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Abstract. We use quantum tori Lie algebras (QTLA), which are a one-parameter
family of sub-algebras of glw, to describe local and non-local versions of the Toda
systems. It turns out that the central charge of QTLA is responsible for the
non-locality. There are two regimes in the local systems - conformal for irrational
values of the parameter and non-conformal and integrable for its rational values.
We also consider infinite-dimensional analogs of rigid tops. Some of these systems
give rise to "quantized" (magneto-)hydrodynamic equations of an ideal fluid on
a torus. We also consider infinite dimensional versions of the integrable Euler and
Clebsch cases.

1. Introduction

Infinite dimensional Lie algebras are natural to describe symmetries of integrable
systems in 1 + 1 and 2 + 1 dimensions. For example, Kac-Moody algebras are
known to describe symmetries in 1 + 1 dimensions (cf., for example [1]). gl^ and
its subalgebras arise in the case of 2 + 1 dimensions; see [2, 3] for KP and [4] for
the two-dimensional infinite Toda chain. Some new systems were considered in
[5-7]. The Virasoro algebra plays a role in the description of the symmetries of the
KdV equation [8] and some other equations [9].

Here we consider trigonometrical Lie algebras ££A [10], which, having Connes
non-commutative geometry [11] in mind, are also called quantum tori Lie algebras
(QTLA). This is due to the fact that they arise as the natural commutator of
associative algebras stfΛ that are generated by two non-commutative elements U1

and U2 satisfying UίU2 = e4πίΛU2U1 [12]. The algebras are also related to
SU(oo) Yang-Mills theories and membranes [13-15] and are possible candidates
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for the universal algebra in the description of all integrable interactions which arise
in string theory [16].

QTLA's can be considered as a one parameter (A) family of subalgebras oϊgl^,
the Lie algebra of all two-sided infinite dimensional matrices with only a finite
number of non-zero diagonals. They can be characterized as matrices with
(quasi)periodic dependence along the diagonals for (ir)rational values of A.

Starting from a Lie algebra one can naively try to derive dynamical systems
with additional integrals of motion. It is then not guaranteed that the resulting
systems are completely integrable. There exists however the so-called Adler-
Kostant-Symes scheme, based on Hamiltonian reduction, which does yield integr-
able systems. This approach was developed and extended by the Leningrad school;
cf. [17, 18] and references therein. It allows, starting from a Lie algebra and an
additional structure related to the classical r-matrix, to derive the Lax representa-
tion, conservation laws, classical solutions to the corresponding Riemann problem
and so on. All steps to be performed are more or less straightforward, following the
recipe laid out in [17]. Therefore we will use their approach only for constructing
the Lax pairs for integrable systems based on QTLA's.

Our interest in the systems under consideration is based on the idea that
algebras that from the very beginning play some role in physical systems often lead
to non-trivial dynamical systems, which eventually lead to physical applications. It
is worthwhile to emphasize that these algebras describe hidden symmetries of the
resulting systems.

From this point of view QTLA are good candidates. The simplest system that
we obtain in the above way is the well-known Michailov-Ueno-Takasaki Toda
chain [4] which is a universal object in the theory of integrable systems. As such it
appeared recently also in the matrix approach to two-dimensional gravity. This is
one more reason why we feel that QTLA's deserve thorough investigation within
this approach. In a similar fashion we also derive the non-local version of the Toda
system and find that the central charge of the QTLA is responsible for the
non-locality.

In the Toda systems we find that their properties depend crucially on the
parameter A, leading to conformal theories for A rational and integrable theories
otherwise. It is also easy to generalize our construction to the whole Toda
hierarchy and to describe the dressing procedure for it in the spirit of [4]. Tops for
finite dimensional Lie algebras and for the algebra of symplectic diffeomorphisms
were introduced by Arnold [19]. There is a lot of work devoted to generalized tops
on finite-dimensional algebras (cf. [17, 20] and references therein). The Euler top
on the Virasoro algebra, which is in fact the KdV equation, was considered in
[21, 9]. Top-like systems naturally arise for the trigonometric algebra because in
the limit A -> 0 it coincides with the algebra of symplectic diffeomorphisms on
a torus. In this case the Euler top is equivalent to the hydrodynamics of an ideal
fluid on a torus (this is a particular case of the Arnold approach) and a top in
a gravitational field to magneto-hydrodynamics of a superconducting ideal fluid.
Thus the systems under consideration correspond to "quantum" versions of these
equations where A plays the role of Planck's constant.

The paper is organized as follows. In Sect. 2 we present some preliminaries (to
be used in subsequent sections) which contain two types of results. We first describe
our main object, QTLA and three realisations which we will use to construct
dynamical equations. We then present some Z 2 gradations of QTLA and finally its
coadjoint action. The former part is needed for deriving the equations for the
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top-like systems whereas the latter leads directly to a generic form of equations
related to the Lax or Zacharov-Shabat equations. We also include here a brief
discussion of the Leningrad version of the Adler-Kostant-Symes scheme [17]
which also serves as a justification for our choice of Lax equations. After these
preliminaries we consider in Sect. 3 several dynamical systems, starting with
Toda-like systems. We then treat generalized Euler equations on QTLA and their
integrable versions. We end with a discussion of generalized tops in an external
field, magneto-hydrodynamics and its integrable version.

2. Generalities

2.1. Quantum Tori Algebras, gl^, Representations, and Subalgebras. Consider the
non-commutative associative algebra stfA over C, generated by two elements

{Ul9U2}>

U1U2 = ωU2Ul9 (2.1)

where ω = e^iΛ. Thus s/A = {cmnU?Un

2} = {Σ^T^} (m = (ml5 m2)eZ) with

Tft = ω^mim2Urΐ1Ul22 This describes a non-commutative (or quantum) two-
4πΛ

torus [11]. The following three representations of srfΛ (A irrational), given in refs.
[22, 23, 13], respectively, will be used below:

j miTΠ2 7

J7-. = — CO 2 girniθgm2λdθ _ _ ^im\θ + m2λdθ ί^ 2)

λ A

TΆ = \ a i ^ Σ 0JmkEk,k+m2, (2.3)

Tϊh=
l-ei^ . (2.4)

We have defined

λ = 4πA, ω = eiλ . (2.5)

In all three representations we have

Γ Λ Γ s = ^ ω - * * * H Γ Λ + H . (2.6)

Multiplication in representations (2.4) is via the star product (cf. below). In the
following we will refer to (2.2) and (2.4) as vertex and star product representations,
respectively. Representation (2.3) is the embedding into gl^, i.e. the algebra of all
two-sided infinite dimensional matrices with only a finite number of non-zero
diagonals. EV] denotes the infinite-dimensional matrix with value 1 at position (ij)
and 0 everywhere else (i.e. (JB^OW = δikδji) obeying

j (2.7)

Note that T^ in (2.3) is zero everywhere except on the m 2

t h off-diagonal, on which

all elements are different from zero (in fact, up to the factor -, they are powers of ω,
A
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i.e. have absolute value one). Representation (2.2), or, equivalently1

ηr^ Λm2θ + mi λdβ /Λ ΛV

A

should be thought of as acting on smooth periodic functions of θ. If we write for
a general element F = X̂ /™ T^ of S£A in the vertex representation

(2.8)
m

where T = eλdθ is the shift operator which satisfies

Tmf(θ) = f(θ + λm)Tm , (2.9)

this becomes, expressed in the representation (2.3)

F= Σ Σ fm(4πkΛ)Ek>k+m . (2.10)
meZ fceZ

We have thus the embedding of fm(θ)Tm in gl^ as an m-oίf-diagonal matrix with
quasi-periodic dependence along the non-vanishing diagonal:

fm(θ)Tm -> diagm(. . . ,/m( - 4πΛ)Jm{ϋ)Jm{4πΛ\ . . .) . (2.11)

This will be relevant when comparing our Lax operators for the local Toda system
in Sect. 3.1 with the ones of [4].

Finally, the (associative) "star-product" * in (2.4) is defined for any pair (f, g) of
smooth functions on the torus as

( / * « ) < ? > : = * + Σ -^T-ί , , . , • • • «„..(«;,...,„/)«,....,») (2-12)
n— 1 ^ *

such that

c Λ C CO KΪ , yΔ.Lj)

(cf. (2.6)). The •-product may also be defined by the formula

(f*9)(φ) = lτiSdφ'dφ"e%Φ~ψ'*Ίf(φ')g(φ") (2.14)

π A

with

\φφ'φ"\ \= φxφ' -\- φ' x φ" + φ" x φ .

This definition extends to the case where / and g are integrable, but not necessarily
smooth.

When working with the *-product representation it is useful to note that

1 Concerning the Lie algebra, any Γ- = ±-eiih'A will do as long as \_AU A2~\ = ± ίλl
A
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Thus, we may take (2.15) as an invariant trace on the associative algebra. In the
representation (2.2), an invariant trace is (cf. (2.8))

(2.16)

We now define <£A as the associated Lie-algebra constructed from sίΛ by the
standard commutator. S£A consists oί all finite linear combinations (over C) of basis
elements T^ with commutation relations

2πΛ
sm(2πA(mxn))Trh+n Λε(0, (2.17)

This is the class of trigonometric Lie algebras introduced in [10]. With reference to
our discussion of srfA, we will call them Quantum Tori Lie Algebras (QTLA). The
invariant trace and the two-coycle (cf. below) on S£A correspond, in the language of
[11] to the canonical trace τ(YjihcίhTih) = c^ and an element of the first cyclic
cohomology group, respectively.

The A -* 0 limit if0 is analogously defined by

[Γ Λ , 7V] = ( m x n ) Γ M . (2.18)

For irrational A,A'e(0,i) one can prove [24] that J£A and £?A'*A are non-
isomorphic. Note that (2.17) and (2.18) are invariant under the transformation

AeGL(2,Έ)
= ± 1 ) .

(2.19)

M
For rational A = — <£A contains a large ideal (of finite codimension)

J + ( p i , ώ ) } (2-20)

For N odd, M, N relative prime integers, dividing out the ideal yields gl(N, (C):

* gl(N9 C) .

The corresponding basis of gl(N, C) is given by

^
4πM mum2=

J V - 1

(2.21)

(2.22)

where

9 =

/l

ω

ω

Co*"1/

M

ω = e4πί~N

with

= ωgh (2.23)
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In all three cases ((2.17), (2.18), (2.22)) there is an additional one-dimensional ideal
generated by T$ which, depending on the situation, we will automatically consider
as factored out, yielding sl(N9 (C) in the case of (2.22), or a certain "dense"
subalgebra of the complexified Lie algebra of deformed symplectic diffeomor-
phisms of the torus, differ2 ~ J?Λ9 in the case of (2.17). Note that for the repres-
entation (2.22) one has

τl — _ T , T* — _ T (i 2Δλ

so that

sl(N, R ) <-> x* = -x-mί>m2 ,

su(N, R ) <-• x | = x_Λ ,

so(N, R ) <-> x* = x-t = - x _ m ι . m 2 , (2.25)

when writing an element X of gl(N, <C) as

X = ΣXrnT^ (2.26)
in

Both JSζi and J£?o permit nontrivial central extensions S£Λ and Ĵ > [23, 25, 22] by
means of a vector a = (aί9 a2)e(C2. Let ^ = 5£A © Cc, where c is the central
element. Then

IT*, ΓH] = T — sm(2πΛ(m x H
2π/ι

[ 7 Λ , C ] = [C,C] = 0 , (2.27)

which is also defined for Λ->0. In the star product representation this reads in
compact form

(2.28)

where {f,g}*=f*g — g*f In the vertex representation we find for the choice
α = (α,0)

IF(Θ, T), G(θ, Γ)] = IF(Θ, T), G(θ, Γ ) ] ^

= Σ (fm(θ)9n(θ + λm) -fjβ + λn)gn{θ))Tm+n

m, n

+ aTr(GdθF)c, (2.29)

where in the second line we have represented F and G as in (2.8).
We close this section by pointing out the relation of siA to the algebra of

magnetic translations in two dimensions, relevant in the discussion of the quantum
Hall effect (cf. e.g. [26]). Magnetic translations are generated by the mechanical

momentum ( pt — A t I, where pt = -dt is the canonical momentum and At the
\ c J i

vector potential. The generators of finite translations Tξ = eξΛ hc ' satisfy

^Ίi T%2 = e~lΊCΦ{ξlχξ2)Tιx +ξ2, where B = V x A is a uniform perpendicular magnetic
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he -*
field and φ = — the flux quantum. For ξ1 and ξ2 linearly independent, T-ζί and

Tξ2 generate a two-dimensional lattice and one finds that for "rational" values of
the £-field there are closed paths for which the accumulated phase under magnetic
translations vanishes.

2.2. Automorphisms and Gradings of J£Λ. One of the most apparent features of the
Lie algebras <£A (as well as their underlying associative algebras, (2.6), which are
projective representations of the abelian group Έ2 [22, 12]) is their ZxZ grading.
In their embedding into gl^, (2.3), or, when partially completing in one direction
(e.g. with respect to mx\ one of the Z-gradings is hidden, while the other is stressed
(in (2.3) the grading with respect to the non-zero off-diagonal is manifest, while in
the representation (2.2) we have - cf. (2.8) - [/mΓm, gnT

n~\ = hm+nT
m+n).

For some of the dynamical systems constructed in Chapter three, Z2 gradings
of 5£A will be essential. With this motivation we will discuss them in some detail.
They naturally result from involutive automorphisms of S£A. So let

σ\2A^&A (2.30)

have the properties

σ2 = id, [φ),φ)] = φ j ] ) . (2.31)

Then JSζi = JSf̂  φ <£A with

Observing (2.19), it immediately follows that there exist involutive automorphisms
Of J^i,

σ(Γ«) := ±TAM A2 = ' , (2.33)

where the ± sign in (2.33) corresponds to having det^ = ± 1 .
A and B define equivalent automorphisms iff A and B are conjugate to each

other in GL(2, ΊL) and one would like to know a complete set of non-conjugate
matrices AeGL{2, ΊL\ A2 = 1. It is given by [27]

ί ! ) ("ί +i)' ("o -?) (i ί) (234)

The corresponding involutive automorphisms will be referred to as σo,σί9σ2, σ 3

respectively. In particular

:= +Γ-m (2.35)

Comparing with (2.24), one finds that for the finite-dimensional case, σ1 corres-
ponds to complex conjugation, and σ2 to minus hermitian conjugation. This also
holds for the infinite dimensional representations (2.2) and (2.3), as those also
satisfy (2.24). As we defined £fΛ (as well as gl(N)) as Lie algebras over C, it is of
course necessary to supplement (2.35) by a prescription of how to act on the
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complex-valued coefficients. We need

:=Σc*»2(Tii) = Σc$T-iii, (2.36)
fh fh

in order to justly call σx and σ2 complex conjugation and minus hermitian
conjugation, respectively. Care is needed in the representation (2.4), where σγ

corresponds to complex conjugation accompanied by φ2 -• — φ2.
When writing elements F = ΣmffhTfh (in the representation (2.2)) in the form

F= Σ fm{θ)Tm + Σ τ~mf-m{θ\ T=eλd\ (2.37)
m^O m>0

one can easily check, using

fjβ) = \Σfn,mCθilmlneinθ (2.38)

that σγ and σ2 indeed act properly:

m^O m>0

σ2(F) =-F<=-Σ T-mf*(θ) - Σ f*-m(θ)Tm • (2.39)
m^O m>0

We will denote the corresponding invariant subalgebras of <£A by <£\ and S£υ

A (R
standing for "real" and U for unitary, meaning antihermitian for the generators of
the algebra):

S, σ2(x) = x, Vxe i f^ . (2.40)

We also define i f 5° = { * k i M = ^ 2(x) = x}. Subalgebras of this type have pre-
viously been considered in [13, 28,12 and 29]. There exist, of course, many other
involutive automorphisms, such as

σ(cΛΓΛ) = ( - ) ^ c l Γ _ Λ , (2.41)

(__)y* + yA = (_)ym+A V m , n e Z 2 . (2.42)

Finally, it seems worth mentioning yet another subalgebra of S£A which, in the
vertex representation, is obtained by demanding

/±«(0) = O at ί L - l , - 2 , . . . , - m (m > 0) (2.43)

in (2.37). In order to check that this is consistent with the Lie structure (and the
associative structure) one uses (2.9).

23. Coadjoint Action and Orbits. Let us introduce the dual space J^* and the
coadjoint action.

In the star-product representation if* is the space of linear functionals on the
space of trigonometric polynomials <£Λ = {f(φ)} or other smooth functions on the
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torus. We can define them as integrals using the formalism of distributions

&ϊ = {g\<9,f> finite} V/eJ%, (2.44)

where we have defined the pairing

(g,f) = Tτ(g*f). (2.45)

S£\ contains singular functions as the delta-function or its derivatives and therefore

In the vertex representation if* is the space of functional on a sequence (fm),
where fm =fm(θ) is a trigonometric polynomial or a smooth function on the circle:

= \(gm) Σ W- Ίdθfmg* finite! . (2.46)

Note that if we write FeJ£Λ as in (2.8) and likewise for Gei f*, the dual space is
defined via the pairing <G, F> = Tr(FG f). The part of J^* corresponding to the
central charge is a one-dimensional spaceand we can define in the star-product
representation, for (/, c)e&A and (g9 d)&*

cd*9 (2.47)

and likewise in the vertex representation, with (F, c)e&Λ and (G, d)e&*Λ

<(G, ά\ (F, c)} = Tr(FGt) + cd* . (2.48)

The coadjoint action of /e«% in the *-product representation is then

ad}{g9c) = {-{f\g}* + c(α* 3)/*,0). (2.49)

If

Σ Σn (2.50)

with 7"s as given in Eq. (2.4), then

W V (2.51)

In the vertex representation we get for the choice a = (1,0) for the coadjoint action

adf (G, c) = (IF\ G ] ^ + c ^ f t , 0) . (2.52)

Representing F and G as in (2.8), we obtain

ad*(G, c) = ( Σ C/*-m(0 + mλ)ί.(β + mλ)
\m,n

(2.53)

The actions in both spaces are well defined because of the definitions of S£A

?J.
Thus the orbits are parametrized by pairs (g9c) ( ^ e ^ f * , c e R ) , where g is

defined up to the "gauge" transformations (2.49)-{2.53).
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If c = 0, then for a subspace in »£?* we can define invariant functionals
(Casimirs)

In = Tr(0"), (2.54)

where in the star-product representation the nth power is with respect to *.
The equations of motion for general rigid tops have the standard form of

Hamiltonian equations on coadjoint orbits. The Poisson structure on an orbit is
induced by the standard Lie brackets in the space of functions on ̂ * . It takes the
form of a coadjoint action

dt/ = adtB/9 ίe9*> ^ = grad/fe^. (2.55)

To describe integrable cases, or, more precisely, to construct integrals of motion,
we use the formalism of Lie-Poisson structures in a similar fashion as it was
developed in [17] for finite dimensional algebras.

Let us briefly recall this construction. For a Lie algebra ^ consider the twisted
loop algebra

tf(S,<7) = Σ ^ μ ' , (2.56)
j

where σ is an automorphism and ^ are homogeneous subspaces (eigenspaces of σ).
Let

V+(9, σ)=Σ V > «-&, σ) = Σ %μJ > (2-57)
J^O j<0

and P+ the projection operators onto #+ parallel to the complementary subalg-
ebra. The Lie-Poisson structure is (R = P+ — P-)

ξ±=P±ξ, η±=P±η. (158)

We can continue the pairing from ^ to (β{(S, σ):

{X, !%,,„ = ReSfι = oμ-\X(μ), Y(μ))^dμ . (2.59)

We then have with respect to (2.57),

0, σ) = <€%{<§, σ) + V*(9, σ ) , (2.60)

Yi9Jμ1 <€*(9t σ) = Σ J

The bracket (2.58) induces K-Poisson brackets on ̂ *(λ9 σ). Invariant polynomials
on # * ( 0 , σ) are

φt]n = Kesμ = 0{μ-nlk{μmί{μ)))dμ, m,neZ; (2.61)

^ ( μ ) e # * ( 0 , σ) and Ik is a Casimir on the original algebra 0*.
The construction of integrable systems is now based on the following two

important facts, (i) The φm,n are in involution with respect to the ̂ -bracket on
^*(λ9 σ) and (ii) if H has the form (2.61), then the equation of motion with respect
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to the ^-bracket has the form

d/ = ad*MS = ± a d £ ± Λ (2.62)

where M = R^~z, M+ = ±P± — and ad* is the standard coadjoint action.
lot bϋ

These two statements allow us to construct integrable Hamiltonians.
In the following we will put our equations in the form (2.62). The integrals of

motion are defined by (2.61).

3. Dynamical Systems

3.1. Toda Chain. We consider the central extension ^{^A) of the loop algebra
with values in J ^ . Let u(z)e<#{&A\

1-*^ (3.1)
with

u(z) = (F(z), φ ) ) , F(z)eSeΛ,

c(z) central charge in J£A .

The commutator of two elements in ^(^Ά) is

= \[u(z), υ{z)-}$Λ, k J dzTτ*(dzu(z)v(z))) , (3-2)

where Tr^(,) is the invariant trace in !£. In the vertex representation the commuta-
tor of two elements s/, &

SI = (v(z), k2) = (G(z, θ, T), c2(z), k2) (3.3)
is thus

= (lF{z, θ, T), G(z, θ, T)lχA,lγ^ G(z, θ, T)dβF(z, θ, T),

ί γ^dzG(z> θ> T)dzF{z, θ, T^ . (3.4)ί
The invariant form on ^(J^i) is

A T AC\

{Λ) μ Ύ j kfk2 (3.5)

which allows us to define the dual algebra ci*(^Λ). We then find for the coadjoint
a c t i o n o n ( φ ( z , θ, T), c ( z ) , k ) ^

ad?(,,β, T)(φ(z, θ, T), c(z), k) = (IFHz, θ, T), Ψ(z, θ,

+ (c(z)dβ + kdt)FHz, θ, T), 0, 0). (3.6)

The Lax pair with spectral parameter μ and the corresponding equation of motion
for the Toda system can now be constructed:

d,L = adttL (3.7)
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with

or

dtL - (c(z)dθ + kdx)M* + [L, M f ] = 0 .

Separating the O(μ~1) and O(μ°) terms, we get the equations

(c(z)dθ + kdz)F(z, θ) = (ιA(z, θ) - ψ(z9 θ - λ))F(z9 θ),

3 t^(z, θ) = F(z, θ) - F(z, 0 + λ) . (3.8)

The first equation is solved by

kdz)φ(z,θ), (3.9)

and the latter leads to the most general equation of Toda type:

dt(c(z)dθ + kdz)φ{z, θ) = e<p(*.°)-<p(*.°-» - e9(z.θ + λ)-φ{z,θ) # ( 3 < 1 0 )

This equation has two regimes. For k = 0 it is the non-local two-dimensional Toda
system first described in [5] where it was derived via reduction and a dressing
procedure was proposed, thus proving its integrability. In the approach taken here,
the non-locality is due to the central charge of &Λ. For k φ 0 one is lead to the local
two-dimensional Toda system (cf. e.g. [30, 6]). Indeed, if we perform the change of
variable with non-singular Jacobian

3 = ]c(z')dz'-kθ9
o

z = z, (3.11)

and define φ(z9 3) = φ(z9 θ\ Eq. (3.10) becomes

kdtdzφ(z, 3) = <,*<*.*>-*<*.«+**> _ e*u.*-**)-*(*.*) # ( 3 > 1 2 )

This is equivalent to Eq. (3.10) with c(z) = 0 which is local. Therefore, as long as the
central charge k of the loop algebra #(J^i) is non-vanishing, the central charge of
<£Λ is irrelevant for the Toda system.

Letting φm = φ( — λm\ meZ, we see that (3.10) (with c(z) = 0, k = 1) implies
the set of coupled equations

dtdzφm = e

φrn~φrn+ι - e

φ™-'~φ™, meZ , (3.13)

which is the first equation in the Ueno-Takasaki hierarchy [4, 31].2 However,
whereas in [4] the dependence on m is completely arbitrary, the solutions of (3.13)
are strongly constrained if they are to originate from a smooth periodic function
(satisfying (3.10)).

Maybe a general remark about S£A and our representations is in place here. We
have always used T as eλdθ and an acting on the linear space Vx of trigonometric

2 It is straightforward to generalize our Lax pair along the lines of ref. [4] to generate the whole
hierarchy
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polynomials or the space Vγ of smooth (real analytic) functions. As the basic
relation

(3.14)

can be realized between integral operators (acting on a much larger space
F D Fi D Fi, including distributions) with kernels

T(θ, 0') = δ{θ + λ- 0') ,

0'), (3.15)

one could relax the smoothness condition in (3.10) (thus changing the constraints
on the solutions of (3.13) as well). T and f(θ), when acting on the vectorspace
V2 <= V, defined as the linear span of Em = δ(θ + λm\ meZ, take the matrix form

(7% = δ*.j-i (f(θ))ij=f(-jλ)δij9 (3.16)

which makes contact with the matrix representation (2.3). With this choice, the Lax
operators coincide with the ones in [4]. On Vu T is diagonal and (/(#)) off-
diagonal (yet commuting with any other (#(#)), as it should).

Let us now make some conjectural remarks concerning the local Toda system.
Whereas the non-local Toda system was just integrable, the local case seems to be
conformal as it is a N -> oo limit of the non-periodic glN Toda system which is
conformal. Equation (3.10) (with c(z) = 0 and k = 1) can be derived from the action

S = \dθ\dtdz(- dtφdzφ + e

φiθ'λ)-φiθ) J (3.17)

or, Eq. (3.13) from the action

where φ = {φm} and αm = (. . . 0,1, — 1, 0, . . . ) with non-vanishing entries only
in the mth and (m + l) s ί positions. Expressions (3.17) and (3.18) resemble the
Liouville action. The energy-momentum tensor is traceless and the non-vanishing
components are Ttt and Tzz with

Ta* = -daφ-d(Xφ-Σym-diφ , (3.19)

where ym = (. . . , 1, 1,0, 0, . . .); the change occurs after the mth entry. In the
continuum picture one finds

i 2π Jβ i jβ

Taa = - j — δaφ(θ)daφ(θ) + ~λl^
 θ

In analogy with the WN symmetry of the glN Toda system, we expect W( oo)
symmetry for the system discussed here and that it describes W( oo) gravity.

The arguments given above only hold for A—-— irrational. For 2A = —
4π N

(M, N relative prime), φN = φ0, i.e. only N fields couple and we are lead to the
periodic Toda chain, which is integrable, but not conformal. For example, if
2A=^, for each #e[0,2π] only two fields couple, namely φ1 = φ(θ) and
Ψi = φ(θ + π) a ^ d we arrive at the sinh-Gordon equation.
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3.2. Euler Top. Consider a subalgebra ^ c <£Λ% Let *f e ^ * and fix a linear oper-
ator si: <§ -» ^* . In what follows / is called angular momentum, si is an inertia
tensor and ω = ^ ~ V G ^ i s a n angular velocity. The generalized Euler top on ^ is
defined by the equation [19]

8/ = a d j ( , / . (3.21)

This equation is Hamiltonian with respect to

H = l- (ω(a O = \<^~ V, O = ̂  <ω, ̂ ω> . (3.22)

The phase space of this system is an orbit of the coadjoint action which is fixed by
the Casimirs. In particular, if the central charge c is equal to zero, they have the
form (2.54). For <§ = so(3), (3.21), (3.22) is the usual Euler top and the three-wave
interaction equation for SO(3) Kac-Moody with c φ O [32].

In the star-product representation, in accordance with (2.49), Eq. (3.21) takes
the form (for ω = ω(φ) and s/ω(φ) =

dt(s/ω(φ)) = - {ω*(φ\ /($)}* + c(a d)ω*(φ). (3.23)

Let ^ be the algebra of real functions on T2. In the limit λ -> 0 algebra ^ is
isomorphic to the algebra of non-constant symplectic diffeomorphisms of the torus
and the star-bracket reduces to the standard Poisson bracket. If we take

•* = d l + d l = Δ ( 3 2 4 )
and c = 0, Eq. (3.23) is the Euler equation of two-dimensional hydrodynamics
[33, 19]

dtΔω = -(dφiωdφ2Aω - dφiAωdψ2ω) . (3.25)

Here ω plays the role of the stream function which defines the velocity field

vφι = -dψ2ω, υψ2 = +dφiω . (3.26)

Therefore, Eq. (3.23) can be considered as a quantum version of two-dimensional
hydrodynamics on a torus with λ playing the role of Planck's constant [35].

In Fourier modes Eq. (3.23) takes, in correspondence with (2.51), the form
(β = Σ^mTrn, a) = £ ωΛΓΛ, with the reality condition ω^ = - ω * Λ )

n)ω f i . (3.27)
A n \ Z /

Note that for λ -* 0,

d/^ = ^ ω ^ . ^ ί i x i ) + ic(ά rh)ωn . (3.28)

For the hydrodynamical case (3.25) one gets in this limit

1 v ^ 2

The role of the central charge c in two-dimensional hydrodynamics was discussed
in [34]. It takes into account the effect of the overall rotation of the system.
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Let

<$ = jf + ^ , [ j f , j f ] c= j f , [ j f , ^ ] c ^ , [^, <?] cz j f (3.30)

correspond to the Z2 gradation of some subalgebra ^ c <£A. In accordance with
the definition of the dual space

^ * = jf* + ^ * (3.31)

and in accordance with (3.30) we have

ad^Jf* c: jf*, a d ^ * c ^ * , a d | j f * c ^ * , adf^* c jf* . (3.32)

We investigate integrable cases of Eq. (3.21). To this end we put

(3.33)

Consider the Lax representation with spectral parameter μ which corresponds to
the Z2 gradation (3.30), (3.32),

(3.34)

The Lax equation

δ,L = a d ^ L (3.35)

leads to the equations

ad6*a = 0 ,

δta = ad*α + ad*/ ,

dtt = ad*/ . (3.36)

The third equation is the Euler equation (3.21). The first two allow for the
description of integrable inertia tensors.

Consider in detail when <S ^ ^ - Jf + 9 with ^ ~ if\ and JΓ - if^0. In
the vertex representation

co = Σ (ωm(θ)Tm - T-mωm(θ)) =-ω*eJT. (3.37)
m>0

From the first equation in (3.36) it follows that we can choose

H > * , b = b(θ) = tf(β)e0> . (3.38)

We can also include a central charge in which case ad*j = [ M f , ] + cdθM*. Then
the second equation in (3.36) becomes

d,a(θ) - cdθ(b(θ) - ω(θ)) = ίa(θ), ω] + [b(θ), /] . (3.39)

Consider the simplest case, c = 0, and let d,a = 0. From (3.39) and (3.37) we obtain

4(0) = φm(θ)ωm(θ), (3.40)
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where

a(θ)-a(θ + mλ)

^ m ( ' " ~ b(θ) - b(θ + mλ) '

The functions φm(θ) describe an integrable inertia tensor. They lead to the Hamil-
tonian

H= - Σ ^)ψm(θ)ω2

m(θ)dθ. (3.41)
m>0 Z π 0

The energy is positive definite if φm(θ) > 0. This is, for example, the case if
a(θ) = l/(b(θ))r and b(θ) > 0. Then, e.g. for r = 1,

The equation of motion is

+ λm)ωm+Λ(θ) - Φ ~ λn)ωm+n(θ - An)]

(3 4 2 )

n>0

+ Σ K(0 - Kn - m))ωn.m(θ - λ{n - m)) - ζ(θ)ωn.m(θ + Am)]
n>m

+ Σ U(θ)ωm.n(θ + λn)-ζ(θ + λ(m-n))ωm-n(ΘΏ. (3.43)
0<n<m

To include the dynamics with respect to θ it is necessary to take c Φ 0. Due to (3.39)
it leads to a dynamical tensor of inertia. Equation (3.43) acquires the additional
term cdθωk(θ, t) on the right-hand side.

Let us now consider (3.36) in the star-product representation. Here we take
g ^ ^ 2 = jf + 0> with <S = Se\ and Jf = &S

Λ°. <£υ

A consists of purely imaginary
functions of φ9 while elements of S£s° have, in addition, to be antisymmetric under
Ψi -* — Ψi- To satisfy (3.36)! we may choose (α, J S G R ) ,

a = ioc(φt),

b = iβ(Ψί) . (3.44)

Using

ψ (3.45)
and

' = i Σ 4(Φi)sin(mφ2) (4eR) eJΓ* ,
m>0

ω = i Σ ω m (φ 1 )sin(mφ 2 ) ( ω m e R ) eJf , (3.46)
m>0

(3.36)2 yields, with the additional choice dta = 0,

(3.47)
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with

λm\ ( λm

Using this one finds that the Hamiltonian

1 ^ 2f daΊ r m \ 2 (3.48)
m>0 0 2 π

is positive for φm > 0. The equation of motion is

. 1 v Γ / λ

( + ) j C (-ωn\φ1 --(n + m) Πm+n\ φ1 --n

4 Σ
Δ0<n<m

ί λ, Λ ( λ

-ωJφ1 +-(m-n) l4-π( Ψi ~ ^

+ 9 Σ \ωn(φi-~(n-m))ζι-m(φ1--n)
Z n>m L \ ^ / \ ^ /

-n) . (3.49)

Here we have considered the case of vanishing central charge. A central charge is
easily incorporated; we refer to the comments made above in the context of the
vertex representation.

3.3. Rigid Body in an External Field. Let us now look at the situation where the
decomposition (3.30) ^ = Jf + 0> is also a semidirect sum decomposition. We then
have

]c=^, [̂ ,̂ ] = 0; (3.50)

accordingly

a d | j Γ * - 0, a d | ^ * c J Γ * . (3.51)

Let, as previously, / e J f *. We introduce the new dynamical field /ze^*. The
equations of motion reflecting the structure (3.50) have the so-called "Kirchhoίf
form"

be δh

d,h = ad^/ί . (3.52)
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For finite dimensional algebras there are many applicable Hamiltonian equations
(3.52). Among them are tops in external fields or rigid bodies in an ideal fluid. In
many cases these mechanical systems are integrable (see, e.g. the reviews [20, 17]).
We shall consider some particular Hamiltonians which are generalizations of
(3.22).

Let # be an operator <g; &* -> 9 and

H = ̂ ω,O+\<Vh,h}. (3.53)

If 0 = <?, Jf = 5o(3), 9 = R 3 and <g = diag(cl5 c2, c3), this Hamiltonian describes
the Clebsch system, namely the motion of a rigid body in an ideal fluid, which is
completely integrable for certain values of ct . In this case ω and ί have the same
meaning as for the Euler top and /ιeR 3 is the momentum of the body-fluid system
in a coordinate system rigidly attached to the body.

Let us also consider one of the TL2 graded algebras from Sect. 2.3. The equations
of motion in the first representation are generalizations of (3.23). For h = h(φ) and,
as previously, ω = co(φ), £ — s/ω(φ)9 we have

c(2 3)(ω*

ΰth = - {ω*, h}+ + ca ?ω* . (3.54)

(Note that # can in principle depend on φ) In Fourier modes this takes the form

(for t = Σ^rnTrn, G> = Σω^rn, k = Σk^rn, Vk = ^ T ^ With /, CO, Λ, <gh real,

2 (λ \
St^m = T Σ (ω^rh-n + s^-ii) sin I - (m x w) I + ιc(a

-(fhxn) + ic(a'fh)ωrh . (3.55)
2 /

For λ -> 0, c = 0 Eqs. (3.54), (3.55) coincide with the equations of magneto-
hydrodynamics on T2 for an ideal fluid with very high conductivity [36]. In this
case si = curl and # = curl and H(φ) corresponds to the component of the
magnetic field normal to T2.

Let us now consider integrable examples. Let

H = ^ < ω , / > + < M > , (3.56)

where he&* is a dynamical field whereas b is non-dynamical. Then the equations
of motion take the form

dth = ad*/z. (3.57)

In the finite-dimensional situation they correspond to a top in a gravitational field.
Following the general recipe we introduce the Lax pair

L = aμ + tf + hμ~1 c &*(μ, σ) ,

M = bμ + ωcz ${μ, σ) . (3.58)
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The Lax equations lead to the following system

ad?α = 0,

dta = ad*α + ad£/ ,

dth = aά%h . (3.59)

The first two equations coincide with the constraints for the Euler top (first two
equations in (3.36)). We now write down Eqs. (3.57) in the vertex representation for
^ = i ? 5 © R which generalize (3.43). For arbitrary a, b which satisfy (3.59)x 2 ,
a = a(θ, t), b = b{θ),

*= Σ
m>0

ω= Σ

= Σ [ W ^ Γ + Γ - M ^ + MΘ), (3.60)
m>0

and

n>0

+ ΣD
n>m

+ Σ C
n < m

+ ίb(θ)

+ λm)ωm+n(θ)-&

i(θ - λ(n - m))ωn.

i(θ)ωm.n(θ + λn) -

- b(θ + λm)]hm(θ)

hn(θ + λm)ωm + n(θ) •

[u — Λ/

m(θ~

-K(θ

,)ωm+n(θ - λn)-]

λ(n - m)) - ζ(6

•λ(m-n))ωH-m

- λn)ωm+n(θ-

>)ωn-m(θ + λm)2

(0)] + cdβωm{θ)

λn)Λ
n>0

+ Σ IKiθ - λ(n - m))ωn_m(0 - λ(n - m)) - hn(θ)ωn.m(θ + Am)]

+ Σ [/!π(θ)ωm-n(θ + Aπ)-/ιn(θ + A ( m - « ) ) ω m _ n ( θ ) ] + cδ β ω m (θ).

n<m

(3.61)

Acknowledgements. We would like to thank M. Bordemann, D. Lebedev, O. Ogievetski, A. Orlov,
M. Schlichenmaier, K. Selivanov and W. Soergel for useful discussions.

References

1. Drinfel'd, V.G., Sokolov, V.V.: J. Sov. Math. 30, 1975 (1985)
2. Jimbo, M., Miwa, T.: Publ. RIMS 19, 943 (1983)
3. Segal, G., Wilson, G.: Publ. IHES 61, 5 (1985)
4. Ueno, K., Takasaki, K.: Advanced Studies in Pure Mathematics 4, 1 (1984)
5. Degasperis, A., Lebedev, D., Olshanetsky, M., Pakuliak, S., Perelomov, A., Santini, P.:

Commun. Math. Phys. 141, 141 (1991)
6. Saveliev, M., Vershik, A.: Commun. Math. Phys. 126, 367 (1989); Phys. Lett 143A, 121 (1990)
7. Bordemann, M., Hoppe, J., Theisen, S.: Phys. Lett. 267B, 374 (1991)
8. Gervais, J.L.: Phys. Lett. 160B, 277 (1985)



448 J. Hoppe, M. Olshanetsky, and S. Theisen

9. Gorsky, A., Olshanetsky, M., Selivanov, K.: On a multiorbit geometrical action for the
integrable systems; preprint IC/90/342

10. Fairlie, D., Fletcher, P., Zachos, C: Phys. Lett. 218B, 203 (1989)
11. Connes, A.: Publ. Math. IHES 62, 257 (1985)
12. Hoppe, J.: Int. J. Mod. Phys. A19, 5235 (1989)
13. Fairlie, D, Fletcher, P., Zachos, C: J. Math. Phys. 31, 1088 (1990)
14. Floratos, E.G., Illiopoulos, J., Tiktopoulos, G.: Phys. Lett. 217B, 285 (1989)
15. Hoppe, J.: Quantum Theorie of a Massless Relativistic Surface, MIT Ph.D. Thesis, 1982, Part.

Res. J. (Kyoto) Vol. 80, 3 (1989/90); Phys. Lett. B250, 44 (1990)
16. Gerasimov, A., Lebedev, D., Morozov, A.: Int. J. Mod. Phys. A6, 977 (1991)
17. Reyman, A.G., Semenov-Tian-Shansky, M.A.: Group Theoretical Methods of Finite Dimen-

sional Integrable Systems
18. Golenischeva-Kutuzova, M.I., Reiman, A.G.: Zap. Nauchn. Sem. 1679, 44 (1988)
19. Arnold, V.A.: Mathematical Methods of Classical Mechanics, Berlin, Heidelberg, New York:

Springer 1978
20. Dubrovin, B.A., Krichever, I.M., Novikov, S.P.: In: Encyclopaedia of Mathematical Sciences,

Vol 4. Berlin, Heidelberg, New York: Springer 1990.
21. Segal, G.: Int. J. Mod. Phys. A 2859 (1991)
22. Hoppe, J.: Phys. Lett. 215B, 706 (1988)
23. Floratos, E.G.: Phys. Lett. 232B, 467 (1989)
24. Hoppe, J., Schaller, P.: Phys. Lett. 237B, 407 (1990)
25. Floratos, E.G., Iliopoulos, J.: Phys. Lett. 201B, 237 (1988)
26. Bellissard, J.: In: Dorlas T.G. et al. (eds.) Statistical Mechanics and Field Theory: Mathemat-

ical Aspects, p. 99, Springer Lecture Notes in Physics, Vol. 257
27. Soergel, W.: private communication
28. Pope, C.N., Romans, L.J.: Class. Quantum Grav. 7, 97 (1990)
29. Golenishcheva-Kutuzova, M., Lebedev, D.: Commun. Math. Phys. 148, 403 (1992)
30. Toda, M.: Theory of Nonlinear Lattices. 2nd ed. Berlin, Heidelberg, New York: Springer 1989
31. Mikhailov, A.V.: Physica 3D, 73 (1981)
32. Zakharov, V.E., Manakov, S.V.: JETP 42, 842 (1976)
33. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. London: Pergamon Press 1959
34. Zeitlin, V.: Algebraization of 2-d ideal fluid hydrodynamical systems and their finite-mode

approximations, preprint
35. Hoppe, J.: (for a 3-dimensional generalisation (c = 0)) Lectures on Integrable Systems.

Lecture Notes in Physics, Springer 1992
36. Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. London: Pergamon

Press 1960

Communicated by J. Frόhlich




