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Abstract. An algebraic characterization of vacuum states on nets of C*-algebras
over Minkowski space is given and space-time translations are reconstructed with
the help of the modular structures associated with such states. The result suggests
that a "condition of geometrical modular action" might hold in quantum field
theories on a wider class of spacetime manifolds.

I. Introduction

In the algebraic setting of quantum field theory one commonly characterizes
vacuum states on an algebra of observables si by their invariance and spectral
properties with respect to the group of space-time translations [1, 2]. In this note
we pose the question whether it is possible to characterize these states using only
the net structure of the observables, i.e. the assignment Θ —• stf(Θ) of spacetime
regions Θ to local subalgebras s/(Θ) of J / . The existence of spacetime symmetries
will not be assumed from the outset.

This question is motivated by the following considerations. First of all there is
a matter of principle: it is believed that in algebraic quantum field theory the
physical information of a model is encoded in the relative positions of the local
algebras in a given net. One should therefore be able to characterize the vacuum
and to determine the spacetime symmetries using only this net structure. Secondly,
the question is of relevance to the theory of quantum fields on curved spacetimes,
where one deals with physical systems for which, in general, one has little in the way
of spacetime symmetries to simplify matters. Hence the characterization of physical
states by means of the net structure is also of practical interest.

In the present approach we start from the property of isotony of any net of
observables. This property imposes special relations between the modular struc-
tures associated to the local algebras and a given faithful state. Only these data,
entirely determined by the net and the particular state chosen, will be used here.
A remarkable fact is known in this connection: the modular objects associated to
a vacuum state and algebras over Minkowski space corresponding to wedge-
shaped regions Wy bounded by two characteristic planes, contain geometric
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information about the spacetime itself, as well as dynamical information about the
representation [3, 4]. They act in a geometrical manner on the net and can be used
to reconstruct the symmetries of Minkowski space, in other words, the Poincare
group.

We will show in this note that this specific geometric action is a distinctive
feature of the modular structure associated with vacuum states. It thereby leads to
a characterization of these states in terms of the net structure. Moreover, the
space-time translations can be reconstructed from the modular objects and shown
to be unique. These results suggest that a "condition of geometrical modular
action" might be suitable for an algebraic characterization of states of physical
interest in quantum field theories on more general spacetime manifolds. We
comment on this idea at the end of this note.

II. The Vacuum in Minkowski Space

For the characterization of vacuum states in Minkowski space we proceed from
a net si of C*-algebras {si(Θ)}Oe9l satisfying the condition of isotony, with
9i equal to the set of all (open) wedges 1V and double cones Jf in R4. It is useful
(and standard) to assume that the algebras si(Θ\ Θ e % are continuous from the
inside in the sense that they are the C*-inductive limits of all double cone algebras
sZ(X') for which the closures of Jf are contained in the interior of Θ.

We look upon si as some abstract net on R 4 without any a priori dynamical
information. In particular, we assume neither the existence of space-time transla-
tions nor that of causal properties (i.e. locality). These more detailed features
will be attributed to the GNS representations of si induced by suitable states ω. It
is our aim to characterize within this general setting those states which can be
regarded as vacuum states of some relativistic quantum field theory in Minkowski
space.

Given any state ω on si, we consider its GNS representation pf, π, Ω) and the
corresponding net 01 of von Neumann algebras 01{Θ) = f]^ 2 Gπ{si{Ψ))\ Θ e 5R.
Note that 01{Θ) ̂  π(si(Θ)) because of isotony. Anticipating the Reeh-Schlieder
property of vacuum states, we shall be interested only in states ω whose GNS-
vector Ω is cyclic and separating for the von Neumann algebras 3t{iV) correspond-
ing to arbitrary wedges if. With this input the modular operators Δψ and modular
conjugations JΨ associated with (βt(W\ Ω) are well defined, and we shall state our
conditions on ω in terms of these modular objects.

We denote by if(0) any wedge whose edge passes through the origin of R4, and
by x(0\ y(0\ etc. any translation in the two-dimensional subspace R^«» generated
by the two lightlike directions fixing the boundaries of if(0\ To simplify notation
we denote the modular conjugations associated with (0!(ifiO) + z(0)), Ω) by Jz«».
We distinguish a special class of states ω on si by making the following assumption
on the action induced by the corresponding modular conjugations on the net 01.

Assumption 1. For each wedge if{0) and every 0 e 9ί one has the action

«»0 + 2z(O)) , (2.1)

where Aψ-w is a reflection which is equal to — 1 on R^«» and equal to 1 on the two
dimensional subspace of R 4 which forms the edge of {0)
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It was shown in [3] that Assumption (1) holds in all irreducible vacuum
representations of any net of local algebras that is locally associated with a quan-
tum field, when one takes the modular objects associated with the vacuum state
(see also [5]). Note that Assumption (1) entails the locality of the net 01. In fact, by
the Tomita-Takesaki theory one has JirM{Ψ')Jir = 0t(ir)\ for any wedge TT,
and (2.1) implies that Jw@{W)Jir = St{H^'\ where W denotes the spacelike
complement of ΊV. Hence the net 01 satisfies duality (thus, locality) on the wedges
and it is standard to derive from this the locality of the net {^(Θ)}Θsm. In this sense
any state ω o n i satisfying Assumption (I) induces on R 4 , through the action of
the associated modular conjugations, the causal structure of Minkowski space. By
Assumption (I) we also have the following relation for each i^{0) and any x(0), j / ( 0 )

as above,

J^JyWSt{O)Jy^J^ = m(β + 2x(0) - 2yi0)) . (2.2)

Since the modular conjugations are antiunitary involutions, the products
Jx<o)Jyo) are unitary operators. Relation (2.2) shows that these products induce
translations of the local algebras, possibly accompanied by internal symmetry
transformations. The latter possibility is excluded by our second assumption.

yV

Assumption 2. For each fixed W*(0) and any x(0), j ; ( 0 ) as above, the unitaries Jxιo)J
depend only on the difference x{0) — y{0\

Once again, this assumption follows from what has been proven by Bisognano
and Wichmann for nets in vacuum representations locally associated with
Wightman fields [3], cf. also [4]. With this assumption it is meaningful to set

K(2[x<o>-y ( O )]) = ^,J,<o,. (2.3)

Note that since the modular conjugations leave Ω invariant, these unitary oper-
ators do so, as well. We shall construct a representation of the translation group
out of these operators.

Lemma 2.1. Under Assumption (2) the map x{0) -» V(x{0)) gives a strongly continu-
ous unitary representation of the additive group R <̂o>.

Proof. From Assumption (2) it follows that

V(xi0))V(yi0)) = Ax.o,Jo JoJ-iyo, = J ^ o J - ^ c = F(x ( 0 ) + / » ) ,

F(x ( 0 ))* = J 0 A χ ( 0 ) = V{ - x ( 0 )) = Vix^y1 .

Thus x ( 0 ) -> F(x ( 0 )) is a unitary representation of the group R^(o,. If x{0) e iTi0)

tends to 0, we have Jx«» -• J o in the strong operator topology (we may appeal to
the technical lemmas in the Appendix, since # " ( 0 ) + x ( 0 ) c nr^0)) and conse-
quently V(x{0)) -> 1. Due to the identity || (V{ - x(0)) - 1)Φ || = || (1 - V{x{0)))Φ ||,
it also follows that V( — x ( 0 )) -> 1. This establishes the continuity of the map
λ -» V(λ e{0)), A e E , for any e ( O ) e # " ( O ) . Using the previously verified group
structure, it follows that x{0) -> V(x{0)) is continuous in the strong operator
topology. D

For fixed ^ ( 0 ) we shall call the collection of wedges {iTi0) + z ( 0 ) | z ( 0 ) e R^o,}
a coherent system of wedges. As we have shown in Lemma 2.1, associated to any
coherent system of wedges is a strongly continuous unitary representation of R^«».
Introducing proper coordinates x — (xθ5 *i, *2> ^3) on R 4 we pick the wedges
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= {x e R 4 1 Xi > I x01}, i = 1, 2, 3, and consider the corresponding representa-
tions Fi(Ri(θ)), i = 1, 2, 3.

Proposition 2.2. L/ndβr Assumptions (1) and (2) ί/ie unitary operators
{K1(x)|x = (x 0,xi,0,0)}, {K2(x)|x = (0,0, x 2,0)},{Γ 3(x) |x = (0,0,0, x3)},wiίh
x0, xl9 x2, x3eΊR. arbitrary, determine a strongly continuous, unitary representation
F(R 4 ) of the translations on R 4 that leaves Ω invariant and acts geometrically
correctly on the net, i.e.

V(x)0t(Θ) Vix)'1 = St(G + x), VΘ E % x e R 4 .

Proof. By (2.2) and the preceding lemma, the proposition will follow as soon as one
sees that the three sets of unitary operators above mutually commute. To illustrate
the simple idea of the proof, consider the operators {V2(x) I x = (0, 0, x2, 0)}. One
has for the coherent system {iTf] + z ( 0 ) | z ( 0 ) eRi<o>} the elementary fact that

m z(0) + x = ifr(θ) + z(0) f o r a n y χ = ^ O j χJQy τ h u s ? b y Q2\ one has

f + z(0))V2(x)~1 = m(ifψ + z(0)) for each such translation x. Since,
in addition, V2{x)Ω = Ω for all such x, {V2(x)\x = (0, 0, x2, 0)} is a collection of
unitary operators leaving the pairs (β(1Vψ + z ( 0 )), Ω) invariant. Hence V2(x)
must commute with the modular objects associated with these pairs (see [6,
Theorem 3.2.18]) and consequently with Vί(y). The other cases are argued
similarly. D

This result shows that in the GNS representation space of any state satisfying
Assumptions (1) and (2) one has a representation of the translations. There is, of
course, nothing unique about this construction, since many different choices of
coherent systems of wedges can be made. We shall return to the question of
uniqueness below.

The representation F(R 4 ) fulfills every desideratum of the translations in
a vacuum representation except possibly one - the spectrum condition. And, in
fact, there are simple examples of nets and states satisfying Assumptions (1) and (2)
which generate representations of the translations that violate the spectrum condi-
tion [7]. In order for the representation F ( R 4 ) to satisfy this condition, it is
necessary and sufficient that the modular groups Δψ- act upon the translations
K(R^) in the geometrical manner of Lorentz boosts. More precisely, the following
assumption has to be satisfied.

Assumption 3. For every wedge # ^ ( 0 ) and every positive lightlike vector e{0) such
that iΓi0) + ei0) a itr(0) there holds

Δ% V(ei0))A^(ί = F(e- 2 π V 0 ) ) , VA e R . (2.4)

(From (2.4) it follows that also A^mV( - ei0))A^\i =V{- e" 2 π λe ( 0 )).)

Proposition 2.3. Let F(R 4 ) be the representation of the translations on Minkowski
space constructed in Proposition 2.2. Then F(R 4 ) satisfies the relatίvistic spectrum
condition, i.e.1 sp(V) cz V+, if and only if relation (2.4) holds for all wedges.2

1 V+ (resp. V-) denotes the forward (resp. backward) lightcone
2 An analogous result that yields the spectrum condition for a given representation of the
translations is given under somewhat more restrictive conditions in [8]
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Remark. At the cost of a significantly longer argument [7], this result can be
established requiring Eq. (2.4) only for the wedges in the three coherent systems
used to construct the representation 4

Proof. From the work of Bisognano and Wichmann [3] and Borchers [4] it
follows that in a vacuum representation (i.e. a translation-co variant representation
having an invariant vector and satisfying the spectrum condition) Eq. (2.4) holds.
Hence we need only give a proof of the implication in the other direction.

Choose a wedge i^{0) and a positive lightlike vector ei0) such that
{0) + e{0) <= iT ( 0 ) . For simplicity of notation, the subscripts iTi0) on the modu-

lar objects A, J associated to the pair (&(i^{0)\ Ω) will be suppressed in the
following. First note that by assumption, F ( e ( O 0 ^ ( ^ ( O ) ) ^ ( ^ Γ 1 c ^ ( ^ ( 0 ) ) ,
which entails V(ei0))St(ir{0))tV(ei0))'1 => «(Hr ( 0 ) y and therefore M{Ψ*{0))'
zDV(e{0)y1St{iT{0))'V{ei0)). Then, with X(e(0)) = J K ^ ) " 1 J, one has

= <M(iTi0)). (2.5)

Let now A' e @{W{0))f and B e m(1V^\ By the Tomita-Takesaki theory, the
function

z ->/(z) ΞΞ (A-iz~AΏ, V( - e(0))A-izBΩ}

is continuous and bounded on the strip 0 ^ Im(z) ^ 1/2 and analytic in its interior.
Moreover, for λ e 1R the following bounds hold:

and

I f(λ + i/2) I = I < Jzl ~ay4/*ί2, K( - e(0)) J A " i A B*Q> |

where the fourth equality follows from relation (2.5) and Δ~iλM{iT{Q))Aiλ

= ${Ψ*{0)). Hence by the Three-Line-Theorem one has

| / ( z ) | ^ | | y Γ Ω | | | |BΩ||, 0 g Im(z) ^ 1/2 .

Now pick any two vectors Φ9Ψm3^ and let A'n e St{ir(0))' and Bn e @{1Tm)
be such that A'nΩ -+ Φ and BnΩ ^ Ψ strongly. Then it follows from the preceding
estimate that the sequence of analytic functions

z ->/Λ(z) = <A-*A'nΩ, V{ - e^)A-izBnΩ}

converges uniformly on the strip 0 ^ Im(z) ^ 1/2. Thus the limit/^(z) is continuous
and bounded on 0 ^ Im(z) g 1/2, analytic in the interior, and |/oo(z)| ^ || Φ \\ \\ Ψ ||.
Moreover, when λ is real, it follows from relation (2.4) that



454 D. Buchholz and S.J. Summers

Since Φ and Ψ are arbitrary, one may conclude that the operator function
z -> V( — e~2πze(0)) is weakly continuous on 0 ^ Im(z) ̂  1/2, analytic on the
interior, and bounded in norm by 1. Setting z = ί/4 one finds in particular that
|| V(ίe(0))\\ ^ 1, and consequently P-ei0) ^ 0, where P is the generator of K(R4).
This inequality holds for all positive lightlike vectors e{0\ hence s p ( F ) ^
Π 4 | p £> ί 0 )^0}= V+. D

The representations F(R4) of the translations constructed above are uniquely
fixed by the properties established so far, as can be extracted from the literature (cf.
the remark below). For completeness we give here a proof of this fact.

Proposition 2.4. Let l/(R4), F(R4) be two continuous unitary representations of the
translations on Jf which act geometrically correctly on the local net $, leave
Ω invariant, and satisfy the spectrum condition. Then (7(R4) = F(R4).

Proof Let Γ(x) s U{x)V{x)~\ x e R 4 , then Γ(x)Ω = Ω and Γ(x)^(Jf)Γ{xy1

= M{C/f) for any double cone JΓ. Hence for any test function h(x) whose Fourier
transform /Γhas support in some compact set C <= R 4 \ V+ and for any A e ^(JΓ),
the weak integral B = jh(y)Γ(y)ΛΓ{y)~ί dy is an element of 0t{df) and the
spectral support of the vector function x -> U(x)BΩ is contained in
V+n(V+ -C).

Proceeding now as in [9], one considers the commutator function x -> K(x) =
<Ω, [£*, £(x)]Ω>, where B(x) = U(x)BU(x)-\ and sets K±x) =
± Θ( ± xo)K(x\ where Θ(x0) is the unit step function at 0. Because of locality, the

Fourier transforms K± are analytic in the tubes ZΓ±

 3. Hence, using the spectral
support properties of x -> U(x)BΩ, it follows from the Edge-of-the-Wedge-The-
orem that K is the discontinuity on the reals of some function analytic in
«y+ u 3Γ_ u Jί_, where / is a complex neighborhood of the region
R 4\(( V+ n (V+ — C)) u V-). This situation is encountered frequently in applica-
tions of the Jost-Lehmann-Dyson technique. And sincê  no complete (double
shelled) hyperboloid fits into the region of discontinuities (V+ n (V+ — C)) u F_,
one must conclude that the analytic function (and hence K) is identically zero.

It follows from this fact and the spectrum condition for ί/(R4) that
BΩ = E({0})BΩ = 0, where £(•) is the spectral resolution of ί/(R4) and the
spectral support properties of x -• U(x)BΩ have been used once again. As Ω is
cyclic for 0ί(Ψ*) and <ft(if) is generated by double cone algebras &(Jf), this
equation implies that J h(y)Γ(y)dy = 0. Interchanging the role of £/(R4) and
F(R4), one sees by the same argument that also J h(y)Γ(y)* dy = 0. Thus, taking
the adjoint, one gets J h(y)Γ(y) dy = 0, where the Fourier transform of h(x) has
support in the region — C. Since C c R 4\F+ was arbitrary, one concludes that
the Fourier transform of the operator function x -» Γ(x) must have its support at
the origin, and taking also into account that the function is bounded in norm, it
follows that Γ(x) = Γ(0) = 1 for x e R4. D

Remark. A very different argument establishing this result can be deduced from
[4]. In the language established above, Borchers has shown that for any repres-
entation F(R4) of the translations acting geometrically correctly on the net, having

With &~+ (resp. 2Γ_) we denote the forward (resp. backward) complex tube {z e (C41 Im(z) e V+ }
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an invariant vector Ω, and satisfying the spectrum condition, and for any coherent
system of wedges {iTm + z ( 0 ) |z ( 0 ) 6 R^«o,}, one has

j0jz{0) = V( - 2z ( 0 )) .

Since the left side of this equation is fixed by the net and the vector Ω, the right side
likewise depends only on these data. Thus there is only one representation of the
translations satisfying all requirements.

Summarizing our results, we have established the following theorem.

Theorem 2.5. Let s$ be a net ofC*'-algebras over R 4 , let ω be a state on stf which
satisfies Assumptions (1) to (3), and let (J-f, π, Ω) be the corresponding GNS repres-
entation. Then there exists on Jf a continuous unitary representation F ( R 4 ) of the
translations which acts geometrically correctly on the net 01, leaves Ω invariant, and
satisfies the spectrum condition. These properties uniquely fix the representation
F(R4).

III. A Condition of Geometrical Modular Action

In the preceding section we have characterized the vacuum states on a given net of
algebras over Minkowski space by conditions on the modular operators and
conjugations associated with wedge regions. It is of significance here that
these conditions involve only the wedge algebras 0t(1V\ The action of the
modular objects on the double cone algebras is fixed by the relation
^(jf)= p l ^ 2 j r πί a/OόΠ)", reflecting the fact that any double cone can be
represented as an intersection of wedges. We call such a collection of regions whose
intersections generate a given index set 9Ϊ of subregions of spacetime a generating
family.

Since the pertinent conditions in our investigation were of a purely geometrical
nature, it seems natural to apply this approach to quantum field theories on other
spacetime manifolds Jί with the intent to characterize physically significant states.
In this more general setting one still deals with nets of C*-algebras {^{(9)}Θe^
where 9ί is a suitable family of subregions of M [2]. As in the case of Minkowski
space theories, one may restrict attention to the algebras affiliated with some
generating family S c ί R . For, on the one hand, one expects that only the modular
objects of algebras associated with certain special spacetime regions will have an
action which can be interpreted in geometrical terms. On the other hand, the action
of the modular objects on a net of algebras over M is completely fixed, once it has
been specified on the algebras indexed by a generating family (5.

With these remarks in mind, we propose the following less stringent version of
Assumption (1) for the characterization of special states ω analogous to the
vacuum. Again, this condition is expressed in terms of the GNS representation
( f̂, π, Ω) induced by ω.

Condition. Let (5 be the given generating family of regions. Then the collection of
algebras &{<&) = π(s/(&))", ^ e ® , is stable under the action of the modular
conjugations J% affiliated with (β(!$\ Ω\ <$ e (5. More precisely, for every pair of
regions <Su

(S2e% there is some region <3γ ° ^ 2 e © such that

^ ) . (3.1)
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(Setting &(f)ι

 <$ι) = O^i^X the geometric action of the modular conjugations
can then be extended to the algebras affiliated with any region in 9ΐ.)

Remark. Note that this condition is weaker than Assumption (1) since the
particular form of the geometric action has not been specified. An even weaker
version is obtained by demanding that the product of any two modular conjuga-
tions J#9 ^ e (5, (and not necessarily each modular conjugation individually)
acts in the given geometrical manner on the algebras ά(^\ $ e (5. In other
words, the action induced by products of any two modular conjugations associated
with algebras in {^(^)}^e© leaves the collection {^(^)}^e© itself stable.
This additionally weakened form of the condition of geometric modular action
is suitable for covering a yet wider class of physical systems, including KMS
states.

At this stage the condition of geometric modular action is stated in
rather general terms4 and therefore should be understood as providing only a
framework for future consideration. Each choice of a manifold Jί and of
a generating family (5 of subregions fixes, in principle, some class of quantum
field theories and their underlying elementary states. One should neither assume
from the outset that the maps induced by the modular conjugations on the
collection of regions (5 are point transformations, nor should one in general
expect that there is an analogue to Assumption (2) or (3). Nevertheless, the
condition does impose stringent restrictions on a theory, respectively the underly-
ing states.

It is an interesting problem to determine the manifolds, the causal structures
(which, in view of relation (2.6), are fixed by defining the causal complement of
^ e ( 5 b y ^ ' = ^ o < ^ ) , and the spacetime symmetries which are compatible with
our condition. We view this as a step towards an algebraic characterization of
quantum field theories on arbitrary spacetime manifolds and their respective
elementary systems.

As a first exercise in this program we have tried to recover the results of the
preceding section, starting from this more general point of view. To this end we
have reconsidered the case of a net over the manifold R 4 which is based on the
generating family (5 of all wedges W. If this net satisfies the condition given above,
it follows without further specification of the assignment (iΓί9 i^2) -* ^ i ° ^2
that the geometrical action induced on R 4 by the modular conjugations is given by
point transformations which are elements of the extended Poincare group (cf.
[10]). From this one infers that the causal structure induced on R 4 coincides with
that of Minkowski space. We note that the modular structure can also be used to
induce a metric d on R4,

d(x, y) = sup X 2~n || ( J ^ - J ^ || ,
n

where {Φn}nelN is some orthonormal basis in J-f and the supremum is to be taken
with respect to certain pairs (i^X9 i^y) of coherent wedges whose edges pass
through x and y, respectively.

In fact, the condition is meaningful for nets based on any partially ordered index set
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At this point in our understanding, it seems unlikely that there always exist
space-time translations in a theory satisfying these general conditions. Yet if one
does presume that Assumption (2) is satisfied, one can exhibit once again a continu-
ous unitary representation of the translations in the GNS representation induced
by ω. (And note that Assumption (2) implies that the metric d above is invariant
under these space-time translations.) Then, as above, Assumption (3) implies that
the translations so constructed satisfy the relativistic spectrum condition. A de-
tailed account of these results, including also a discussion of Lorentz transforma-
tions, will be published elsewhere [7].

Appendix

We present here some technical lemmas required in the main text of this paper.

Lemma A.I [11]. Let A be a closed, densely defined linear (or antίlίnear) operator on
a Hubert space ffl with domain D(A). Let Dn a D ( i ) , n e N , determine an increasing
sequence of dense vector spaces such that D = ( J ^ = 1 Dn is a core for A. Let
An = A\Dn and let A = VH, An = VnHn be the corresponding polar decompositions.
Then Vn -» V in the strong operator topology and Hn -> H in the strong resolvent
sense.

Corollary A.2. Let {Jίn}ne^ be an increasing sequence of von Neumann algebras on
a Hilbert space J f such that Jί — {[)Jίn)'\ and let Ω be a cyclic and separating
vector for Jί and Jίn, VπeN. If Δ1'2, Δ\12, J, Jn are the corresponding modular
objects, then Jn -> J and Δι

n

λ -+ Δίλ strongly for any λ e R.

Proof. Let S = Sθ9 with S0AΩ = A*Ω, MA e Jί. One needs only to show that if
Dn = JίnΩ, n e N , then the set D = (Jn°°= x Dn is a core for S. Let Ψe D(S). Then
since JίΩ is a core for S, there exists a sequence {Mn}neN cz Jί such that MnΩ -• Ψ
and SMnΩ = M*Ω -• SΨ strongly. On the other hand, since Jί = {{JJίn)\ it is
also true that [JJίn is dense in Jί in the strong *-topology (cf. Theorem 2.6 in
[12]). In other words, there exist sequences {Mnm}meN cz \]Mn such that
MnmΩ -+ MnΩ and M%mΩ -> M*Ω strongly, for every n e N. Thus, for suitable
subsequences {Nn = Mnm(n)} a \JJίn one has NnΩ -• Ψ and SNnΩ =
N*Ω -+ SΨ. D

In the main text we make use of these facts as follows: according to our
assumption the wedge algebras srf(Ψ*) are the inductive limits of double cone
algebras j / ( J f ) , where the closures of JΓ are contained in the interior of W. Hence
if Hίx a if determines an increasing sequence of wedges such that \Jxi^χ = 'W,
then {{JM(Ψ*X)}" = 3l(iV\ From the corollary it then follows that JWχ converges
strongly to J^.
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