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Abstract. We consider a random walk representation of non-abelian statistical
models, and apply it to represent the free energy in terms of the correlation functions
of random walks. This enables us to find an analytic region of the free energy with
respect to the inverse temperature. This method can be applied to the block spin
transformations.

1. Introduction

Quark confinements and non-existence of phase transitions in two dimensional non-
Abelian statistical models have been long standing problems in modern physics.
The author recently considered non-Abelian models by means of the renormalization
group method, and investigated a cluster expansion which uses the random walk
representations [4, 7].

We start with the expression of the model, say v dimensional Heisenberg model
with O(N) symmetry (JV-vector model):

1 Όexpl-^-

where φ(x) e SN~ι for all lattice points x e Λ(c Zu), J > 0 is the coupling constant
(= inverse temperature) and the integration dφ(x) is over the iV— 1 dimensional sphere
SN~ι. Finally ZΛ(J) is the normalization constant chosen so that (1) = 1. There are
several studies on the thermodynamic properties of this system. Among them is

Theorem (Brydge-Froehlich-Spencer-Sokal [4], see also Simon-Lieb [9]). If J <
N/2v, there exist strictly positive constants m and C such that

(φ(0)φ(x)) < Cexp[-ra|:r|].
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It is a long standing problem whether or not this holds for any (real) J if N > 2
and v = 2. We want to represent the free energy lim l^l" 1 log(ZΛ) = a(J) as a
function of J and obtain the region of J in which a is analytic. Our main results are
summarized in the following theorems:

Theorem A. (1) The free energy a(J) is represented in terms of the truncated
correlation (Ursell) functions of random walks.
(2) The free energy a(J) is analytic in J in the region

where v stands for the dimensions of the lattice space and lim ε = 0.

Theorem B. The correlation functions decay exponentially fast for J £ Ω.

For smaller v(y — 2,3), we have numerical bounds on J c which are less than
N/2v but are close to N/2v. In the final section of this paper, we discuss how we
can apply the present method to the block spin transformation.

Remark 1. A similar investigation was done by Kupiainen [8] by using another type
of random walk representation. But for v = 2, his result is Jc < const log TV.

2. Random Walk Representation of the Free Enery

Introducing the Fourier-Laplace transformation and integrating over the spin variables
[4] which is now standard, we start with the following random walk representation
of the partition function:

= J e*p [ - \ YβW) - Φ(y))2} Π

- Σ -ί(τ
n=0 ί

(except for a constant coefficient) where ω = {{60, . . . , bL};bj = {x^x^^.x- £

Zv, \Xj - Xj+γ\ = 1J#L+I = xo} a r e c l ° s e d loops made by nearest neighbor bonds

in Zd and 1̂ 1 is the length of the loop ω% which equals Y^v^x) = [υ^, the sum of

the visiting numbers. Moreover x

bβω

where

" ,(ar) (3c)
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with Vjix) G {0,1, ...} being the visiting number of ω% at x G Zu. Then the standard
Mayer expansion method implies that

r(τ)" Σ B S F ^ W - " < » .„)„-, (4)

where 0 G X = U s u p p ^ and [.. . ] τ means the truncated correlation functions of
random walks:

l 5 . . . , ωn)]f = [exp[-V(ωu . . . , ωn)] - Σ expf-V^) - V(t2)]
t{ut2=t

]ΓV(tt)+ 2 Σ exp[-]ΓV(tt)] - ... . (5)

k

Here t = {1, . . . , n} and ί = ( J ^ means the partitions of t into non-overlapping
1

subsets t% and for ^ = {α1? . . . , α^},

In order to represent the truncated correlation functions of the random walks, we
introduce truncated potentials Vτ(ωu . . . , ωn) defined by the following formulas:

V(ωvω2)= Σ
tC{l,2}

V{ωv...,ωn)=

Therefore we conversely have

Vτ(ωu...,ωk)= Σ ( - D ^ ' V ω , (6b)

where t runs over all possible subsets of {1,2, . . . , k}. Given a subset t, we define
the composite random walk denoted by ω[t] or simply by [t]. This is the random walk

that is equal to (J ωt together with the visiting numbers. We similarly define many
ίet

body potentials Vτ([t{], . . . , [tn]) for composite random walks:

Vτ([txl [t2]) = V([tx], [t2]) - V([tx]) - V([t2]),

and etc. Using Eq. (6b), we easily find that

where t\ are subsets of t̂  different from 0 and the truncated functions on the right-hand
side are the truncated functions with respect to all walks contained in Ut^.
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The Ursell functions have complicated expressions when we have manybody
interaction terms in the potentials. We first explain our notation following [2]
and [3]. k

For t = {1,2, . . . , n}, let tx = {1}, and let {2,3, . . . , n} = (J ti be any partition

of {2, . . . , n}. Given k, let ηk be a map {1,2, . . . , k- 1} —> {1,2, . . . , fc- 1} such
that ηk(ϊ) < i. Moreover let Xx = t{ = {1}, Xi = Xi_ι U ti9 i = 2, . . . , k. Then for
any subset bet, define functions sτ so that

Namely sa(

1 otherwise.

= 1 whenever 6 c Xi or 6 C X? and = ŝ  otherwise. Let

where

[i],

(9a)

(9b)

and this form follows by the definition of the many body potential (6a) and we
identified the subscript i with the set of loops ti. (Note that V([t]) = V(t) —
Vία j , . . . , ujn).) This is a convex linear combination of V(t^ti+ι, ..., t3), 1 <
i < j < k and thus satisfies the bound (in fact we show W* > 0, see Lemma 2)

exp[-W({*Jf <exp[-]Γ^(ί.)]

π π
i xe U i

(10)

where ]Γ v^(x) is the sum of the visiting numbers of {ω3\j G ί j at x.

For a function ηk, we have the tree graph T = T(77fc) over t regarding (z+ 1, %(z))
as the bond connecting two vertices 2 + 1 and ηk(i) G {1,2, . . . , i}. Set %(i) = j
for simplicity. We define the reduced two-body potential ^ ( j , i + 1), (j < i) by

Σ • YJV
τ(tf

J,...,t
f

ι)tτ+x)) (11)

where t/

J_i, . . . , ί̂  may be empty but t'3- is not empty. If some t[, . . . , t^_1 are empty,

we just neglect those in Vτ. Thus we have

j , i + 1) = j] , z + 1) j ] , [ί], i + 1), (12)

where [t] means the composite random walk made by single random walks in tt,
(1= j + 1, . . . , i).

Then we have the following theorem whose proof is essentially in [3]:



Random Walk Representations and the Mayer Expansion

Theorem 1.

147

f ί

k=2 t\, ..., tk ηk 0 0k=2 t\, ..., tk ηk

(13)

where t{ — 1 α^d t 2 ^ . . U tk changes over all partitions of {2, . . . , n} into k — 1
subsets, and

k~\

si+ι...sη(i). (14)

3. Truncated Correlation Functions

We here estimate 9^(i,j + 1) and W\i^ j + 1) which are expressed in terms of Vτ.
To do so, we start with the estimate of more general Vτ(t) — Vτ(ω1, . . . , ωn). Let
x G Zd be a point in Π suppc<;r Then if n > i,

y+««') - ι ) ! ] ')""1*'1

where tf C t including the case of t' = 0. For example, we have

"TV

2 VχX

fN(x) = log

for n = 1, and for n — 2 we have

fN(x) = log

Now we see

ΪNΛ-I ~~ IN — / v ( ~ l ) r

1 1

f-.π

' N
T"

'TV

(x) + υ2

(aO-1

( x ) -

ΓJV

• "2

1

+

Ί T -
7;2(x) -

1

1

j

j

0 0
•Σ'

1 1

0 0

(15a)

(15b)

(15c)
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This recursion formula is easily solved and yields the following representation for

-iy. ids,... ίdsn

ί
2v{/N 2vn/N

ι n ( n - l ) ! J dyλ... J dyn- - — ^ . (16a)

The series converges absolutely for n > 1 and is equal to

2vx/N 2υn/N

- j •• / π * . [ 1 + Σ V - (lδb)

0 0

where O(n/N) < 2(n — X)/N is the correction term caused by replacing the

summation with the integral. See Remark 2 below. We let t = [jti and let [t]
2

stand for the composite random walk made by single random walks contained in t.
Assume x E t{Γ)tΠ ti+ι, and assume that tλ visits x vγ times, t visits xυ2 times and
ti+ι visits xv3 times, and finally each loop ωx, ..., ωn in tι+ι visits xυ[ times. Then
v3 = Σ v[ and the following two lemmas and a corollary are immediate:
Lemma 2. 9^(1,2+ 1) = X)^(l,i + l)(x), w/zer̂

^(- i r + 1 (n+l ) ! j dyγ j dy2

k=0 0 2v2/N

2v[/N 2v'n/N

* J - 1 Π*:

0 0 1 + yχ + y2

Corollary 3. Let n3- > 1 be the number of loops contained in the composite loop ω[t j

and let Vj(x) e N be the visiting number of the loop ω3 at x. Then

'υjs(x). (18)
s=l

Lemma 4. W{\,i + 1) = ΣW(\,i -
X

2υ3/N

k=0 ^ u I- 2 k
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Remark 2. It is easy to see that the correction term 0{n/N) is bounded by
2(n — \)/N. This may be large, but on the other hand, we have the factor
(2/N)n (1+2/N)-1... (1 + 2 ( n - l)/N)~ι which comes from the n-ple self-crossing
points in ω[t]. Therefore these correction terms are cancelled by these factors in
exp[-V(ω[t])].

4. Convergence of the Mayer Expansion

Let t = {1,2, . . . , n} and let t = tλ U . . . U tk be partitions of t into sets of loops
(t{ = 1). Let 0 e X = Usuppα;r The n-loop contribution Kn to a is given by

K ( n - Nn V — ^

ds}j ms)e-ms)-Z v^ , (20)

where we set

fl ί
*=1

k fe-1

— TT U(i), W(s) — 2_.'
i=2 ι=l

together with the following notation:

E/(2) =

(7(fc) = ^*(fc - 1), k) + 5fc_2^(A: - 2, fc) + . . . + ^ .. 5 f c _ 2 ^(l , fe),

W(k) = W(k - 1, fc) + sk__2W(k - 2, fc) + . . . + sxs2 ... sk__2W(\,k).

Here sgn(?7(i)) = (- l) n * and then

sgn(Kn) = ( - l ) n - 1 . (21)

For later purposes, we define the following quantities:

x j€ti x

1 U-i

W /π
0 0

(The integrand does not depend on sk_ι, but so does W{s).) We will need the
following lemma which goes back to [1-3].
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Lemma 5. Let M = Σ Kl Then M >2n and
1

Proof. We set

v(s, i - 1) = \v[%_{] ... s2s v{2sγ\v{n\.

Multiplying exp[αv(s, k - l)sk_{] > 1 with a > 0, we have the estimate

1

/ dsk_ι\(s, k —

= a (exp[a υ[k_l]\

, k — l)sk_ι]

,/c - 2)sk_2] -

cev(5, k — 2)s / ! c _

Γk-l 1

Repeating these, we have Ik < (α)"~/cexp Σ a\v{i]\ which holds for any a > 0.

Then we set a = fe/ ^ |υ^j| to get the result. Q.E.D.

Suppose loops {α^, . . . , ωn} and partitions ίj = {1}, t2j • , tk of {1,2, . . . , n}

iV\nare given. Let 77 be tree graphs over t{} ..., tk, Cn = — ( — J and cons ider
n. \ 2 J

transl.

ϊ), i + 1) (24)

where ]P means the sum over all possible translations of ωτ, i > 1. For the above
transl.

quantity to be different from zero, all loops ωif contained in ωt must cross each other
at a same point, and all composite loops ωt must cross each other. From Eq. (18) in
Corollary 3, we have

transl. V \ / / \ / s = 1

where we considered the translations of ωjs, j s e tj only. Thus we finally have

Π

' ( 2 5 )

where we used Lemma 5 and we omitted for simplicity the correction term O(n/N)
cancelled by the marginal term in exp[—V(ω)], see Remark 2. Suppose n 2, . . . , nk
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k

with n% > 1 and Σ n% = n — 1 are given. Then the number of the partitions of
2

{2, . . . , n} into these groups is

(n - 1)!

and the number of the solutions of the equation Σnk — n ~ 1 with n ι > 1 is
n - 2\ 2

I. Therefore | K J is bounded by

where Hk is defined by

*'%,..£_._, d ^ (;:;)• <27)

Moreover setting M = Σ K I & 2n), we have

eM

Here

^ \ / \ n—k / \ k

4F) T) <(^Cλ)\ (28a)
eMJ \kj

exp n log — < exp[C2 V" \vΊ I], (28b)

L n J ^
with CΊ < 1/2, Cx —> 0 as M/rz -» oo, and C2 < 1/e, C2 —• 0 as M/rz ~> oo, since
M = X2 |vj > 2n. In order to improve C% numerically, we may take the maximum
of the left-hand side of Eq. (28a) with respect to k. Then we see that the maximum
is attained by k = (\/3 — l)n + 0(1), which implies that (1 + CγY1 can be replaced
by constnα(l + C^)71, C1 < 0.4274. To be more accurate, we may refine the bound
(27) for Hk. Let m e {k - 1, . . . , 1,0} be the number of i such that nτ = 1. Then
we have

7 . 1

Jnίi _ .

m
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We again use the Stirling formula and take the maximum to find that

n—k / \ k

()

where Cx < 0.2581, and C and a are some positive constants.

Lemma 6.

l l ] , (29,

where C = Oil), Cγ < 0.2581, C2 < 1/e uniformly in n and a is a positive constant.
Moreover Cx and C2 converge to 0 as Σ \vt\/n —> oo.

Remark 3. There are several methods to improve these bounds [1, 2]. Since
exp[C 2 |^ |] = exp[C2|cjJ], the factor exp[C2|i>J] is absorbed by replacing Jb with
exp[C2] Jb = exp[l/e] Jh = 1.4446J6 (i.e. scaling) in the definition of Jω..

5. Numerical Evaluation of the Convergent Radius

Before proving next theorem, we estimate the number of loop diagrams of length 2m.
Let pi and qτ be the numbers of unit walks x —» x + ei and x — ei —• x respectively,
contained in ω. The necessary and sufficient condition for a walk ω of length 2m to
form a loop is that Vi — Q.i — ni a n d X) f̂  = m. Then the number of loops of length
2m is given by

ιm = Σ , , ( 2 m ) ! 2=oc- r o ) (30)

For small m, they are:

/2 = I2is2 — 6v ,

l4 = iβSOis4 - 5040z/3 + 6740z/2 -

and it is easy to see

for some constant m(y) (m(i/) —>• oo). By the Stirling formula, we have

1 Σ
and then O(l)2 2 ? 7Vm < lm. One can also show that Jm = O(m-a)(2u)2rn. The
number of random walks of length 2m which are not necessarily loops is

y
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By collecting terms satisfying pi + qi = 2n4, and noticing that

^ (n!)2 2 2"(n!) 2

which can be easily proved by induction, we have

lm < τm(2v)2™ , τm =
1 +

Here we used the inequality fj(l -f y^\) > 1 + Λ / ^ The main contribution comes
from a neighborhood of Πj = . . . = nv — m/ιs. Thus if v = 2 we can improve the
bound as follows (by an explicit calculation):

Theorem 8. (1) Let Jb = exp[C2] Jb. The Mayer expansion converges absolutely if

where ω are random loops starting from the origin.
(2) The Mayer expansion converges absolutely in the complex region

β(JV,i/)= j j ; | J | < ( l - ε ) ^ j , (33)

where v stands for the dimension of the lattice space and lim ε = 0.

(3) Let v — 2. Then the Mayer expansion converges absolutely in the complex region

Ω(N, 2) = {J; \J\ < 0.102iV} . (34)

Proof. (1) This is immediate from Lemma 6.

(2) By Eq. (26b) and Eq. (28a), it is enough to argue the convergence of the following
series:

Σ { Σ 1 n
n—\ \ M=n L mι+m2+...+mn=M )

nlog^jl , (35)
oo

^"^ y^ h(m])...h(rnn)\Qxp
= 1 ^ M=n I. mi +?τi2+...+mn=M

where

V̂ —Λ \θJ\ J

' j o Icϋ I

ω: |ω|=2m

Let 2m be the length of the random loop ω. At each point, the walk ω has the 2v
directions to go, and one of them is backward. If ω visits x + eμ from x and ω goes
back, CJ visits x twice at least. Then

i., x o ^ ^ 2 m λ / ( 2 J - l ) J ^ 2 m ~ p

/ι(m) < 2m 2 ] ί
p=0 ^ ^
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where x = (2v - 1) J/N + J/(N + 2 ) < 2v J/N. Thus the left-hand side of Eq. (32)
is bounded by

V* h(m) < r-τ
^ (l - xιy

which however yields a poor bound. We use the fact that the number of loop diagrams
of length 2m is much less than (2z/)2m for large v\lm — 0{vm). We take v large
keeping x = 2v J/N < 1 constant. Then the following inequalities hold:

(1 - x 2 ) 2

where A; and &' are some positive integers and & —* oo, A;' —>• oo as */ —> oo. Then
^Γ /ι(m) < const yields the bound x < 1 - ε for any const < 1 as i/ -^ oo, where
ε —> 0 as fc -^ oo. Since we are interested in the upper bound, we can assume

I — J
Or for simplicity we can assume /ι(m) = (2uJ/N)2rn for m>k with a small change
of J since m is sufficiently large. Thus using Ineq. (36), we have

L(n,M)= 2 ^ /ι(m1).../ι(mn)

n Ik

Σ
1=0 8=1

< > > I , • M ( n '
ί

Applying the Stirling formula to the summand, we see that L(n, M) takes its maximum
at M — M o = (1 - O{y~x))nk > n, and decreases exponentially in M — Mo and
the contribution from M < M0/2 is exponentially small cmpared with the one from
M > M0/2. The factor exp[(n/2M) log(2M/n)] tends to 1 as M -^ oo and thus the
assertion holds.
(3) For ί/ = 2we estimate Eq. (32) explicitly up to \ω\ = 10(m = 5):

8α2 + 144α4 + 2400α6 + 39200a8 -f 634860a10

(37)

772=6

where l/e(l + CΊ) > 0.2924 and α = J/iV = exp[l/e] J/N. We can numerically
show that this is satisfied if α < 0.1483, using the bound (31) for r m . Therefore
J/N < 0.102. Q.E.D
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Remark 4. We may be able to improve these bounds by using the fact that random
walks in two dimensions visit same points many times. See [5] for a work in this
direction. Self-crossing walks are, however, very weakly suppressed if N is large.
Then it is open to what extent this property is responsible for the conjectured non-
existence of phase transitions in two dimensions.

6. Discussions

Theorem 8 is our main conclusion. Though this bound is slightly smaller than the
one obtained by Froehlich etal., singularities seem to exist in a neighborhoods of the
origin whose dimaeter is very close to N/2v (even if v < 2). In this sense, this result
is best possible.

We would like to show that this approach can be aplied to the block spin
transformations which consist of procedures to obtain effective interactions of block
spins (averaged spins) defined by (Cφ)(x) = Σφ(Lx + ζ)/L2, where x e Z2 and
-L/2 < ζμ < L/2 (one may take L = 2). C

We fix (Cφ) (x) to be φι(x), and integrate over the remaining degrees of freedom.

We set y/jφ(x) = φ(x) G \/JSN~x so that Eq. (1) is replaced by

(•) = \ J(') exp ί - \ Σ(φ(x) - φ{y)f\ Π dφ{χ). (38)

The dominant configuration of the block spins is such that the orientations of them
change slowly as x G Z2 varies and \φι(x)\2 G [Jγ - const TV, Jλ + const JV], where
Jx = J — const TV.

Then we may put

φ(x) =* (φ(x') + s(x), u(x)) e R x R N ~ ι , (39)

where φ{x') = \φι(x')\, x' = ([xι/L],[x2/L]) and the block averages of {s(x)}
and {u(x) G RN~1} vanish. Since φ(x) stays on the sphere of the ball, \u(x)\ ~
(J - φ\xf)γi2.

We substitute Eq. (39) into Eq. (38) and obtain the effective interactions of the
block spins by integrating over {s(x),u(x)}. Our result implies that the effective
interaction obtained in this way is of short range if {J — φ2(x')} are small (but of
order O(N)).

It is a difficult problem to what extent we can continue these steps for v — 2,
because we have to show that non-local interactions not do increase (if N is large)
for any numbers of the iterations. This problem remains and we will discuss this
problem in the near future [7].
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