Let Xcut be the "manifold with corners" obtained
by cutting X along Y. Then 8Xcut = dXuYu — Y, where the union is over
dY u - dY. Suppose α e Cd+ί(X; R/Z) is a 3-cocycle, with αcut the induced cocycle
on Jfcut, and α the restriction of a to Y. Then

α ) = Tr y,βΓexp(2πi f α c u t ) l ,
/ L \ χcut / Jx

where Try> α is the contraction

Try?α: /^cu.ιαc., ̂  IdXtΛ (x) /y,α ® J^ -̂  IdXtΛ (B.ll)

using the hermitian metric on / y > α.

There is a canonical way to "straighten the angle" [CF] to make Xcui a smooth
manifold with boundary. In particular, Xcut has a (relative) fundamental class,
which is needed to define the integration lines and the integrals. Note that (B.ll)
uses the isomorphism (B.6). We have also implicitly used (B.6) when we cut dX
along dY. The proof of Proposition B.10 is straightforward once the definitions are
clear.
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