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Abstract. The problem of characterizing a specific model within the frame of local
quantum physics is addressed.

1. Introduction

A round birthday provides an occasion to take stock, to look back at questions which
puzzled us years ago and to the answers arrived at, but more importantly, to recognize
unsatisfactory features and problems ahead. We are concerned here with the synthesis
of quantum theory with the principle of locality on the level of special relativity, in
short with Local Quantum Physics, an area to which Huzihiro Araki contributed so
much. Let us briefly sketch the ingredients.

1) We accept space-time as described in special relativity. It is the 4-dimensional
Minkowski space yM equipped with its a priori given causal and metric structure.
Its symmetry group is the Poincare group 3P generated by translations and Lorentz
transformations.

2) From quantum theory we take the notions of "observables" and "states." The
former may be materialized by measuring equipment, the latter define probabilities for
the outcome of measurements. Observables are mathematically represented by self-
adjoint elements of a non-commutative algebra, states by normalized positive linear
forms on this algebra.

3) The principle of locality demands that we order the observables according to
the regions in space-time to which they refer. We use the symbol Θ' to denote a
contractible open subset of ,M with compact closure (a finitely extended region). The
subalgebra generated by all observables in d? is denoted by 2l(^). Einstein causality
demands that the algebras 2 l(^) and 2t((^) commute whenever (9γ is space-like to @2

Poincare symmetry demands that there is a realization of ζp by automorphisms of the
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"net of algebras" {2l(^)}. Thus to every element g e £P we have an automorphism
ag with

It suffices to consider bounded observables and correspondingly the algebras are
assumed to be C* -algebras. One has the obvious inclusion relations of the algebras
corresponding to the inclusion of regions. This allows the definitions of the "algebra
of all local observables" as the union of all %{0) and the "algebra of all quasilocal
observables," denoted by 21 as the completion in the norm topology of the former. We
should keep in mind, however, that the physical information rests in the subdivision
of 21 into the distinguished family of subalgebras 2l(^), i.e. in the "net," not in the
total algebra 21 which is only a construct for convenience of language.

The next step is to realize that the algebras 2l(£f) should be considered as
abstract algebras, defined by their internal algebraic relations, and not as operator
algebras acting on a Hubert space. This implies that we may expect the existence of
inequivalent representations of the net by a net of operator algebras and this feature is
used to explain superselection rules. Each equivalence class of representations has its
own family of states, its "folium of states." These are the states which can be described
by state vectors or density matrices in the Hubert space on which the representation
acts. For inequivalent primary representations these folia are disjoint. Each folium
corresponds to one superselection sector.

4) Stability (Principle of positive energy). Poincare symmetry allows us to control
the transfer of energy, momentum, angular momentum etc. induced by the action of
algebraic elements on states. Energy itself, as a global quantity, is not associated to the
local algebras. We have to think of energy density. Stability means, roughly speaking,
that the energy content of a finite region has a lower bound. There are two types of
representation classes with which we are dealing. In the first type, the total energy
and momentum can be defined. For this type there is a canonical determination of the
zero-point of energy momentum so that energies can be compared also for states in
different superselection sectors of this type. The set of representation classes of this
type will be denoted by RepEP because they involve the states used in elementary
particle physics. For these representations the stability requirement is sharpened by
demanding that the joint spectrum of energy and momentum is confined to the forward
cone (positive energy, real mass). Usually one assumes also that there is a unique
(normalized) state of zero energy, the vacuum. The other type, denoted by RepH,
describes states with nonvanishing energy density extending up to infinity. These
may be called hydrodynamic states and among these the thermodynamic equilibrium
states are of special interest. The total energy and energy fluctuation in these states is
infinite.

Of course, Local Quantum Physics has grown out from Quantum Field Theory.
So we should compare the parallels and differences of input and philosophy. In
Quantum Field Theory we start with field quantities labelled by points in space-time.
Among them are observable fields and others which are in principle unobservable.
This arises because in its origin Quantum Field Theory relied strongly on a field-
particle duality: to every species of elementary particle one associates a field and
for every basic field one assumes a corresponding particle type. There are particles
obeying Fermi statistics with charge quantum numbers of different kind. Observables
do not connect states with different charge and they commute at space-line distances
due to Einstein causality. Therefore in the picture of field-particle duality unobservable
fields serve to describe the charge structure. The commutation relations of the fields
mirror the statistics of the associated particles. The physical interpretation hinges then
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on an "asymptotic condition" relating the creation operators of particles in incoming
or outgoing configurations to limits of field operators at large negative or positive
times. In Local Quantum Physics the physical interpretation is entirely delegated to
the space-time geometric placement of observables and it is claimed that once the
correspondence

(2)

is given (satisfying the above mentioned conditions) the theory is completely defined
and all information about particles etc. can be extracted. To verify this claim one
has the task of describing how the information about particle types, collision cross
sections, charges, exchange symmetry (statistics) is encoded in the net of observable
algebras. This has been achieved in a lengthy endeavour by a relatively small group
of authors and resulted in a deeper understanding of the structure of the theory. All
this concerns the states in RepEP. The discussion of the other states in RepH leads
to a natural description of equilibrium states in the thermodynamic limit, simpler
than that for a system enclosed in a box, invoking the notions of dynamical stability
and passivity and exhibiting a remarkable connection to the mathematical theory of
modular automorphisms of algebras.

Here is not the place to describe this work. I have done this in [1],

2. Shortcomings and their Possible Mending

Looking at the frame described thus far and at its elaborations we can satisfied to have
a consistent scheme based on a few clear principles and leading to a remarkably rich
structure of consequences in agreement with experience. There are, however, several
unsatisfactory points.

1) While we can claim that a specific theory including its physical interpretation is
characterized as soon as we have given the correspondence (2) such that it meets the
listed requirements, we have no method of constructing this correspondence without
starting from a specific field theoretical model and there has been no attempt to
classify the theories within the general frame.

2) The notion of observables which refer to specific regions of space-time is
unproblematic if we think of regions with a radius large than 10~8 cm. It becomes
a highly questionable idealization for regions of radius below 10~13cm. Yet the
qualitative agreement of high energy experiments with models in Quantum Field
Theory indicates that the principle of relativistic locality remains valid down to
distances of order 10~16cm and presumably even below that. This suggests that the
notion of "local observable" should better be replaced by that of "localized event."

3) All superselection rules which appear to play a role in physics refer to the
whole net while for an individual local algebra %(&) there seems to be only one
physically allowed representation class, irrespective of whether we consider states in
RepEP or in RepH. If we regard 2t(^) as an abstract algebra this feature needs an
explanation. This is related to the somewhat unsatisfactory formulation of the stability
principle, most clearly seen if we want to go over to quantum field theory in curved
space-time when we do not have the Poincare automorphisms. What is needed is a
restriction on the class of physically allowed states. Not all positive linear forms of
the algebra are physically realizable as states.

4) The reason why observables should be elements of a non-commutative algebra
remains (almost) as dark as in the early days of quantum mechanics.
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All these critical remarks point in one direction: We must focus more attention on
the state space. Its structure is presumably more basic than the algebras considered
above.

State space is naturally embedded in a so-called "base norm space." This is a real
linear space V with a distinguished convex cone V+ and a norm which coincides on
V+ with the value taken by a distinguished positive linear form e on V. So much
follows directly from the aspect of states as summarizing probability predictions for
future events. In particular the real linearity in V comes from the possibility of
forming convex combination of states (the mixing process). The specific quantum
theoretical restrictions concern the structure of "faces" of the cone V+. A face F is
a convex subcone of V+ with the property that if φ G F and φ = Xxφ{ -\- X2φ2 with
Al5A2 > 0 then also φγ and φ2 G F. A face is part of the boundary of V+; a 1-
dimensional face is a pure state. In Quantum Mechanics V consists of the self adjoint
trace-class operators on Hubert space; a face corresponds to the set of self-adjoint
trace class operators on a subspace. The dual space F * of V (the set of real linear
forms on V) is the set of observables. If we start from the states rather than from the
observables we should consider an observable A as a linear form on state space (on
V) rather than vice versa and write the expectation value of A is a state ω as A(ω)
instead of ω(A). The linear structure of the set of observables and the distinction of
a convex cone V*(+) (positive observables) is then naturally inherited from V. The
product (or rather Jordan product) between observables has no such evident origin.
A product appears naturally if we consider operations on states, i.e. mappings of V
onto (or into) V conserving the structure but we shall not pursue the relation of this
to the algebraic structure of the set of observables here. There is only one feature of
the quantum theoretic formalism used in the subsequent discussion: to a face F in
V+ there corresponds a unique element in V*^+\ its "subunit" EF. It is a positive
observable with unit norm having its maximal value on the face F and assuming its
minimal value 0 on a complementary face F'. In Quantum Mechanics it corresponds
to the projection operator on the subspace characterizing the face. We shall call F or
eF a "potential event."

What about locality? Obviously any state may be restricted to the observables
or events within a region &:. Thus, for every Θ\ we have a set of "partial states"
S^(&) which generate again a base norm space V{0"). An element of ,9^(0?) is an
equivalence class of states on larger regions, the equivalence relation being

ωx ~ω? if a;, L = ω? 9J . (3)
1 ^ Z i I &y ) L 4Xy. )

This may be continued to define equivalence classes with respect to a single point in
Minkowski space: ω{~ω2 if there exists some open neighbourhood of x on which
ωx and ω2 coincide.

The collection of sets 5^{0) is a presheaf with the canonical restriction map
leading from S?{0X) to Sf(02} whenever &x D (92. It is the dual structure to the net
of algebras. The equivalence classes at points are the germs, from which we may
construct a sheaf whose continuous sections over @ are the states in 5ί?{0').

The principle of locality tells us that the characterization of theory lies in the
description of the germs.

In this we should distinguish two levels which will be exemplified in the next
section. The first level which might be called the kinematical level refers to the
quantities relevant for the coordination of a germ. The other level gives the restrictions
imposed by dynamical laws.
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3. Models

We note, not without some surprise, that all successful models in Field Theory follow
a common pattern and that on the kinematical level there is no distinction between
classical and quantum interpretation.

There is a fiber bundle B whose base space is the 4-dimensional space-time X.
Over each point in X one has a finite dimensional fiber, the field space. There is
no unique, distinguished coordinatization of the fiber but a family of equivalent ones
which are related by the structure group (3. The fact that also on base space there
is no distinguished coordinatization will not concern us here. There is no intrinsic
way to compare points on fibers over different points of X (apart from that of the
invariants under 0) but there is a "connection" transporting points from one fiber to
equivalent points on an infinitesimally close fiber. Functions from X to 0 are called
gauge transformations. They change the coordinatization on the fibers and at the same
time the coordinatization of the connection. The intrinsic objects consist of a section
in the bundle together with a connection. To fix the ideas let us think of the simplest
example, the Maxwell-Dirac theory. The fiber is the complex 4-dimensional space of a
Dirac spinor ψa. From the 8 real variables one can construct 7 gauge invarints leaving
an overall phase factor without intrinsic meaning. The structure group is accordingly
U(l). The connection in this bundle is given by the electromagnetic potential Aμ

which, by itself, is also unobservable. Among the gauge invariant quantities there
are pointlike objects like fφa{x)φβ{x) and the electromagnetic fields F {x) but also

y ,

line-like objects like ψ(x)expi J Aμ{x')dxμ ψ(y), relevant in the Aharonov-Bohm
effect. x

An observable is a gauge invariant map from the set of section-connection pairs
to the real numbers.

If we interpret the model as a classical theory we deal with a single section-
connection pair as the description of a state (in the Heisenberg sense "sub specie
aeternitatis"). The dynamical law restricts the admitted section-connection pairs by
hyperbolic differential equations. If we interpret the model as a quantum theory then
a state is a probability measure for the observables considered as random variables.
It may be thought of as a measure over the section-connection pairs (modulo gauge
transformations in a coordinatization). There are restrictive laws for the admitted
measures. In Feynman's path integral formulation one tries to construct the admitted
measures from a single scalar local density, the Lagrangian.

Again we may ask about the role of the unobservable quantities in the scheme. If,
instead of the bundle described above, we want to use a fiber containing only gauge
invariant quantities associated to the base point we need an infinite dimensional fiber
involving covariant derivatives of arbitrarily high order. The classical dynamical laws
are no longer recognized as a finite, closed system of differential equations. In other
words we have to go over from a bundle to a sheaf; the restrictions imposed by the
laws concern the germ.

4. Towards the Specification of a Model within Local Quantum Physics

According to Sect. 2 we must describe the germs of the presheaf {^(S)}. For this
we may be helped by the observation that finite parts of "phase space" (obtained
by restricting both the energy and the spatial extension) should roughly correspond
to finite dimensional parts of state space. This requirement on the theory has been
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recognized as essential for several desirable features such as the completeness of the
particle picture and good thermodynamic properties. Various formulations, differing
in strength and precision have been given [2,3]. In the present context we use a
version which has unfortunately not been published [4]. Denoting the subset of states
in RepEP with energy below E by yE and their real linear span (base norm space)
by VE we consider their restrictions to observables or events in the space-time region
(9 and denote them by 5^(0), VE{0'), respectively. Now, if we want to describe an
element of S^E{0) up to an accuracy ε in the norm topology we need (by assumption)
a finite number N(ε) of coordinates, furnished by linearly independent elements of
the dual space VE(0)*. In other words, if ω and ωf are in .9^(0) and

ω\Ak) = ω(Ak)(k = 1,... ,N(ε)), Ak e VE(@f

then
| |α/ -Gc;|| < ε .

Let (9r be the double cone with the origin as its center and base radius r. We need to
know how the essential dimension N(ε) of 3^(0^ depends on ε as r tends to zero
and E stays fixed.

We may note here that although we have defined 5^E in terms of the states of
RepEP the sets ¥^{0) are common to all physical states due to Remark 3) in Sect.
2. In fact, the bound E for the total energy gives a bound E4 for the energy density
since by the uncertainty principle we cannot pack this energy into a region of radius
below E~x.

We conjecture now that in the limit (rE) —> 0 the dimension function N(ε) must
show a very marked behaviour, namely that there is a discrete sequence of positive
exponents 0 < λ1 < λ2 . . . and integers dx < d2 . . . such that

ε > (Er)λk implies N(ε) < dk .

Then we can introduce a basis in V{0r)* [in the setting of Sect. 1 this is the
self-adjoint part of the algebra 2l(<^.)], ordered according to relevance for the
coordinatization of states of bounded energy in the short distance limit. And we can
try to make contact with models such as described in the previous section, looking
for a relation of the most relevant coordinates to the coordinates of the fiber and the
connection. Here we note that so far we used only that V(0r)* is a real linear space. If
it inherits an algebraic structure from the facial structure of the convex cones V+{&r)
(for instance if there is an embedding in an algebra with complex coefficients) we get
relations reminiscent of Wilson's operator product expansion.

Much work has to be done before the value of these suggestions can be assessed.
But we can see at least a way how theories within the frame of Local Quantum
Physics may be classified.
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