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Abstract. Using fusion rules of sectors as a working hypothesis, we construct
endomorphisms of the Cuntz algebra Θn whose images have finite Watatani
indices. Quasi-free KMS states on Θn appear in a natural way associated with the
endomorphisms, and we determine the Murray-von Neumann-Connes types of
their GNS representations.

1. Introduction

Index theory of operator algebras was initiated by V. Jones for II x factors, and
extended by H. Kosaki for general factors [J, K ] . It has many relations to other
fields of mathematics and mathematical physics, and especially the relation to the
theory of superselection sectors is striking [DHR, FRS, LI, L2]. In analogy with
the case of quantum field theory, the notion of sectors of infinite factors was
introduced by R. Longo [L2], and it turned out to be intrinsically significant in
index theory [II, 12, CK].

An attempt to extend index theory to C*-algebras was done by Y. Watatani
[W]. He defined indices of conditional expectations in terms of quasi-basis, which
is a generalization of the Pimsner-Popa basis [PP], and proved many analogous
facts to the case of factors, such as the restriction of values of indices. Among other
things, one of the most successful results of his theory is the existence of a close
relation between K-theory and values of indices, in the case that an expectation
preserves a trace. But for infinite C*-algebras such as the Cuntz algebras and the
Cuntz-Krieger algebras, his theory gives little information. Up to now, known
non-trivial examples of subalgebras with finite indices are separated into two
groups. One consists of those with integer indices, which can be easily obtained by
means of group actions. The other consists of those of AF algebras, which come
from commuting squares.

One of the aims of this paper is to construct subalgebras of the Cuntz algebra
Θn with finite indices, by using fusion rules of sectors [II] . Many of our examples
have non-integer indices, for example we shall construct a subalgebra of Θ2 with
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index 4 c o s 2 - (Example 3.1) and that of $ 4 with index 4 c o s 2 — (Subsect 6.2).

Associated with our construction, quasi-free KMS states of Θn appear, and using
their GNS representations we shall construct pairs of type IΠλ (< λ < 1) factors.

The contents of this paper are as follows. In Sect. 2, we collect basic facts on the
Cuntz algebras and Watatani index. Proposition 2.5 becomes a basic tool for our
construction. In Sect. 3, we shall construct examples of endomorphisms of
Θn whose images have finite indices. First we assume the existence of certain kinds
of fusion rules of sectors, and from them we deduce the information of endomor-
phisms of Θn. In Sect. 4, we shall investigate Murray-von Neumann-Connes types
of quasi-free states of Θn9 and construct "good" representations for our examples.
In Sect. 5, we shall argue the relation between our examples and A. Ocneanu
theory. Our examples contain AF parts where our endomorphisms come from
Ocneanu's connections. In Sect. 6, we shall compute principal graphs in a few
examples.

Basic facts on index theory can be found in [GHJ, K], and we shall freely use
the contents of them.

The author would like to thank D. Evans and R. Longo for discussions.

2. Preliminaries

In this section, we shall collect basics of the Cuntz algebras and Watatani index to
fix the notations.

2.1. The Cuntz Algebras. Let Θn be the Cuntz algebra generated by
n (n = 2, 3,. . . < oo) isometries Sί9S2i. . ., Sn [Cl]. For a given fc-tuple
α = (JίJi9 - - JΛ 7ιG{l> 2,. . ., n}, we denote by I (a) = k the length of α and
/(α) =jk the last element of α. We define the isometry Sa by <Sα = SjiSj2. . . Sjk. Let

λ1

te Aut(0n), teR be the usual gauge action on Θn defined by /l1

ί(Sί

j) = ev^-'Sj
(j = 1, 2,. . ., ή). Then the fixed point algebra of Θn under λ1 is isomorphic to the
UHF algebra of type n00. We denote it by #"" and define a conditional expectation
F :&„-*&" by

2π 0

xeΘn

We recall Evans' work on KMS states on Θn [E]. Let ω = (ωu ω 2 , . . ., con) be
a n-tuple of positive numbers and β the positive number determined by
Σ J = 1 e - P<°J = 1. We define an R action λω and a state φ ω by λ?(Sj) = e-f^^Sj
teR (j = 1, 2,. . ., n), φω(x) = ίAω F(x), where ^ ω is the product state on #"" with
the uniform density

-/toi 0 . - 0 \

0 e ~ ^ ω 2 ••• 0

\ 0 0 .» e'P

Then the relation between λω and φω is as follows.
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Proposition 2.1 ([E, Proposition 2.2.]). φω is the unique KMS state for λω and the
corresponding inverse temperature is β.

In Sect. 5 we shall investigate the fixed point algebra Θn

χω of Θn under λω in
some special cases. For this purpose the following weighted length of /c-tuple
* = tiuh> >Λ)is useful:

1 = 1

Let H be the linear span of {S l5 S 2 j . . ., Sn}, that is a Hubert space with the
inner product (S, T)l = T*S,S, TeH. We denote by {H\ W), s, teZ+ the linear
span of WH*8 and define the following as in [DR]:

°Θn = linear span of (J °0£ .
iceZ

°Θn is the *-algebra generated by {S1,S2, . . ) S' n } and hence norm dense. We
define the permutat ion operator 0(r, 1) by

0 ΞΞ X SiSjSfSf, θ(r, 1) = 0σ(θ)σ2(θ). . . σ'" 1 ^) ,
i> j

where σ is the canonical endomorphism of Θn defined by σ(x) = ^ . SixS*, xeΘn.
Then we have the following.

Proposition 2.2 ([DR, Sect. 2]).

(1) θ(r, I)*St = σ'(S,).
(2) θ(r, 1)Λ - σ(R)θ(s91), ^ 6 ( H S , H r )

(3) lfReθn satisfies λ}(R) = eV^7 1^^, σ(R) = l i m ^ ^ θ(r + fc, l)RΘ(r, 1)*.

2.2. Watatani Index. Extension of Jones index to C*-algebras was argued by Y.
Watatani in terms of quasi-basis [W]. In this paper we adopt his definition of
index.

Definition 2.3. Let A =) B be a pair of C*-algebras and E: A-*B a conditional
expectation. A finite family {(uu Vχ)9 (w2, v2\ . . ., (MW, vn)} is called quasi-basis if the
following equations hold:

x = Σ UiE(ViX) = Σ E(xUi)Vi, xeA .
i i

We say that a conditional expectation E:A-*Bis of index-finite type if there exists
a quasi-basis for E. In this case we define the index of E by

Index £ = ]Γ u ^ .
i

Remark 2.4. Index E belongs to the centre oϊA and does not depend on the choice
of quasi-basis.
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For two endomorphisms pl9 ρ2 of a C* or W^-algebra A, we denote by (pl9 p2)
the set of intertwiners between px and ρ2, i.e.

The following proposition is a key to our construction in Sect. 3. Our idea is taken
from Longo's work [L2].

Proposition 2.5. Let A, B be C*-algebras and p: B -• A, p : A-+ B (not necessarily
onto) unital isomorphisms. We assume that there exist isometries Ke(id^, pp) c A,

d'
Ep .B -> p(A) the positive maps defined by

We(iάB,pp) c B satisfying V*p(W) = -, W*p{V) = -,d>0. Let Ep:A-+p(B),

Ep(x) = p(W*p(x)W) xeA, Eβ(y) = β(V*p(y)V) yeB .

Then,

(1) Ep and Ep are conditional expectations.

(2) {(d-V*9 d-V)} and {(d-W*,d W)} are quasi-basίs for Ep and Eβ with
indices d 2.

Proof. By direct computation.
In "self-conjugate" case, i.e. assuming A = B, p = p and V*ρ(V) = ceC\{0},

we have the following by using Vx = p2{x) V:

cV = p(V* p(V))V = p(V*)VV = cV .

So we obtain ceR\{0} and we can take Wsuch that W = ± V. According to R.

Longo [L2], we call p a real sector if W = V, i.e. F*p(F) = - and a pseudo-real

i d

sector if W = — Fi.e. F*p(K) = — - . Every example we shall construct in Sect.
d

3 is a real sector.
Before closing this section, we shall prove the following technical lemma, which

is helpful for checking the assumption of Proposition 2.5 in concrete examples.

Lemma 2.6. Let v be a unital endomorphism of Θn. We fix i e {1, 2,. . ., n} and put
Tj = S*v(Sj)SiJe{l9 2,...,n}.If{7]}ι^j^n satisfy the Cuntz algebra relations, i.e.
Γ/2ί = δjtk9 Σj TJT* = h then S?v(x)Sk = 0, k + ί, xsΘn holds. In consequence,
v(x) = S*v(x)Si is an endomorphism, and Ste(v, v).

Proof. By assumption we obtain

Σ TJTJ* = Σ SfviSj^StviSf^ = 1, TJ*TJ = sr
j j

On the other hand, in general we have the following.

SftSi = 1, Σ Srv{Sf)SkSΐv(Sj)St = 1 .
k
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So we get S*v(Sj)Sk = SkV(Sj)Si = 0, k + I By using this and induction of word
length, we obtain the first statement and veEnd($n). The second statement holds
as follows:

StHx) = SiSrv(x)Si = Σ SjSfv(x)Si = v(x)Si .

Q.E.D.

3. Construction of Examples

In this section we shall construct examples of endomorphisms of Θn satisfying the
assumption of Proposition 2.5. We start with inclusions of factors and correspond-
ing fusion rules of sectors, which we regard as a working hypothesis. In what
follows, we shall use the notations in [L2, I I ] for sector theory.

Example 3J. Let M => N be a pair of properly infinite factors with finite index and
the principal graph A4. Then there exists p an endomorphism of M satisfying the
following. (See [II, Proposition 3.2] [12, Proposition 2.4].)

The second equation means that there exist isometries Sl9S2 which generate Θ2,
and satisfy

S1x = p2(x)S1 xeM , (3.1.1)

S2p(χ) = p2(x)S2 x e M , (3.1.2)

i.e. Sίe{iά,p2), S2e{p,p2). Note that dim(id, p2) = dim(p, p2) = 1. Since p is

self-conjugate we have SfpiSx) = ± - , d = 2cos- due to [L2, Sect. 5]. From
a 5

(3.1.1), (3.1.2) we obtain

Stp(SlX) = Sϊpip^S,) = P

2(x)Sίp(Sί) .

So we have S*P(Si)e(p, p2) and hence S2ρ(Sx) = cS2, ceC. Therefore we get the
following:

piS,) = (SxSt + S2St)p(Sι) =±\SL + CS2S2 .
a

Changing the relative phase between Si and S2 if necessary, we may assume that

c is non-negative. So we obtain the following by using —=- -f - = 1,
a a

( S ) ± S S 2 S> 1 "I 7 = ^ 2S2

In the same way, we have S*p(S2)e(p2, p\ S^p(S2)e{p2, p2\ Due to (p 2, p) =
(p, p 2 )*, (p 2, p 2 ) = CStSf -f- CS2S^ and the Cuntz algebra relations of
p{S2), we obtain

( 4 p,qeΊ.
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Using (3.1.1), (3.1.2) and computing p2(S1), p2{S2\ we conclude

1 1

S2S2 , (3.1.3)

p(S2) = ( —S, - \s2S2\st + S.S.Sf . (3.1.4)

IndexEp = 4 c o s 2 - for Ep(x) = ρ(Stρ{x)S1). Of course p does not commute with

Now let us forget about the inclusion of factors and consider (3.1.3), (3.1.4) to be
the definition of peEnd($ 2 ) . Then p satisfies (3.1.1), (3.1.2) for xeΘ2i and conse-
quently the assumption of Proposition 2.5 holds with F = S i . So we have

,π

5
λ1 but commutes with λω, ω = (2,1). Thanks to (3.1.1), (3.1.2), the following holds:

We shall use this in Sect. 5.

Example 3.2. We start with a pair of factors whose principal graph is D^ [IK,
Sect. 4]. In a similar way as in the case of A4, we obtain the following fusion rules of
sectors:

[ p 2 ] = [id] ® [α] Θ [p], [α] [p] = [p] [α] = [p], [α 2 ] = [id] . (3.2.1)

In the same way as in the proof of [II, Proposition 3.3], we can lift p, and α such
that

α p = p, p α = Ad(E/) p , (3.2.2)

where U is a unitary in (p 2 , p 2 ) with order 2. Equation (3.2.1) shows that there exist
isometries S 1 ? S2, S 3 in the factor which generate Θ3 and satisfy

S i e ( i d , p 2 ) , S 2 e(α,p 2 ) , S3e(p,p2).

From (3.2.2) we obtain

α((id,p2)) = (α,p2), α((α,p2)) = (id,p2), α((p, p 2)) = (p, p 2 ) .

So we may assume the following by changing the relative phase between Sx and
S2 if necessary.

α(S1) = S2, oc(S2) = Su α(S3) = ε 1 S 3 , £ ^ { 1 , - 1} . v

In the same way as in Example 3.1, we may assume the following due to α p = p.

From Ue(p2, p2) = CStSf + CS 2 Sj + CS3S* and L/2 = 1, we may assume

. 82, e 3e{1, - 1} .
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So we have

By the orthogonality of p(Sχ) and p(S2\ we obtain ε2 = 1, ε3 = — 1. Using

SiP(S 3 ),S?p(S 3 )e(p 2 ,p), S 3 *p(S 3 )e(p 2 ,p 2 ) ,

α p = p, and the Cuntz algebra relations of p(SΊ), p(S2), P(^3)>w e obtain ε1 = — 1
and

PW3J ~~ Ίl 7= ύ 3 ' ί 2 ύ 3 l ύ l ύ l ~~^2^2; ^ J b ^ ^ 1

Computing p 2 ^ ) , P2(S'2), p 2(S 3) we have the following three solutions:

(3.2.3)

(3.24)

Pαlύ3J — α ~r ύ 3 ~r " ύ 3 V ύ l ύ l ~ ύ 2 ύ 2 j ? ^J.Z.Jj

Sl9 α ( S 3 ) = - S 3 , (

where ί/ = SίS* + S 2 S* - ^3^3 and « e T with «3 = 1. Note that the above
pa makes sense for any α e T a s a n endomorphism of Θ3. So we forget about the
inclusion of factors again, and define p α eEnd(0 3 ), aeΎ by (3.2.3)—(3.2.5). It is easy
to show (3.2.2). By direct computation using Lemma 2.6, we can show the follow-
ing:

S1e{id9pi)9 S2G(α,pα

2), S 3 e ( p f l - , p 2 ) . (3.2.7)

pa satisfies the assumption of Proposition 2.5 with V=SU and we obtain
IndexEPa = 4 for EPa(x) = pa(S*pa(x)Si)- Let ω = (2, 2, 1). Then pa commutes with
λω. By induction one can show

p'ΛS.St) = S^Γ'ίSiSnSf + S2* pk

a-
2(S1Sΐ)SΪ + S3P

k

a'
1(S1Sί)St9 k * 2 .

(3.2.8)

We can generalize Example 3.2 as follows.

Example 3.3. Let G be a finite abelian group with order N, and G the dual group of
G. We put n = 2N — 1 and write <#, σ> = σ(gr), #eG, σeG. Let us consider
Θn whose generators are {S ,̂ Γσ}9eG)σeG\{e} We define p α eEnd(^ n ) (αeT), an
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action of G a, and unitary representations of G in &„ U,Uσ(σeG\ {e}) as follows:

ag(Sh) = Sg + h, ag(Tσ) = <g,σ)Tσ, (3.3.1)

U(g) = Σ « + Σ ' <9^>TτTt* ( £ ' = Σ ) > 0-3.2)
heG τeG VreG i eG\{e}/

l/σ(3) = <9, °> Σ SASΛ* + Γ_σΓΐσ + Σ ' <9^>TzTτ* , (3.3.4)
/ieG τ φ - σ

pa(Sβ) = ( ^ Σ S* + 4 = Σ ' < ^ > i r _ t ) l/te)* , (3.3.5)

y/N \ g / \ g /

+ Σ ' TτTσT*+σ. (3.3.6)
τ Φ — σ

It is easy to see

«β ρa = Pa, Pa ag = Ad(U(g))pa. (3.3.7)

Direct computation shows

*^e Pα l ^ e ) " e = = ^e> ^ e Pα V^σJ^e = : -̂<r >

Pα(^to)) = 2 L S ^ Λ + ^ + 2, Tτυτ{g)Tx .
ft τ

So we obtain

Thanks to Lemma 2.6 and (3.3.7), we get

Sβe{μβ9pl). (3.3.8)

Therefore pα and Se satisfy the assumption of Proposition 2.5, and we have
N tidies JV—1 times

I n d e x E h = N2 for Eppc) = pa(S*pa(x)Se). Let ω = (2, 2,. . ., 2, 1 , . . . . 1). Then

pa commutes with λω. By induction, one can show the following:

Pk

a(SeSf) = Σ S g a β p k - 2 ( S X ) S : + Σ ' Trp
k

a-HSX)T*, k ^ 2 . (3 .3 .9)
9 τ

Example 3.4. Let us start with the following fusion rules, which appeared in
[11,(3.3.4)],

[α p] = [p α] = [p], [α 2 ] = [id] .
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Then, in a similar way as above, we can obtain the following endomorphisms of 0 4 ,

Oί(b>ι) = i 3 2 , oc(h2) = bi, 0ί(b3) = S3, α ( 5 4 ) = — S4 , (3.4.1)

U = S S* — S S* + S S* -\- S S* (3 4 2)

P±(Si) = - • + •

P±(S2)
Si - S 2 g 4 V ^ 4 ^ k .

P ± (S 4 ) = C l Γ ^

i S f + S2S2*)

- ύ 4

+ ± y ^

S2S2*) - S4(SrSt - S2S2*)]

± s/^

6^

where

d = 1 + ^ 3 , Ci = γ=— , c2 =

It is easy to show

α p ± = p + , p ± α = Ad(ϊ7) p + .

By direct computation we have the following:

(3.4.3)

(3.4.4)

(3.4.5)

(3.4.6)

(3.4.7)

(3.4.8)

(U)pl

Due to (3.4.8) we obtain

Hence, by Lemma 2.6 and (3.4.7) we get the following:

S^iid^pll S2e(a,p2

±).

(S1)S2

(3.4.9)



166 M. Izumi

S ~h S
Let f+ = — ~ - ^ . Then by direct computation, one can show

~ V2
TXp2

±{x)f+ = p ± (x). So using α(f+) = f_, we obtain the following:

S 3 , 5 4 G ( p ± , p 2

± ) . (3.4.10)

If we require only (3.4.7) and (3.4.9), we can construct other endomorphisms p + by
replacing cf with cf, i = 1, 2, 3,4,

τ 5π π π

g 1 2 V " 1 e 6 V " 1 —1 e
c * = d

In a similar way as above, one can show the following:

where p + = θ p τ θ~ι, and θeAut((Pn) is the flip of S 3 and S 4,

p± and p ± satisfy the assumption of Proposition 2.5 with Si = V, and we have
IndexE p + = I n d e x E ^ = 4 + 2^/3, for Ep + (x) = p±(Sfp±(x)S1\ Eβ + (x) =
p ± (S*p ± (x)SΊ). Let ω = (2,2,1,1). Then ρ ± and p ± commute with λω. By
induction, one can show the following for p = p ± , p + , /c ̂  2.

+ Ssp'-HSiSftSl + S^pk'HSiSt)S: . (3.4.12)

We can generalize Example 3.4 as follows.

Example 3.5. Let G be a finite abelian group with order N. Since any finite abelian
group is isomorphic to its dual group, we fix an identification and a dual pairing
< , > : G x G - * T . We assume (g,h) = (h,g}9 g,heG. (Such a pairing always
exists.) Let us consider functions on G, a: G -» T, 6: G -• C, and complex number
c e T satisfying the following equations:

α(0) = 1, α(g) = α(—gf), α(gr + /ί)<g, /ι> = α(gf)α(/i), (3.5.1)

(3.5.2)

(3.5.3)

*.. (3-5.4)

In the above equations d = ^-— , which satisfies d2 = Nd + N. We

put n = 2N, and consider the Cuntz algebra Θn with the generators {Sg, Tg}geG. We
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define peEnd(Θn% a G action α, and a unitary representation of G in Θn U as
follows:

= Sg+h, ag(Th) = <g,h)Th, (3.5.5)

U(g) = Σ <^ flf>S*Sf + Σ Th-9Tί , (3.5.6)

= Γ l Σ <Λ.ff>S» + 4 ^ Σ α(Λ)Γ»-βΓ-»l I/to)* , (3.5.7)

Ndh,k

a(h)b(g + hKk9g}Th+kT-hT? . (3.5.8)
h,k

Thanks to (3.5.3), (3.5.4) p is well-defined. It is easy to see

V p = p, Ad(l/(gf)).p = p α β . (3.5.9)

By direct computation as in Example 3.4, we can show the following:

p(U(g)) = Σ ShS*+h + a{g) Σ <K Q> ThU{g)T?-g , (3.5.10)
ft h

Sge(ag,p
2). (3.5.11)

So we have Index Ep = ^-^ ~ for Ep(x) = p(S*p(x)Se). p com-

N times N times

mutes with λω, ω = (2, 2,. . ., 2, 1, 1,. . ., 1). As in the previous cases, the follow-

ing holds:

p (SeSf) = 2^Sgoίg*p ~ (SeSe)Sg + Σ Tgp (SeSe)T*, fc^2. (3.5.12)

For groups with small order such as Z 2 , Z 3 , Z 4 , Z 2 x Z 2 , one can explicitly obtain
the solutions of (3.5.1)—(3.5.4). There are eight solutions in the case of Z 2 , which
correspond to p + , λ% p ± , p ± , λ% p ± in Example 3.4, up to the change of the
relative phase between {Sg} and {Tg}.

Example 3.6. We start with a pair of infinite factors with the principal graph AΊ.
Then we have the following fusion rules:

[P2] = [id] ® [P2] ® \β*Pi\ Lα 'P2] = [P2*α]? α2 = id ,

where we use the notations in [II, Proposition 3.3]. Due to the second equality, we
have a unitary U satisfying Ad(U) α p 2 = p 2 α. Using α2 = id and irreducibility
of p 2 , we may assume Όa(U) = 1. So U is a α-cocycle. Since any outer action of
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a finite group on a factor is stable [Co], there exists a unitary Uo satisfying
U$oc(U0) = U. Hence we have α Ad(l/0) p 2

 = Ad(£/0)*P2 * α Let
p = Ad((70) ρ2. Then we get the following:

(3.6.1)

α 2 = id, a p = p a . (3.6.2)

Using the above relations, we can obtain the following endomorphisms of <P3:

p±(S1) = ^- + S 2 S 2 +

Γ

S 3 S \ (3.6.3)

±S^+SlllS* (3.6.4)
d y/ld

, (3.6.5)

ιu;
α+ (SΊ) = SΊ, α+ (S2) = ± S2, &± (S3) = + S3 , (3.6.6)

where rf = 1 + yjl. α ± and p ± satisfy (3.6.2). Using Lemma 2.6 one can check the
following:

S ie(id,p2), S2ε(p,p2), S3e(a p,p2). (3.6.7)

So we have Index Ep = 3 + 2^2 for Ep(x) = ρ(S*p(x)Si). Let ω = (2, 1,1). Then
p commutes with λω. It is easy to see

p\ (S^ΐ) = S^V'^iSf )Sf + S2p
k

±-1(S1Sf )SJ + Sap^^SiSf )S?, fc ^ 2 .

(3.6.8)

The last example is rather exceptional in this article.

Example 3.7. Let G, and <, > be as in Example 3.5. We put n = N, and consider the
Cuntz algebra Θn whose generators are {Sg}geG. We define peΈnd(Θn), a G action
α, and a unitary representation of G in Θn U as follows.

*g(Sh) = S,+ft , (3.7.1)

ί, (3-7.2)

(3.7.3)

Then the following hold:

, = p - o c g i (3.7.4)

5 , e ( α , , p 2 ) . (3.7.5)

So we have Index Ep = n for Ep(x) = ρ(S* p(x)Se). In contrast with the other cases,
p commutes with the usual gauge action λ1.
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The first equation of (3.7.4) means that p{Θn) is a subalgebra of the fixed point
algebra Θ* of Θn under α. In fact, these two coincide. Indeed, using (3.7.3), (3.7.5), we
have

Ep(x) = p(Sβ)* ( Σ S,αβ(x)Sβ*) p(Se) = - Σ αβ(x).
V g / n g

So Ep is the mean on G, and we get p(Θn) = Θ*n. Let H be the n dimensional Hubert
space generated by {Sg}geG. Then a\H is equivalent to the regular representation of
G. The above fact means that Θ% is isomorphic to Θn. So one can consider the same
type of problem for non-commutative finite groups and finite dimensional Kac
algebras [C2]. The answer is the same as in our case, and in [15] we shall prove it
in a similar way. C. Pinzari independently obtained the same result in the case of
finite groups [P], and R. Longo in the case of finite dimensional Kac algebras [L5].
For a generalization of this problem to local compact groups, see [CDPR].

4. Representations

In this section we shall construct inclusions of AFD type IIIΛ (0 < λ < 1) factors by
representing the examples in Sect. 3. To investigate the Murray-von Neumann-
Connes types of the factors, we shall determine the type of the GNS representation
of φω.

Let us start with the following lemma, of which R. Longo informed the author
as a folklore among specialists.

Lemma 4.1. Let A be a unίtal C*-algebra, φ a state of A and (πφ, Hφ, Ωφ) the GNS
triplet ofφ. We assume that Ωφ is separating for πφ{A)". Then the following hold:

(1) Let B be a unίtal C*-subalgebra of A and φ the restriction of φ to B. Then
(πφ|j5, Hφ) is quasi-equivalent to the GNS representation of φ (π^, Hφ).

(2) Let pbea unίtal endomorphίsm of A which preserves φ. Then p can be extended to
a normal endomorphίsm ofπφ(A)".

Proof (1) Let K = πφ(B)Ωφ. Then (πψ, Hψ) is unitary equivalent to (πφ\B9 K\ and

(πφ\B, K) is quasi-equivalent to (πφ\B, πφ(B)'K). By assumption we have πφ(B)'K ^

πφ(A')K = Hφ. (2) In a similar way as above, we can see that (πφ, Hφ) is quasi-

equivalent to (πφ p, Hφ). Hence we obtain the result. Q.E.D.

Remark 4.2. The assumption of Lemma 4.1 is automatically satisfied for KMS
states [BR, Corollary 5.3.9].

The following proposition shows that our examples in Sect. 3 have "nice"
representations.

Proposition 4.3. Let p be an endomorphism of Θn which commutes with λω. Then
p can extend to a normal endomorphism of πφ<»{Θn)".

Proof. Since p commutes with λω, we have φω p = φω due to the uniqueness of the
KMS state for λω. Then the statement follows from Lemma 4.1, (2). Q.E.D.

Let p be one of the endomorphisms we constructed in Sect. 3. Then there exists
λω which commutes with p. Let M = πφ»(Θn)"9 N = πφ»(ρ(Θn)y. Then M ^ N is an
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inclusion of factors because φω is the unique KMS state for φω [BR, Theorem
5.3.30]. Due to the above proposition, the expectation Ep has normal extension.
Therefore M =) N has finite index.

In what follows, we fix ω = (ω1, ω 2 , . . ., ωn) and consider the GNS representa-
tion (πφω, Hφ<»9 Ωφ") oϊφω. We shall omit πφ» if no confusion arises. For simplicity,
we denote by the same symbol φω the vector state of Ωφ<o on Θ'ή. Since A1 and λω

preserve φω, they can extend to actions on Θ'ή. We denote by A1, λω their extensions
too. Let ΘU{n) be the fixed point algebra of Θn under the natural action of U(n). Then
the permutation operators we defined in Sect. 2 belong to ΘU(n). ΘU(n) is a subal-
gebra pf &" n # f .

Lemma 4.4. Lei Re Θ'ή with λ}(R) = ey/^ktR9 keZ. Then,

σ(R) = lim θ(r + fc, l)R0(r, 1)* (in strong * topology) ,
r->oo

w/iere σ is defined by σ(x) = Σ( StxS?, xeΘ'ή

Proof. It suffices to show strong convergence because of λl{R*) = e~v~ιktR*.
First we assume k = 0. Since λ1 is an action of a compact group, we have (Θ'ή)λ =
{Θn")" = #""". So we can take a net {Rj} c gFn which converges to R in strong
topology. Let Ae°Θn. Then,

||(0(r, l)ΛΘ(r9 1)* - σ(R))AΩφ4 ^ \\θ(r9 ί)(R - Rj)θ(r9 l)*AΩφ~\\

+ \\A\\ \\θ(r9l)(Rj)θ(r9l)*-σ(Rj)\\

+ \\σ{R-Rj)AΩφ.\\.

Due to [S, Proposition 2.14] and 0(r, l)e&i"\ we obtain the following estimate of
the first term of the right-hand side:

||0(r, l)(R - Rj)θ(r9 l)*AΩφ~\\ = \\(R - Rj)θ(r9 l)*AΩφ~\\

= \\σ*ωι{A*)θ{r9 1 )V(Λ - Rj)Ωφ~\\

ί\\σ*"L(A*)\\.\\{R-Rj)Ωφ.\\,
"2

where Jφ°> is the modular conjugation with respect to Ωφ<°. So thanks to Proposi-
tion 2.2, ||(0(r, ί)RΘ{r9 1)* - σ{R))AΩφ»\\ converges to 0 when r tends to oo. Since
{θ(r, l)RΘ(r, 1)*} is a bounded sequence and °ΘnΩφ<» is dense in Hφ<», we obtain the
result.

If k> 0 (resp. fc < 0), then R = (RStk)S\ (resp. R = St'k(SϊkR)) and K S ^ e
Θ'ήχl (resp. (SΓ f c R6C Λ j Therefore we get the result from Proposition 2.2 and the
above argument. Q.E.D.

The following proposition is a W*-version of [DR, Lemma 3.2] [BE, Theorem
3.2].

Proposition 4.5. Θ'ήn(ΘUin))' = Cl.

Proof. We shall modify the argument in [DR, Lemma 3.2]. Let XeΘ'ή n(ΘU(n))'.

By using Fourier decomposition, we may assume A,1 (X) = e^~~lktX, ke Z. If k = 0,
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we have the following by Lemma 4.4:

σ(X) = s - lim 0(r, l)X0(r, 1)* = X .

Let φω be the product state of &n as in Subsect. 2.1. Then (π^»|jr«,Hφ») is
quasiequivalent to (πφ«, H^«) due to Lemma 4.1. Since σ|^« is the one-sided shift of
#"", we get X e J^"" n #""' = Cl. In the general case, due to the above argument,
we have X*X, I I * e C So X is a multiple of a unitary. Suppose I φ O and k > 0.
Then from Lemma 4.4, we have

X~1a(X) = lim 0(r + k, l)0(r, 1)* (in strong * topology) .

Note that the left-hand side is a unitary. Let Λe°Θι

n. Then from Lemma 2.2 we
have the following for large r:

σ(A)θ(r + /c, l)0(r, 1)* = 0(r + Jfc + 1, l)40(r, 1)*

Hence we have X ~ ^ ( X ) e C n σ ( ^ ) ' . Since ^ ω is the unique KMS state for λω,
Θ'ή is a factor [BR, Theorem 5.3.30]. So we obtain the following because σ is the
inner endomorphism defined by H = span{Si}.

χ-1σ(X) = ΣcijSίSf, cueC.

We can determine cUj as follows.

citJ = lim φω(S?θ(r + /c, l)0(r, ί)*Sj) = lim φω(σΓ +*(S i*)σ r

= φω(σk(S?)Sj) = φω(Sjσ
k-1(St)) = e~ βω^φω(σk-1(Sf:)Sj)

= = g ~~ (^ — ^)βωj(()ω(S S * ) = δ e~ kβo)j

where we use Proposition 2.2, φω σ = φω and the KMS condition of φω. But this
contradicts the unitarity of X ~1 σ(X). Q.E.D.

Remark 4.6. Actually, the following holds:

w - lim θ(r + fe, l)0(r, 1)* = f e " ^ ^ ^ S * .

Indeed, since every weak limit point of {<τr(σk(Sf:)Sj)}reN belongs to Θ'ή n 3Fn' a

w - lim S?θ{r + /c, l)0(r, 1)*^. = φω(σk(S?)Sj)l =e'kβω^δij .

Now we determine the type of Θ'ή.

Theorem 4.7.
(1) Ifωi/cύjφQfor some ίj, Θ'ή is the AFD type III\ factor.
(2) // ωi/ωjeQfor all ij9 Θ'ή is the AFD type IIIλ (0 < /I < 1) /αcίor, and λ is
determined by an explicit algebraic equation.
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Proof. Since Θn is nuclear Gl is AFD. Dueω to the KMS condition of φω, the
modular automorphism group is given by σfω = λ™βt, ίeR. From Proposition 4.5
and {Θ';)ψ<» => 0£ ( Λ ), (Θ'i)φ» is a type IIi factor. Then the Connes spectrum Γ(σφω)
coincides with the Arveson spectrum Sp(σφω) [S, 16.1]. Thus we obtain (1) and the
first part of (2). To determine λ in the rational case, for simplicity we assume the
following:

pi times pi times

where {ml5 m 2 , . . ., mk} are relatively prime natural numbers. Then the period of
2π

σφ is — where β is determined by
β

Σ
i=ί 1=1

So we obtain λ = e'β and λ satisfies Yjlpιλ
rtlι= 1. Q.E.D.

Remark 4.8. Let /> be one of the endomorphisms we constructed in Sect. 3. Then
there naturally appeared the following type of ω associated with p:

p times q times

ω = ( 2 , 2 , . . . , 2 , 1 , 1 , . . . , 1 ) .

We say that such ω is of 2-1 type. In this case one can obtain λ by the above

formula, and we have λ"1 = ^— . Note that this coincides with the

square root of Index Ep. In next section we shall prove that G'ή => p{(9n)' is irredu-
cible. So we have λ~x = (IndexEp)ΐ = d(p\ where d(p) is the statistical dimension
of p [L2]. (We denote by the same p its extension.) By the additivity and
multiplicativity of the statistical dimension [H, KL, L4], one can see that d(p)
satisfies the equation d(p)2 = p + qd(ρ) in model cases because of its fusion rules.
This is the reason of the above coincidence.

5. The Relation to Ocneanu's Connection

In this section, we shall try giving a conceptional explanation of the fact that only
2-1 type of ω appeared in Sect. 3. We shall prove that the endomorhisms in Sect.
3 come from Ocneanu's connection when restricted to Θ^\ and using this observa-
tion we shall show that the pair G'ή => p{Gn)" is irreducible. One can find basic facts
on Ocneanu theory in [Ka, Ol, O2, O3]. Ptimes ^ «times

First we investigate the structure of GJ;ω, ω = (2, 2 , . . . ,2, 1, 1,. . ., 1),
p Φ 0, q Φ 0. Let us consider a bipartite graph *§PΛ in Fig. 1 with the distinguished
point *. For the edges between x and y9 we use the numbering from p + 1 to
p + q = n. We denote by Path 1 <3VΛ the set of paths in $PΛ with length 1, and

ΉPΛ the set of paths with length k and source *. We define a map
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Fig. 1. The graph

m: P a t h 1 <SPtq -> {0,1, 2,. . ., n} as follows:

m(i -> x) = m(i -> y) = 0, 1 g i ^

m(x = ί, 1 ^ i ^ P

x) =j9 p

(5.1)

(5.2)

(5.3)

For each path £ = ξx

ing isometry in Gn\
. . . ξ f e e P a t h ^ <8v%q, ̂ - e P a t h 1 <&Ptqi we define the follow-

Sm(ξ) = .... s,m(ξk)
(5.4)

where So = 1. Let String* ^ p ^ be the string algebra of <&Ptq generated by strings,
which are pairs of paths with common source *, common ranges and length k, and
String*&Pfq the C*-algebra generated by \Jkk0String*<$Ptq [Ol, O2].

Proposition 5.1. In the above notations, θf is isomorphίc to String* ^p>q. The
isomorphism is given by m: String*<3PΛ3(ξ +, ξ_) κ-> S w ^ + ) S ^ _ ) e ^ e -

Proof. We define finite dimensional C*-subalgebras of
(0 S ί ύ P, k ^ 2) as follows:

, fc) = C*{Sμ+S*_; lω(μ+) = lω(μ-) = fc - 1} ,

) = C*{Sμ+S*_; J*(μ+) = Π μ _ ) =

Λ(k) {k ^ 0), A(i, k)

= A{\) Ξ Cl,
P

i = 0

k ^ 2 .

Then it is easy to see that A(U k) is simple and A(k) ^ (£)p

i=oA(i,k) k ^ 2. First
we show A{k) c= A(k + 1). Obviously 4(i, fc) c 4(0, fc + 1) holds for z φ 0. Let
Sμ+Sμ_eA(0i fc), which is the matrix unit of 4(0, fc). Then we have,

Sμ+SiSi Sμ_
f = l

Sμ+SjSj Sμ_ ,

Sμ+S iS ί*S*_e4(i, fc + 1), Sμ+SjSfS*_sA{09 fc + 1) . (5.5)
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This inclusion means the Bratteli diagram of (A(k)) is the left-hand side of Fig. 2.

Since the conditional expectation — j Q

2 π λf dt preserves the algebraic part °Θn, θf

is the norm closure of {°Θn)
χω, which coincides with \Jΐ=o A{k). So \Jΐ=o A(k)

generates Θ^ Comparing two Bratteli diagrams in Fig. 2, we can see that the two
inductive systems {A(k)}k and {String* ί ^ } * are isomorphic. By induction using
(5.5) and the definition of m, we can show that m gives the above isomor-
phism. Q.E.D.

Remark 5.2. For ω = (ωl9 ω 2 , . . ., ωn) with cOi/α^eQ, one can write down the
Bratteli diagram of Θ^ in a similar way. But it is difficult to find string algebra
structure except in the case of 2-1 type of ω. In the above proposition, we assume
p =t= 0, q Φ 0. If p = 0 or q = 0, i.e. in the case of λ1, of course the fixed point algebra
J^M is isomorphic to the UHF algebra of type n00. Let &„ be the depth 2 graph as in
Fig. 3. Then #"" is isomorphic to String* &n. As in the previous case, we define
a map m: Path 1 % -> {0,1,. . ., n} by m(i -> x) = 0, m(x -> ί) = i9 (1 ^ i ^ n). For
each path ξ = ξ1 ξ2. . . ξ k ePath£^ Λ , we define isometry Sm(^)6iPn by
Sm ( ξ ) = Sm ( 1 )Sm (2). . . Sm(fc), where So = 1. Then m gives the isomorphism as before.

Remark 5.3. Let ω be of 2-1 type. As in [Cl], we have the following expansion of
a general element XeΘn,

X= xkeΘλ

n

k>0 k>0

Note that Φ = Ad(Sn)\Θλ« is a trace scaling endomorphism of Θ^ = String* ^VΛ.
This means that Θn can "be expressed by the "endomorphism crossed product" of
String* yvΛ by Φ, in a similar way as in [Cl, Sect. 2]. This is the key observation to
generalize our construction to the Cuntz-Krieger algebras [15].

Ά(0)

A (I)

String ?

String l%,q

A (3)

A (A) String f%_C{

Fig. 2. The Bratteli diagrams of {A(k)}k and {String*

Fig. 3. The graph
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Next we discuss the relation between our examples and Ocneanu's connections.
Let ^, and Jf be finite bipartite graphs with distinguished points, and Wa connec-
tion on them [Ol] . Then one can construct two injective morphisms v, v from W.

v: String* String* 0, v: String* String*

In general, even if ^ = Jf one can not expect v = v. We call W self-conjugate if
v = v holds under suitable identification of ^ and J"f.

Lemma 5.4. Let <& be a finite bipartite graph with distinguished points * and x. We
assume that there is only one edge between * and x, and * has no other edges. Let v be
a unital endomorphism of String* & satisfying the following three conditions:

(1) v(String*^)c: S t r i n g * ^ .
(2) Let {ek}k^ι be the canonical Jones projections [Xα, Sect. 1, 02]. Then

v(e*) = e* + i .
(3) Let ξo = *->x->*. Then ^ e v 2 (String*^)' and v2((ξ + , ξ-))ex =

Then, v comes from a self conjugate connection on $.

Proof We use the notations in [Ka]. From (1) and (2), v comes from a connection
W [13, Sect. 2, O2]. Thanks to the renormalization rule and the unitarity of
connections, we have the following for any connections and possible paths

x = x X = (5.6)

Using W, we define uξtσeC, for ξ = (ξ + , ξ-), σ = (σ+, σ_) as follows:

ξ+ ξ-

We also define u'ξ,σeC in the same way using the dual connection of W. Then (5.6)
is equivalent to ^ σ uξ>σΰ^~σ = Σσ u'^σu'n,σ = δξ>η. From (3), we have £ σ u^σu'^σ =
δξtη. So we obtain

Hence u^n = u'ξ^η. This means that PFis self-conjugate. Q.E.D.
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Let p be one of endomorphisms in Sect. 3. As we saw in Sect. 3, there exists 2-1
p times q times

type of ω = (2, 2,. . ., 2, 1, 1,. . ., 1) satisfying λf p = p At

ω. Since p preserves
0;f°, we have an endomorphism of String* <3VΛ which is defined by v(x) =
m " 1 .p m(x). We put # Λ f 0 = ^0,« = %•

Proposition 5.5. /ft ί/ze above notations, v comes from a self-conjugate connection on

Proof First we assume p φ 0, q Φ 0. For Example 3.3, (resp. Example 3.5), we use
the following identification:

is s s \ = (s \ is s ) = \τ\

fresp ίS S S i = ίS } (5* S ) =

Let {ek} be the canonical Jones projections, which are defined by

1 v VMr(#(r(w))w.,,. :? ,

where we use the notations in [Ka]. We define the following paths with length 2.

vi = i - > x - • /, ι?f = / —> 3; —> / ,

M_y = X — ^ - > }̂  - ^ - > X, Mj" = }; - ^ - > X — ^ — • J .

Let d = — . Then the Jones projections are written as follows:

eik= Σ Σ (ξ vr,ξ vd+ Σ Σ -jϊiξ-WiΛ-Wϊ)

1 ύiύP \ξ\ = 2k- 1 1 SUi'^p \ξ\ = 2k- 1 α

+ Σ Σ T^CK Wî  ^ + K ^ ξ Wi)]

p + l ^ j ^ n

' a

+i= Σ Σ (ξ vi,ξ vi)+ Σ Σ i (
1 ^ i ^ p \ξ\ = 2k l ^ i j ' ^ p \ξ\ = 2ka

+ Σ Σ [ ( { ξ ) (ξ

p+ 1 ^ ^n

+ Σ Σ ^ «j,ξ «j').
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Thanks to (3.1.5), (3.2.8), (3.3.9), (3.4.12), (3.5.12), (3.6.8) and the above expression of
Jones projections, we obtain m(ek) = pk~1(SίS*) by induction. (In the case of
Example 3.3, Example 3.4 and Example 3.5, we need a slight modification of
definition of m.) So v satisfies (1) of Lemma 5.4. Since the depth of our graphs are 4,
it suffices to show (2) of Lemma 5.4 for k ^ 4 because String**1 &Piq is generated by
String* <§p%q and ek for fc ^ 4 [Ka, Sect. 1, O2]. So it is enough to show the
following:

By direct computation, we can check these. Thanks to S1e(id,p2) and
m ( * - > x - * * ) = Si,v satisfies (3) of Lemma 5.4.

In the case of Example 3.7, we can do the same thing by using (3.7.5) and
Remark 5.2. Q.E.D.

We keep the above notations. Let M = πφ*(Θn)" and R = Mφ«. We use the
same symbols p and Ep for their extensions to M.

Theorem 5.6. In the above notations, the following hold:

(1) M n p ( M ) ' = C.
(2) M n pk(M)f aRn pk(R)' a m(String* %tq).

Proof. Thanks to Proposition 5.5 and Ocneanu's general result, we have
R n ρk(R)f a m(String* <&p%q) [O3,116]. In particular, R n p(R)' = C holds because
there is only one edge connected to *. Let XeM n ρ(M)f. Since λf commutes with
p, we may assume λ?(X) = e\ί~~xktX by using Fourier decomposition. Suppose
k > 0 and I Φ O . From X*X, XX*eRn ρ(R)' = C, we may assume that X is
a unitary. Let x = XS*keR. Then we have the following:

x*x = S*X*XSΪn = Sk

nS%k, xx* = XSΪkS*X* = XX* - 1 .

Since JR is a I I ! factor, this is contradiction, thus proving (1).
To show (2), we need Hiai' minimal expectation [ H ] . Let Ep(x) = p(S*p(x)S1).

(For Example 3.3, Example 3.5 and Example 3.7, S1 = Se.) Then Ep is minimal
1 1 {k1]

because M => p(M) is irreducible as shown above. Let Ek = p1*'1 Έp-ρ
k X k ^

p

p(M) is irreducible as shown above. Let Ek = p1*'1 Έp-ρ~{k~1]:
pk~ X(M) -^ pk{M\ a n d ε f c Ξ £ k . £ f c _ Γ . . . £ p : M ^ p^M). Thanks to [KL, L4],
εk is minimal. If εk preserves φω we have the following:

M n pk(M)f = (Mn pk{M)\ = (M n pk{M)')φ« ^ Mφ» = R .

So we can obtain the result. To prove φω εk = φω, it suffices to show φω*Ep = φω.
Since # is a I I ! factor and R 3 p(R) is irreducible, there are a unique normal trace
τ on #, which is the restriction of φω, and a unique normal conditional expectation
Eo: R-* p(R). Due to the uniqueness of Eo, Eo preserves τ, and Eo = EP\R because
Ep commutes with λf. Let Fω: M ~-> R be the conditional expectation defined by

1 2π

JP«>(X) = — J λf

ω(x) at. Then we have E0 Fω = Fω Ep. So we obtain the following:
2π Q

Q.E.D.
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Remark 5.7. For the analysis of inclusions of type IΠA (0 < λ ^ 1) factors with
common flow of weights, so-called "type II principal graphs" play crucial roles
[KL, 14]. In [15], we shall show that the type II principal graph of our M => p(M)
coincides with the principal graph of R => p(R). (Cf. Remark 6.4, 6.8.)

6. Computation of Principal Graphs

In this final section, we shall compute principal graphs for a few examples in Sect. 3.
In general, to determine the flat part of a given connection is a difficult problem.
But in our case, since we have simple form of endomorphisms, it is possible. Note
that we have already known the principal graphs in the case of Example 3.1, 3.2 for
a3 = 1, 3.4 for p = p + , 3.6 and 3.7, thanks to the fusion rules of sectors generated
by the endomorphisms.

As in the previous section, we use the notation M = πφ<°(Θn)", R = Mφ», if no
confusion arises.

6.1. Example 3.2. We put ω = (2, 2, 1). In this case ^ 2 , i is the Coxeter graph D(

5

1}.
We shall determine the principal graphs of M D ρa{M\ and R => pa(R) Let
p = SίSι + S2S%eΘ3. For αeT, we define non-unital endomorphism μa as
follows:

S1SιSΐ + S2S2S2

f, (6.11)

S1S2St + S2S1SΪ, (6.1.2)

μa(S3) = aS+S3St + άS-S3S% , (6.1.3)

where S+ = 1 2, S- = ι 2. Note that μa(ϊ) = p. Direct computation

shows

Pb-Pa(x) = μάb(x) + S3p (x)Sξ , (6.1.4)
ab

μb pa(x) = S+Pab(x)S* + S-pa-b(x)S* , (6.1.5)

(SiSf - S2S?)μβ(x)(S1Sf - S2SΪ) = μδ(x) . (6.1.6)

Thanks to (3.2.7) and Theorem 5.6, we have the following:

Mnp2

a{M)' = Rnp2

a{R)' = m(String^D{

5

1]) .

From (3.2.7) and (6.1.4),

pϊ(x) = SίPa(x)S* + S2pa(x)SΪ + S 3S 3P«MS?S? + S3μά>(x)St . (6.1.7)

So μa has a normal extension to M, and we use the same symbol μa for its extension.
Due to Theorem 5.6 and (6.1.7), we have the following:

pMp n μ H M ) ' c p^p n μδ3(Λ)' c CSΊSf + CS 2 5Ί . (6.1.8)

Lemma 6.1.
(1) pMp =5 μa{M)' is reducible if and only if a2 = 1.
(2) /λRp =) μa(,RY is reducible if and only if a4 = 1.
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Proof. (1) follows from (6.1.1)-(6.1.3) and (6.1.8). Since the depth of D^ is 4,
Stringy D (

5

υ is generated by Jones projections and the following two elements.

f=(*-^x-^2, * ->x -> 2), g = (* -> x -> y ->T.9 * -> x -> y -*~ϊ) .

By the definition of the map m, we have m(/) = S2S*9 m(g) = S3SχS*S*. It is easy
to see μa{m(ek)\ μa{S2St)e{CS1St + CS2S*)'. From the definition of μa we have

α 2 — a2

Stμa(m(g))S2=—-—S3(SiS? -S2S%)Sξ. This vanishes if and only if

a4 = 1. Q.E.D.

From (6.1.4)—(6.1.6), we have the following:

p f l»- p«M = foS? - S2Sί)μά*(x)(S1St - S2SΪ)

So starting from pα, we obtain the following sequence of endomorphisms:

Since M =3 pb(M) and R ^ pb(R) are irreducible, the principal graphs are deter-
mined by the level where μ^k turns reducible. So we have the following proposition.

Proposition 6.2.
(1) // a6k = 1, fceN and a6 / φ 0 for 0 < / < fe, ! e N , ίfe principal graph of

M =D Pfl(M) is D2 + 3fc. Otherwise it is D^.

(2) // a1 2 f c = 1, /CGN awd a 1 2 ί Φ 0 /or 0 < / < fc, ίeN, ίfce principal graph of
R ID pa(R) is D{

2l3k. Otherwise it is D a .

Remark 6.3. In [IK], we determined the flat connections of D^. By computing
ρa(m(f)\ and pa(m(g)\ one can see that the parameter c of the connection in [IK,
Sect. 1] corresponds to our a2.

Remark 6.4. If a12k = 1, IceN and α 6 ί Φ 1 for 0 < / < 2k, ?eN, the principal
graphs of M => pβ(M) and R => p a (#) are D^iβk and D2 + 3fc. So due to the Remark
5.7, the type II and type III principal graphs of M => ρa(M) do not coincide. This
implies that for some j e N , [ p 2 j ] contains the modular automorphism [σ^ω], for
some tφT(M) [14, Theorem 3.5]. We can see this phenomenon directly. Indeed,
from (6.1.1)—(6.1.3) we have the following:

μMx) = μ - i M = Sίλ^(x)Sf + S2λ?.α(x)S? .

This means that [p« fc] contains \_λ™~\ = \_στ ], where Γis the period of σψ<°.
2

6.2. Example 3.4, 3.5. Let p be one of the endomorphisms in Example 3.5, and
A be the C*-subalgebra of Θn generated by p(Θn) and {U{g)}geG. Thanks to (3.5.9),
A is the norm closure of the following * -algebra Ao,

LgeG J

W e d e f i n e a l i n e a r m a p Fp:Θn->Aby Fp{x) = Y e G Ep{xU(g)*)U(g).
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Proposition 6.5. Fp is a conditional expectation with

_ Λ r Index£ p N + 2 + JN2 + AN
Index F p = — - = ^ .

N 2

Proof. First we shall show that Fp is a unital *-map which enjoys bimodule
property. Thanks to (3.5.10), the following holds:

p{U{g)*)Sh = Sh+g. (6.2.1)

Hence, Fp(l) = 1 is obvious. Using (3.5.9) and (6.2.1), we have

Fp(xr = Σ U(g)*p{SZp{U{g)x*)Se) = Σ p α - A * P W
0 0

= F,(* )
9 9

To show the bimodule property, it suffices to show Fp(xa) = Fp(x)a for aeA0,

xeΘn, and this easily follows from (3.5.9). Next we show that -—=S*,—j=Se I is

a quasi-basis for Fp. Since (d S1*, d*Se) is a quasi-basis for Ep, we have,

= x .

What remains is to show the positivity of Fp. Using the above formula, we have the
following:

So it is enough to show Fp(SeS*) ^ 0, and this holds as follows:

Fp(SeS*) = ΣEp(SXU(g)*)U(g) =
9

N

where f e Ξ ^ = Σ 9 Γ 9 . Q.E.D.
Remark 6.6. Fp has the following explicit form.

Fp(x) = Σ

= Np(Se)*p2(x)(SeS: + fefe*)p(Se) = ^2* + Np(Se)*p2(x)fefe*p(Se) .

In particular, we have the following for p = p + , p + in Example 3.4:

2 2 2
Fp + {x) = -72X + 2p±(Se)*T+p±(x)T5p±(Se) = -iX + -S%p±(x)ST ,± a aa
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Fig. 4. The principal graph of M => β ± (M)

where 5 τ = ^ = , d = 1 + y/3. So F^ + = Θ-Fp_

We put ω = (2, 2, 1, 1) and M = πφ^{Θ^)". By definition F p + has normal exten-
sion, and we also use the same symbol Fp + for its extension. Let us consider

M ID Fp + (M). From IndexFp+ = 2 -h ^/S = 4cos2—-, the principal graph of this

inclusion is one of A1X and E6 [II, Ka, Ol, SV].

Proposition 6.7. 77ze principal graph of M 3 Fp + (M) is E6.

Proof. Let 7: M-»Fp + (M) be the canonical endomorphism of R. Longo [L3].
Then [y] can be read out of Fp+ [L2, II, 12]. Thanks to Remark 6.6, we obtain
[?] = [id] ® [p± ]• Equations (3.4.9) and (3.4.10) mean that the fusion rule of
[p ± ] is as follows:

[ p ± ] 2 = [ i d ] Θ M Θ 2 [ p ± ] .

This is not the fusion rule for AX1 [II, Subsect. 3.1]. Hence we obtain the
result. Q.E.D.

Remark 6.8. One can show that the principal graph of M => p ± (M) is as in Fig. 4,

and [p+ ] 4 contains [or ]. We omit the details.
2
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