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Abstract. It has recently been shown by Goldberg et al. that the holonomy group
of the chiral spin-connection is preserved under time evolution in vacuum general
relativity. Here, the underlying reason for the time-independence of the holonomy
group is traced to the self-duality of the curvature 2-form for an Einstein space.
This observation reveals that the holonomy group is time-independent not only in
vacuum, but also in the presence of a cosmological constant. It also shows that
once matter is coupled to gravity, the "conservation of holonomy" is lost.

When the fundamental group of space is non-trivial, the holonomy group need
not be connected. For each homotopy class of loops, the holonomies comprise
a coset of the full holonomy group modulo its connected component. These cosets
are also time-independent. All possible holonomy groups that can arise are classi-
fied, and examples are given of connections with these holonomy groups. The
classification of local and global solutions with given holonomy groups is dis-
cussed.

1. Introduction

Since there is such a dearth of known observables in general relativity, any
observable is worth studying. This is especially true in view of issues raised by
quantum theory. For example, it is only when true observables are known that the
physical inner product in Hubert space can be constrained by reality conditions,
and meaningful physical statements can be extracted from the theory. Moreover,
an observable constructed entirely from the chiral spin-connection is particularly
interesting because, as realized by Ashtekar, the components of this connection
form a complete set of coordinates having vanishing Poisson brackets on the phase
space of complexified general relativity. The corresponding quantum operators
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therefore commute, so an observable built purely from them may be free of
operator-ordering ambiguities.

It is therefore noteworthy that the holonomy group of the chiral spin-
connection is an observable in vacuum general relativity (GR). More precisely,
as shown in a recent paper by Goldberg, Lewandowski, and Stornaiolo [1],
the complexification of the holonomy group based at a point * is preserved under
time evolution. In addition, this holonomy group is invariant under spatial dif-
feomorphisms and SL(2, C) spin-transformations that are the identity at *. Thus,
the holonomy group qualifies as an observable once the basepoint * and spin-
frame at * are fixed. This observable is determined by the spin-connection on an
initial value hypersurface. Thus, in a hamiltonian formulation of the theory, it is
determined by the phase space coordinates, without implicitly or explicitly solving
the dynamics.

In this paper, the result of [1] is extended in several directions. First, the
underlying reason for the time-independence of the holonomy group is traced to
the self-duality of the SX(2, C) curvature 2-form, which is implied by Einstein's
equation in the absence of matter. This observation reveals that the holonomy
group is time-independent not only in vacuum, but also in the presence of
a cosmological constant. It also shows that once matter is coupled to gravity, the
"conservation of holonomy" is lost.

For a generic point in phase space, the holonomy group will be all of SL(2, C).
Thus, the holonomy group observable does not contain very much information
about the gravitational field in general, and for this reason, it would appear
not to be a very interesting observable. It is, however, better than nothing.
Moreover, when the fundamental group of space is non-trivial, there is a refinement
of the holonomy group observable. For each homotopy class of loops, the holo-
nomies comprise a coset of the full holonomy group. This coset is also time-
independent. But since the fundamental group is not, in general, invariant under
large diffeomorphisms, the homotopy-class holonomy cosets are not quite observ-
ables. To obtain observables, the action of these diffeomorphisms must be factored
out.

This construction mirrors that of 2 + 1 dimensional gravity, where the vacuum
equations imply flatness of the SO (2, 1) frame-connection, and the map from
homotopy classes to holonomy elements yields an observable after factoring by the
mapping class group [2, 3]. Remarkably, the 3 + 1 dimensional homotopy observ-
ables exist even though the connection is not necessarily flat. They are non-
trivial, however, only if the holonomy group is not all of 5L(2, C).

The rest of this paper is organized as follows: First, in Sect. 2, we provide our
alternate proof of the conservation of holonomy, showing that the result extends to
the case of a cosmological constant, but not to arbitrary matter coupling. Next, in
Sect. 3, we spell out the relation between this local result and the global statement
that the holonomy group is an observable. This discussion is intended to provide
an explicit treatment of some points that were implicit in [1]. In order to have the
most general result, we will take care to allow for arbitrary spatial topology and
arbitrary connections. In Sect. 4, the homotopy observable is introduced, and in
Sect. 5, we classify the cases that can potentially arise for this observable. In Sect. 6,
the local classification of solutions with restricted holonomy algebras is given, and
the global classification problem is discussed but not solved. Finally, Sect. 7 con-
tains a brief discussion of the results, their possible uses, and open questions. An
appendix contains a proof of the reduction theorem used in Sect. 3.
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2. Local Result: Time-Independence of the Connection Algebra

The local result was proved in [1] using Ashtekar's hamiltonian formulation of
GR, in a case by case analysis of the subalgebras of the Lie algebra s/(2, C). It turns
out to be much easier to see what is happening by taking a more 4-dimensional
point of view. In what follows, we will assume that the spacetime manifold M has
the form M = Σ x R for some orientable, connected 3-manifold Σ, and that the
spacetime metric is non-degenerate. A result of Geroch [4] shows that such
a spacetime always admits an SL(2, C) spin structure. Degenerate metrics were
considered in [1] using the Ashtekar variables approach. In general, time indepen-
dence of the holonomy group is lost when the metric is degenerate, although there
are special cases for which it still holds.

Consider a 4-dimensional left-handed spin-connection ωμ

ΛB and its curvature
2-form Rμv

AB at any spacetime point (x, t) and in any gauge. If ωμ

AB is the spin-
connection corresponding to a vacuum solution of Einstein's equation without
a cosmological constant, then the vanishing of the tracefree part of the Ricci tensor
implies that the curvature 2-form Rμv

AB is self-dual. In coordinates that are
orthonormal at a point, this means that

D AB _ nijk n AB / i \
K0i — -j ε Kjk •> W)

where ίj, h are spatial indices and 0 is timelike, and we have assumed Lorentz
signature.

In a gauge with ω0

AB = 0, ROi

ΛB is simply the time derivative of a>iAB. If in
a neighborhood of xeΣ, ω / β initially takes values in some subalgebra of 5/(2, C),
then RijAB(x) takes values in the same subalgebra. Thus, under time evolution
according to the vacuum equations, the self-duality equation (1) shows that for
some time interval, cθiΛB(x) will remain in this subalgebra in a gauge with ω 0 = 0.3

Note that because of the factor of i in Eq. (1), it is the complex subalgebra that is
preserved. Note also that this argument actually shows that the holonomy algebra
is preserved along any foliation of spacetime, not just a spacelike one.

Since the curvature 2-form Rμv

AB is also self-dual in the presence of a cos-
mological constant, the corresponding subalgebra is time-independent in a gauge
with ω 0 = 0 in that case as well. However, in the presence of matter, Rμv

AB is no
longer self-dual. Then we have

n AB _ γABCDy , rf^ABCD' y /η\
^μv — Λ ΔμvCD ~r ψ ^ μvC D' ? \£)

where ΣCD = θc

c ΛΘDC' > with θμ

cc being tetrad 1-forms. The 2-forms ΣCD are
self-dual, and the conjugates ΣσD> are anti self-dual. These are independent, and
together they span the 6-dimensional space of 2-forms. φABCD' i s the spinor
equivalent of the tracefree part of the Ricci tensor, which according to Einstein's
equation is proportional to the tracefree part of the energy-momentum tensor.
Now if RijAB takes values in some subalgebra on an initial value surface, this will in

3 After a finite time interval has passed, it may happen that there is no longer a neighborhood of
x in which ω / β falls within the subalgebra, since curvature can propagate to x from other regions.
If this happens, the connection will go outside the original subalgebra [5]. Nevertheless, as will be
explained in Sect. 3, the complexification of the full holonomy group will be conserved
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general no longer imply anything about RoiΛB, since Rμv

AB has independent
self-dual and anti self-dual parts.

3. Global Result: The Holonomy Group Observable

The local result just proved states that the complex subalgebra spanned by the
values of the connection 1-form cOiAB(x) at a point x e Γ, in a gauge with ω 0 = 0, is
temporarily time-independent in vacuum GR with or without a cosmological
constant.3 But this result does not directly yield an observable. First of all,
"temporary" time-independence is not good enough! Moreover, the above subal-
gebra is not invariant under spatial diffeomorphisms, since it depends essentially
arbitrarily on the choice of x. Both of these problems can be remedied by
considering the smallest subalgebra containing the union of the subalgebras
spanned by ω ί

i 4 β(x) for all xeΣ/m some globally defined gauge.4

The resulting union of subalgebras is still not an observable, however, because
it is not invariant under arbitrary local SL(2, C) transformations. Only if the
resulting subalgebra happens to be an ideal will it be invariant. Thus, one way to
obtain an observable is to take the smallest ideal generated by the span of a>iAB(x)
for all xeΣ. This raises the question, what ideals of 5/(2, C) are there? (We are
interested in complex ideals, since the result of time-independence applies only to
the complex subalgebra.) Unfortunately, the only ideals of si (2, C) are the identity
and the whole algebra, so this observable only distinguishes flat from non-flat
connections.

3.1. The Holonomy Group. A more intersting observable, as noted by Goldberg
et al. [1], is given by the holonomy group of the connection, which is defined as
follows: A basepoint * e Σ is fixed, and one considers all closed loops in Σ that begin
and end at *. The holonomy /zy[ω] of the connection 1-form ω around a loop
y based at *, is the SL(2, C) element determined by the parallel transport of
a spin-frame (or gauge) at * around the loop. If the connection is given in a global
gauge, then the holonomy has the standard form, /ι y[ω] = ^exρ<j>yω, where
0* indicates path ordering. The set {hy[ω]| y is a loop based at *} is a subgroup of
SL(2, C), called the holonomy group based at *. Its Lie algebra is called the
holonomy algebra based at *.

If the loop y is covered by a finite number of open sets U0,Ul9 . . . ,Un with
associated local gauges σ0, σ l 5 . . . , σn (i.e., local sections of the SL(2, C) bundle),
then the holonomy element can be expressed as

hy[_ω~\

* \ / 3>12 \ / 3Ό1 \

f ω<°> W o Γ 1 . .. ^ e x p J ω^ W ^ Γ 1 ^ e x p J ω<°> , (3)
yno / \ yoi J \ * /

where y(j is any point in the overlap region of t/f and Uj9 ω(ι) is the connection in
the gauge σi9 and t/^ is the gauge transformation (i.e., transition function) at

4 A global gauge always exists, since SL(2, C) bundles over 3-manifolds are always trivial. To see
why, note that the obstructions to trivializing a G-bundle are the homology groups
Hk(Σ, πk_1(G)). The first non-trivial homotopy group of SL(2, C) is π 3 , but Hk of a 3-manifold
Σ vanishes for k > 3
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yij from σt to σΓ To see that (3) is the appropriate expression for the holonomy,
note that under a gauge transformation at the endpoints, the parallel propagator
trnasforms as 0> exp \a ω' = g^* {&exp j α ω)ga. Thus, if σ0 is a global gauge and if
all the propagators in (3) are expressed in the gauge σ0 using this transformation
formula, then (3) collapses to the standard form, ^exp<j>yω

(0).
The holonomy group based at * is invariant under gauge transformations that

are the identity at *. It is also invariant under spatial diffeomorphisms that leave
* fixed. This is because such diffeomorphisms merely mix up the various loops
based at * . 5 The holonomy group is conjugated by some group element if the gauge
at * is changed or if a different basepoint and gauge are chosen [6]. This residual
gauge and diffeomorphism dependence of the holonomy group is typically re-
garded as rather benign, since it involves only a single overall conjugation. To
eliminate this dependence, it would be necessary to tie both * and the gauge at * to
some other physical quantity.

3.2. Time-Independence. Our next step is to show that the local result discussed
previously implies that the complexification of the holonomy group based at * is
preserved under time evolution. (Here the complexification of a subgroup H of
SL(2, C) is defined as the smallest subgroup containing H and the exponential of
the complexification of the Lie algebra of H.) The most elegant way to show this is
to invoke the reduction theorem for a connection on a principal fiber bundle [6].
The reduction theorem states that the set of points that can be joined to a point p in
the principal fiber bundle by a horizontal curve forms a subbundle, with structure
group equal to the holonomy group at p. (This subbundle is called the holonomy
bundle through p.) The reduction theorem implies that Σ can be covered by
a collection of local gauge patches such that (a) in each gauge patch the connection
takes values in the holonomy algebra based at *, and (b) the gauge transformations
relating the local gauges take values in the holonomy group based at *. For
completeness, we give a simple proof of the reduction theorem in the appendix.

Now condition (a) and the local result together imply that there exists a set of
local gauge patches covering the spacetime M = Σ x R, in which the connection
remains within the original holonomy algebra based at *. These gauges are
obtained by imposing the additional gauge condition ω 0 = 0 to extend the local
gauges on Σ to the spacetime M. With this gauge condition, the transition
functions are time independent, so condition (b) ensures that, for this set of
extended gauges, the transition functions all lie within the original holonomy group
based at *. If we use these results in conjunction with expression (3) for the
holonomy of the connection around a loop y based at *, we see that under time
evolution, the holonomy group never goes outside the complexification of the
original holonomy group. In fact, nor can the holonomy group shrink to a proper
subgroup of the original group, since the Einstein equation is time reversal
invariant, and the time-reversed process would violate the previous result. In other
words, the complexification of the holonomy group is preserved under time
evolution.

5 In the hamiltonian picture, the diffeomorphisms act on the spin-connection, which is a phase
space variable, and leave the points of the submanifold Σ fixed. But the holonomy of the
transformed connection around a loop γ equals the holonomy of the original connection around
the loop that is mapped into y via the diffeomorphism
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4. Homotopy Observables

If Σ is not simply connected, each homotopy class of loops determines a collection
of holonomy elements, and this collection forms a coset of the full holonomy group
modulo its connected component. This gives rise to a refinement of the holonomy
group observable, as will now be explained.

Let Φ be the full holonomy group (at a basepoint * in a fixed gauge at *), and let
Φo be the restricted holonomy group, i.e., the group of holonomies around
contractible loops. Φo is a connected, normal subgroup of Φ, and the quotient
group Φ/Φo is countable. It follows that Φo is, in fact, the same as the connected
component of the identity in Φ. The holonomy map from the loop group to
Φ passes to a homomorphism

f:πi(Σ)^Φ/Φ0, (4)

from the fundamental group π^Σ) (based at *) onto the quotient of the holonomy
groups. These facts are proved in The Book, ref. [6]. We shall call the homomor-
phism / the homotopy map, although a more accurate name would perhaps be
"homotopic holonomy map."

It follows from the results of the previous section that the association / of
a homotopy class of loops with an element of Φ/Φo is time-independent when the
spin-connection evolves according to the vacuum Einstein equation with or with-
out a cosmological constant. / is also invariant under gauge transformations that
are the identity at *, and under diffeomorphisms that fix * and are isotopic to the
identity. "Large" diffeomorphisms, i.e., ones that are not isotopic to the identity,
can act on %ι{Σ) by a non-trivial automorphism, so / is not, in general, invariant
under these.

According to the principle that one cannot physically distinguish spacetimes
that are related by a diffeomorphism, a true gravitational observable must be
invariant under large diffeomorphisms.6 Thus, the homotopy map is not quite an
observable as it stands, even once * and the gauge at * are fixed. What is required is
to factor out by the action of the large diffeomorphisms. This leads one to the
problem of classifying such actions, which is not always an easy problem. Even if
one knows all the automorphisms of π1(Σ\ they are generally not all induced by
some diffeomorphism. Thus, there is no general solution to this problem.

To illustrate what is going on, let us consider a particular case where the
solution is known. For the manifold Σ = S1 x R2, we have π1(Σ) = Z, the additive
group of integers. This group admits only two automorphisms: the identity,
and the mapping that sends n to — n. The inversion is induced by an inversion
diffeomorphism that sends θ to — θ, where θ coordinatizes S*. Thus, in this case,
we cannot associate an observable with an individual homotopy class, but rather
with a pair of such classes corresponding to curves with winding numbers n and
— n for some n. The observable in question is the corresponding pair of elements

of Φ/Φo.

6 This point of view has received support from an exact calculation of point-particle scattering in
2 + 1 dimensional quantum gravity [7]. In this setting, the large diffeomorphisms comprise
a braid group, and Carlip showed in [7] that the correct semi-classical limit is obtained only if one
demands that the quantum state be invariant under this braid group
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5. Classification

In this section the classification of possible homotopy maps / : π1(Σ) -• Φ/Φo will
be obtained. This can be accomplished in the following three stages:

1. classify Φ o ;
2. classify Φ in which Φo is a normal subgroup, with Φ/Φo countable;
3. determine which of these Φ's can arise as holonomy groups for a given

3-manifold Σ.

In the next section, we shall add the requirement that the connection occurs in
a solution to the Einstein equation.

5.7. Classification ofΦ0. The only condition on the restricted holonomy group Φo

is that it be a connected Lie subgroup of SZ(2, C). In fact, we are interested in
complex subgroups, since it is these that are preserved in time. These are deter-
mined by complex Lie subalgebras of 5/(2, C). As noted in [1], all such subalgebras
are equivalent via conjugation to one of the following:

s/(2,C), s/{ + 93), s/( + ), ^(3), 0 .

Here J / ( + , 3) <$#( + ), and J / ( 3 ) denote the subalgebras generated b y { τ + , τ 3 } , τ + ,
and τ 3 , where

o)o) and U
The corresponding groups Φo are SL(2, C), the upper triangular subgroup G(-f, 3),
the upper triangular subgroup with unit diagonal G( + ), the diagonal subgroup
G(3), and the identity subgroup. The last case corresponds to flat connections.

5.2. Classification of Φ. As stated in Sect. 4, Φo must be normal in Φ. This is
because, in the loop group, the conjugate of a trivial loop by any other loop is again
trivial. Thus, for each case above, we shall find the largest subgroup of SL(2, C) in
which Φo is normal (i.e., the normalizer of Φo), and then examine its subgroups.
Only those subgroups Φ for which the quotient Φ/Φo is countable can arise as
possible holonomy groups, since the fundamental group π1(Σ) is countable, and
the homotopy map / is onto.

Φo = SL(2, C): We have Φ = Φo and Φ/Φo = id.

φ0 = G( + , 3): One easily sees that G( + , 3) is its own normalizer. Thus, again
Φ = Φo and Φ/Φo = id.

Φo = G( + ): The normalizer of G( + ) is G( + , 3). The subgroups of G( + , 3) that
contain G( + ) are the groups of upper triangular matrices with unit determinant
whose diagonal components form a subgroup K of the non-zero complex numbers
C*. We will call these groups G( + , K). For Φ = G( + , K\ one finds Φ/Φo = K.
Thus, the possible Φ's in this case are in one to one correspondence with countable
subgroups of C*. All such subgroups are products of finite or infinite cyclic groups.

Φo = G(3): The normalizer of G(3) is the group consisting of all diagonal and
purely off-diagonal matrices (with unit determinant). We shall call this group
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G(3, Z 2 ). The only proper subgroup of G(3, Z 2 ) that contains G(3) is G(3) itself, so
Φ must be either all of G(3, Z 2 ) or G(3). In the former case we have Φ/Φo = Z 2 ,
where Z 2 is the group of order 2. In the latter case, we have Φ/Φo = id.

Φo = id: The normalizer is all of SL(2, C). Thus, Φ can be any countable subgroup
of SL(2, C) and Φ/Φo = Φ.

The above results are summarized in Table 1.
Thus, the only non-flat cases with non-trivial Φ/Φo correspond to Φ = G( + , K)

and Φ = G(3, Z 2 ). It will be useful below to note that while G( +, K) is a semi-direct
product of G( + ) with K, G(3, Z 2 ) is not a semi-direct product of G(3) with Z 2 .
To see this, note that Φ is a semi-direct product of Φo with Φ/Φo if and only if
one can choose a subgroup D a Φ consisting of one element from each coset
of Φ/Φo, such that Φ/Φo-+D is an isomorphism of groups. For G( + ,K),
D = {(oa°i):aeK} will do the job. For G(3, Z 2 ), D would have to be of the
form {(J?),(_£-io)}> however, this is not a group for any choice of b.

Note that when the SX(2, C) connection arises from a metric, the holonomy
group Φ is sensitive to the choice of spin structure on the spacetime M = Σ xR.
When inequivalent spin structures exist on M, a change of spin structure (without
changing the metric) will lead to sign changes in the holonomy elements associated
with some non-contractible loops. Thus, some of the information in Φ is not purely
determined by the spacetime metric. Nevertheless, the projection from SL(2, C) to
SO0(3, 1) does not eliminate any of the types of holonomy groups classified above.
It only affects the possible countable subgroups that can appear for flat connec-
tions or for connections with holonomy group Φ = G( + , K).

53. Φ as a Holonomy Group. The previous subsection provides a group-theoretic
classification of those Φ that may arise as the holonomy group of an SX(2, C)
connection on a 3-manifold Σ. If Σ is fixed, not all of these cases will generally be
realized by a connection. A necessary condition that Φ arise as a holonomy group is
that there exist a homomorphism / from πι(Σ) onto Φ/Φo. (See Sect. 4.)

Do manifolds Σ and onto homomorphisms f:π1(Σ) -• Φ/Φo always exist for
a given Φ? The answer is yes. For suppose that the fundamental group of I" is a free
group on n generators, with n greater than or equal to the number of generators of
Φ/ΦQ. (For instance, Σ could be a 3-sphere with n handles.) Then since there are no
relations among the generators of π1(Σ\ one can define / by freely assigning at

Table 1. Classification of the possible holonomy groups for an
SL(2, C) connection. (The definitions of the groups are given in
Subsects. 5.1 and 5.2.) Φo is the connected component of Φ

Φo

SL(2, C)
G( + ,3)

G( + )

id

Φ

SL(2, C)
G( + , 3)
G{ + ,K)

G(3,Z2)
G(3)

any countable subgroup of SL(2, C)

Φ/Φo

id
id
K

z2id

Φ
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least one generator of πx(Σ) to each generator of Φ/Φo, and then extending this
map to a homomorphism.

If Φ is isomorphic to a semi-direct product of Φo with Φ/Φo, then the existence
of an onto homomorphism / : nί(Σ) —• Φ/Φo is also a sufficient condition for the
existence of a connection with holonomy group Φ. To prove this sufficiency claim,
we choose a discrete subgroup D c Φ consisting of one element from each coset of
Φ/Φo in such a way that Φ/Φo -• D is an isomorphism of groups. Then we can
define a flat connection with holonomy group D by lifting %\(Σ) >̂ Φ/Φo -• D to
a holonomy map from the loop group to D. This is because any homomorphism
from the loop group to the structure group, that vanishes on so-called "thin" loops,
determines a principal bundle and connection up to gauge transformations [8]. 7

To obtain a connection with holonomy group Φ, one need only deform the flat
connection in a local gauge patch to a generic connection 1-form taking values in
the Lie algebra of Φo The curvature will then "fatten" the holonomy of
a homotopy class associated with geD to the corresponding coset gΦ0. To be
fancy, one can invoke the Ambrose-Singer theorem [6], which states that the
holonomy algebra at a point p in the principal fiber bundle is generated by the
spans of the curvature 2-forms on the holonomy bundle through p. Thus, any
deformation of the connection for which the local curvature spans the Lie algebra
of Φo will yield the holonomy group Φ.

For SX(2, C), the only non-trivial cases correspond to Φ = G( + , K) and
Φ = G(3, Z 2 ). As noted in Subsect. 5.2, G( + , K) is a semi-direct product of G( + )
with K; however, G(3, Z 2 ) is not a semi-direct product of G(3) with Z 2 . Neverthe-
less, as shown by example (ii) in the next subsection, connections with holonomy
group G(3, Z 2 ) do exist.

5.4. Examples. In this subsection, some examples of SL(2, C) connections that
have disconnected holonomy groups will be given. These serve to make the
preceding classification more concrete. As noted above, the only disconnected
holonomy groups for SL(2, C) connections that are not flat are (i) Φ = G( + , K\
where K is any countable subgroup of C*, and (ii) Φ = G(3, Z 2 ). We now take these
in turn.
(i) Φ = G( + , K). If in a global gauge the connection ω is of the form
ω = ω + τ+ + ω 3 τ 3 , then the holonomy /zy[ω] around a loop y is an element of
G( + , 3) given by

V
Here

/exp Lω 3 zγ \

\ 5a

(5b)

and s denotes a parameter along the loop y. In order to restrict the connection so
that Φo c: G( + ), it is sufficient that the 1-form ω 3 be closed, so that §γω

3 = 0 when
γ is homo topic to the identity. For a generic ω + , Φo will then comprise all of G( + ).

7 A smoothness condition must also be assumed in order that the bundle and connection be
diίferentiable. This condition is satisfied for the holonomy map defined above
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Now let K be a countable subgroup of C*, and let {αj denote a (possibly
infinite) set of non-zero complex numbers that generate K. Suppose that the
number of generating elements of K is less than or equal to the dimension of the
first homology group H1(Σ) oϊΣ, and let {yj denote a generating set of 1-cycles for
H1(Σ).S To arrange for the holonomy group to be G( + , K), it suffices to impose
the further restrictions that the closed 1-form ω 3 satisfy | 7 ί ω 3 = lnα,. If there are
more generators yt than au then we can require that §Ίx ω

3 = 0 for the additional yt.
The existence of such a closed 1-form is guaranteed by the de Rahm theorem (see,
e g ? [9]), which establishes the duality of the first homology and cohomology
groups. Note that by defining ω in this fashion, we have effectively encoded all the
"extra holonomy" in the τ 3 part of the connection.

For example, suppose that the manifold has the form Σ = T2 xR, and K is
generated by two generic non-zero complex numbers a1 and a2. K is then isomor-
phic to Z x Z, unless ax or a2 is a root of unity. The manifold T2 x R has both its
fundamental and first homology groups equal to Z x Z. Let us take yί = (θl9 0, 0)
and y2 = (0, θ2, 0) as two generating loops on Σ, where θuθ2e [0, 2π) coordinatize
the torus. Then the above discussion shows that the connection

—-(\na1dθ1 + \na2dθ2)τ3 , (6)
2π

has holonomy Φ = G( + , ZxZ), for ω + any non-vanishing 1-form on R. In
particular, one could choose ω + = dz9 where z'is a coordinate on R that is constant
on T2. In this case, the curvature that "fills out" Φo = G( + ) comes from the
commutator [ τ 3 , τ + ] = 2τ+.

The connections above have been defined in a global gauge, and take values in
the algebra J / ( + , 3), although the holonomy algebra itself is J / ( + ). This means
that one could choose a collection of local radial gauges covering Σ, in which the
connection takes values only in «s/( + ), and the gauge transformations (i.e.,
transition functions) take values in G( + , K). (See the Appendix.) This observation
may be important if one tries to construct solutions with non-trivial homotopy
observables.
(ii) Φ = G(3, Z 2 ). Instead of working in a global gauge as we did in the previous
example, we will take the manifold Σ = S1 x S2, and cover Σ with two local gauges
σ0 and βγ defined on U0xS2 and UxxS2. (Here Uo and Ux cover S 1 , with two
overlap regions.) These gauges are chosen so that they agree on one overlap region,
but disagree on the other, where they are related by the constant transition function

^ o i = ( - ? έ ) .
Suppose that in each local gauge the connection is of the form ω = ω 3 τ 3 . Then

since the transition function φOί lies in the normalizer of G(3), we have Φo <= G(3).9

For generic ω 3 , Φo will comprise all of G(3). To see that Φ = G(3, Z 2 ), let y be
a loop that wraps once around S1 and traverses each overlap region once.

8 We need to introduce homology groups in order to later appeal to de Rahm's theorem
9 This is a special case of a general result: If a connection takes values in a subalgebra h in each
gauge patch, and if the transition functions lie in the normalizer of the corresponding subgroup H,
then the holonomy around any contractible loop lies in H
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Since φ01 lies in the normalizer of G(3), Eq. (3) shows that the holonomy hy\_ω~] is
a product of φ01 with some element of G(3). This product belongs to the non-
identity coset in G(3, Z 2 ) . Since Φo is all of G(3), Φ is thus all of G(3, Z 2 ).

Since the local gauge σ1 can be deformed to agree with σ0 in both overlap
regions, one can write the connection (defined above) in a global gauge without the
need of transition functions. However, in order to do this, one would have to
perform a gauge transformation that is the identity in one overlap region, and takes
ψ01 to the identity in the other. This gauge transformation would necessarily
involve group elements outside of G(3, Z 2 ), since ψ01 is not connected to the
identity in G(3, Z 2 ). That the holonomy group equals G(3, Z 2 ) would no longer be
manifest if the connection were expressed in this global gauge.

Finally, note that if ω3 = 0 in each of the two local gauges, the connection is flat
and has holonomy group Z 4 = {(J ?),(_? o)>(~o -1)9(1 ~o)} This demonstrates
that the G(3, Z 2 ) connection constructed above does not arise from the " fattening"
of a flat Z 2 connection in the manner discussed in the sufficiency proof of Subsect.
5.3. As noted in that subsection, the sufficiency proof does not apply to G(3, Z 2 )
connections, since G(3, Z 2 ) is not a semi-direct product of G(3) with Z 2 .

6. The Einstein Equation

A classical observable is a function on the space of solutions to the equations of
motion modulo gauge transformations. Thus, only those holonomy groups that
arise in a Lorentzian solution to the Einstein equation are relevant for observables.
It is thus of interest to determine which holonomy groups classified above actually
occur in solutions, and to characterize those solutions as far as possible.10

In the first subsection, Local Solutions, we will consider only the local restric-
tions imposed by the Einstein equation, for each of the possible holonomy subal-
gebras. A complete characterization of all local solutions with restricted holonomy
algebras will be given. These local considerations do not suffice, however, to
establish (or classify) the existence of globally regular solutions with a given
holonomy group. One would ideally like to classify such solutions for each
3-manifold Σ and each holonomy group Φ. In the second subsection, Global
Considerations, this problem will be discussed. We have no complete answer to this
global problem as of now. In fact, we lack even a single example of a non-flat global
solution with disconnected holonomy group G(+9K) or G(3, Z 2 ) . However, some
partial results will be given.

6.1. Local Solutions. If the holonomy algebra of a spacetime is not all of s/(2, C),
then it is contained in £/{ + , 3), and there is a covariantly constant null direction in
the spacetime. For vanishing cosmological constant, the vacuum solutions with
this property are the Goldberg-Kerr solutions [10]. These have a line element that

1 0 The relevance of this issue goes beyond the holonomy group considerations of the present
paper. It would seem to be of fundamental interest to the Ashtekar variables program to have the
general answer, in order to know which connections actually lie in the reduced phase space. In the
quantum theory, those connections that are not in the reduced phase space should be associated
with zero "measure" in a functional integral or Hubert space inner product
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can be locally written in the form [1]

ds2 = Idzdz - 2du{dr + Wdz + Wdz + Hdu), (7a)

where

H = -{Wz+ Wz)r + H° , (7b)

H° = Re[(WWz- + Wu)z + h(z, w)] ? (7c)

and W(z, u\ h(z, u) are arbitrary functions holomorphic in z and z, respectively.
(Subscripts denote partial differentiation.)

If the holonomy algebra is srf( + \ then there is a covariantly constant null
vector, and the only solutions with this property are the pp waves [11]. These
correspond to the Goldberg-Kerr solutions above with W = 0. If the holonomy
algebra is s/(3% then as shown in [1] (using Ashtekar's form of the initial value
constraints), the only solution is flat space, so the algebra is actually trivial.

In the presence of a cosmological constant, the flat solutions are excluded. In
addition, Bostrόm [12] has shown (again, using the Ashtekar constraints) that
there are no solutions with holonomy algebra s/( + ). The solutions with non-zero
cosmological constant and holonomy algebra equal to J / ( + , 3) have just recently
been classified by Lewandowski [13].

It turns out that the holonomy algebra stf(3) is allowed in the presence of
a cosmological constant Λ9 although there is locally only one solution for each
value of A. To see this, note first that there are now two covariantly constant null
directions, say those of the vectors lμ and nμ. It is easy to verify that lμ and nμ are
both hypersurface orthogonal and surface-forming. We can therefore introduce
null coordinates w, υ and complex spatial coordinates z, z for which the line element
takes the form

ds2 = \f\2{u,υ,z,z)dzdz-g(u, v,z,z)dudv . (8)

The condition that the holonomy algebra is «*/(3) implies that the connection
generates only boosts in the w, i -plane and rotations in the complex z-plane, which
in turn implies | / | 2 = |/ | 2 (z,z) and g = g(u,v). The spacetime is thus locally
a direct product of 2-dimensional Euclidean and Lorentzian spaces.

Applying the Einstein equation with cosmological constant (Rμv = Λgμv), we
find that the 2-dimensional sections are spaces of the same constant curvature. If
A = 0 we have flat space; if A > 0 we have the product of a 2-sphere with
2-dimensional de Sitter space; and if A < 0 we have the product of a 2-hyperboloid
with 2-dimensional anti-de Sitter space. These solutions with A Φ 0 are the Nariai
solutions [14]. This classification of local solutions is summarized in Table 2.

Using the classification given in Subsect. 5.2 (or Table 1), we can now say which
of the holonomy groups with non-trivial Φ/Φo might arise in solutions. (Whether
they do arise or not is the subject of the next subsection.) For A = 0, s/(3) cannot
occur, so only G( + , K) (for pp waves) or a countable subgroup of SZ(2, C) (for flat
space times) might arise. For A Φ 0, st{ + ) and flat space cannot occur, so only
G(3, Z 2 ) (for Nariai solutions) might arise.
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Table 2. Classification of local solutions to Einstein's equation
with restricted holonomy algebra. (The definitions of the alge-
bras are given in Subsect. 5.1; the forms of the corresponding
solutions are given in Subsect. 6.1 and references mentioned
therein)

Algebra A = 0 solutions A φ 0 solutions

, 3) Goldberg-Kerr Lewandowski
pp waves 0

J/(3) 0 Nariai
0 Minkowski 0

6.2. Global Considerations. There are two types of global issues to consider:
classification of globally regular solutions with a given holonomy algebra, and
classification of globally regular solutions with a given disconnected holonomy
group.

Let us consider first the latter question, in the case of flat connections. For flat
connections, the problem is closely analogous to one that has been answered
recently for flat SO0(2, 1) ^ PSL(2, R) connections on 2-manifolds, Σ2 [15, 16]. In
that case, if the genus of Σ2 is greater than one, a compatible triad for which Σ2 is
spacelike exists if and only if the homotopy map is a discrete embedding of π1(Σ2)
into SO (2, 1). The 3 + 1 dimensional case is somewhat different, not only because
of the added dimension, but also because one is specifying just the self-dual part of
the 4-dimensional spin-connection. Nevertheless, according to Carlip [17], a sim-
ilar result holds. Namely, if G is a discrete subgroup of SL(2, C), then G acts
properly discontmuously on the hyperboloids of constant proper time that foliate
the interior of a light cone X in 3 + 1 dimensional Minkowski spacetime. If the
group action is also free, then the quotient of X by G is a flat spacetime with
induced spin-connection whose holonomy group is G. The question of whether
a flat spacetime with a discrete holonomy group must arise in this manner remains
open, as does the question of whether the holonomy group must be discrete.

The Nariai solutions mentioned above for A Φ 0 are the only solutions with
holonomy algebra stf(3). There are various globally regular forms of these metrics,
obtained by identifications. For example, for A < 0, quotients of the hyperbolic
2-sρace will yield the moduli spaces of metrics on genus g ^ 2 surfaces. The
holonomy group of all of these spacetimes will be G(3).

Is it possible to patch together local Nariai metrics in such a way as to obtain
globally regular solutions with the disconnected holonomy group G(3, Z 2 )? The
answer seems to be no. For instance, consider the A > 0 Nariai solution and the
Φ = G(3, Z 2 ) example of Subsect. 5.4. If Σ of that example is identified with
a spatial slice of the Nariai solution, then the SL(2, C) transition function
i/Όi = (-? o) corresponds to a rotation through 180° in a spacelike plane spanned
by a vector in the 52-tangent plane and a spacelike vector orthogonal to the sphere.
This is induced by an isometry of the Nariai solution. However, the patching
required to have this 180° rotation as a holonomy element does not yield a nice
manifold. The resulting space is like what one would obtain by cutting open
a cylinder and identifying strips on either side of the seam after a 180° rotation of
one of the strip in the plane of the strip.
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Finally, consider the solutions that have holonomy algebra J ^ ( + , 3), that is, the
Goldberg-Kerr solutions (7). The 2-dimensional spaces r,u = const are flat, so if
orientable, they must be the plane, the cylinder, or the torus T2. Global regularity
imposes severe restrictions on the z-dependence of the holomorphic functions
W and h in the line element. For the T2 case, the only holomorphic function is
a constant, so W{z, u) = W(u) and h(z, u) = h(u). In fact, PFmust also be indepen-
dent of u, since otherwise the linear term in z in H° will not be globally extendible.
The flat metric on the torus can have any Teichmύller parameters.

As discussed in the previous subsection, the pp wave solutions (W = 0) have
holonomy algebra ,$/( + ). Are there any globally defined solutions that are locally
pp waves, and that have a disconnected holonomy group of the form G( + ,K)Ί We
do not know the answer to this question. However, we can offer the following
remark.

Recall that the homotopy map π1(Σ)-^> Φ/Φo = K is onto, so a non-trivial
K requires a non-trivial π^Σ). For instance, if Σ = T2 xR, then K can have at
most two generators. One might think that non-trivial Teichmύller parameters on
T2 would in general lead to global holonomy of the form G( + , ZxZ), but this is
not the case. In 2 + 1 dimensions, Carlip [3] has shown explicitly how the
Teichmύller parameters are expressed in terms of the generators of two commuting
ISO (2, 1) holonomies. The homogeneous parts of these holonomies are boosts in
directions tangent to the torus. Embedding Carlip's analysis in 3 + 1 dimensions,
we find that these boosts cannot be identified with boosts in G(3)r\G( + , ZxZ),
because the latter boost in the spatial direction orthogonal to the torus.1 1 Thus, to
obtain pp wave solutions with global holonomy in G( + , K), it is evidently neces-
sary to patch together local solutions with transition functions in G( + , K). We do
not know whether or not this is possible.

7. Discussion

The conservation of the holonomy group (and, more generally, the homotopy map)
of the chiral spin-connection may turn out to have interesting applications in GR.
At the classical level, it provides a global constraint on evolution of initial data,
that can only be violated due to the occurrence of a Cauchy horizon or a singular-
ity. Put differently, data sets with different holonomy groups cannot be "cobor-
dant" in a regular vacuum solution.

For use in the quantum theory, the major drawback is probably that the
holonomy group is all of SL(2, C) for a generic solution, so the holonomy group
observable does not distinguish typical solutions. However, in a "midi-superspace"
consisting of connections with holonomy less than all of SL(2, C), it would be
relatively more significant. It might be interesting to formulate a midi-superspace
quantization of general relativity along these lines, as an alternative to the usual
truncations of the theory.

It should be emphasized that although the holonomy groups have been classi-
fied here from a group-theoretic standpoint, it remains an open problem to classify

1 1 The null rotations in G( + ) are generated by τ+ = ( i ! + zτ2)/2. In an adapted spin-frame, these
spin-transformations stabilize the covariantly constant null vector, which is orthogonal to the
torus. Therefore, in the adapted spin-frame, it is the 1- and 2-axes that are tangent to the torus.
The 3-axis is thus orthogonal to the torus



Spin Holonomy Group in General Relativity 275

the global solutions to the Einstein equation with restricted holonomy. At present,
we lack even a single example of a solution with holonomy group G( + , K) or
G(3, Z 2 ). A better understanding of this issue is needed if one is to exploit the
homotopy coset refinement of the holonomy observables introduced in Sect. 4.

That the holonomy group is not conserved in the presence of matter couplings
is, of course, another limitation in its applicability. One way to evade this limitation
would be to model matter by vacuum configurations such as the Einstein-Rosen
bridge of the extended Schwarzschild solution. However, since the Schwarzschild
solution has holonomy group equal to all of SL(2, C), this is not so useful. Another
option would be to couple gravity to one-dimensional string-like matter. Then the
energy-momentum tensor would vanish everywhere except on the world sheets,
where it would be singular. If the worldsheets are removed from the spacetime,
what remains is a vacuum solution, so the holonomy group should be conserved.
For special string configurations, the holonomy group can be less than all of
SL(2, C). If the strings are knotted or linked, interesting homotopy groups can
arise, allowing for a rich array of holonomy groups and their associated homotopy
maps.

Appendix: Reduction Theorem

The reduction theorem played such a crucial role in establishing the time-indepen-
dence of the holonomy group that it seems worthwhile to illustrate the logic
underlying this theorm. Since the principal bundle point of view is not familiar to
all physicits, we shall just give a "low brow" proof that Σ can be covered by
a collection of local gauge patches such that (a) in each gauge patch the connection
takes values in the holonomy algebra based at *, and (b) the gauge transformations
relating the local gauges take values in the holonomy group based at *. This result
is valid for any G-bundle over any connected n-manifold Σ.

The argument is simplest when Σ is contractible, because then we can construct
a single, globally defined radial gauge based at *, in which the connection takes
values in the holonomy algebra based at *. This is done as follows: Choose an
arbitrary family of curves through * that never cross and that fill all of space. Then
choose an arbitrary gauge at *, and carry it out to the rest of Σ by parallel transport
along these curves. This defines a global gauge, in which the component of the
connection along these curves vanishes. This means that if a loop is formed by
segments of two of these curves joined by a transverse piece, the only non-trivial
contribution to the holonomy will come from the transverse piece. If the transverse
piece is infinitesimal, this contribution to the holonomy differs from the identity by
a term proportional to the connection. Thus, in a radial gauge based at *, the
connection takes values in the holonomy algebra based at *.

If Σ is not contractible, then a global radial gauge does not exist in general.
However, we can cover Σ by a collection of local radial gauges satisfying conditions
(a) and (b) as follows: Choose a fiducial gauge at *, and carry it out to a collection of
points {xi} by parallel transport along a collection of curves {yj. At each xh

extend the resulting gauge in an open set O{ to a local radial gauge σi5 with one of
the radial curves being yf1 (the curve yt traversed in the opposite direction). All of
the local gauge patches Ut cover the point *, and all of the local gauges σt agree
with the fiducial gauge there. The collection of points {xt} can be chosen so that the
union of local radial gauge patches C/f cover Σ.
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Since the component of the connection along y, vanishes in the gauge σif and

since σt agrees with the fiducial gauge at *, the holonomy group based at xi9 in the

gauge θι at xi9 coincides with the holonomy group based at * in the fiducial gauge.

In fact, the holonomy group based at any point y e Ui9 in the local gauge σt at y,

agrees with the holonomy group based at * in the fiducial gauge. This is because

y and x, are always joined by some radial curve yyi of the gauge σi9 and the

component of the connection along the combined curve yyiyi (which connects *

to y) vanishes.

In each of the local radial gauges defined above, the connection takes values in

the holonomy algebra based at *. That is, condition (a) holds. To show this, we can

simply apply the argument used previously in the contractible case, but now with

the holonomy based at Xi. To show that the gauge transformations relating the

local radial gauges take values in the holonomy group based at * (i.e., that

condition (b) holds), consider any point y in the overlap of two local gauge patches

Ut and Uj. The gauge transformation at y from the gauge σf to the gauge σ7- is given

by the holonomy at y around the loop yy := yyjjjy Γx Jiy> evaluated in the gauge σt at

y. As noted above, the holonomy group based at y9 in the gauge σt at y9 coincides

with the holonomy group based at * in the fiducial gauge.
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