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Abstract. Using fusion rules of sectors as a working hypothesis, we construct
endomorphisms of the Cuntz algebra ¢, whose images have finite Watatani
indices. Quasi-free KMS states on (), appear in a natural way associated with the
endomorphisms, and we determine the Murray-von Neumann—Connes types of
their GNS representations.

1. Introduction

Index theory of operator algebras was initiated by V. Jones for II, factors, and
extended by H. Kosaki for general factors [J, K]. It has many relations to other
fields of mathematics and mathematical physics, and especially the relation to the
theory of superselection sectors is striking [DHR, FRS, L1, L2]. In analogy with
the case of quantum field theory, the notion of sectors of infinite factors was
introduced by R. Longo [L2], and it turned out to be intrinsically significant in
index theory [I1,12, CK].

An attempt to extend index theory to C*-algebras was done by Y. Watatani
[W1. He defined indices of conditional expectations in terms of quasi-basis, which
is a generalization of the Pimsner—-Popa basis [PP], and proved many analogous
facts to the case of factors, such as the restriction of values of indices. Among other
things, one of the most successful results of his theory is the existence of a close
relation between K-theory and values of indices, in the case that an expectation
preserves a trace. But for infinite C*-algebras such as the Cuntz algebras and the
Cuntz-Krieger algebras, his theory gives little information. Up to now, known
non-trivial examples of subalgebras with finite indices are separated into two
groups. One consists of those with integer indices, which can be easily obtained by
means of group actions. The other consists of those of AF algebras, which come
from commuting squares.

One of the aims of this paper is to construct subalgebras of the Cuntz algebra
0, with finite indices, by using fusion rules of sectors [I1]. Many of our examples
have non-integer indices, for example we shall construct a subalgebra of @, with
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index 400822 (Example 3.1) and that of @, with index 40032{% (Subsect. 6.2).

Associated with our construction, quasi-free KMS states of @), appear, and using
their GNS representations we shall construct pairs of type III; (< A < 1) factors.

The contents of this paper are as follows. In Sect. 2, we collect basic facts on the
Cuntz algebras and Watatani index. Proposition 2.5 becomes a basic tool for our
construction. In Sect. 3, we shall construct examples of endomorphisms of
0, whose images have finite indices. First we assume the existence of certain kinds
of fusion rules of sectors, and from them we deduce the information of endomor-
phisms of O,. In Sect. 4, we shall investigate Murray—von Neumann—Connes types
of quasi-free states of @, and construct “good” representations for our examples.
In Sect. 5, we shall argue the relation between our examples and A. Ocneanu
theory. Our examples contain AF parts where our endomorphisms come from
Ocneanu’s connections. In Sect. 6, we shall compute principal graphs in a few
examples.

Basic facts on index theory can be found in [GHJ, K], and we shall freely use
the contents of them.

The author would like to thank D. Evans and R. Longo for discussions.

2. Preliminaries

In this section, we shall collect basics of the Cuntz algebras and Watatani index to
fix the notations.

2.1. The Cuntz Algebras. Let ¢, be the Cuntz algebra generated by
n (n=2,3,...<o0) isometries S¢,S,,...,S, [Cl]. For a given k-tuple
o= (j1,2s--5J) ji€{1,2,...,n}, we denote by I(«) = k the length of o and
f (@) = ji the last element of «. We define the isometry S, by S, = §; §;, . . . §j,. Let
A',e Aut(0,), teR be the usual gauge action on 0, defined by 1',(S;) = eV ~!'S;
(j=1,2,...,n). Then the fixed point algebra of ), under A' is isomorphic to the

UHF algebra of type n®. We denote it by # " and define a conditional expectation
F:0,— %" by

1 2n
F(x)==— [ A'(x)dt x€0,.
2n

We recall Evans’ work on KMS states on @, [E]. Let w = (0;, w,, . . ., »,) be
a n-tuple of positive numbers and f the positive number determined by
Yi-1e ~Fo; = 1. We define an R action A° and a state ¢ by A2(S5) = e\/j_‘“’f‘S,-
teR(j=1,2,...,n), p%x) = y¥*- F(x), where ¢ is the product state on & " with
the uniform density

e—ﬁwl 0 0
0 e P
O O e e—ﬁwn

Then the relation between A” and ¢ is as follows.
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Proposition 2.1 ([E, Proposition 2.2.]). ¢ is the unique KMS state for 1° and the
corresponding inverse temperature is f3.

In Sect. 5 we shall investigate the fixed point algebra ¢,*" of @, under 1° in
some special cases. For this purpose the following weighted length of k-tuple
o= (ji,j2,--.,Jjx)is useful:

[°(a) =

1

M=

Cl)j‘ .

1

Let H be the linear span of {S;,S,,...,S,}, that is a Hilbert space with the
inner product (S, T)1 = T*S, S, Te H. We denote by (H*, H'), s, te Z .. the linear
span of H' H** and define the following as in [DR]:

k= ) (HLH™),

nk+rz0
0, = linear span of | ) °0k.
keZ
00, is the =-algebra generated by {S;,S,,...,S,} and hence norm dense. We

define the permutation operator (r, 1) by

0=Y 8:5;8*S}, 0(r,1)=05(0)a*©0)...0""(0),
iJj

where ¢ is the canonical endomorphism of @, defined by a(x) = Y, S;xS¥, x€0,,.
Then we have the following.

Proposition 2.2 ([DR, Sect. 2]).

(1) 8(r, 1)*S; = 07(S,).
() 0(r, )R = o(R)6(s, 1), Re(H®, H").
(3) If Re O, satisfies AL(R) = ex/ = MR, ¢(R) = lim, , O(r + k, 1)RO(r, 1)*.

2.2. Watatani Index. Extension of Jones index to C*-algebras was argued by Y.
Watatani in terms of quasi-basis [W]. In this paper we adopt his definition of
index.

Definition 2.3. Let A o B be a pair of C*-algebras and E: A — B a conditional
expectation. A finite family {(uy, v1), Uz, 02), . . ., (Uy, V) } is called quasi-basis if the
following equations hold:

x =Y w;E(v;x) =Y E(xu;)v;, X€A.

We say that a conditional expectation E: A — B is of index-finite type if there exists
a quasi-basis for E. In this case we define the index of E by
IndexE =Y uv; .

Remark 2.4. Index E belongs to the centre of 4 and does not depend on the choice
of quasi-basis.
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For two endomorphisms p,, p, of a C* or W*-algebra A, we denote by (py, p2)
the set of intertwiners between p; and p,, ie.

(p1>p2) = {R€A; Rp1(x) = p(X)R, xe A} .

The following proposition is a key to our construction in Sect. 3. Our idea is taken
from Longo’s work [L2].

Proposition 2.5. Let A, B be C*-algebras and p: B— A, p: A — B (not necessarily
onto) unital isomorphisms. We assume that there exist isometries Ve(idy, pp) c A4,

1
We(idg, pp) = B satisfying V¥p(W)=~, W*p(V) = d > 0. Let E,: A— p(B),
E;:B — p(A) the positive maps defined by

E,(x)=p(W*p(x)W) xeA, E;y)=pV*p(y)V) yeB.
Then,

(1) E, and E; are conditional expectations.
(2 {(d-V*d-V)} and {(d-W*,d-W)} are quasi-basis for E, and E; with
indices d?.

Proof By direct computatlon
“self-conjugate” case, i.e. assummg A=B,p=pand V¥p(V)= ceC\{ }s
we have the following by using Vx = p2(x) V:

cV=pV*p(VNWV=pV*)VV=2CV.
So we obtain ceR\ {0} and we can take W such that W = + V. According to R.
1
Longo [L2], we call p a real sector if W=V, ie. V*¥p(V)=- and a pseudo-real

1
sector if W= — Vie V¥p(V)= — 7 Every example we shall construct in Sect.

3 is a real sector.
Before closing this section, we shall prove the following technical lemma, which
is helpful for checking the assumption of Proposition 2.5 in concrete examples.

Lemma 2.6. Let v be a unital endomorphism of 0,. We fix ie{1,2,...,n} and put
Ti=SHv(S;)Suje{l,2,. .., n}. If {T;}1 < < n satisfy the Cuntz algebra relatzons ie.
TFTG= 60, 3, LTS = 1 then S"‘v(x)S,c =0, k=i, xe®, holds. In consequence,
V(x) = S*v(x)S is an endomorphzsm, and S;e(¥, v).

Proof. By assumption we obtain

S TTF =Y SHvS)SSFvSHS: =1, T T =SFv(SHS:SFv(S)Si=1.
J J

On the other hand, in general we have the following.

Y SFv(S;)SiSEVISH)S: =1, Y SFV(SF)SkSEv(S;)Si=1.
Jik k
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So we get S¥v(S;)S, = S v(S;)S; =0, k # i. By using this and induction of word
length, we obtain the first statement and ¥ End(0,). The second statement holds
as follows:

S.¥(x) = S;SFv(x)S; = Z S;SFv(x)S; = v(x)S; .
QE.D. !

3. Construction of Examples

In this section we shall construct examples of endomorphisms of @, satisfying the
assumption of Proposition 2.5. We start with inclusions of factors and correspond-
ing fusion rules of sectors, which we regard as a working hypothesis. In what
follows, we shall use the notations in [L2, I1] for sector theory.

Example 3.1. Let M = N be a pair of properly infinite factors with finite index and
the principal graph A4,. Then there exists p an endomorphism of M satisfying the
following. (See [I1, Proposition 3.2] [12, Proposition 2.4].)

p(M)=N, [p*]=[d]®[p].

The second equation means that there exist isometries S;, S, which generate ¢,
and satisfy

Six =p*(x)S; xeM, (3.1.1)
S,p(x) = p2(x)S; xeM, (3.1.2)
ie. Sye(id, p?), S,€(p, p?). Note that dim(id, p?) = dim(p, p?) = 1. Since p is
self-conjugate we have STp(S;) = + ;i-, d= ZCOSZS-T due to [L2, Sect. 5]. From
(3.1.1), (3.1.2) we obtain
S3p(S1x) = S3p(p*(x)S1) = p*(x)S3 p(Sy) -
So we have S5 p(S;)e(p, p?) and hence S3 p(S;) = ¢S5, ce C. Therefore we get the
following:

1
p(S1) = (S1ST + S,85)p(S1) = £ 351 +¢S,8; .

Changing the relative phase between S; and S, if necessary, we may assume that

c is non-negative. So we obtain the following by using 7z + 7= 1,
1 1
p(S1) = £ 3S1 + —dSZSZ .

In the same way, we have ST p(S,)e(p?, p), S3p(S,)e(p? p?). Due to (p2 p) =
(p, PB)*, (p% p?) = CS St + CS,S5 and the Cuntz algebra relations of p(S),
p(S,), we obtain

1 1
p(S,) = p(ﬁsl ~ 25252>S;‘ +4S,8,5F, p.qeT.
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Using (3.1.1), (3.1.2) and computing p2(S;), p*(S,), we conclude
1

p(S1)
\[

1 1
p(S,) = (—ﬁs1 - 3s252> S¥ 4+ 5,8, S*. (3.1.4)

—5,S,, (3.1.3)

Now let us forget about the inclusion of factors and consider (3.1.3), (3.1.4) to be
the definition of pe End(0,). Then p satisfies (3.1.1), (3.1.2) for xe (,, and conse-
quently the assumption of Proposition 2.5 holds with V"'=1S,. So we have

Index E, = 4cos2§ for E,(x) = p(ST p(x)S;). Of course p does not commute with
A1 but commutes with 1%, o = (2, 1). Thanks to (3.1.1), (3.1.2), the following holds:

P (S18T) = S1p*72(S,ST)ST + S2p*71(S,8T)S3, k=2. (3.1.5)
We shall use this in Sect. 5.

Example 3.2. We start with a pair of factors whose principal graph is D" [IK,
Sect. 4]. In a similar way as in the case of A,, we obtain the following fusion rules of
sectors:

(p?1=[d]® @ [p] [oJ[p]=[plle]=[p] [«*]=T[id].(32.1)

In the same way as in the proof of [I1, Proposition 3.3], we can lift p, and « such
that

a-p=p, pro=AdU)p, (3:2.2)

where U is a unitary in (p?, p?) with order 2. Equation (3.2.1) shows that there exist
isometries Sy, S,, S3 in the factor which generate (03 and satisfy

Sie(d, p?), S,e(@ p?), Sse(p,p?).
From (3.2.2) we obtain
a((id, p?)) = (@, p?),  al(e, p?)) = (id, p?), a((p, p*)) = (p, p?) .

So we may assume the following by changing the relative phase between S, and
S, if necessary.

«(S1) =8, a(S;) =81, «(S3)=2eS;, e €{l,—1}.
In the same way as in Example 3.1, we may assume the following due to o+ p = p.
S;+ S, + S38;
2 \/5 '

From Ue(p?, p?) = CS; ST + CS,S% + CS38% and U? = 1, we may assume

p(S1) ==+

U= SLS;k + 82SZS§< + 83S3Sgk, 82,836{1, — 1} .
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So we have

S+ &S S.S
P(Sz)=P'OC(SI)=Up(S1)U=<i 11 & 24 3 3>U.

2 NG
By the orthogonality of p(S;) and p(S,), we obtain &, = 1, ¢ = — 1. Using
S10(S3), S3p(S3)e(p? p), S3p(S3)e(p? p?),

o+ p = p, and the Cuntz algebra relations of p(S;), p(S,), p(S3), we obtaing; = — 1
and

S, — 8
p(S3) =11 ——=28% + 1,83(S1S¥ — $,5%) #ny,m,€T.

7
Computing p2(S;), p%(S,), p%(S;) we have the following three solutions:

=S1 + 85, +S3S3

Pa(S1) , (3.2.3)
2 /2
S, +8S, S58
m@ﬁ=<12 %—;g)U, (3.24)
— 51— 85 * *
pa(S3) = a 7 S5 + aS3(S1 ST — 8,53), (3.2.5)
a(S1) =Sz, aSz) =81, a(S3)= —3S3, (3.2.6)

where U = S8;SF + 5,85 — S38% and aeT with a®> = 1. Note that the above
p, makes sense for any aeT as an endomorphism of @5. So we forget about the
inclusion of factors again, and define p,€ End(03), ae T by (3.2.3)—(3.2.5). It is easy
to show (3.2.2). By direct computation using Lemma 2.6, we can show the follow-
ing:

Sie(id, p2), S2€(, p2), Sselpa, p2) - (3.27)

p, satisfies the assumption of Proposition 2.5 with V= S§;, and we obtain
Index E, = 4for E, (x) = p,(ST p.(x)S1). Let o = (2,2, 1). Then p, commutes with
A°. By induction one can show

PE(S18T) = 81 p572(S:1ST)ST + Sy pi " 2(S18T)S + S3pk™1(S:ST)SY, k=2.
(3.2.8)

We can generalize Example 3.2 as follows.
Example 3.3. Let G be a finite abelian group with order N, and G the dual group of

G. We put n=2N — 1 and write {g,0) = d(g), geG, geG. Let us consider
0, whose generators are {Sy, T,}4cG,0eG\(e}- We define p,eEnd(0,) (a€T), an
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action of G, and unitary representations of G in 0, U, U, (6¢€ G\{e}) as follows:

%(Sh) = Sgun #(T3) =<9, T;, (3.3.1)

Ul =) SuSi+ 2 g OLT! <Z[s Y ) (33.2)

heG 166 1eG teG\{e}
Uyg) =<g,0) > SiSk + T_,T*, + Y (g, oOTLTF, (3.3.4)
heG T+ —0
)—< ZSh+——Z <9, r>TT_r>U(g)*, (3.3.5)
g \/-—

Pa(ﬂ) = ﬁ(z <g’ G>Sg) Ta* + aT—q<Z <g) O.>SHS:>

+ Y LTTH,. (33.6)
T+ —0
It is easy to see
Og*Pa= Pas Pa*% = Ad(U(9))pa - (3.3.7)

Direct computation shows
SXpi(S)Se=S., SIp2(T)S.=T,,

Pa(U(9) = Y. SuSitvg + ). LU TS
h T

So we obtain
2 P2(S5)Se = S pa(U(9))p2 (Se) pa(U(9)*)S. = S pi(S.)S,
= 0,(S2 pZ(Sc)Se) = #4(Se) = S,
Thanks to Lemma 2.6 and (3.3.7), we get
S,€(ey, p2) . (3.3.8)

Therefore p, and S, satisfy the assumption of Proposition 2.5, and we have
N times N—1 times

Index E, = N2 for E, (X) = po(S¥ pa(x)S.). Let o = (2,2,...,2, 1,...,1). Then
p. commutes with A®. By induction, one can show the following:

Pa(SeST) =3 S0+ p*72(S.S2)ST + 3 Tpi™ H(S.SHTF, k=2. (339)
g T

Example 3.4. Let us start with the following fusion rules, which appeared in
[11,(3.3.4)],

[pP*1=0d1®[]®2[p), [a-pl=[p-al=1L[p), [«*]=T[id].
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Then, in a similar way as above, we can obtain the following endomorphisms of 04,
a(S1) =82, a(S3)=S;, a(S3)=S8;, a(S4)=—3S,4, (3.4.1)
U=S5,St— 85,85 + 8355 + S45%, (3.4.2)

n _n
Sl +S2 +eiZV "IS§+e+ZV_—1S¢%

Sy) = 343
pels) =1 7 , 343
Sl—Sz eigv—1S4S3+e;ZV~1S3S4
p+(Sy)= + U, (3.44)
a NG
S;+ S S;—S
o= 25y Sy
NG 7
+ €2 [S3(S1 ST + 8287) + Sa(S1 ST — S257)]
+ (,"3|:S3S3S§= + S4S3SI] + C'4[S'~:,;S‘4_S:;\l< + S4S4S§=] , (34.5)

S;+S S-S
pi(s4>=c1[1 tsy = Zs:f}

3
NG 72
— 1¢,[S3(S1 ST + 5257) — S4(8: 8T — 5,53)]

+ £/ — 1c4[S3838F — 8483881+ + / — 1¢3[S3845F — 548,531,
(3.4.6)

where

[
3
a
a

an
e SRR Ity
It is easy to show
apr=ps, prra=AdU)-p. . (3.4.7)
By direct computation we have the following:
po(U)=S,55 + 8,87 + /— 1(S;US — S,USY), (3.4.8)
1p+(S1)Sl—Sla 1P+(Ss)51—53, 1P+(S4)S1—S4
Due to (3.4.8) we obtain
STPpL(82)S1 = STp . (U)pL (S1)p s (U)Sy = S3p% (S1)S2
=a(SFp (51)S))=a(S;) =S5, .
Hence, by Lemma 2.6 and (3.4.7) we get the following:
S.e(id, p%), S,e(mp?). (3.4.9)
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Let T, = Then by direct computation, one can show
f‘:’fpi (x) T, = p . (x). So using «(T,) = T, we obtain the following:
S3,84e(ps,p%). (3.4.10)

If we require only (3.4.7) and (3.4.9), we can construct other endomorphisms j . by
replacing ¢; with ¢;,i = 1,2, 3, 4,

Sn

STV SR 1 TR
- = y, C3=—4=, (4= :
NV A
In a similar way as above, one can show the following:
Sie(id, p1), S,e(@pl), Tie(ps.pi), T-ela-ps,p%), (3411)

where g3 =0-p5 071, and HeAut(0,) is the flip of S; and S,,

9(51) = Sl, H(Sz) =38, 9(S3) =S4, 9(54) = Sa .

p, and p, satisfy the assumption of Proposition 2.5 with S; = ¥V, and we have
IndexE,, =IndexE; =4+ 2\/§, for E, (x)=p.(STp(x)S)), E; (x)=
P+ (STPL(x)S1). Let w=(2,2,1,1). Then p, and p, commute with 1®. By
induction, one can show the following for p=p . ,p.+, k= 2.

P (S1ST) = S1p*72(S1ST)ST + Sy p*72(S,5T)S3
+ S3p* 1S ST)ST + S4p* (S, ST)SE . (3.4.12)
We can generalize Example 3.4 as follows.

Example 3.5. Let G be a finite abelian group with order N. Since any finite abelian
group is isomorphic to its dual group, we fix an identification and a dual pairing
(,2:GxG—>T. We assume (g, h) =<{h,g), g,heG. (Such a pairing always
exists.) Let us consider functions on G,a:G - T, b: G — C, and complex number
ce T satisfying the following equations:

a@) =1, a(g)=a(—g), alg+ h<g,h>=algah), (3.5.1)
a(g)b(— g) = b(g) , (3.5.2)
‘ dN +Y blg)=0, (3.5.3)
1 .
7 Lblg+mblg) = (3.5.4)

N N2 +4N
—‘L\/—;—T_—, which satisfies 4> = Nd + N. We
put n = 2N, and consider the Cuntz algebra ¢, with the generators {S,, T, },.c. We

In the above equations d =
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define peEnd(0,), a G action «, and a unitary representation of G in 0, U as
follows:

#g(Sn) = Sgins 04(Ta) =<g, h) T, (3.5.5)
Ulg) = ; Ch, ) SuSy + ; T,-,TF, (3.5.6)
p(S,) —[ Y ChgySy+— \[ h a(hm_gT_h] Ug)* . (3.5.7)
p(Ty) = Z ks g> Chy k) ST
a(g

h, k, h) T, S, Si
N £ Z <h, g> <k, h)
+ 3, a(hblg + h)<k, 9> Tk T, T (3.5.8)
hk

Thanks to (3.5.3), (3.5.4) p is well-defined. It is easy to see

agep=p, AdU(g)-p=p-ay,. (3.5.9)
By direct computation as in Example 3.4, we can show the following:
p(U(g)) = Y. SuSgsn +alg) Y, <h, g LU TV, (3.5.10)
h h
S,€(og, p?) . (3.5.11)
N(N +2+./N*+4N
So we have Index E, = v+ +2 +4N) for E,(x) = p(S¥p(x)S,). p com-
N ti)\mes N ti\mes
mutes with A%, w = ({2, 2,..., 2: (1, 1,..., l\). As in the previous cases, the follow-

ing holds:
Pr(S.S¥) =Y Sy, pFT2(SSE)VSE + Y, T p* 1 (S.SHT), kz2. (35.12)
g g

For groups with small order such as Z,, Zs, Z,, Z, x Z,, one can explicitly obtain
the solutions of (3.5.1)-(3.5. 4) There are eight solutions in the case of Z,, which
correspond to p,, A2 py, 04, A2+ p, in Example 3.4, up to the change of the
relative phase between {S,} and {T ).

Example 3.6. We start with a pair of infinite factors with the principal graph 4.
Then we have the following fusion rules:

[p3]1=[d®[p]®[a-ps), [o-pr]l=1[ps-0a], 2®=id,

where we use the notations in [I11, Proposition 3.3]. Due to the second equality, we
have a unitary U satisfying Ad(U)-a-p, = p,-a. Using a? = id and irreducibility
of p,, we may assume Ua(U) = 1. So U is a a-cocycle. Since any outer action of
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a finite group on a factor is stable [Co], there exists a unitary U, satisfying
Ua(Uy)=U. Hence we have o-Ad(Uy) p,=Ad(Uy)-p,-a. Let
p = Ad(Uy)- p,. Then we get the following:

[p?*]1=[d]®[p]® [x-p], (3.6.1)
=id, a-p=p-a. (3.6.2)
Using the above relations, we can obtain the following endomorphisms of O5:

Sy S2S2 + 5353

S, = ) 3.6.3
pals) =G+ (3:63)
1 928, S3S3 + 838, + 5,83
p+(S2)=S,8;ST + ( > — S¥ (3.6.4)
2 SRR ARNC7 RN V2

+ 558 S S S.S
P¢(33)=$S3SIST+——32_2S3 < 1 202 S3S3

7 N \[ >s3, (3.6.5)

. (S1) =381, a:(S2)=%8,, a.(S3)=F3Ss, (3.6.6)

whered =1 + \/E o, and p, satisfy (3.6.2). Using Lemma 2.6 one can check the
following:

Sle(id’ pZ), S2E(p> pZ), S3e(a'p7 pZ) . (367)

So we have Index E, = 3 + 2\/5 for E,(x) = p(STp(x)S;). Let w = (2, 1, 1). Then
p commutes with A°. It is easy to see
P (S187) = S1p% *(S1ST)ST + S20% 1 (S1ST)ST + S0 (5:51)83, kz2.
(3.6.8)

The last example is rather exceptional in this article.

Example 3.7. Let G,and {, ) be as in Example 3.5. We put n = N, and consider the
Cuntz algebra 0, whose generators are {S, },.¢. We define pe End(0,), a G action
o, and a unitary representation of G in 0, U as follows.

0y(Sh) = Syun » (3.7.1)
U(g) = ). <g, h>SuSit (3.7.2)

h

1
P(Sy) = ﬁz g, k>S5 U(g)* . (3.7.3)

h
Then the following hold:

2p=p. AdU(@)p=p-0,. (3.7.4)
S,€(xy, p?) . (3.7.5)

So we have Index E, = n for E,(x) = p(SX p(x)S.). In contrast with the other cases,
p commutes with the usual gauge action A'.
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The first equation of (3.7.4) means that p(0,) is a subalgebra of the fixed point
algebra 05 of ¢, under «. In fact, these two coincide. Indeed, using (3.7.3), (3.7.5), we
have

£, = 6" £ 8,8,15% ) (5. =3 T (0.

So E, is the mean on G, and we get p(0,) = O5. Let H be the n dimensional Hilbert
space generated by {S,},c¢. Then «|y is equivalent to the regular representation of
G. The above fact means that ¢F is isomorphic to @,. So one can consider the same
type of problem for non-commutative finite groups and finite dimensional Kac
algebras [C2]. The answer is the same as in our case, and in [ 15] we shall prove it
in a similar way. C. Pinzari independently obtained the same result in the case of
finite groups [P], and R. Longo in the case of finite dimensional Kac algebras [L5].
For a generalization of this problem to local compact groups, see [CDPR].

4. Representations

In this section we shall construct inclusions of AFD type III, (0 < A < 1) factors by
representing the examples in Sect. 3. To investigate the Murray-von Neumann—
Connes types of the factors, we shall determine the type of the GNS representation
of ¢°.

Let us start with the following lemma, of which R. Longo informed the author
as a folklore among specialists.

Lemma 4.1. Let A be a unital C*-algebra, ¢ a state of A and (n,, H,, Q,) the GNS
triplet of ¢. We assume that Q,, is separating for n,(A)". Then the following hold:

(1) Let B be a unital C*-subalgebra of A and \ the restriction of ¢ to B. Then
(mglp, Hy) is quasi-equivalent to the GNS representation of Y (n,, Hy).

(2) Let p be a unital endomorphism of A which preserves @. Then p can be extended to
a normal endomorphism of m,(A)".

Proof. (1) Let K = m,(B)€,. Then (n,, H,) is unitary equivalent to (7,|s, K), and
(ny|p, K)is quasi-equivalent to (n,5, 7, (B) K). By assumption we have n,(B)' K o
ny(A")K = H,. (2) In a similar way as above, we can see that (n,, H,) is quasi-
equivalent to (m,+p, H,). Hence we obtain the result. Q.E.D.

Remark 4.2. The assumption of Lemma 4.1 is automatically satisfied for KMS
states [BR, Corollary 5.3.9].

The following proposition shows that our examples in Sect. 3 have “nice”
representations.

Proposition 4.3. Let p be an endomorphism of O, which commutes with A®. Then
p can extend to a normal endomorphism of m,.(0,)".

Proof. Since p commutes with A%, we have ¢+ p = ¢ due to the uniqueness of the
KMS state for 2%, Then the statement follows from Lemma 4.1, (2). Q.E.D.

Let p be one of the endomorphisms we constructed in Sect. 3. Then there exists
A® which commutes with p. Let M = 7,4(0,)", N = n,+(p(0,))". Then M > N is an
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inclusion of factors because ¢ is the unique KMS state for ¢® [BR, Theorem
5.3.30]. Due to the above proposition, the expectation E, has normal extension.
Therefore M = N has finite index.

In what follows, we fix = (w;, ®,, . . ., ®,) and consider the GNS representa-
tion (e, Hpe, Q,0) of . We shall omit 7, if no confusion arises. For simplicity,
we denote by the same symbol ¢ the vector state of Q. on ¢,. Since A' and A°
preserve ¢, they can extend to actions on ¢, . We denote by A%, 1 their extensions
too. Let Oy, be the fixed point algebra of @, under the natural action of U (n). Then
the permutation operators we defined in Sect. 2 belong to Oy . Oy is a subal-
gebra of Frn0F.

Lemma 4.4. Let Re 0! with 21(R) = e/~ MR, ke Z. Then,
o(R) = lim 6(r + k, 1)RO(r, 1)* (in strong * topology) ,

r— oo

where o is defined by o(x) =, S;xS{, xe0;.

Proof. Tt suffices to show strong convergence because of A (R*¥)=e~ v~ "‘R*
First we assume k = 0. Since A* is an action of a compact group, we have (0 )

0}y = F". So we can take a net {R;} = #" which converges to R in strong
topology. Let Ae®0,. Then,

1@, DRO(r, 1)* — 6(R))ALqe| = [|6(r, 1)(R — R;)O(r, 1)* ALy |
+ 1AL 100, DR;)O, )* — a(R;) ||
+ [6(R — R;)AQ,0 | .

Due to [S, Proposition 2.14] and 0(r, 1) 0", we obtain the following estimate of
the first term of the right-hand side:

[6(r, (R — R;)O(r, )* AQqe|| = [[(R — R})O(r, 1)* AQqe ||
= o (A*)G(r D)Jge(R = Rj)Qpo|

=1 G‘f%(A*)H (R = Rj)Qpell

where J,- is the modular conjugation with respect to Q,.. So thanks to Proposi-
tion 2.2, Il(9(r 1)RO(r, 1)* — 6(R)) AL, || converges to 0 when r tends to co. Since
{0(r, 1)RO(r, 1)*} is a bounded sequence and °0, Q- is dense in H ., we obtain the
result.

If k> 0 (resp. k < 0), then R = (RS¥%)S% (resp. R = S¥%(ST*R)) and RS}*e
O (resp. (ST¥Re 0*"). Therefore we get the result from Proposition 2.2 and the
above argument. Q.E.D.

The following proposition is a W *-version of [DR, Lemma 3.2] [BE, Theorem
3.2].

Proposition 4.5. 0, N (Oy,) = C1.

Proof. We shall modify the argument in [DR, Lemma 3.2]. Let X € O, N (Oy)'.
By using Fourier decomposition, we may assume 4, (X) = eV~ & X ke Z.Ifk = 0,
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we have the following by Lemma 4.4:
g(X)=s—lim 6(r, ) X6(r, )* = X .

Let 4® be the product state of #" as in Subsect. 2.1. Then (mye|gn, Hyo) is
quasiequivalent to (e, Hy«) due to Lemma 4.1. Since ¢ |z~ is the one-sided shift of

F" we get XeF" nF" = Cl. In the general case, due to the above argument,
we have X *X, XX *eC. So X is a multiple of a unitary. Suppose X + 0 and k > 0.
Then from Lemma 4.4, we have

X '¢(X) = lim 0(r + k, )O(r, 1)* (in strong * topology) .

r— oo

Note that the left-hand side is a unitary. Let A€°0}. Then from Lemma 2.2 we
have the following for large r:

a(A)0(r + k, )6(r, )* = 0(r + k + 1, 1) 46(r, 1)*
=0(r+k+L1OFr+1L *a(4).

Hence we have X ~1a(X)e 0} na(0)). Since ¢ is the unique KMS state for 1%,
0, is a factor [BR, Theorem 5.3.30]. So we obtain the following because ¢ is the
inner endomorphism defined by H = span{S;}.

X 1g(X)= Zci,jSiS;'ka ¢, ;eC.
i,j

We can determine c; ; as follows.

¢ = lim @®(S¥0(r + k, 1)0(r, 1)*S;) = lim ¢®(c"**(57)0"(S;))
= ¢“(c*(SF)S)) = ¢°(S;6*71(SF)) = e~ P (c* 1 (SF)S))
= =e W VRgo(sSE) = e M

where we use Proposition 2.2, ¢ -0 = ¢ and the KMS condition of ¢®. But this
contradicts the unitarity of X "'¢(X). Q.E.D.

Remark 4.6. Actually, the following holds:

w—lim 0(r + k, 1)0(r, 1)* = Y e~ *oig, 5%
r— o ji=1

Indeed, since every weak limit point of {6"(6*(S*)S;)},.n belongs to O N F" =
@;,’ f\((QU(,,))' = Cl1, we have

w — lim S¥O(r + k, 1)0(r, 1)*S; = ®(c*(SF)S;)1 = e~ o5,

r— 00
Now we determine the type of 0.

Theorem 4.7.

(1) If wi/w;¢Q for some i, j, Oy is the AFD type II1, factor.

(2) If wi/w;eQ for all i,j, O, is the AFD type I11; (0 < A < 1) factor, and 1 is
determined by an explicit algebraic equation.
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Proof. Since 0, is nuclear O, is AFD. Due to the KMS condition of ¢®, the
modular automorphism group is given by f = A%, teR. From Proposition 4.5
and (0)pe 2 Of @, (0), is a type 11, factor Then the Connes spectrum I'(a?”)
coincides with the Arveson spectrum Sp(c?”) [S, 16.1]. Thus we obtain (1) and the
first part of (2). To determine A in the rational case, for simplicity we assume the
following:

p1 times P2 tji\mes Pk t/i\mes
g g N r N,
w=(My,... My, My, ... My, ..., Wy,...0),
where {m, m,,. .., m} are relatively prime natural numbers. Then the period of

w . 2 . .
a? 1s —ﬂf where f§ is determined by

k
e =% pe mb=1,

1 =1

DM =

I

So we obtain 4 = e~ # and 4 satisfies ) , p,A™ = 1. Q.E.D.

Remark 4.8. Let p be one of the endomorphisms we constructed in Sect. 3. Then
there naturally appeared the following type of w associated with p:
ptimes q times
A A

g h'g N\
w=(22...,2"11,...,1).

We say that such w is of 2-1 type. In this case one can obtain 4 by the above

Vit +4
= w Note that this coincides with the
square root of Index E,,. In next sectlon we shall prove that 0, > p(0,) is irredu-

formula, and we have A~

cible. So we have A~ = (Index E,,)2 d(p), where d(p) is the statistical dimension
of p [L2]. (We denote by the same p its extension.) By the additivity and
multiplicativity of the statistical dimension [H, KL, L4], one can see that d(p)
satisfies the equation d(p)? = p + qd(p) in model cases because of its fusion rules.
This is the reason of the above coincidence.

5. The Relation to Ocneanu’s Connection

In this section, we shall try giving a conceptional explanation of the fact that only
2-1 type of w appeared in Sect. 3. We shall prove that the endomorhisms in Sect.
3 come from Ocneanu’s connection when restricted to ¢/}, and using this observa-
tion we shall show that the pair 0, > p(0,)" is irreducible. One can find basic facts
on Ocneanu theory in [Ka, O1, 02, O3]. plipes 4 ties
First we investigate the structure of 0}, w=(2,2,...,2, 1,1,...,1),
p # 0,q =+ 0. Let us consider a bipartite graph &, , in Fig. 1 with the distinguished
point *. For the edges between x and y, we use the numbering from p + 1 to
p + q =n. We denote by Path' ¥, , the set of paths in %,, with length 1, and
Path’; %, the set of paths with length k and source *. We define a map
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p+1
p+2

p+q=n

Fig. 1. The graph 4, ,

m: Path' %, , —{0,1,2,...,n} as follows:

mi->x)=mi-y =0, 1<i<p, (5.1)
m(x »i)=m(y—i) =i, 1<i<p, (52)
mx—>y)=my—Lsx)=j, p+1<j<n. (5.3)

For each path & =&, - &, ikePath g0 CePath! @, . we define the follow-
ing isometry in (,:

Sm(@) = Sme)Sm&,) - - - Sm&) » (54)

where So = 1. Let String* %,, be the string algebra of ¥, , generated by strings,
which are pairs of paths with common source =, common ranges and length k, and
String, ¥, , the C*-algebra generated by ( > OStrmg* »q LO1, O2].

Proposition 5.1. In the above notations, O} is isomorphic to Strmg*g . The
isomorphism is given by m: String, 9, ;3(&+, E-) > S, )Sme_ )6(0

Proof. We define finite dimensional C*-subalgebras of 07", A(k) (k = 0), A(i, k)
0=ZiZp, k=?2) as follows:

A1) = CH{S,, S35 1°(s) = 1°(u-) =k — 1},
Al k)= C*{S,, Si 5 1°(us) = 1%(u-) =k f(ue) =f(u-) =i}, i+0,

A(0)=A(1)=Cl, A(k) = \p/ Al k), k=2.

i=0

Then it is easy to see that A(j, k) is simple and A(k) = P7_, A, k) k = 2. First
we show A(k) = A(k + 1). Obviously A(i, k) = A(0, k + 1) holds for i+ 0. Let
S,.S; €A(0, k), which is the matrix unit of 4(0, k). Then we have,

S,.S% = Z S, SSESE + 3 S,.S;StSE

j=p+1

S,.SiSESF €Al k+1), S, S;S¥S* ed0,k+1). (5.5)
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This inclusion means the Bratteli diagram of (A(k)) is the left-hand side of Fig. 2.

. . N ST . o

Since the conditional expectation I 02 A2 dt preserves the algebraic part °0,, 0}
74

is the norm closure of (°0,)**, which coincides with | J;Zo A(k). So |JiZo A(k)
generates (/}". Comparing two Bratteli diagrams in Fig. 2, we can see that the two
inductive systems {A(k)}, and {Stringk %, .}, are isomorphic. By induction using
(5.5) and the definition of m, we can show that m gives the above isomor-
phism. Q.E.D.

Remark 5.2. For o = (wy, ®,,. .., ®,) with w;/w;eQ, one can write down the
Bratteli diagram of 0" in a similar way. But it is difficult to find string algebra
structure except in the case of 2-1 type of w. In the above proposition, we assume
p+0,q+0.If p=0o0rq = 0,ie. in the case of A%, of course the fixed point algebra
& "is isomorphic to the UHF algebra of type n®. Let %, be the depth 2 graph as in
Fig. 3. Then %" is isomorphic to String, %,. As in the previous case, we define
amap m: Path’ ¥, —» {0,1,...,n} by m(i—>x) =0, m(x > i) =i, (1 £i < n). For
each path ¢=¢:&,... ékePath’; %,, we define isometry S, €0, by
Sy = SmySm2) - - - Smy>» Where So = 1. Then m gives the isomorphism as before.

Remark 5.3. Let o be of 2-1 type. As in [C1], we have the following expansion of
a general element X €0,

X=Y SHx_ +x0+ Y xSk xe0F.

k>0 k>0

Note that @ = Ad(S,), is a trace scaling endomorphism of oF ~ String, %,,,-
This means that 0, can be expressed by the “endomorphism crossed product” of
String, %,,, by @, in a similar way as in [C1, Sect. 2]. This is the key observation to
generalize our construction to the Cuntz—Krieger algebras [15].

- 0q
String}%,.,

String!%, ,

String3%

p-q

String?%, ,

Fig. 2. The Bratteli diagrams of {4(k)}, and {String} %, , 1

*=] 2 n

Fig. 3. The graph ¥,
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Next we discuss the relation between our examples and Ocneanu’s connections.
Let ¢, and J# be finite bipartite graphs with distinguished points, and W a connec-
tion on them [O1]. Then one can construct two injective morphisms v, ¥ from W.

v: String, s# — String, ¥, V: String, ¥ — String, # .

In general, even if ¥ = 5 one can not expect v = 7. We call W self-conjugate if
v = ¥ holds under suitable identification of ¥ and .

Lemma 5.4. Let ¥ be a finite bipartite graph with distinguished points % and x. We
assume that there is only one edge between % and x, and * has no other edges. Let v be
a unital endomorphism of String, % satisfying the following three conditions:

(1) v(String’ %) < String} ™' .

(2) Let {ex}rx>1 be the canonical Jones projections [Ka, Sect. 1, 02]. Then
vie) = ey

(3) Let ¢y=x—>x—>=x  Then e, evi(String,¥%) and v*((&4,&-))e; =
(50'f+,fo‘f—)-

Then, v comes from a self-conjugate connection on 9.

Proof. We use the notations in [Ka]. From (1) and (2), v comes from a connection
W [13, Sect. 2, O2]. Thanks to the renormalization rule and the unitarity of
connections, we have the following for any connections and possible paths
e lume

é‘f é— é+ é—

* — —— % * — ——— %
x X = x X = Oz n.0¢ - (5:6)
% — —— % * — —— %

1+ n- n+ -

Using W, we define u; ,€C, for £ = (¢£,,¢_), 0 = (04, 0-) as follows:

¢, ¢

* — —— %

Ug,g =

X —> «— X
[ o_

We also define u; , € C in the same way using the dual connection of W. Then (5.6)
is equivalent to Y. ug oy, = 3., Ut ;Uy , = O¢, ,. From (3), we have Y ug ,u; , =
¢, »- SO we obtain

Z |ué,d - u«%,dlz = Z (“é,am — Ug, ot e — Ug,olUe o + Uz oUe o)
(3

=0¢;— 05— Oge+0:,:=0.

Hence u; , = u; ,. This means that W is self-conjugate. Q.E.D.
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Let p be one of endomorphisms in Sect. 3. As we saw in Sect. 3, there exists 2-1

ptimes q times
A

type of w =(2,2,.. .,2,Vl, 1,..., 1\) satisfying A+ p = p- 4. Since p preserves
0}, we have an endomorphism of String, 9, , which is defined by v(x) =
m™tepem(x). Weput %, o =%, =%,

Proposition 5.5. In the above notations, v comes from a self-conjugate connection on
4

p.q

Proof. First we assume p + 0, ¢ + 0. For Example 3.3, (resp. Example 3.5), we use
the following identification:

{Sl’ SZa e 7.Sp} = {Sg}geG’ {Sp+1’ st Sn} = {];}‘EEG\{e}’ Sl = Se .
(resp. {Sla S2’ vy Sp} = {Sg}geG’ {Sp+17 cees Sn} = {]:;}geGa Sl = Se')
Let {e;} be the canonical Jones projections, which are defined by

Loy JaORe0)
B [El=k—1 u(r (&)

ol =Iw]=1
where we use the notations in [Ka]. We define the following paths with length 2.

00,8 W),

e =

Vi=Ii—oX—>0 Vy=i—>y—>i,

Wi=X—>i—)X, Wf=y_)l-)y>

j j o j
Uj=X——>y——>X, U=y——X—>Y).

/42
4

. Then the Jones projections are written as follows:

2
1
e = Z (& vi, &ovp) + Z Z P(é’wi’§°wi’)
1<igp 1&=2k—1 1£Li'<p 1¢]=2k—1
+ L€ wi, &ouy) + (E-uy & wi)]
ISZI:SP |c|—2k—1d\/- ’ !
p+1=j=sn
+ X ) d(é uj & uyr)
p+1Zjj 2n [{=2k—1
1
er+1 = Z 2 (v, &) + Z Z d_z(g'wi_’é'wi_’)
lgisp [€l=2% 1<ii"<p [&]=2%
+ L(E-wr &-up) + (- up, §-wi)]
15@ lél—zkdf ! !
p+1Zj<n

+ Z > d(é up, & uy)

p+1Zjj sn |&l=2k
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Thanks to (3.1.5), (3.2.8), (3.3.9), (3.4.12), (3.5.12), (3.6.8) and the above expression of
Jones projections, we obtain m(e,) = p*~*(S;ST) by induction. (In the case of
Example 3.3, Example 3.4 and Example 3.5, we need a slight modification of
definition of m.) So v satisfies (1) of Lemma 5.4. Since the depth of our graphs are 4,
it sufﬁces to show (2) of Lemma 5.4 for k < 4 because Strmg* %,,1s generated by
Stringl 4, , and ¢, for k = 4 [Ka, Sect. 1,02]. So it is enough to show the
following:

p(S:SF), p(S;87)eA@3), 1<iZ<p, p+1Zjj <n,
p(S;SiSFSF)eA@d), 1<i<p, p+1<jj <n.

By direct computation, we can check these. Thanks to S,e(id, p?) and
m(* - x —*) =Sy, v satisfies (3) of Lemma 5.4.

In the case of Example 3.7, we can do the same thing by using (3.7.5) and
Remark 5.2. Q.E.D.

We keep the above notations. Let M = m,+(0,)"” and R = M .. We use the
same symbols p and E, for their extensions to M.

Theorem 5.6. In the above notations, the following hold:

(1) MnpM) =C.
(2) M p*(M) < R p*(R) < m(Stringk ¢

Pq)‘

Proof. Thanks to Proposmon 5.5 and Ocneanu’s general result, we have
Rn p"(R) c m(Strmg* »q) LO3, 116]. In particular, R 0 p(R)" = C holds because
there is only one edge connected to *. Let X € M n p(M)'". Since 4> commutes with
p, we may assume A°(X) = eV~ 1k X by using Fourier decomposition. Suppose
k>0and X # 0. From X*X, XX*eR np(R) = C, we may assume that X is
a unitary. Let x = XS;*e R. Then we have the following:

X*Fx = SEX*XSH = SkSHK xx* = XSFKSEX* = XX*=1.

Since R is a II; factor, this is contradiction, thus proving (1).

To show (2), we need Hiai’ minimal expectation [H]. Let E,(x) = p(ST p(x)S,).
(For Example 3.3, Example 3.5 and Example 3.7, S; = §,.) Then E, is minimal
because M > p(M) is irreducible as shown above. Let E,=pt! E cp kD
p* 1 (M) - p*(M), and ¢, = E-E,_, ... E,: M — p*(M). Thanks to [KL L4]
& is minimal. If ¢, preserves ¢@® we have the following:

M p M) = (M 0 p"(M)),, = (M 0 p*(M))ge = Mo = R

So we can obtain the result. To prove ¢« ¢ = ¢, it suffices to show ¢“- E, = ¢°.
Since R is a II, factor and R > p(R) is irreducible, there are a unique normal trace
7 on R, which is the restriction of ¢, and a unique normal conditional expectation
Ey: R = p(R). Due to the uniqueness of E,, E, preserves 7, and E, = E, | because

E, commutes with 4. Let F®: M — R be the conditional expectation deﬁned by
27

1
Fo(x) = — j A{(x)dt. Then we have E - F® = F- E,. So we obtain the following:

p°=1-F*=1-Ey-F*=1-F*-E,=9“-E,.
Q.E.D.
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Remark 5.7. For the analysis of inclusions of type III; (0 < 4 < 1) factors with
common flow of weights, so-called “type Il principal graphs” play crucial roles
[KL, I4]. In [I5], we shall show that the type II principal graph of our M = p(M)
coincides with the principal graph of R = p(R). (Cf. Remark 6.4, 6.8.)

6. Computation of Principal Graphs

In this final section, we shall compute principal graphs for a few examples in Sect. 3.
In general, to determine the flat part of a given connection is a difficult problem.
But in our case, since we have simple form of endomorphisms, it is possible. Note
that we have already known the principal graphs in the case of Example 3.1, 3.2 for
a’>=1,34forp=p,,36and 3.7, thanks to the fusion rules of sectors generated
by the endomorphisms.

As in the previous section, we use the notation M = m,+(0,)", R = M., if no
confusion arises.

6.1. Example 3.2. We put w = (2, 2, 1). In this case %, _, is the Coxeter graph DY".
We shall determine the principal graphs of M = p,(M), and R > p,(R). Let
p=28,Stf +8,S5€0;. For acT, we define non-unital endomorphism pu, as
follows:

1a(S1) = 818,8F + S,8,55, (6.11)
La(S2) = S1S,8T + S,8,55, (6.1.2)
Ua(S3) = aS, S38* + aS_S;S% , (6.1.3)
where S, = S+ SZ, S_= S - SZ. Note that u,(1) = p. Direct computation
7 7
shows
Po PalX) = pap(x) + S3p_(x)S3 (6.1.4)
I+ Pa(X) = S+ pa(x)S% + S pap(x)SZ (6.1.5)
(S18T — 8283 1a(x)(S1 8T — 5,8%) = pa(x) . (6.1.6)

Thanks to (3.2.7) and Theorem 5.6, we have the following:
M p2(M) = R p2(R) = m(String2 DY) .
From (3.2.7) and (6.1.4),
pd(X) = S1Pa(X)ST + S20a(X)S3 + S383pa(X)ST ST + S3pa2(x)S3 . (6.1.7)

So p, has a normal extension to M, and we use the same symbol , for its extension.
Due to Theorem 5.6 and (6.1.7), we have the following:

pMp N ugs(M) < pRp N ugs(R) < CS,S¥ + CS,S% . (6.1.8)

Lemma 6.1.
(1) pMp = p (M)’ is reducible if and only if a* = 1.
(2) pRp o ua(RY is reducible if and only if a* = 1.
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Proof. (1) follows from (6.1.1)—(6.1.3) and (6.1.8). Since the depth of DY is 4,
String,, DY is generated by Jones projections and the following two elements.

f=(xox>2%>x->2), g:(*—»x-»y—>1,*—>x—>y—+1),

By the definition of the map m, we have m(f) S,8%,m(g) = S3S,STST. Itis easy
to see p,(m(ex)), ua(SzSz )e(CS, ST + CS,S%). From the definition of u, we have
=2

S3(S S¥ — S,55)S¥. This vanishes if and only if

I Ha(m())S> =
a*=1. QED.
From (6.1.4)—(6.1.6), we have the following:
pas-1* Pa(X) = S3pa-2(x) ST + pan(x) ,
Ha# PalX) = S+ pa-1 (X)ST + S pguei(x)ST
Parr+1pa(X) = (S1ST — 5283 pgo#(x)(S1 5T — S553) + S3pgoe+2(x)S3 .
So starting from p,, we obtain the following sequence of endomorphisms:

pa—Z’ ﬂdii, paA, “ ey pd3k—-1’ ﬂd3k’ pa3)¢+1, pd3k+2, ‘LtdSk-i-ll, pa3k+4, P

Since M = p,(M) and R > p,(R) are irreducible, the principal graphs are deter-
mined by the level where u;3+ turns reducible. So we have the following proposition.

Proposition 6.2.

D) If a®* =1, keN and a® %0 for 0 <<k, [eN, the principal graph of
M > p (M) is DS 5. Otherwise it is D, .

(2 If a'?* =1, keN and a'* # 0 for 0 <l <k, leN, the principal graph of
R > p.(R) is DS 5;. Otherwise it is D, .

Remark 6.3. In [IK], we determined the flat connections of D". By computing
pa(m(f)), and p,(m(g)), one can see that the parameter c of the connection in [IK,
Sect. 1] corresponds to our a’.

Remark 64. 1If a'** =1, keN and a® 4: 1 for 0 <1< 2k, leN, the principal
graphs of M o pa(M) and R > pu(R) are DS ¢ and DS 5. So due to the Remark
5.7, the type II and type III pr1nc1pal graphs of M o p,(M) do not comc1de This
implies that for some je N, [ p2/] contains the modular automorphism [a;"], for
some t¢ T(M) [14, Theorem 3.5]. We can see this phenomenon directly. Indeed,
from (6.1.1)—(6.1.3) we have the following:

pas(x) = p-1(x) = S AZ(x)ST + Sz 47 - au(x)S7

This means that [ pS*] contains [A?] = [a?m], where T is the period of ¢?”.
z

6.2. Example 3.4,3.5. Let p be one of the endomorphisms in Example 3.5, and
A be the C*-subalgebra of ¢, generated by p(0,) and {U(g) }4.¢- Thanks to (3.5.9),
A is the norm closure of the following *-algebra 4,,

AOE{Z p(x,)U(g); x, e@}

geG

We define a linear map F,: 0, » A by F,(x) =) E,(xU(9)*)U(g).



180 M. Izumi

Proposition 6.5. F, is a conditional expectation with

IndexE, N +2+./N?+4N
Index F, = N = 5 .

Proof. First we shall show that F, is a unital *-map which enjoys bimodule
property. Thanks to (3.5.10), the following holds:

PU@)*)Sh = Sh+y - (6.2.1)
Hence, F,(1) = 1 is obvious. Using (3.5.9) and (6.2.1), we have
x)* = Z U(g)*p(SZp(U(g)x*)S,) = Z prog(Syp(x*)S.)Ulg)*
= Zp SEp(x*)S_)U(g)* = Zp Sep(x*U(9))S)U(g)* = F,(x*) .
To show the bimodule property, it sufﬁces to show F,(xa) = F ,(x)a for ae A,,
* d :
Se,—=S,. ) is
. o vh VN
a quasi-basis for F,. Since (d-SJ, d-S,) is a quasi-basis for E,, we have,

dz
NS:Fp(Sex) ZS* (SexU(g)*)U(g) = —ZxU(g )*Ulg) = x .

xe0,, and this easily follows from (3.5.9). Next we show that

What remains is to show the positivity of F,. Using the above formula, we have the
following:

4 4

F,(x*x) = d —5 F,(F,(Sex)*S.S¥F,(S, x))— d —5 Fy(Sox)*F,(S.SX)F,(S.x) .
So it is enough to show F,(S.S5) = 0, and this holds as follows:
F,(8.57) =), E,(S.S2U(9)*)U(g) = E,(5.5%) ), U(9)
g g

N ~
=ﬁ(3e32" + LT,

~ 1
Where ];Eﬁzg I;.

Remark 6.6. F, has the following explicit form.
F,(x) = Z p(S)*p2(x)p(S—-,)U(g) = 3. p(S.)* p*(x)U(g)p(S.)
g

Q.E.D.

. N .
= Np(S.)*p?(x)(S.52 + T.T)p(S.) =Jzxt Np(S)*p* () LTS p(S.) -

A

In particular, we have the following for p = p,, . in Example 3.4:

2 2 2
Fpi(x) d2X+2P+(S) T+p+(X)T+p+(S) X+ds>ip+(x) >

2
S%p:(0)S% ,

2 2
500 = Z3x+ 20, ST ps T 2P (S = T3x+
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Fig. 4. The principal graph of M =, (M)

S3F V18
where S ; E”‘zi,d= 1+ \/3 SoFy, =0-F, -07%

We put w = (2,2, 1, 1) and M = 7,+(0,)". By definition F, has normal exten-
sion, and we also use the same symbol F, for its extension. Let us consider

M > F, (M) From IndexF, =2+ \/5 = 400522, the principal graph of this

12
inclusion is one of 4;; and E¢ [11, Ka, O1, SV].
Proposition 6.7. The principal graph of M > F, (M) is Es.

Proof. Let y: M — F, (M) be the canonical endomorphism of R. Longo [L3].
Then [y] can be read out of F,, [L2,11,12]. Thanks to Remark 6.6, we obtain

[y]1=[d]® [p. ]. Equations (3.4.9) and (3.4.10) mean that the fusion rule of
Lo+ ] is as follows:

[p: 1 =ldl@[]®2[p:].

This is not the fusion rule for 4,; [I1, Subsect. 3.1]. Hence we obtain the
result. Q.E.D.

Remark 6.8. One can show that the principal graph of M > p | (M) is as in Fig. 4,
and [, 1* contains [or ]. We omit the details.
2
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