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Abstract. We work in the space !F = J^ε of divergence-free measurable vector
fields on R3 complete in the norm || ||', where

(IMI')2 = S u p ( i Y + ' J υ2(y)d*y
x \ K / B(x,R)

for some fixed ε > 0. B(x, R) is the ball of radius R centered at x. Given an initial
velocity distribution v(0) in J% we find υ(x, t) for 0 ^ t ^ Γ = T{ \\ υ{0) |Γ), T > 0,
such that i;(x, ί) is the unique strong solution of the Navier-Stokes equations, in
a suitable sense.

We expand v'(x, t) = ΰ(x91) — ΰ(x9 0) in terms of divergence-free vector wavelets

ΰ'(x, t) =

The Navier-Stokes equations become an infinite set of integral equations for the
cα(ί). In an appropriate space one realizes the ca(t) satisfying the equations as the
fixed point of a contraction mapping. The thus unique solution is the strong
solution mentioned above.

Loosely Speaking. Given ΰ(0) of finite || ||' norm, there is one and only one v(t) of
bounded || | | ; norm on [0, Γ ] with T = T{\\ v{0)\\f) > 0, that satisfies both

a) the Navier-Stokes equations

and

1
b) lim - 3 J lΰ(x, t) - ΰ(x, 0)] = 0, all t.

R-+oo K B(0,R)
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Section 0. Introduction

We study the Navier-Stokes equations for an incompressible fluid filling all of R3

dv -
--Λΰ= -(ΰ V)ϋ-Vp, (0.1)

V v = 0 . (0.2)

In fact we will never see the pressure term in (0.1), since the equations we will deal
with ((1.19)) will involve the expression (0.1) integrated against a divergence-free
test function. We study the Cauchy problem for initial data v0 = ΰ(0) divergence-
free and satisfying

( ^ ) 1 + ε J vU3y<™. (0.3)
B(x,R)

One should note that the data may have infinite energy, i.e.

\v2

0d
3x = oo (0.4)

and still satisfy (0.3); Eq. (0.3) implies only that the energy density be bounded. (Our
norm is somewhat similar to the Morrey norm used by Giga and Miyakawa in

[7].)
We will define a class of solutions of the Navier-Stokes equations (^-solutions in

Subsect. 1.5) within which there exists for some T = T( || υ0 IΓ) > 0 a solution v(x, t)
on the interval [0, Γ ] satisfying ϋ(0) = v0. Moreover the solution is unique (in the
class of ^-solutions). We follow the tradition of calling these strong solutions since
they are unique.

The theory of finite energy solutions of the Navier-Stokes equations is quite
rich and reaches in many directions (see for example the book of Constantin and
Foias [4]). Perhaps the main unsettled question is whether smooth solutions can
"blow up." Bounds on the Hausdorff measure of the points in space-time where
solutions blow up have been obtained in the beautiful work of Scheffer [8] and
Caffarelli, Kohn, and Nirenberg [3]. Our present work does not (yet) impinge on
the question of blow up. Strong solutions of the Navier-Stokes equations have
been obtained for initial data in L3 or H1/2 (see the paper of Foias and Temam [6]).
Our norm, || ||', and the norms in L3 and H1/2 are not comparable, but the || ||'
norm is - in our view - "usually weaker" even locally. It is close in spirit to the type
of bound associated to studying blow up of the Navier-Stokes equations (see for
example Theorem D of [3]). Much the same can be said for the results of [7]. In
any case our existence theorem, Theorem 2, does add to one's knowledge also in
the finite energy (or presumably finite volume) situation. (It would require over-
coming some technical difficulties to adapt our technique for boundary value
problems.)

Divergence-free vector wavelets (defined in Subsect. 1.2 and developed in [1 and
2]) were an evolutionary product from the incorporation of the renormalization
group into constructive quantum field theory. (Some of the important contributors
were K. Wilson, J. Glimm, A. Jaffe, G. Gallavotti, K. Gawedzki, A. Kupiainen, T.
Balaban, Y. Meyer, G. Battle, and the author.) It is most natural to study the
Navier-Stokes equations using these wavelets, and to see if any information is
gained beyond that of the more traditional approaches. (The theory of turbulence,
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and numerical studies of turbulence and the Navier-Stokes equations, should also
benefit from the utilization of wavelets.)

Basically, then, one expands the velocity field t/(x, t) = v(x, t) — v(x, 0) in terms
of the wavelet basis {wα},

v(x, t) - v(x, 0) = v'(x, ί) = Σ cΛ(t)ua(x) . (0.5)

(We require the right side to converge to the left side, in Li2

oc.) The Navier-Stokes
equations become a coupled set of integral equations for the ca{t) (Eq. (1.19)) - as
usual it is more convenient to work with integral equations that the o.d.e. one
directly obtains. Using a suitable norm, and a small enough time interval, the
solution of the integral equations is realized as the fixed point of a contraction
mapping. This is the source of uniqueness, and again is in tune with calling our
solutions strong solutions.

It is interesting to note that the solution of the Navier-Stokes equation inside
the space $F is not unique. If ι?(x, ί) is such a solution of the Navier-Stokes
equations, and c(t) any differentiable three dimensional vector function, then t?(x, t)
is also a solution of the Navier-Stokes equations inside the space J^, where

v(x, t) = v(x + c(ί), ί) - c(t). (0.6)

One may view this non-uniqueness as arising from a time dependent uniform
gravitational force applied to the system; such a force may be absorbed into the Vp
term in (0.1).

Theorem C of Subsect. 1.5 provides one route to achieve uniqueness. Our
^-solutions bound the long wavelength components of υ(x, t) — v(x, 0) (through
(1.14) and (0.5)) to achieve uniqueness. This is most natural to do in the context of
a wavelet expansion for v' (Eqs. (0.5)) rather than for v. In fact the formal wavelet
expansion for v (unlike that for vr) may not converge to v\ See the discussion in
Subsect. 1.6. The points touched upon in this paragraph all relate to the infinite
volume we are working in. As a physicist would say, the problem we are studying is
interesting at the infra-red end as well as the ultraviolet.

Section 1 contains all the basic definitions, and the statement of results. Section
2 presents several properties of wavelets beyond those listed in Sect. 1. Section
3 and Subsect. 4.3 contain the proofs of Theorem 1 and Theorem 3, respectively.
Each of these theorems concerns questions of convergence of wavelet expansions
and comparison of different norms used. Sections 4, 5 and 6 comprise the proof of
Theorem 2, our existence and uniqueness theorem (via a contraction mapping,
Theorem 4 of Subsect. 4.1).

As a browsing route through the paper, to be traversed prior to studying
details, we recommend reading: Sect. 1, Subsect. 4.1, the Exegesis and Her-
meneutics portion at the end of Sect. 5, Subsects. 6.5 and 6.7.

Many questions (that seem accessible) for further study are raised in the paper:
the treatment of problems with boundaries, study of weak solutions (see Subsect.
1.5), question of norm continuity of solution (see Subsect. 6.3). To these we add
consideration of alternate norms - perhaps say

(Hi; |f)2 = Sup f _ i _ t , 2 ( x ) d 3 X β ( α 7 )

y B(yl) \X ~ y\
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Section 1. Definitions, Formalism, Statement of Results

In this section we define the spaces of functions we work with, and give definitions
of several different types of solutions to the Navier-Stokes equations. Theorem 1 is
a statement about the relationship between norms we work with, and about
convergence of the wavelet expansions. Theorem 2 is our basic uniqueness and
existence result. The paper is devoted to a proof of these two theorems. We also
state a number of conjectures about the relationship between different types of
solutions of the Navier-Stokes equations. These conjectures and some of the
formalism given in this section are meant as suggestions for future development.

1.1. Test Functions. 2Γ is our space of test functions, vector fields on R3 satisfying:

a) They are divergence-free.
b) They are <£N (for some fixed large N later specified).
c) Each function, and all its derivatives, has exponential fall-off at infinity.

The test functions are defined so as to include our wavelets as examples.

1.2. Wavelets. We work with a set of divergence-free vector wavelets as given in
[1, 2]. We here summarize some of the properties we need of this set, further
properties will be given in Sect. 2. (Notation may differ slightly from in [1 and 2].)

Let Ψ* be the set of wavelets. There are vector functions ψt, t e I, on R3. Here
/ is a finite set.

T = {2<3'2)ΊM2'x - n) = «,,,,,(*)} teI , (1.1)
weZ3

reZ

y = 2~% and thus is a point on a lattice of edge size 2~r. Thus the functions
{uriy>t(x)} as r = 0, ± 1 , + 2, . . . , y = 2~rn with n varying over a unit 3-d lattice,
and t varying over / form our wavelet basis. urf7J(x) is "centered" about γ9 and
"lives on a length scale" ίr = 2~r. We index the wavelets also by α:

(α)). (1.2)

The set of uα comprising ΊV satisfy the following properties:

a) The set of ua forms an orthonormal basis for the divergence-free vector fields on
R3, where the inner product is given as

Oi,t>2> = $d3xΰ1-v2 (1.3)

b) Each uα is <%N. (The N is as in Subsect. 1.1.)

c) J x p u a d 3 x = 0 for all multi-indices p,\p\^N. (1.4)
d) ua and each of its derivatives has exponential fall-off at infinity.

1.3. Some Vector Fields and their Wavelet Expansions.

Definition. °lί is the space of uniformly locally square integrable divergence-free
vector fields on R3. A locally square integrable vector function of divergence zero is
in °U if its || ||" norm is finite, where

(Hull")2 = Sup j v2. (1.5)
x B(x, 1)
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Definition. <F = έFε (for some fixed ε > 0) is the set of functions in % for which the
|| | |' norm is finite, where

B{x,R)
Rgl

Definition. For a function v in °U we define its α th expansion coefficient, cα, to be

cα(i;) = cα = <wα,ι;>. (1.7)

It is easy to see this is a well defined number. (The "inner product" is just the
integral of (1.3).)

Definitions. Let c be a set of {cα} (not necessarily arising as expansion coefficients
of a function). We will define two norms || || and || | | 0 on such c. But we first must
define two auxiliary objects (following (4) and (5) of [5]):

/(x, R) = {α|y(α) e B(x, R), 2~'(α) ^ R} , (1.8)

\ * \ I R = Σ C« (1.9)

aeI{x,R)

We then define

I \P(R)- l R (1.10)

R

with

and

| μ | | 2 = Max(S,L), (1.12)

where

(^\+ί\c\lR, (1.13)

L = S u p l - l cl. (1.14)
r(α) < 0

(Recall 4 = 2"r(α).)
We define # as the set of >c of finite || || norm, a normed space in this norm. We

let ^o be the set of c of finite || || 0 norm, also a normed space.

Formal Definitions. For a given v we define c(v) = {cα = <wα, v)}. For α gfii ew c we

define υ{c) = ̂  caua.

Theorem 1. a) Let υ be in $F. Then c(v) is in ̂ 0 , and one has

IMIo^clMI'. (1.15)
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(Here and elsewhere we understand \\ v ||0 = || c(v) ||0, and likewise for the || || norm)
b) Lei -c be in c€. Then v(c) is in 3F, and one has

\\υ{c)\\'^c\\c\\. (1.16)

For c in <€, v(e) = Σ cauΛ converges in Lfoc. It is this type of convergence that is
always understood.

c) Let c be in c€. Then

C(Ό(C)) = c . (1.17)

1.4. Definitions of Continuity. We must define continuity of a path in each of our
spaces, %, <F, and #. We will use a definition much weaker than norm continuity. It
will be trivial that norm continuity implies continuity in the sense we work with.

Definition. A path v(t) in %,

v{t): [0, Γ ] -» °U

is continuous if it is uniformly bounded, i.e. || υ(t) \\" < M, and for each test function
φ, <φ, υ(t)} is continuous.

Definition. A path v(t) in J Γ ,

v(t): [0, Γ] - ^

is continuous if it is uniformly bounded, and for each test function φ, <φ, v(t)} is
continuous.

Definition. A path c(t) in (β,

c{t): [0, i\^<€

is continuous if it is uniformly bounded, and with c(t) = {ca(t)}9 each cα(ί) is
continuous.

1.5. Solutions of the Navier-Stokes Equations.

Definition, ι (ί), 0 ^ t ^ Γ, is a W-solution of the Navier-Stokes equations if it
represents a continuous map from [0, Γ ] into °U,

v(t): [0, Γ ] -> Φ ,

and for each test function φ in <T, one has

<φ, t;(ί)> = <eΔtφ9 v(0)) - f dtW^φj, Otftvjit)}, O^t^T. (1.18)
o

In (1.18) it is understood i and) are summed over, and the inner product represents
the integral of the functions in it (previously inner products have been only for
vector fields).

Definition. v(t), 0 ^ t rg Γ, is an ^-solution of the Navier-Stokes equations if it
represents a continuous map from [0, T] into 8F,

v(t): [0, Γ ] - J^ ,

and for each φ in £Γ, v satisfies Eq. (1.18).
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Definition. c(t\ 0 ^ t ^ Γ, is a %>-solution of the Navier-Stokes equations if it
represents a continuous map from [0, Γ ] into <$,

c(t)\ [0, Γ ] -> * ,

and for each α one has:

cα(ί) = {(eAt - l)κβ, i;(0)> - } dtid^-^u^ Ot(i)vj(t)\ (1.19)
o

where

ι>(t) = ι>(0) + Σcβ(ί)Mβ . (1.20)

Conjecture A. (This is certainly true.)
^-solutions are ^-solutions.

Conjecture B. Given a ι ; o e ^ , there is a Γ = TΓII^oH") > 0» s u c h that one has
a ^-solution, ι (ί), 0 ^ ί ^ Γ, with u(0) = ι>0.

Theorem 2. Gf^n y0 ^ ̂ , ίfer^ is α Γ = Γ(| | t;0 IΓ) > 0 such that one has a (€-
solutίon, v{t\ 0 ^ t ^ J1, w/ί/z y(0) = ι?0. Moreover such a solution is unique.

Note. J^-solutions are certainly not unique as pointed out in the introduction.
Consider in particular

(1.21)

(k is the unit vector in the z-direction.) For any/(ί) these are J^-solutions.

Theorem C. (Proof outlined in Subsect. 6.6). // an $P-solution satisfies

lim-^3 J [ δ ( x , ί ) - ί ( x , 0 ) ] = 0, a l l ί , (1.22)
R->oo ^ B(0,R)

then it equals the corresponding (unique) ^-solution.

1.6. Long Wavelength Residues, A Subtlety of the Infinite Volume. Let w be in °U.
(All we will state will obviously hold with ^ and || | | ; replacing °U and || ||".) We
define its r (level long wavelength) Residue, wr, by

w' = w~ X c β «., (1.23)
α

r(α) ^ r

where

ca = <ua,w}. (1.24)

This is a somewhat subtle idea. Consider w0 = k: then wr

0 = vv0 for all r, cα = 0, all
α. (In fact by Theorem 3, part b) below, the only υm% with all ca = 0 are constant
vectors.) From this example we see the residues do not necessarily go to zero as
r approaches — oo. (For w = v(c\ c in #, lim r^ _ ̂  wr = 0 by Theorem 1.) But in all
cases the wr should get smoother and smoother as r -* — oo. This is made precise
by the following theorem.
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Theorem 3. Residue Bounds. For w in % and r < 0 we have

a) I w ' l α o ^ c l l w H " , (1.25)

b) I D V L ^ C - J J T H W I Γ , (1.26)

c) \((eΔt-l)wYL^ct^\\w\\" . (1.27)
1

72

V γ

This theorem is treated in Subsect. 4.3.

Section 2. Some Properties of Wavelets

We continue our discussion of the wavelets introduced in Subsect. 1.2. For their
construction see [1 and 2]. The following properties are either explicitly or
implicitly from [1 and 2], (One should note the minor point that N as we use it,
beginning in Subsect. 1.2, may differ from the N in [1 and 2].)

Estimate 2.1.

(Recall ίr = 4 = 2'r.)

Estimate 2.2.

Representation 2.3. For 0 ^ s ^ N there are vector functions Gα?jS such that

u*(x)= Σ (4)^0..^). (2.3)

Here β is a multi-index. Moreover the Gα ^ may be chosen satisfying Estimates 2.1
and 2.2.

It is important to note that a and c in (2.1) and (2.2) may be picked independent
of α.

Section 3. Proof of Theorem 1

In this section we prove Theorem 1. We prove the different parts with varying
degrees of thoroughness-but as in the rest of the paper, we are guided largely by
the desire to display the different techniques of proof, and arguments, intrinsic to
analysis with wavelets.

3.1. Proof of Theorem 7, part a). Let v be in °U, then we define two norms on v9

\υ\'XtR a n d \ υ \ X t R ,

(\v\'XtR)2= ί
B(x,R)

(3.1)
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(See (1.9) for \c(v)\XfR.) It is sufficient for a proof of Theorem 1, part a) to prove the
following lemma, interesting in its own right.

Lemma. Let v be in °U. Then

y

(c an absolute constant).

We proceed to prove this lemma working with a fixed x and R.
Step 1. We now define a decomposition

v = υ1+υ2 (3.3)

(where v1 and v2 are not required to be divergence-free)

, , J Φ ) | χ - j > l < i o o κ
vAy) = < . . , (3.4)

I 0 otherwise

\x-y\>100R

otherwise

(We note that the choice, 100, is wasteful; we will be wasteful in estimates.) We have
a parallel decomposition of cα,

cα = cα l + ca2 , (3.6)

where

cβi = <Mβ,t;i>, i = l , 2 . (3.7)

We then have

\V\IR= Σ ( C « I + C « 2 ) 2 (3.8)
αe/

g 2 X (<& + c 2

2) (3.9)

^ 2 | t ) | ; 2

1 0 0 R + 2 Σ c α

2

2 . (3.10)
αe/

We are abbreviating I(x, R) as /, and have used the basic inequality

The first term in (3.10) is ^ c (Sup^ |^|y,κ)2, and we turn to the second term.

Step 2. We consider a rectangular lattice of edge size (2R\ i.e. (^R)Z3. We label
points of the lattice by i = I We now decompose the integral for ca2 on the right
side of (3.7) into contributions from balls of radius R centered at lattice sides, and
apply the Schwartz Inequality to each term in sum getting from (2.1),

\ 1/2^3/2 α | x - , |

ί v2) βiϊ*"2 <- > (3.12)
d(x,i)>10R
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where r0 is such that R and 2~ro are as close as possible and r = r(oc). It follows that

/ \ 1/2 ̂ 3/2 α ^

| c α 2 | ^ c S u p j v2) -gpe-Atr. (3.13)
i \B(i,R) / ϋr

Then one has

Σ c 2

2 ^ c Sup ( j t ; 2 ) Σ 2 3 ( r- r o )2 3 ( r- r o )<Γ2V f β (3.14)
αe/ i \β(i,K) / r^r0

(the second exponential of 2 arises from the sum over α e / , for fixed r), yielding

Σ c α

2

2 ^ c Sup j t , 2 . (3.15)
αe/ i £(ϊ,R)

This estimate together with (3.10) completes the proof of the lemma.

3.2. Proof of Theroem 19 part b). We are given c in (€. We must show v(c) is in
^ and

\\v(c)\\'^c\\c\\ (3.16)

(for an absolute constant c). This is equivalent to showing, for each x and R g 1,
l+ε

|φ)|;,^c|μ||. (3.17)

We restrict ourself to a fixed x, #, and ι?.

5^/? 1. We now define a decomposition

v = Vi + v 2 9 (3.18)

where

We get

I \ l + ε

= Σ cαMΛ(j;) . (3.19)
αe/(x, 100R)

/l\ /ΊV

ί ϋ2 = 2 U ί D? + 2 s ) ί o l (3 20)

l + ε / 1 \ l + ε

J n . (3.21)

2. It is enough to show

/ I \ 1 + ε

« ί d ^ c l l ^ l l 2 (3.22)
\KJ B{x,R)

to complete the proof.
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We define

αe/c

(where Γ = I(x, 100R)c) and have

229

(3.23)

(3.24)

We now use a "sums to sups" procedure common in constructive quantum field
theory. We will define numerical quantities fr > 0, and note

1
Σfr 7 V2r
r Jr

Γr ) S u P i | l 7 2 r |
r J r

and so

Define again r 0 as in (3.12) (2 r o ^ R\ and now define the/ r :

(3.25)

(3 26)

(3.27)

with t > 0 but sufficiently small. Use the estimate (trivial from (1.8)—(1.14) with
D(r) = i ( l + ε) if r ^ 0, and D(r) = i (3 - ε) if r < 0:

l < - α l ^ l l ^ l l ^ r ( ά )

to estimate v2r from (3.23) as

r(oc) = r

One has the easy estimates (for y in B(x, R))

(3.28)

(3.29)

r(α) = r

(3.30)

=

for any s0 > 0 (c depending on s0). Putting (3.27), (3.29), and (3.30) into (3.26) and
choosing conditions on the parameters

s0 > 2 ί ,

r > 0 ,

2 - ε - 2ί > 0 ,

ε > 2ί ,

(3.31)

(3.32)

(3.33)

(3.34)
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one deduces (3.22) and completes the proof of Theorem 1, part b). One must
scribble a few lines on paper, using (3.32) to control the sum Yfr, using (3.31) to
control the sup for r ^ r0, and using (3.33) and (3.34) to control the sup for r ^ r 0.

3.3. Proof of Theorem i, Part c). Given c = {ca} e #, we must show with

v = υ(c) = ΣcΛua (3.35)
α

that one has

<Mαo,t?> = cα o . (3.36)

Let

Ko^(ro,yoJo) (3.37)

Let

h = /y o > Λ l o , (3.38)

(where / 0 = / r o) and

^ = Σ C Λ , (3.39)

»; = Σ c^» (3 4°)
αe/£

ι;n is in L 2 and so

(uoco,υn} = coco, (3.41)

and thus

<wαo, ι?> = cα o + <wαo, < > . (3.42)

We now split wαo

wαo = XnK0 + (1 - XnKo = w«i + w«2 , (3.43)

where χn is the characteristic function of B{ yo> x ^o )• We note that

l l ^ l l ^ b l l , (3.44)

and so by (2.1) and Theorem 1, part b) one has

<un2,v'n} , 0 . (3.45)
n-* oo

So we will be through if we can show

<w*iX> >0 (3.46)
w-> oo

(by (3.42), (3.43), and (3.45))

<Uni,vf

n) = <uao,χnυ
f

n) . (3.47)
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But χnv'n, supported on BI y0, - ί0 J goes to zero uniformly with n (from which one

can deduce (3.46). The estimate of χnv'n is quite the same as the estimate of v2 in
Subsect. 3.2. Bounds (3.26)-(3.30) are sufficient to show this.

Section 4. The Contraction Mapping and (Long Wavelength) Residues

4.1. The Contraction Mapping. We view Eq. (1.19), with (1.20) substituted into it, as
of the form

{ca(t)} = Fτ({ca(t)},v(0)). (4.1)

We let Sτ be the space of continuous functions c(t) = {cα(ί)}> 0 ^ t ^ Γ, with
cα(0) = 0 a n d of finite ||| ||| norm:

| | |{cβ(ί)}| | |= Sup ||{cβ(ί)}|| . (4.2)

(The c(t) in Sτ are continuous paths in the sense of Subsect. 1.4.) Fτ is then
naturally viewed as a mapping of Sτ into itself. Let STiM be the subspace of
Sτ satisfying

| | | { c α ( ί ) } | | | ^ M . (4.3)

Theorem 4. The Contraction Mapping Theorem. There is an absolute constant c 0,
and a function F( \\ v(0) \\\ c) > 0, such that if \\ v(0) ||' < oo , and M = c \\ v(0) \\\ with
c > c 0, then, with T = F(\\ v(0) ||', c), F Γ w a contraction mapping on STM. Note that
by Theorem 1 and Theorem 2, ||tf(ί)|Γ z s bounded.

We will construct our proof of Theorem 2 by proving Theorem 4.

4.2. Introduction of the (Long Wavelength) Residues. We now set vr

0 to be the
r-residue of v(0) (see Subsect. 1.6). And define

(4.4)

so that

v(0) = vr

Ό + Σ baua. (4.5)
α

r(α) ^ r

We now write the expression (1.19) for cα(ί) with (1.20) substituted and t (O) replaced
by (4.5) with r = Min(0, r(α)) (α as on the left side of (4.6))

cβ(ί) = <(^< - l)wα, ϋ(0)> - [Γ x + Γ2 + Γ3 + Γ 4 ] (4.6)

with

0

Y~* Γ AT / r\ J ( ί " O i ι ίi'* i ι \ /'/-» _[_ ^ /T\A //I δ^

2 — 7j J ai \0(e uaj, VoiU χ'j/ \Da' + cα '^tjj , 1̂ " " /
α' 0
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T3 = Σ ί dt{die^-'>uφ «,.„ vΌj)^, + cAt)) > (4-9)
a' 0

TA = Σ Σ ί dtζδ^'-Vuzj, ua.tua.Ί> (ba. + ca,{t)) -(V + cAt)) • (4.10)
α' α" 0

It is understood that in (4.7)-(4.10) the sums include only feα with r(α) ̂  r. Inter-
changing order of summation and integration is not hard to justify.

4.3. Study of the Residues. We turn to consideration of Theorem 3 of Subsect. 1.6.
We will work in 3F rather than % in tune with the rest of this paper.

Let χ(x) be C 0 0 satisfying

a) 0 ^ χ S 1 ,

(0 | χ | > 2

We fix x0 and r < 0 and study wr(x) for x near x 0. We study Theorem 3, part a)

w(x) = wx(x) + w2(x) = x(2+l"7(x - xo))w(x)

+ ( l - Z ( 2 + > - 7 ( x - X o ) ) ) w ( x ) , (4.11)

w' = wr! + wr

2 . (4.12)

(We define w\ by the same formula as if wt were divergence-free.) Near x = x0 we
have

wr2 = - Σ C2«u«, (4.13)

f(α) ^ r

where

c i β = <iι«,w i>, i = l , 2 . (4.14)

We might be tempted to write

Wi = Wi - Σ c i«w« ' ( 4 1 5 )
α

r(a) ^ r

= Σ ci«w« (nicht wahr!), (4.16)
α

r(α) < /•

but Wi is not divergence-free, so (4.16) does not follow from (4.15) even though w1 is
inZA

The method we have chosen to handle this problem is to utilize an additional
construct. Namely we expand the {ua} to a basis for vector fields (without imposing
the divergence-free condition) by expanding the index set / of (1.1). (See Notes
below.) We indicate this basis by

K} u {ui} (4.17)
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(g for gradient). Then

WΓi =Wχ— Σ C l Λ = Σ ( C l Λ + C\*K)
α α

+ Σ c?««ί (4 !8)
α

r(α) ^ r

One has the easy estimate, from (2.1), for r(α) < r,

j ^ z W l Γ (4.19)

and the same estimate for |c?α | . For the sum in (4.13) one can develop estimates
similar to those in (3.29) and (3.30) (this requires a little work). Estimate (4.19) for
cla and c9

la handles the first term on the right side of (4.18). For the last term in
(4.18) one notes

c\a = <ul χw> = - <t<g, (1 - χ)w> (4.20)

and can analyze this term, thus, as was (4.13). We leave the proof of parts b) and c)
of Theorem 3 to the reader.

Note. The additional wavelets are each gradients, and automatically orthogonal to
the divergence-free wavelets. Construction of a wavelet basis for gradient vector
fields is much simpler than construction of the divergence-free vector fields. They
can be constructed with the same properties a)-d) (of (1.3) and (1.4)) and (2.1)—(2.3)
with divergence-free replaced by gradient.

Note. An alternate line of proof of Theorem 3 not employing these additional
wavelets runs as follows:

w\ = W l _ £ Claua (4.21)
α

r(a) ^ r

= Wi + Σ C1«U« ~ ^ W l

= ( l - P ) W l + Σ c i Λ > (4 2 2 )
r(a)<r

where (1 — P) = " v is projection onto gradient fields, P projection onto diver-

gence-free fields. Working with the explicit form for (1 — P) (in x-space) one easily

gets the same estimates as using the gradient wavelets.

Section 5. Estimation of the Three ua Interaction

In this section we estimate the "matrix elements"

> (5.1)

that appear in (4.10) part of (4.6) the basic equation for cΛ{t).
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We first note some properties of the "heat kernel" eAt, for t > 0, an integral
operator.

t(x,y) = ~eJ^Γ, (5.2)

\d*yeΛt(x,y)=l, (5.3)

WCJ§ (5-4)

We next develop some useful definitions in an obvious abbreviated notation.

We order the r9s

{/i, r2, r3} = {ra ^ rb ^ rc} , (5.6)

rd = min{r1,r3} , (5.7)

re = max{r2,r3} , (5.8)

r/ = min{r 2,r 3}, (5.9)

rg = min{re,r1} . (5.10)

Three u interaction estimate table:

M(l,2,3)^cABCDE , (5.11)

where:
1

(5.12)

B = γ , (5.13)

C = ( - V anys<iV/2, (5.14)

D = ^ L / 3 , anys'<JV/2, (5.15)

E = e ~ δ Tf . y [ d L \ { e ~ δ 7g , e ~ \ } ' (5.16)

for some small δ.
To explain how the table arises we detail a single case - the derivation of the

table will be seen to be trivial.

Illustrative Case. We set

ri ^ r2 S r3 (5.17)
and

s = s' , (5.18)

(5.19)
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where we have integrated by parts on V and used V ύ2 = 0. We now use Eq. (2.3),

uc\(Ds+1Gue
tAU2DsG3y\t\r3 , (5.20)

and integrate by parts again

+ 1 + Δ \ r 1 r 3 i (5.21)

where |sχ | + | s 2 | = | s | and we do not indicate the sums over s9s. Another integra-
tion by parts:

(5.22)

7 ^ ^ 2 (5.23)

where G\ and G2 are implicitly defined, all G's satisfy (2.1). We let m be the matrix
element in (5.23).

ί | Y I (5.24)

It now follows from (5.4) and (2.1):

, , 1

χ-yr a,

$d3x$d3y\eϊΐrD'έ'Δ{x,y)\e-"ly-'"v'' . (5.25)

Equations (5.24) and (5.25) yield the table's estimates using the following simple
bounds:

^]z-~y3ί/ί3e-lίz-y2W2)^e'h-y^ (5.26)

(5.27)

(5.28)

^ (5-29)

Equation (5.29) (similar to (5.4)) can be obtained by a dimensional (or scaling)
argument. Likewise with (5.28). Equation (5.26) follows from the fact that either
\z — y31 or I z — y21 must be greater than | y2 — y31/2. Equation (5.27) follows from
the fact that either | x — y\ or (\x — yi\ + \y — y3\) must be greater than
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The most interesting idea to glean from this section is how (2.3) may be used to
study dependence of integrals on levels (r values).

Exegesis and Hermeneutίcs.
To work effectively with wavelets it is more than useful to have rules of thumb:
which matrix elements are large, how large are they, how small are the small matrix
elements, etc. In this subsection we attempt to explain some of the wisdom of
experience, in a hand waving way-not claiming to present every insight one can
possess, but the major ones. We will discuss the three u matrix elements of this
section, and the two u matrix element analyzed in Sect. 6.1. Everything we say is of
course contained in the two tables of estimates; we are trying to "understand" the
tables.

We first consider the two u matrix element

(5.30)

an integral of two w's

\\d*xu1e
Δtu2\. (5.31)

The question of which matrix elements are large is the analogue of momentum
conservation for Fourier transforms (PlanchereΓs theorem being a special case).
For wavelets one does not have so sharp a criterion. We note that M(l, 2) is "large"
for

r ι ^ r 2 = r, (5.32)

\yi-y2\ | c 2- ' (5.33)

and has "size" in this case

3 / 2 \ 2

J •?•*-'/'*, (5.34)

where the first factors of fr arise from estimate (2.1) (the "normalization" of the ua\
the second factor of £* from the integral over x (wα "lives" on a cube of side £r\ and
the exponential from etΔ. (Equation (5.32) arises from (6.10), (5.33) from (6.12).) Note
that our estimate e'*1'* is a very approximate estimate - but it is more than
suggestive.

We find it helpful to represent M(l, 2) by a graph (Fig. 1)

Fig. 1.

where the figure is drawn in the case / 2 ^ A The w's are the horizontal lines, the
vertical line represents their interaction. We place smaller length scales lower; the
three u matrix elements have similar figures. Note that the smaller scale u2 must
"live" inside the larger scale u1 above it.

We turn to the three u matrix element

(5.35)
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If we order the r's as in (5.6),

{r i , r 2 , r 3 } = { r β ^ r b ^ r c } . (5.36)

Then parallel to (5.32) one has for "large" matrix elements

ra = rb ^ rc . (5.37)

This follows from (5.14). Thus the figure representing a large matrix will look like
Fig. 2.

Fig. 2.

where, again, ua must live inside the bigger uc above it. Note that there are

such choices of ua, if ra and uc are fixed. Sums over such choices of ua are
characteristic of wavelet estimates (such as in deriving (3.14) or (6.29) below).

We first analyze the "size" of the large elements in the case most important to
us. (It corresponds to the most delicate situation encountered in analogous situ-
ations in quantum field theory.) This pro to-type case, Proto-Case 1, is specified by

r = rγ ^ r2 = r 3 = r' , (5.39)

72 = 73, (5.40)

l 7 i - 7 2 | ύ2~r, (5.41)

and then

_LV/2./3 A
< r t r > J lγ

M(l, 2,3) - — j ./? - ^ {5Λ2)

\ιrιY'J £γ

with the factors on the right arising in order as: the normalization of the wα, the
integral over x, the V acting on uί (after integration by parts), and the exponential.

There is one other proto-type, Proto-Case 2, a situation also where M(l, 2, 3) is
"large,"

rx = r3 = r ^ r2 = r' , (5.43)

7i = 73 , (5.44)

\y1-y2\^2~r\ (5.45)

and then

/ 1 V/2 1
M(l, 2,3) ~ (-J-) .^3 - ^ 2 . (5.46)

M(l, 2, 3) we must bound will be analyzed as relating to these two proto-cases, or
as being irrelevantly small. It is the property of wavelets to allow such localization
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of estimates. One comes to believe: If crude estimates involving only the proto-cases
imply convergence, then there is convergence.

Section 6. The Nitty-Gritty

6.1. Estimation of the Two ua Interaction. In the first few subsections of this section
we study the first term on the right side of (1.19). We make several definitions, and
collect some relations:

vo(t) = (eΔt - l)ι (O) , (6.1)

vo(t) = eAtv(0), (6.2)

cO α = <(tία, vo(t)y , (6.3)

Cθa=<Ua>VO(t)> (6.4)

In this subsection we study, in analogy with Sect. 5:

M(l, 2, 0 = M(1, 2) = \{uue
Δtu2}\ . (6.5)

We define
ra = m a x { r 1 , r 2 } , (6.6)

rb = mm{rur2} (6.7)
and obtain

where

(6.9)

(6.10)

(6.11)

} (6.12)

This follows as in Sect. 5.

6.2. Bound on v0 (t). In this subsection we prove the lemma

Lemma.

ll̂ o(Oil ύ c2IM0)|Γ • (6 1 3 )

We will later pick c 0 of Theorem 4 (the Contraction Mapping Theorem) to satisfy

Co > c2 . (6.14)

Now we turn to a proof of (6.13). Referring to (1.12)—(1.14) we see we must show

We first treat S.

B =

C-

D =

(Λ^2

P2

ts'/2 l

Max

\3/2 '

s

) any s <

y sr

— 721

h

• Nil,

<N/2,

^ 1 ί ί Ϊ2\
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It is sufficient to show

)ί+ε\vo(t)\iR^ca(\\v(0)\n2 (6.15)

using Theorem 1, Part a). We fix x and R through our discussion. We pick r0 as
small as possible satisfying

2~ro S R (6.16)

We consider a rectangular lattice of edge size R/2, with lattice sites labelled by ί.
Recall

cOα(ί) = ΣM(α,α')cα,(0). (6.17)
α'

We split up the sum in (6.17)

= Σ Σ M't^ «')<V(0) + Σ Σ Mr'(<x, a')cA0) . (6.18)
i a' t"<fo OL'

M-(α, α') is zero unless a' e I(i, R). M?(α, α') is zero unless r(α7) = r. To study M we
use the fact that if A is an operator with matrix elements Atj in an o.n. basis, then

d^yl + l ^ il), (6.19)
i j

where | | 0 indicates operator norm. To study the second term in (6.18) we use the
easy bound

1 " ( ) l = l c ^ l l " ( θ ) l l ' r < o ( 6 2 ϋ )

We now have
l+ε

fQ(r)/2 Ί 2 \ l / 2
I p \ / \ I \ Λ/T" (~, ~,ι\ r I I

r<ro \ α

where

sQ(r)/2 Ί 2

Λ J

3 r < 0 ( 6 ' 2 2 )

From (6.19):

I Aίίlo ^ c Sup Σ M ( α ' α ' ) (6 2 3 )

We use (6.8) to estimate the expressions in (6.21) and (6.23).
We split the bound in (6.8) as follows:

[7AY (6.24)

= N-L. (6.25)
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The two brackets in (6.24) define N and L. Estimates are expressed with 1 and 2 of
(6.5) replaced by α' and α respectively. We let

(6.26)

(6.27)

(6.28)

r{

We claim the following two

Σ N
α'

i

α) = r 0, r(α') = r ,

ra = max(r, r0) ,

rb = min(r, r 0) ,

key estimates:

Sup L(α, α') ̂  c .

(6.29)

(6.30)

In (6.29) the sum is over all α' of fixed level r. We have picked 5 = 3, and if t ^ -v/4
picked s' = 6. This requires JV > 12 (we are certainly wasteful however).

Estimates (6.29) and (6.30) used in analyzing (6.21) and (6.23) yield the bound on
S. We leave to the reader verifying that (6.8) yields (6.29) and (6.30).

We turn to a treatment of L (from (1.14)). We need show, for r(α) < 0,

I <uβ, (eΔt - 1) v(0)>I g c ^ - ε / 2 II »(0) IΓ (6.31)

We use the fundamental theorem of calculus, often a good idea,

<Wα, (eΔt - 1) i,(0)> = } dt^(eΔfua, υ(0))
o a t

(6.32)
α' 0

We use the trivial bound (6.20) for the second factor. The first factor may be treated

as in Subsect. 6.1, with the extra A factor yielding —γ~ in the bound, the sum over a'

is as in the treatment of S. We get for the matrix element on the left side of (6.32)

Kua9(eAt-l)v(0)>\ Sc t'-^ί?β\\v(0)\\' . (6.33)

This easily yields (6.31).
We implicitly will use that v(t) is equal to its formal wavelet expansion. This is

the statement of Theorem 3, part c).

6.3. Norm Continuity ofvQ(t)for t > 0. We consider 0 < tί < t2 and study

(e4'2 _ eΔt^ VQ) =ί dt- eΔt v(0) , (6.34)
n dt
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using the fundamental theorem of calculus again as in (6.32). We evaluate the
derivative

\χ — y \ 2

where we understand eΔt to be the integral operator with kernel

]-?-^-e"(x,y). (6.36)

We view (1.12)—(1.14) as realizing || || as the maximum of two norms

IMI = M a x ( | | » | | 5 , | | » | L ) , (6.37)

and write first for || v \\s. Thus we obtain

i . Sup
r i t,<t<t2

(6.38)

g^f-^c||»(0)||'. (6.39)
h

This yields the continuity in S norm, for t > 0. The lemma of Eq. (6.13) controls the
first term in brackets in (6.38); the second term in brackets is dealt with the same
way - by trivial modification on Subsect. 6.2. We turn to the L norm. Here the same
argument as surrounding (6.32) works. We do not investigate whether our solution
v(t) is norm continuous for t > 0.

6.4. Continuity of vo(t) at t = 0. We need show cOα(ί) is continuous at t = 0 for
each α. That is, we must show

lim <wα, (eΔt - l)ι>(0)> = 0 . (6.40)
r-»0 +

But given ε' > 0, we can find a bounded set U such that, with χu its characteristic
function,

ε' (6.41)

by the exponential fall off of ua and eΔt. Further considering that now χuv(O) is in L2

one has

< ( ^ - l ) t t e , X i l i , ( 0 ) > — — , 0 (6.42)

(easily seen in Fourier transform space), and our result.

6.5. Heart of the Proof We turn to the second term on the right side of (1.19) or
(4.6) as expanded out in (4.6)-(4.10). We will not prove that the map Fτ of (4.1)
carries continuous paths into continuous paths, but concentrate on showing Fτ is
a contraction if T is small enough.

An Important Reduction (an Application of the Residue Bounds). We make a critical
observation:

The contributions of the υr

0 in (4.6)-(4.10) may be estimated as though they were
contributions of r-level expansion coefficients!
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Specifically, the term

| < ^ ( ί - % XOι.2V;>l (6.43)

from (4.8) may be bounded, using the Residue Bounds of Theorem 3 a) and b)
((1.25)—(1.26)) and the techniques of Sect. 5 as being

^ X MB(α,α'',α')|c&| (6.44)
α"

r(a") = r

with

\c^\^c^/2\\v0\\\ (6.45)

Here the {c*»} are the "pseudo-coefficients" and MB the bound in (5.11), i.e.

M(l, 2, 3) ^ c A B CD E = MB = M β ( l , 2, 3) . (6.46)

The other terms in υr

0 are treated similarly. Basically the Residue Bounds give the
same estimates, as (2.1)-(2.2) give for the wα, to vr

0 (localized to regions of size ~ /;?
by a partition of unity) normalized by the cζ to have the right || v0 ||' dependence.
Because of (6.45) we modify MB to MB as follows:

M > , α', α") =

Pε

rM
β(α, α', a"\ ifr < 0 and either r(α')

or r(α") equals r . (6.47)

MB(ot, α',α") otherwise

Here r = r(α).

7/t which Sub sub section the Ultimate Lemma is Introduced. Let {Fα} and {Zα} be
vectors in ^, and define {Xα(0} by

Xa(t) = Σ MB& α', α", ί) 7α^Zα», 0 < t £ 1 . (6.48)
cc',a"

We plan to prove:

The Ultimate Lemma.

| | X ( ί ) | | ^ c t t ( ί ) | | Γ | | | | Z | | (6.49)

with

]cu(f)dt£m(t) (6.50)
o

and

m(t) > 0 , (6.51)

where cu(t) and m(t) have no dependence on Y or Z.

It is not difficult to see that a complete proof of Theorem 2 now follows from the
Ultimate Lemma and the contraction mapping argument of Sect. 4. The right side
of (6.49) can be understood as bounding all terms in (4.7)-(4.10), with

. (6.52)
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6.6. Theorem C. In Eq. (1.18) written for the J^-solution one lets φ = ua. One thus
gets Eq. (1.19) for cα(ί), the formal expansion coefficient of v'(t). One writes
equations analogous to (4.7)-(4.10), but obtained by substituting instead of (1.20),
(4.5) the following:

υ(t) = υr(t)+ Σ Φ*' + cAt))ua (6.53)

(bΛ as in (4.4)) r = Min(0, r(α)). By the same estimates we are pursuing, one gets cjt)
actually in ^ (or Sτ). Thus if the formal expansion for v\ (0.5), converges to vr in
L\OCi we would actually have the unique ^-solution. The formal expansion con-
verges (in Lfoc) to something, v'(t), and the condition (1.22) ensures

υ'{t) = v'(t) . (6.54)

One should note that if v = υ(c) for c in #, then

lim \ \ υd3x = 0. (6.55)
R-+oo & B(R)

6.7. A Model Computation. In this subsection we analyze the contribution of
Proto-Case 1, (5.39)-(5.42), to the right side of (6.49). More particularly we bound
\X(t)\x,R for R ^ 1, and thus verify these proto-case terms' contribution to X(i)
satisfy the S portion, see (1.13), of the || X(t) || bound in the Ultimate Lemma. (If one
splits Y and Z into a finite number of pieces, and verifies each piece satisfies the
Ultimate Lemma, for both S and L, one has verified the Ultimate Lemma.) This is
the central ultra-violet aspect of the problem. Before we continue we would like to
emphasize two points. First, it was consideration of this model estimate that
initially convinced us to try to prove the theorems of this paper, that they should
hold. Experience with quantum field theory led to our belief in the pivotal nature of
this estimate. Secondly, it is not difficult in retrospect to see from the proof of the
full theorem why the model computation is so reliable. We continue with our
model computation, recalling the proto-estimate for the proto-terms (from (5.42):

/ 1 \5/2 i
m~\τ) e~τ^ ( 6 5 6 )

We pick r 0 as in (6.16). Using the definition of M β ( l , 2, 3, ί) from (6.47) and a simple
application of the sums to sups procedure (see discussion surrounding (3.27)), what
one must show is that (for some small s)

Sup ^
r ^ r o \ ύ r / aelr\a',a"

Sc2

u(t)\\Y\\2\\Z\\2 (6.57)

(and of course it is understood that (6.50) and (6.51) hold). Here as Ir abbreviates
α̂ e /(x, R), r(oί) = r. In (6.57) we are only keeping terms satisfying (5.39)—(5.41), and
MB = m is given by (6.56) for these. Equation (6.57) is now

R , y, ,Σ[ Σ » W ) | Σ » y - Z r ) . (6-58)
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We denote the first expression in parenthesis by A(oc) and the second by B(oc).
Equation (6.58) becomes

1 \ 1 + ε (ί V

j) (f)ΣΛ(")B(*) (6-59)

In estimating A(<x) we view Y and Z in terms of the | \XiR norm and deduce

^r) oc'el

(l y / 2 <
^c(-) e-T>\Y\XtR\Z\XtR

( 1 V / 2 ι

ύc[τ) e - 7 ? Λ 1 + β | | Γ | | \\Z\\ . (6.60)

In estimating B(oc) we view Y and Z in terms of the | \γ,2-
r norm (y = y(α)),

Λ 1 + Ί I 3 Ί I IIZII (6.61)

Putting (6.60) and (6.61) into (6.59) we get

e~2t/^ (6.62)

or

C 2 -2 II YII IIZII ί Γ " ' * . (6.63)

Pick 5 = ε/2

g c || Γ|| || Z || -2 (^ro ^r)
ε/4e~tf^ (6.64)

^c || 71| ||Z||C^78 (6.65)

In going from (6.64) to (6.65) one has maximized (6.64) over values of £r (by setting
a derivative equal zero). We have proved for this model calculation, the Ultimate
Lemma, (6.49), with

cu(t) = -jϊ-jz . (6.66)

Note how delicate, or marginal, even this model computation is. One needs ε > 0
to make things work. The different treatment of A(a) and B(oc) is a slightly clever
idea.

6.8. Other Proto-Case Estimates.
A) Proto-case 1 contributions to \\ X(t) \\L. See (6.37) for introduction of || | | s and
|| | |L norms. Let α 0 label coefficient with r(α0) = r0 < 0. We want a bound on the
α0 component of X(t\ Xao. We proceed as follows, with sums all understood
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respecting (5.39)-(5.41),

245

(6.67)

(6.68)

(6.69)

See (1.10) and (1.11) for definition of || | | 0 . Thus we get (using Theorem 1), parts a)
and b))

\Y I < ^/(I Λa0\ = Ct r
y I

So

Thus

1

= ^ /1 - 3ε/2

(6.70)

(6.71)

(6.72)

consistent with the same cu(ί) as in (6.66).

B) Proto-case 2 contributions to || X(t) \\L. Proceeding similarly as in A),

(6-73)

(6.74)

(There is an analogous protocase with the roles of Y and Z interchanged.)

ίc4=l Σ c-^(^/2

ϋ ro r' ^ r0

 ϋ r'

\\y\\ I I Z I I ,

(6.75)

(6.76)

which as in A) yields the same cu(t\ of (6.66). Note that one needs the ε in (1.14) to
ensure convergence of the sum over r' in (6.75).

C) Proto-case 2 contributions to | |X( ί) | | s . We have in similar steps, towards
computing \X{t)\XtR, R ~ 2" r o :

< rl p-tiel \ 7 /D(r') π γ π

where

W) =
1 +ε

r ' > 0

.3/2-8/2 r ' < 0

(6.77)

(6.78)
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Thus

l^lglβ-'/'r'lZJ-^liyil, (6.79)
v r v r

where in going from (6.77) to (6.79) we have performed the sum over r' (rf ^ r). Note
again the necessity of both ε's in (6.78). From (6.79), using a sums to sups argument,
we get

1+ε 1+ε

) \X(t)\x,R ^ Sup c(^Jl2(^j 2 ιzUnpp^e-^11 Y\\ . (6.80)

This leads to the same estimate as in (6.63).

6.9. Completion of the Proof. We may distinguish three cases for the sum in (6.48)

Case 1.

r(α) g r(α') ̂  r{a") . (6.81)

Case 2.

r(α) ^ r(α") ̂  r(α') . (6.82)

Case 3.

Φ") ^ Φ) ̂  φ') . (6.83)

There are actually six cases, involving interchange of the conditions on α' and α" in
cases 1,2, 3; but it is easy to see that the estimates for the other three cases are either
the same, or more favorable, than for the cases we are considering.

All essential ideas for a proof of the Ultimate Lemma appear in our model
computations of the previous two subsections. We consider the contribution of
Case 1 of (6.81) to || X | | | . We consider parallel to (6.58) (with M = MB)

( 6 8 4 )

where the arguments of M are omitted and (αr, α") and (αr, α") satisfy (6.81) (as
hidden restrictions in the sums). As in Subsect. 6.7 we let A and B denote the two
expressions in parentheses in (6.84).

We first study A. We consider a lattice of edge size R/2, vertices labelled by /,
and denote Y\ Zι as Y and Z restricted to I(UR) (only components in this
/ retained).

A(z)£cΣ Σ MYΪZ^. (6.85)
V, i" α',α"

Again agruments in M are suppressed, as are restrictions, (6.81), on sums. For fixed
i\ i" we will estimate contributions to (6.85) in terms of the | \VtR or | | t »jΛ norms of
Y and Z respectively. We find a decomposition of M

M(α, α', α") ^ S(α, α', a") L(α, α', α") (6.86)
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such that

£ Sup L(α,α',α")^c. (6.87)
i',i" a'eI(ϊ,R)

<x"el(i",R)
oteIr(x,R)

For definition of Ir, see after (6.57).
Then we have

X Λ(a) £ cR1+ε || 7 || || Z || Sup Sup £ £ S(α, α ', α") + Sym. (6.88)
ael i',i" a' a" a.

We understand in the sums and sups: α G Jr(x, #), α' e /(/', #), α" G I(i", R). We have
used (6.19) and the + Sym indicates a term with the roles of α' and α" interchanged
(from (6.19)).

We seek a similar decomposition to (6.86) for M in B(a),

M^SL . (6.89)

In this case we work with a lattice of edge size 4/2, and measure norms of Y\ Zι in
terms of | \iJr,

X Sup L(α, α', α") ^ c . (6.90)
ί'.i" a'eI(ϊ,Sr)

a"€l{i"Jr)

In this expression α is fixed, in /r(x, i^).

J5(α) ^ c^1 + ε || 71| || Z || Sup Sup ^ S(α, α', α;/) + Sym. (6.91)
i',i" a.' α"

Again we understand in (6.91), α 61(x,_R% a' e I(i\ ίr\ a" e I(i", fr).
With reasonable choice of S and S we get the same estimate (6.65) as in the

model situation. One has used the simple inequality: with

{ (6.92)

one has

^ (6.93)

The expression for/(ί) arises in using (5.15). (N must be sufficiently large for our
estimate to hold.) As messy as (6.88) and (6.91) may seem, as one pursues the factors
necessary to yield (6.65), it is almost impossible to see how the deviations from the
proto-cases could change the form of the estimate - and they don't. The other cases
are essentially similar.
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