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Abstract. It is shown that if [0, f) is the maximal interval of existence of a smooth
solution u of the incompressible Euler equations in a bounded, simply connected
domain Ω e R3

? then jζ\o)(% ή\L^(Ω)dt = oo, where ω = Vxu is the vorticity.
Crucial to this result is a special estimate proven in Ω of the maximum velocity
gradient in terms of the maximum vorticity and a logarithmic term involving
a higher norm of the vorticity.

Introduction

The Euler equations are a system of nonlinear partial differential equations that
describe in viscid, incompressible fluid flow. For flow in a bounded domain Ω ^ R3

?

the appropriate initial-boundary value problem has a unique smooth solution for
a short time, provided the initial data is sufficiently smooth. It is not known
whether this smooth solution persists for all time or if it becomes singular at some
later time, but the long-standing conjecture is that it indeed becomes singular due
to the development of turbulence in the flow. In this paper it is proved that if [0, f)
is the maximal interval of existence of such a solution u, specifically of the class
C([0, Γ ] ; HS{Ω)\ with s ^ 3 and T < f, then

f
J \co(;t)\L«>iΩ)dt = co,
0

and in particular sup ί e [ 0, f ] |ω( , t)\L<*>(Ω) = oo. Here ω = V x u is the vorticity of the
flow. The significance of this result is that it isolates one specific singularity
responsible for the loss of smoothness of the velocity.

Crucial to this result is the special estimate

°(Ω)
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This estimate appears to be new in case Ω is a bounded domain. In [7] Kato
and Ponce proved it for Ω = R" and u e Ws'p(Rn\ and earlier, in [4], Beale,
Kato, and Majda had obtained a slightly less refined form of it for Ω = R 3 and
u e HS(R3). More recently, M. Taylor in [13] derived a generalization of it along
with several variants, for Ω = R", within the context of pseudodifferential
operators. For Ω G R 3 a bounded domain, there does appear in [18] a weaker
version of the estimate in which the logarithmic term is raised to the seventh
power, but it is not sufficient to obtain the result of this paper. It is worth pointing
out that in [15] and [16], LP estimates, for finite p, of the velocity gradient in
terms of the divergence and curl of the velocity, are shown to hold under certain
topological conditions on the domain Ω.

The result of this paper, but for flow in all of R3, was obtained in 1984 by Beale,
Kato, and Majda [4], utilizing such techniques as the Fourier transform and the
Biot-Savart law. The difficulty in proving this result for a bounded domain is that
entirely different techniques must be utilized. One result that has been obtained in
this latter case is by M. Zajaczkowski [18], who in 1988 showed that a smooth
solution of the Euler equations in a bounded domain may be continued if the time
integral of the maximum vorticity does not exceed a specific quantity determined
by a high norm of the initial data. This result allows for the possibility of
singularities other than lωl^ being responsible for the loss of smoothness of the
velocity. Recently, T. Yanagisawa [17] independently obtained the result of this
paper for bounded domains in Rw with smooth boundary and general topology,
including a corresponding version of the special estimate described above, utilizing
a different method. An advantage of the method is that it yields the special estimate
and hence the result in a more general context, and an advantage of the method of
this paper is that it can be adapted to yield the analogous estimate for solutions of
more general elliptic boundary value problems.

The following definitions, notation, and results will be used throughout the
paper. For s e Z + and 1 ^ p ^ oo, we define the usual Sobolev spaces WSfP(Ω) =
{u e LP(Ω): Dβu e LP{Ω\ \β\ ^ 5}, the derivatives being in the distributional sense.
These spaces are equipped with the norms

I/P

3(Ω)= Σ

When p = 2, the corresponding spaces will be denoted HS(Ω). We shall also define
the Sobolev spaces Ws~llPtP(dΩ), for seZ+ and 1 ^ p < 00, to consist of all
functions / defined on dΩ which are restrictions to dΩ of functions F e WS'P(Ω).
These spaces are normed by | / | ^-i/p.p(9β) = inf\F\w*.piΩ)9 the infimum being taken
over all such F. There will be no notational distinction between Sobolev spaces of
scalar- or vector-valued functions. The Sobolev Embedding Theorem will be
necessary in several instances, and for these it suffices to note from the theorem that
if Ω c R« has C 1 boundary, then WS>P{Ω) c LP{Ω) continuously if s < n/p and
p^qSnp/(n- sp\ and WSίP{Ω) c Ck(Ω) continuously if s > k + n/p. Two
special cases will be used rather frequently; namely, for Ω c R3

? H1(Ω) £ L6(Ω)
and WUp{Ω) c L°°(Ω), if p > 3.
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The plan of the paper is as follows. In Sect. 1 the main result is stated and
proved, except for the proof of the special estimate. In Sect. 2 the special estimate is
stated and proved in a slightly more general form.

The work of this paper was completed as part of the author's Ph.D. thesis [5],
under the direction of J. Thomas Beale.

1. Main Result

Necessary to this section is the following short-time existence result for solutions of
the Euler equations (l)-(3) below, in a bounded domain Ω <Ξ R3, which has been
adapted from Theorem 1 of [6] (see also [14]).

ut + (w V)w + Vp = 0 i n Ω , (1)

V w = 0 i n Ω , (2)

u n = 0 on dΩ. (3)

Theorem 1. If Ω ^ R3 is a bounded domain with smooth boundary dΩ, and if
u0 e HS(Ω), s ^ 3, with V u0 = 0 and u0 n\dΩ = 0, then there exist a time Γ* > 0
and a constant C, both depending only on \uo\H3(Ω), and unique functions
u e C([0, Γ*]; HS(Ω)) and p e C([0, Γ*]; HS+1(Ω)) satisfying (l)-(3)/or t e [0, Γ*],
such that sup t e [o,r*]|w( >ί) l s ^ C |κ o | s .

We now state the main result of the paper.

Theorem 2. // u is a solution of the Euler equations (l)-(3) in the class
C([0, 71]; H\Ω)\ s ^ 3, with^Ω c R 3 a bounded, simply connected domain with
smooth boundary, and if T = f is the first time such that u is not contained in this
class, then

f
J \ω(;t)\L«>{Ω)dt = co;
o

and, in particular, sup f e ( 0,f) |ω(#, 0IL°°(Ω) — °°> where ω = V xu is the υorticity.

Proof The proof is by contradiction. In short, we assume that

f
ί |ω( , t)\L°>iΩ)dt = M <co, (4)
o

and show that this implies that u(x, f) is contained in HS(Ω), contradicting the
hypothesis of the theorem.

The derivation of the contradiction consists of four steps, essentially. First we
derive an energy estimate for smooth u of the form

T

log|u( , ί) |5 S Iog |u 0 | s + C J |u( , t)\Uoodt, (5)
o

and then we derive a special estimate of elliptic type of the form

M; ή\w^{Ω) ^ C[(l + log+ |u( , t)\HS(Ω))\ω( , ί) |L» ( Ω ) + 1] . (6)
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We then apply GronwalΓs inequality to a combination of these two estimates to
obtain

|u( , ί ) | H . ( O ) ^ X , ί 6 [ 0 , f ] , (7)

for smooth u, and we use this estimate together with the short-time existence
theorem and an approximation procedure to conclude that u(x, f)eHs(Ω) for
u a priori in the proper class.

We proceed with the derivation of (5). Assuming for now that u e
C([0, Γ ] ; HS+1(Ω)\ T<. f, we apply Dα, |α| ̂  5, to both sides of (1), multiply by
D*u, and integrate over Ω to obtain

l- j t |Dau(% t)\L2 + (W DαVw, D«u)L2 + (Dακ, DαVp)L2

= (M D"Vw - Dα(w VM), J9αw)L2 ,

and since V u = 0 in Ω and w n = 0 on 5Ω, the second term vanishes, and we have

^ | D α w ( % 0 l i 2 ^ | D α u | L 2 [ | M . i ) α V W - D α ( w . V w ) | L 2 + |jDαVp|L 2]. (8)

The difference term on the right-hand side is estimated with the help of a lemma.

Lemma 1. i) If f9 g e HS(Ω) n C(Ω), then

ii) Iffe HS(Ω) n C\Ω) and g e H'-^Ω) n C{Ω\ then for |α| ̂  5,

fDag\L2{Ω) £ C{\f\HS{Ω)\g\L«{Ω) + |/ | W ri

Proof These estimates are easily derived using extension operators, well-known to
be bounded on the necessary spaces, together with the free space versions of the
estimates in [4, 8, and 9]. D

Applying to (8) the second part of the lemma with / = u and g = Vw implies

l- j t \D<u(; t)\2

L2 S C\D«u\L2(\u\s\u\w^ + i^αVp|L2) .

And, summing over |α| ̂  s, we obtain

\jt\<; Ols2 S C(|u|β
2|M|»,i.. + | t t | s |Vp| s ). (9)

The pressure term is estimated with the aid of another lemma.

Lemma 2. Ifue HS(Ω) and p e HS + 1(Ω% s ^ 3, then

Proof The argument given here is a modification of an argument in [14]. There,
|Vp|s is estimated in terms of \u\l, which is not sufficient for our purposes.
Proceeding with the proof, we first take the divergence of (1) and the dot product of
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the same with n = (n1 ? n 2 , ^3), and use (2) and (3) to obtain the following Neumann
problem for p:

inΩ, (10)

dp

dn
ondΩ (ID

The derivative of u on the right side of (11) may be eliminated by representing
δΩ locally as a smooth function φ(x) — 0, as in [14], so that on each local patch of
dΩ (11) becomes

^=-Σ^y, (12)

where ιAo = A ; </>/|V</>|.
We estimate Vp by applying the Trace theorem and the first part of Lemma 1 to

a standard estimate of Vp, derived by the usual method of choosing a partition of
unity for Ω, deriving local estimates from (10) and (12), and combining them for the
global estimate:

D

Applying Lemma 2 to (9) we obtain

1 d . ,,.

Σ WjΨij
H''"2{dΩ)

m,-i)

(13)

so that by GronwalΓs inequality,

(14)

Taking the logarithm of both sides then yields (5) for t e [0, Γ ] .
The derivation of (6) will be deferred to Sect. 2, where the estimate is stated and

proved as a Corollary to Proposition 1.
In order to combine (5) and (6) so that GronwalΓs inequality may be applied to

yield (7), we rewrite the estimates in the following way:

log(|κ( , ^ log(|Mol, \u(; t)\Ua>dt,

, ί ) | H . ( O ) + e)

(15)

(16)
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Combining these we have

log U(t) ^ log (7(0) + C J (1 + |ω( , t)\L~m log U(t))dt ,
o

where U(t) = |M( , t)\HsiΩ) + e. And now since T ^ Tan application of GronwalΓs
inequality yields

log U(t) ^ F(f) + C J |ω( , ί) | L - ( l ϊ ) F(ί) exp (c J |ω( , s) | L - ( O )

o V t

where F(t) = U(0) + Cί. Taking exponentials, we finally obtain

\u(%t)\H.iΩ)^K, ί e [ 0 , Γ ] , (17)

where

K = £/(0)βcf exp | c f |ω( , ί)|L-(O)F(ί) exp (c J |ω( , s)|L-(Ω)ds) Λ j .

Note that K < oo because of (4).
Estimate (17) has been derived for u e C([0, Γ ] ; 7f s+1(ί2)) and T S-f, but it

actually implies that u(f) e HS(Ω) for u a priori only in C([0, f); HS(Ω)). To see
this, start with w0 eHs(Ω\ which from (17) is clearly bounded by 2iC. Theorem
1 then guarantees the existence of an interval [0, 7\] on which u(t) is in HS(Ω\
with 7Ί depending only on 2K. Now approximate u 0 in HS(Ω) by a sequence
UQE HS+1(Ω) satisfying Uo n\d = 0 and V Wo = 0, which is possible by the
continuity in HS(Ω) of the projection onto divergence-free vectors tangential to
dΩ. Theorem 1 thus gives rise to a sequence of solutions un(t) e HS+1(Ω), also for
ί e [ 0 , J Ί ] for n sufficiently large, since Tλ depends particularly on |MS|3> and
luob ^ IMQ|s ^ 2K for n sufficiently large. Thus we may derive (14) for un as before,
with T=TX:

\un(t)\lt00dt

To pass to the limit in this estimate, we proceed as follows. By Theorem 1 we
may derive a bound for the un in HS{Ω\ uniform in n, implying weak convergence of
the sequence in HS(Ω). Also, by a routine L2 energy estimate for the un from the
Euler equations, we may establish the strong convergence of the sequence to u in
L2(Ω). Then, by interpolation and the uniqueness of limits, the sequence converges
strongly to u in Hr(Ω) for any r < s, implying in particular by Sobolev's theorem,
since s ^ 3, that it converges strongly mWltC0(Ω). Using these facts we may pass to
the limit in the above estimate, obtaining

\u(ή\sS |u o | s exp(c ϊ \u(t)\Uα)dt\ , (18)

for u(t) e Hs(Ωl ίe[0, T{].
We now start with (18), and, following the steps leading from (14) to (17), with

T — Tl9 we obtain

)ύK9 ίe[0, T{\. (19)
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By this estimate and Theorem 1, we may extend u(ή in HS(Ω) to t e [Γ 1 ? T2\
where T2 = 2T1 since w(0) and w(7\) have the same bound 2K in H3(Ω). As before,
we may approximate w(7\) smoothly, producing a sequence of solutions, derive (14)
on [7\, Γ2] for these smooth approximating solutions, pass to the limit, and use
(18) with t = Tu obtaining this time

(\u(t)\Uoodt\ ί € [ Γ

Continuing as in the last paragraph, with T = Γ2, and using (19), we obtain

, ί e [ 0 , Γ 2 ] .

This process of initializing on [0, T~\ and extending may be continued like-
wise, and since the initial state will thus always be bounded in H3(Ω) by K,
we shall, after a finite number of steps, obtain that u(x, f) e HS{Ω\ the desired
contradiction. D

2. The Elliptic Estimate

The proof of (6) requires the application of results from the theory of linear elliptic
systems of partial differential equations to a certain elliptic system related to the
Euler equations. In Sect. 2.1 we shall introduce this system, verify its ellipticity, and
list the necessary results, and in Sect. 2.2 we shall formally state and prove the
estimate.

2.1. The Elliptic System. In order to derive (6), it would seem natural to consider
the system

V x u = ω in Ω

V u = 0 in Ω

u n = 0 on δΩ , (20)

but instead we consider the following enlarged system, the function φ being an
additional scalar unknown:

V u = σ in Ω

u n = β on 3Ω

φ = y on dΩ . (21)

This system, unlike (20), has the advantage of being elliptic. This will be verified in
Lemma 3 below, but it is worth mentioning in passing that this system, unlike (20),
corresponds to the exterior differential operator d + δ, which is well known to be
elliptic with the corresponding boundary conditions.
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For notational convenience we shall herein write (21) as follows, with v = (w, φ\

1 = φ in Ω

= χ on dΩ . (22)

Lemma 3. The operator i f is uniformly elliptic in the sense ofΛgmon, Doughs, and
Nirenberg, and ^ is complementing with respect to if.

Proof. The symbols of i f and

ξ)) =

(BhJ(x, ξ)) =

are, respectively,

0 -ξ3 ξ2 -ξ1

ξ3 0 -ξ1 -ξ2

- ζ2 ζι 0 — ζ3

ξi ξ,i ξi 0

x(x) n2{x) n3(x) 0

0 0 0 1

for ζ e R3.

To verify that ££ is uniformly elliptic, we verify the conditions of the definition
on pp. 38-39 of [3]. Using the notation of that definition, we let s{ = 0 for
i = 1, . . . , 4, and tj = 1 for j = 1, . . . , 4. Then st g 0, ί, ^ 0, deg / 0 (x, ξ) ^ st +
tj = 1, for all z and j , and since in this case ί'ii7 (x, ξ) = /tJ(x, ξ\ det(/ί_/(!)) = |ξ | 4 , and
if is thus uniformly elliptic.

To verify that M is complementing with respect to if, we verify the conditions
of the definition on pp. 42-43 of [3]. Using the notation of that definition, we
let rh = — 1 for h = 1, 2, which implies that degJ5A7 (x, £) ^ rh + ίy = 0, for all
h and . Then noting that det/'„(*, ζ + τn) = (τ - i\ζ\)2(τ + /|C|)2, M + (x, ζ, τ) =
(τ — i\ζ\)2, and Ljk = —\ξ\2Γjk since /;7 is antisymmetric and has columns
which are orthogonal and of norm \ξ\9 we find that the rows of the matrix
Σ7=i Bhj(x> C + τn)Ljk(x, ζ + τn) are linearly independent modulo M + if and only
if the following system of equations satisfied for all τ e C implies that Cx = C 2 = 0:

2i|CI(τ -

2i|ζ|(τ - i

2i|ζ|(τ -

- C 2 ( d + i |C| i i)] = 0

~ C 2 (C 2 + i | C | n 2 ) ] = 0

n2ζx) - C2(ζ3 + i\ζ\n3)2 = 0

-2C1 |ζ|2(τ-iKI) = 0

Since ζ and n are linearly independent and ζ Φ 0 by hypothesis, it is clear that this
system holds identically in τ if and only if Cx = C2 = 0. Therefore, J* is comple-
menting with respect to if. D

The system (21) is actually elliptic in a stronger sense than that of Agmon,
Douglis, and Nirenberg, since sf = 0 and rh < 0 for all / and h. An example of
a system which is elliptic only in the more general sense is the Stokes system.

We now list some results that will be necessary in the next section. The
following standard a-priori estimate for solutions of a certain class of first order
linear elliptic systems is a specialization of Theorem 10.5 of [3].
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Theorem 3. Let Sf £ R3 be a bounded domain of class C 1, and ue WlίP{9) be
a solution of

Lu = f in 2

Bu = g ond® , (23)

where Lis an N x N matrix partial differential operator uniformly elliptic in the sense
of Agmon, Douglis, and Nίrenberg with sf = 0, 1 g i ^ N, tj = 1, 1 ^j ^ N, and
coefficients in C{β)\ B is anmx N matrix partial differential operator complementing
with respect to L with rh= — 1, 1 ^ h ^ m, and coefficients in Cγ{$))\ and f e ΊJ(β)
and g e W1~1/PfP(d@% 1 < p < oo. TTίen ί/iere exists a constant C not depending on
u such that

i) + iglw'-^Pidm + M L * W . (24)

solution is unique in WltV(β\ then the last term on the right may be omitted,
but with perhaps a different constant C.

The following uniqueness lemma will be necessary.

Lemma 4. If 2 is a bounded, simply connected domain with dQ) e C2, and if
v E WltP(2) is a solution of"(22) with Ω = 9, then the solution is unique in WUp(2).

Proof We let v0 = (u0, φ0) be a solution in WltP(2) of (22) with homogeneous
right-hand side, and show that v0 = 0. Since v0 satisfies the homogeneous system
and is in WliV(β\ estimate (24) implies that it is of arbitrary smoothness, certainly
in C2(@)nC°(@). Applying the divergence operator to the first equation and
utilizing the fourth equation we see that φ0 is harmonic and vanishes on the
boundary, implying that φ0 = 0, and hence that v0 = (M0, 0). The homogeneous
system then becomes

Vxwo = 0 , (25)

V MO = 0 , (26)

u o n | , = 0 . (27)

Since 3 is simply connected, (25) implies that there exists a function qe C3(@) such
that u0 = Vq. Equations (26) and (27) then imply that q satisfies a homogeneous
Neumann problem, giving us that q = const., and hence that u0 = 0. Therefore
UOΞ0. D

The following theorem, supplying integral representations for solutions of first
order linear elliptic systems of the type described in Theorem 3, along with
pointwise estimates of the singular kernels, is a specialization of Theorem 1.1 of
[11].

Theorem 4. Let Q) <Ξ R3 be a bounded domain of class C 1, and u be the unique
solution in C1+a(@) of (23), but with f eC*(β) and g = 0, 0 < α < 1. Then there
exist a matrix function y® and a constant C, neither depending on u or f such that for
all x,y G29 and every multiindex β,

and (28)

-M. (29)

2.2. Proof of Estimate. We now state and prove the main lemma of the paper.
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Proposition 1. / / Ώ <Ξ R3 is a bounded, simply connected domain of class C2+β,
0 < β < 1, and ifve H3(Ω) is a solution of (22) with φ e H2(Ω) and χ = 0, then

+ log+ M i ^ V | L . ( O ) . (30)
\ Ψ \ J

Corollary 1. If u is a solution of the Euler equations as described in Theorem 2 and
ω = Vxu, then for t e [0, f ],

\u(; t)\ W^{Q) S C[(l + l o g > ( , ί ) | H (θ))|ω( , t)\L«ia) + 1] . (31)

Proof of Corollary. Since u satisfies the Euler equations and ω = V x w, v = (w, 0)
clearly satisfies (22) with φ = (ω, 0) and χ = (0,0), and therefore (31) follows easily
from (30). D

Proof of Proposition. We obtain the estimate for \υ\ίtO0 by first estimating \Dkv\oo,
1 ^ /c ̂  3, from an integral representation for v9 and later combining it with an easy
estimate for l*;^.

Proceeding with the former estimate, we obtain an integral representation for
v by appealing to Theorem 4. Assuming for now that v e C3(Ω) and φ e C2(Ω\ we
verify the hypotheses of that theorem. By assumption, dΩ and v are sufficiently
smooth, and the latter satisfies

5£v — φ in Ω

&v = 0 on dΩ , (32)

which is a system of the required type by Lemma 3 and its proof, the smoothness of
φ, and the smoothness of the normal map for dΩ resulting from the smoothness of
dΩ itself. Theorem 4 therefore guarantees the existence of a matrix function &Ω and
a constant C, neither depending on υ9 such that for all x, y e Ω,

, and (33)

-2-M . ( 3 4 )

We estimate \Dkυ\^ directly from (33), separating the cases where x is near or
away from dΩ. To that end, we let ε be a small number, 0 < ε ^ 1, depending only
on 0, to be fixed later; and we proceed first with the interior estimate by choosing
x such that dist(x, dΩ) ^ 3ε.

Crucial to the special nature of the estimate (30) is the introduction of a small
parameter <5, δ ^ ε < 1, which depends on the solution υ9 and which will be fixed
later. Using δ, we define

Ί , yeB{x,δ)

where 1̂ 1̂  ^ 1 and \Dkη\ao ^ Cδ'1, for all k. We then rewrite (33) in the form

v(x) = J 9a(x9 y)η(y)φ(y)dy + j 9a(:

and estimate the terms separately.
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Using (34), we have for k = 1, 2, 3,

\Dkv2(x)\ = a(x, y)ίί - η(y)lψ(y)dy
Ω

4

ί Σ J C\x-y\-3\φj(y)\dy
i,j=l Ω\B(x,δ)

= C\Ψ\L™(Ω) j \χ~y\~3dy
δ<\x-y\ <R

^ ( C ! - C 2 l o g δ ) ^ ^ , (37)

where R = max{l, diamΩ}.
To estimate | A ^ i |oo> we would like to apply the derivative to the first integral in

(36) and integrate by parts, but this latter step is impossible by the asymmetry of
ΉQ. Instead, we proceed in the following way. We note that by (36) v1 satisfies

S£vχ = ηφ in Ω

Jtoi = 0 on dΩ , (38)

and we localize this problem:

= ζηφ + F in Ω

*i) = 0 on dΩ . (39)

HereF = (V£xui - 9 lVC, VC-MJ, U! = (u l9 φx\ and CeC?(R 3 ), with ICL ύ 1,
ζ = 1 on £(x, ε), and suppζ c J5(χ? 3ε).

Utilizing ^ Ω once again, we may write for all z e Ω,

(CiM(z) = J 9Ω(z, y)[ζηψ + F](y)dy . (40)
Ω

Since C?^ + F e C1 +β, we may define

r(z) = j #β(z, };)ί),k[C# + F ] ( y ) ^ , (41)

where evidently r e C2+β, and satisfies

J?r = Dk(ζηψ + F) in β

J*r = 0 on aΩ . (42)

In turn, we define

£ = DάζυJ - r , (43)

and thus EeC1+β, and by (42) and (39) satisfies

F)

vi) = 0 in Ω

= @ίDk(ζVl) - r] = 0 o n d Ω , (44)
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since if is constant coefficient and since ζvx vanishes in a neighborhood of dΩ. By
Lemma 4, E = 0, so that (43) becomes

Dk(ζυx)(z) = r(z) = J 0o(z, j/)D, k [£# + F]( j/)^ (45)
β

Proceeding with the estimate of Dkvu we simplify matters by separating the
right-hand side of (45) into two terms, one containing the highest order terms and
the terms depending on δ, and the other containing only lower order terms
independent of <5, and we estimate each term separately:

DMvJiz) = J 9Ω(z9 y)ίζφDkη + ηζDkφ ](y)dy
Ω

= wί{z) + w2(z). (46)

To estimate w2, we note from (46) the boundary value problem it satisfies, and use
the Sobolev Embedding Theorem, (24), (35), (38), and the definitions below (39), to
obtain for 3 < p < oo,

^ C(\ψ\Lp{Ω) + \ηψ\u>(Ω)) ^ C\ψ\L*{Ω), (47)

where C is independent of δ. To estimate w l 5 we utilize its integral representation in
(46) directly, evaluated at z = x, using (34), (35), the fact that suppζ £ B(x, 3ε),
Holder's inequality, and Sobolev's theorem:

| W l ( x ) | ^ Σ ί C\x - y\-2\(Dkψj)(y)\dy

4

7=1 δ <\x-y\ <2δ

5
6

^ C | D ^ | L « ( O ) |
\r<2δ

ί r-2r2dr
δ<r<2ό

{) \ψ\L~{0)). (48)

Holder's inequality is applied in line three, and Sobolev's theorem in line six.
Combining (47) and (48) into (46), and using the fact that ( = 1 on B(x, ε), we obtain
for k = 1, 2, 3,

= \Dk(ζVί){x)\ ^ C(δi\φ\B2(O) + \ψ\L-m) . (49)
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And combining (49) and (37) into (36), we obtain the interior estimate, for k = 1, 2,
3, δ ^ ε, and xeΩ such that dist(x, dΩ) ^ 3ε:

\Dhυ(x)\ S (Cx - C2logδ)\ψ\L«iΩ) + Cδ~2\ψ\HHΩ) . (50)

We turn now to the boundary estimate, choosing x such that dist(x, dΩ) < 3ε.
As in the interior case, we use (36) and estimate the two terms separately. Dkv2 is
estimated almost exactly as in (37), yielding for k = 1, 2, 3,

\Dkv2(x)\ ^(C, - C2logδ)\φ\L^{Ω) . (51)

To estimate l A ^ L ? we proceed similarly to the interior case, but with two
important modifications: we apply a change of coordinates to the local problem,
flattening the boundary, and we estimate only tangential derivatives directly, the
normal derivative being estimated indirectly from the equations.

Before proceeding with the estimate, we must define the neighborhood of x in
which the localization of (38) will take place, so that it is contained in a coordinate
patch of dΩ and so that its boundary is smooth. To this end, we first fix ε as follows,
so that B*(x, 3ε) = B(x, 3ε) n Ω is contained in one of the coordinate patches of BΩ.
Since dΩ is C 2 + α , for every y e dΩ there exists an open set Uy containing y, and
a C2+α diffeomorphism Φy:Uy-+ B(0, 1) £ R3 that maps Ω nUy into the halfspace
R+ = { ( x 1 , x 2 , x 3 ) 6 R 3 : x 3 > 0},jind dΩ n Uy into x3 = 0. For technical reasons,
we consider the neigborhoods Uy = Φy

1(B(0,j)). For each Uy9 choose a ball
B(yy ry) contained in ϋy9 and cover dΩ with {B(y9 ry/4)}yeδΩ. Now choose a finite
subcover {B(yhrι/4)}ιLu let d = min{rj/4}, and let ε = min{l, d/9}. Then it is
clear that for any x such that dist(x, dΩ) < 3ε, B*(x, 3ε) s χjι for some /, since if y is
a point on 50 closest to x, then dist(j;, x) < 3ε ̂  rf/3, and B*(x, 3ε) c ^(x, 3ε) c
5(x, d/3) c B(y, d) c 5( j ; b r,/2) <Ξ ̂ , for some /.

Neither B*(x, 3ε) nor its image Φz(J5*(x, 3ε)) has smooth boundary, but since
Φt(B*(x, 3ε)) c β(0, ^), it is clear that we may construct a neighborhood iV ̂  R+
which is simply connected and has C2+β boundary, such that Φ/(£*(x, 3ε)) c
B(0, i) c iv c β(0, 1). Its inverse image N = Φj~1(N) is clearly also simply con-
nected and has C2+β boundary, with B*(x, 3e) £ JV c ty n Ω.

We formulate the following local version of (38) in N:

F in TV

&(ζVl) = 0 on dN . (52)

Here F and ζ are defined as in (39). The boundary operator 0& is well-defined and
has C1+β coefficients by the smoothness of dΩ, and the boundary condition is
satisfied since ζ = 0 outside B{x, 3ε) and since Jtoj = 0 on dΩ. Applying Φj to (52),
we obtain

"vj = 0 on dN , (53)

where f = foφι for each function / above, and ££ and ̂  are the operators
obtained from JSf and J* through Φj.

As in the interior case, we obtain an integral representation for Xϋx by appealing
to Theorem 4, the hypotheses of which we now verify. By construction, N is
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bounded and has the necessary smoothness, and the system (53) is of the required
type since the uniform ellipticity and complementing condition, as well as the
smoothness of the coefficients and the right-hand side, are preserved under the
smooth coordinate map Φx (see [3], for instance). In addition, ζϋi is the unique
solution of (53) since by Lemma 4, ζvi is the unique solution of (52). Theorem 4
therefore guarantees the existence of a matrix function &$ and a constant C, neither
depending on ζϋ-i, such that for all y9zeN,

(ζί Oίz) = [ <§$% y ) [ ζ # + F]{y)dy9 and (54)
N

\bl^^y)\^C\z-y\~2-^. (55)

We estimate only the tangential derivatives Dk, k = 1, 2, of ζvl9 directly from
(54). To this end we must, as in the interior case, apply the following procedure, in
lieu of an integration by parts. Since ζfjψ + F e C1+β, we define

r(z) = j #jv(z, ) 0 % K # + F-]{y)dy , (56)
N

where evidently reC1 + β and satisfies

£r = Dk{ζή$ + F) in N ,

J r = 0 on dN . (57)

In turn, we define

£ = £*(&)-?, (58)

and therefore E e C1 + β, and by (57) and (53) satisfies

Dk(ζήφ + F)

^ § ) inJV,

= \βDk - Dk J ] p i ) on δiV . (59)

The last equality holds since Dk is tangential to the flat portion of dN, where U(ί#i)
vanishes, and also since ζΰi vanishes on a neighborhood of the irregular portion of
dN. It should be mentioned that although E is in general not identically equal to
zero, as was E in the interior case, it does turn out to be of lower order than f, and
hence is easily estimated. Therefore (58) remains

DάζvJiz) = [ 9s& y)Dhlζήψ + Π(y)dy + E(z) . (60)
N
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Proceeding with the estimate of the tangential derivatives, we rewrite (60) as in
(46), and estimate the terms separately:

fcVS l / v / J
N

[ + DkF](y)dy + E(z)
N

= w1(z) + w2(z) + E(z). (61)

To estimate w2, we proceed as in (47), so that we have for 3 < p < oo,

\W2\L«(N) ^ C\Ψ\L™(Ω) (62)

To estimate E, we use Sobolev's Theorem, (24), (59), (38), the Trace theorem, and
the fact that the commutators are of one lower order than the products of the
operators themselves, to obtain

^ C\ηψ\LP(Ω)

Ω). (63)

The constants appearing in (62) and (63) are independent of δ and can be made
independent of x because of the finiteness of the cover of δΩ and the construction of
N. To estimate w l5 we utilize its integral representation in (61) directly, as in (48),
evaluated at z = x:

liMx:)!^ Σ [10^9)1 \(ήζDkφj)(y)\dy

+ Σ [\Gij(x9y)\\{ζψjDkή){y)\dy
i, j = 1 N

^ X ί C\x-yΓ2\(η®ψj)(y)\dy
j = l B*(x,3ε)

+ X j
j = 1 B*(x,3ε)

(64)
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In the above, 3ι is the first order linear operator with coefficients from the Jacobian
of Φh obtained through the chain rule. The constant C can again be made
independent of x.

Combining (62), (63), and (64) into (61), we obtain for k = 1, 2,

|D*0i(x)| = |Dk(ζδi)(x)| g C(δτ\ψ\Hi{Ω) + ML«(G)) . (65)

The remaining derivative D3v1 is estimated by solving for it in the system (21) in
terms of previously estimated quantities. We first rewrite the interior equations of
(21), letting vγ = (w1, φ1) and υ2 = (w2, φ2):

"2,3 -"3,2 -φϊ = ω
ί
 -{Vxu

2
)
ί
 + φ\ ,

"3,i ~ u\,
3
 - φl = ω

2
 - {V xu

2
)
2
 + φ\ ,

"1,2 -"2,1 ~ <?3 = ω
3
 -(Vxw

2
)

3
 + φ\ ,

W l , l + " 2 , 2 + " 3 , 3 = - V W 2 . (66)

Considering the system in Uh we apply Φx to the left-hand side, producing Jacobian
terms xitj9 and we solve for the terms containing the components of D3ϊ?i:

" 2 ,

" 3 ,

u\

3X3,

3X3,

3X3,

3

1

2

- " 3 , 3 X 3 ,

- " 1 , 3 X 3 ,

- " 2 3X3

2

3

- < P 3 X 3 , 1

- Φ 3 X 3 , 2

~ 1 ~

— (D 3 X 3 3

= F >

= G ,

"ϊ.3^3,1 + "2,3X3,2 + "3,3X3,3 = K . (67)

The functions F, G, H, and K evidently consist of previously estimated quantities
such as ω, derivatives of v2, tangential derivatives of ϋu and Jacobian terms which
are bounded independent of /. The determinant of the coefficient matrix for this
system is (x2

Λ + ic 3 j 2 + x 3 > 3 ) 2 , which, because of the nonsingularity of the
Jacobian, never vanishes. Therefore D3v1 = (wί,3, #2,3, "3,3? ψ\) may be solved for
in (67) and estimated in terms of previously estimated quantities, yielding

Ω) (68)

This, combined with (65), yields the estimate for Dkvl9 k = 1, 2, 3:

\DkVl(x)\ = Σ
7 = 1

^ ( d - dlogδ)|^lL« ( f l) + 05^1^1^(0) . (69)

And, combining (51) and (69), we obtain the boundary estimate, for k = 1, 2, 3,
δ ^ ε, and x e ί2 such that dist(x, dΩ) < 3ε:

\Dkυ{x)\ S (Ci - d l o g δ ) | ^ | L - ( f l ) + C^IIAIH^Ω) (70)

The interior estimate (50) and the boundary estimate (70) combine to yield the
global estimate for δ ^ ε:

\Dkυ\mΩ) S ( d ~ dloga)ML«(β) + Cδϊ|^|^(fl) . (71)
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The proof of the proposition is completed by setting δ = min < ( L ( ί 2 ) I , ε >,
[\\Ψ\H2(Ω)J J

which in either case leads to

\DkΌ\L~{Ω) £ c ( l + l o g + l i l β ) I ^ I . (72)

Using Sobolev's theorem and (24) applied to (32), we have for 3 < p < oo,

Mi«(Ω) ^ c\v\wuP{Ω) g c\φ\LP{Ω) <, c\φ\L*{Ω),

which combined with (72) finally gives us

+ log+ M l ^ B ^ i .

This estimate has been derived for ψ e C2(Ω) and v e C3(ί2), but a routine density

argument establishes it for φ e H2(Ω) and t; e H3(Ω). D
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