
Commun. Math. Phys. 155, 71-92 (1993) Communicat ions ΪΠ

Mathematical
Physics

© Springer-Verlag 1993

The Analogues of Entropy
and of Fisher's Information Measure
in Free Probability Theory, I

Dan Voiculescu*

I.H.E.S., F-91440 Bures-sur-Yvette, France**

Received June 9, 1992

Dedicated to Huzuhiro Araki

Abstract. Analogues of the entropy and Fisher information measure for random
variables in the context of free probability theory are introduced. Monotonicity
properties and an analogue of the Cramer-Rao inequality are proved.

Introduction

In [25] we began studying operator algebra free products from the probabilistic point
of view. The idea is to look at free products as an analogue of tensor products and
to develop a corresponding highly noncommutative probabilistic framework where
freeness is given a treatment similar to independence. We showed [25] that there is
a free central limit theorem with the semicircle law playing the role of the Gaussian
distribution and that there is a functor from Hubert spaces to operator algebras, which
is the free analogue of the Gaussian functor of second quantization (i.e. the Gaussian
process indexed by a Hubert space). For the addition and multiplication of bounded
free random variables we introduced corresponding free convolution operations on the
distributions and constructed linearizing transforms, i.e. analogues of the logarithm
of the Fourier and respectively Mellin transforms [26,27]. In this context one-
parameter free convolution semigroups correspond to one-dimensional quasilinear
complex conservation laws satisfied by the Cauchy-transforms of the distributions,
the complex Burger equation, in particular, being the analogue of the heat equation.
This free harmonic analysis has been extended to distributions of unbounded random
variables and the infinitely divisible laws have been studied [26, 4, 14, 5].

The explanation for the occurrence of the semicircle law, both in the free central
limit theorem and in Wigner's work on asymptotics of large random matrices, was
found in [29]. We showed that asymptotically, entry wise independence of large
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Gaussian matrices gives rise to freeness. Thus, large random matrices provide an
asymptotic model for free probability theory. This has had important applications to
the study of the IIX factors of free groups [30, 19, 8, 20].

In usual probability theory the entropy S(X) and Fisher's information measure
J(X) of a real random variable X are given by the formulae

= - ίS(X) = - ίp(t) log p(t)dt,

where p(t) is the density of the distribution dμ of X [assumed smooth in the definition
of J(X)].

The theme of the present paper is to introduce the free entropy Σ(X) and the free
information measure Φ(X) given by

Σ(X) = P(s)p(t) \og\s-t\dsdt,

Φ(X) = ί(p(t))3dt

and to argue that in free probability theory Σ(X) and Φ(X) are the analogues of
S(X) and J(X). The formulae for Σ(X) and Φ(X) coincide with the logarithmic
energy [12] of the distribution of X, while Φ(X) is just the cube of the L3-norm of

P-
The motivation for these definitions is from the asymptotic random-matrix model.

Ideally, Σ{X) should be a certain normalized limit of the entropies of the maximum
entropy distributions for random matrices with spectral density given by the distribu-
tion of X. To handle this properly, however, would require advances in the theory of
random matrices. Instead we proceed as follows. We first present a heuristic (nonrig-
orous) justification of the formula for Σ(X) based on random matrices. Then we take
the formula for Σ(X) as a definition, derive the definition of Φ(X) so that it should
relate to Σ{X) via a free Gaussian perturbation, as J{X) relates to S(X) via usual
Gaussian perturbations. With these definitions, we then proceed to give direct proofs
(entirely rigorous) of several properties of Σ(X), Φ(X) analogous to those of S(X),
J(X). This includes results on monotonicity, semicontinuity and the analogue of the
Cramer-Rao inequality. The monotonicity results turn out to be more general, since
they hold also for Riesz energies and respectively Lp norms (p > 1). One-variable
complex analysis topics such as univalence and subordination as well as some po-
tential theory play an important role in our proofs. The structure of the paper is as
follows. In Sect. 1 we assemble for the reader's convenience preliminary material
from free probability theory.

The next section, Sect. 2 contains the heuristic justification for the definition of
Σ(X) via random matrices. It is the only non-rigorous part of this paper.

In Sect. 3 we define Φ(X) and establish the connection with Σ(X) via free
Gaussian processes, i.e. via the complex Burger equation.

In Sect. 4 we prove results on monotonicity for Φ(X) via analytic subordination
results for free convolution.

The free analogue of the Cramer-rao inequality is obtained in Sect. 5 and we show
that equality holds exactly for semicircle distributions.
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In Sect. 6 we obtain monotonicity results for Σ(X) and Riesz-energies. We also
prove the analogue for Σ and Φ of the integral formula which relates S and J [3].

The semicontinuity properties of Σ and Φ in the W* -algebra context are obtained
in Sect. 7. We also prove inequalities for some quantities generalizing Σ.

The last section (Sect. 8), after pointing out that the monotonicity properties of Σ, Φ
also hold for independent random variables we provide some infinitesimal evidence
in favor of these properties being true for orthogonal algebras.

The author greatly benefitted from the stimulating scientific atmosphere at the
Institut des Hautes Etudes Scientifiques, where this work was done.

1. Preliminaries

This section is devoted to recalling some definitions and results from free probability
theory [25, 26, 29, 31].

A non-commutative probability space (A, ψ) consists of a unital algebra over
C equipped with a state ψ\A —» C, i.e. a unit-preserving linear functional. This
purely algebraic frame-work can be endowed with additional structure corresponding
to positivity or to weak convergence in the corresponding forms of C* -probability
spaces or W* -probability spaces.

Random variables are elements of A, where (A, ψ) is as above. To discuss more
general "unbounded" random variables in the W* -context, one may also consider
more generally unbounded operators affiliated to the W* -algebra A.

1.1. Definition. A family of subalgebras 1 G AL c A (C G /) in a non-commutative
probability space is called free if φ(aλ ... an) = 0 whenever α̂  G AL^ with
i(j) φ ι(j -f- 1) (1 < j < n — 1) and φ{a^) — 0 (1 < j < n). A family of random
variables fL (L G /) is free if the family of subalgebras generated by (1, f{) is free.

1.2. Note that freeness, in general, implies a high degree of non-commutativity among
subalgebras. The typical example of free subalgebras being A — C[G] the group-ring
of a group G = Gλ * G2 which is the free product of two subgroups, A3 = C[Gj]
(j = 1,2) and φ the trace on C[G] given by φ(Σcgg) — ce.

1.2. Definition. If (fb)ιeI are random variables in (A, φ), their joint distribution μ is
the functional μ:C(XL\i G /) —> C given by μ = φ o h, where C(XL\L G /) is the
free algebra with unit and generators XL (L G /) and h:C(XL\t G /) —» A the unique
homomorphism with h(XL) — fv

In particular for one random variable / the distribution is a linear functional
μf:C[X] —> C and in the C*-context if / = /*, this functional naturally extends
from the polynomials to a compactly supported probability measure on R (also denoted
μf).

13. If X, Y G A are a free pair of random variables then the distribution of X + Y
depends only on the distributions of X, Y and thus there is an operation, called
additive free convolution such that μx+γ = μx ffl μγ. This is entirely analogous to
usual convolution arising from addition of independent random variables.

This operation, via the C* -algebra context, induces an operation of free convolu-
tion among compactly supported measures on R [26], Passing to unbounded random
variables this can be further extended to arbitrary probability measures on R [14,5].

1.4. Theorem [26]. If μ is the distribution of a random variable let
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and let Kμ(z) and Rμ(z) be formal power series satisfying

Gμ(Kμ(z)) = z,

If μ3 = μ1 EB μ2 then

Kμ(z)-z-ι=Rμ(z).

Rμ3 - R

μ ί + Rμ2

1.5. If μ is a compactly supported probability measure then G (z) is the Cauchy
transform

ι = y ^
and Kμ is defined by inverting Gμ locally at infinity. The extension of 1.4 to arbitrary
probability measures [14,5] is roughly that instead of inverting the Cauchy transforms
in a neighborhood of infinity we will invert Gμ in a suitable domain with an angle at
infinity. Note that Rμ plays the role of the logarithm of the Fourier transform for free
convolution. Using Theorem 1.4 the free convolution of two probability measures is
computed by finding first the Cauchy transform and then the measure via "boundary
values" of the imaginary part of the Cauchy transform.

1.6. If (μt)t>0 is a semigroup with respect to free convolution, i.e. μt+s = μt ffl μs

then G(£, z) = Gμt^u(z) satisfies the complex quasilinear equation

where φ(z) = Rμ (z) with initial data G(0, z) = Gv(z). Note that in this context
μ is the analogue of the Gaussian law if Rμ(z) = az in which case the probability
measure μ has a "semi-circle" distribution. The analogue of the heat equation being
then the complex Burger equation

at σ

1.7. It was shown in [26, 4, 14, 5] that infinite divisibility of a probability measure μ
on R with respect to free convolution, amounts to the requirement that Rμ(z) have an
extension to an analytic function with positive imaginary part in the upper half-plane.

1.8. The last topic being asymptotic freeness for random matrices we begin with
a definition. A sequence of families of random variables (f^)Leκ ( n ^ ^0 ^s

called asymptotically free if the distributions μn converge pointwise on C(XL\L G /)
to some functional μTO and the (XL)ιeI are a free family of random variables in

C ( x j / )
1.9. The natural framework for random matrices is to consider

Mn= f]

where LP(Σ, 9Dΐn) is the L^-space over a standard measure space (Σ1, dσ) with values
in the n x n matrices 9Jtn. On Mn there is a natural trace φn given by

φn(X) = JτJX(X(ω))dσ(ω)
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with τn = n~ι Tr the normalized trace on 9Jtn.

1.10. Theorem [29]. Let

Y(s,ή) = (α(i,j;n,5))1< J < n G Mn

be random matrices, s G /. Assume a(i,j; n, s) = α(j, i; n, s)

{Re(α(ί, j ; π , s ) | l < i < j < n, s G N} U {Imα(ί, j n, s)|l < i < j < n, s G N}

αr£ independent Gaussian random variables such that Reα(i, j n, s) and Imα(i, j ;
n, s) are (0, (2ri)~ι)for 1 < i < j < n and α(j, j \ n, s) w (0, n""1). Γ/ie/i (F(s, τi)) s G / w
asymptotically free as n —> 00 fί/ẑ  //mfί distributions for the Y(s, n)'s being semicircle
laws according to Wigner's classical results.

2. Random Matrix Heuristics

Let X be a random variable (in some C*-probability space) with distribution
a compactly supported measure v on R. The idea for defining the free entropy
Σ(X) is to approximate X by a self-adjoint random matrix Xn with distribution
(in the classical sense) a probability measure σn on 9Jί^ (the hermitian n x n
matrices) and to define Σ(X) as a normalized limit of the entropies of the σn .
The motivation for this is provided by Theorem 1.10 which shows that for suitable
choices of the random-matrix approximates, independence of UJl^-valued random-
variables corresponds asymptotically to freeness. Hence Σ(X) defined in this way
should have the desired property of behaving with respect to freeness (in particular
free convolution of the distributions) in the same way as usual entropy behaves with
respect to independence (and in particular convolution of the distributions).

If this random matrix "approximation" procedure would have a sharp form, one
might conceive that the properties of Σ(X) should be direct consequences of the
corresponding properties of S(Xn). At present this approach encounters several
difficulties.

One difficulty is that choosing Xn to have the maximum entropy £/(n)-invariant
distribution for the given level density v (i.e. the distribution introduced by Balian in
[2]) the corresponding random matrices have not been studied in much detail. There
are also problems with the use instead of functions of the Gaussian random matrices
(like in Wigner's classical work).

The other difficulty is that we would need a substantially stronger form of our
asymptotic freeness result (Theorem 1.10) so that it should guarantee that the addition
of independent random-matrix approximants yields normalized entropies which relate
in the limit to the normalized entropies for the random matrices with level densities
given by the free convolution.

In spite of these difficulties, this approach is of such conceptual simplicity that it
would be worthwhile to give it a rigorous basis.

Having made these remarks, let us pass to the formula for Σ(X), which is based
on familiar computations in random-matrix theory (see [2,15]).

Assume v = p*μ, where p:M. —> M is a diffeomorphism and μ is the semicircle
law. Let Xn — p(Yn), where Yn is a Gaussian random matrix normalized as F(s, n)
in Theorem 1.10. Then σ the distribution of Xn on 9Jΐ5; is the push-forward of the
Gaussian measure on UJl^ v ^ a ^ n ^ A —» p(A) G SDΐ̂ . Since these measures are
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invariant with respect to conjugation by unitary matrices, it suffices to look at the
densities on the sets of eigenvalues (yγ,..., yn).

Up to constants the densities for the Gaussian measure, the measure σn and
Lebesgue measure are then:

( - Σ n ^ ) 2 ) H^iVj) - <i(yk))2 Π

and

where g is the inverse of p. Hence up to constants the entropy of σn is the integral
of the following quantity:

Σ ίGO2 - Σ κ»g β'ίy.) + Σ«

Σ ) Π " 9(»fc»2 Π ^ ^ "
V i ) j<k i

One divides this integral by n2 and based on the assumption that the measures on R

giving mass - to each yι9 will converge to υ for "most" (y 1 ? . . . , yn) with respect to

the measures σn, and hence the limit is identified with

J q(y?dv{y) Jr\j j dv(x)dv(y) log •
(x - y)2

(q(x) ~ q(y)2)

= / x1dμ(x)Jr I I dv(x)dv(y)\o%\x — y\

- j j dμ(x)dμ(y)log \x - y\.

Leaving aside the constants we end up with

dv(x)dv(y) log \x - y\ (2.1)
/ / •

which is the formula for Σ(X).

2.2. Definition. If X is a random variable whose distribution extends to a compactly
supported measure v on R, we define the free entropy Σ(X) to be equal to the quantity
in (2.1).

We shall frequently abuse notations and write instead of Σ(X) also Σ(v) or if v
is Lebesgue-absolutely continuous and υ is its density, we shall write Σ(υ). We will
also use these notations whenever (2.1) makes sense, though v may not be compactly
supported.
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3. Φ(X)

In this section we derive the formula of the free information measure Φ(X) from
the formula of the free entropy Σ(X), a straightforward computation up to a few
technicalities.

3.1 Definition. If X is a random-variable, the distribution of which extends to a
compactly supported measure μ, absolutely continuous with respect to Lebesgue
measure, we define the free information measure Φ(X) by

Φ(X)
• / •

where v is the density of μ. If μ is not Lebesgue absolutely continuous we set
Φ(X) = oo

We will also write Φ(υ) or Φ{μ) and we will use this notation also in the case of
unbounded support. Note that Φ(μ) = limΦ(μ * Pε), where Pε is the Poisson kernel.

The lemma we prove here connecting Σ(X) and Φ(X) will get its full power only
after we prove the monotonicity results in the next sections.

3.2. Lemma. Let X,Y be a free pair of random variables such that the distribution
of X extends to a compactly supported measure on R, while Y is a (0,1)-semicircular
random variable. Then the function [0, oo) 3 s —> Φ(X + Λ/SY) G [0, oo] is
measurable and we have

T

-Σ(X + VTY) + | fφ(X + ̂ fsY)ds = ~Σ(X).

o

Proof Let μ(t) denote μχ+λ/ιY and remark that μ(t) = μ(0) EE3 μ^iγ- Like for
Gaussian variables, we have that \ftY has the same distribution as a semicircular
free convolution semigroup. Hence [26] the Cauchy transform G(z, t) of μ(t) satisfies

BC1 BC
— + G ηr- = 0 for Im z > 0 and t > 0 and G(z, 0) = Gμ(0)(z),

where G μ ( 0 ) is the Cauchy transform of μ(0).

Using a free product of commutative von Neumann algebras, we may replace
X, Y by an equivalent pair of self-adjoint random-variables in a finite von Neumann
algebra with a trace-state. In particular since \\X + VtY\\ for 0 < t < T is uniformly
bounded we infer that supp μ(t) C K, where K is a compact set.

Let —π~ιG(z1t) = u(z,t) + iv(z,t) so that the distributional boundary values of
υ( + iε, ί) as ε I 0 are the μ(ί). It will suffice to show that

+ is, s)) is continuous

and
T
/*

/ iε, s))ds - ^ (v( 4- iε, Γ)) = - ^ (v( + zε, 0)).
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Indeed letting ε j O w e infer that s —> Φ(v( , s)) is measurable and

T T

ί
Φ(v( + iε))ds T / Φ(v(; s))ds as ε | 0.

o o

On the other hand, since supp μ(s) C ϋΓ, expressing υ as a Poisson integral, we have
that

for 0 < 5 < T and fixed ε. Using this, together with

v( + iε, s) = P ε *

(where Pε is the Poisson kernel) one easily gets

> s

= / l\og\(x-y) + 2iε\dμ(s)(x)dμ(s)(y)

(v( + iε, s)) | \ (μ(s))

and hence also

as ε i 0.
The continuity of Φ(υ( + iε, s)) can be seen as follows

\υ(x + zε, 5) — υ(x + iε, ί)|

< \G(x 4- iε, s) - G(x 4- iε, ί)|

- (x + Z7/)/)-1 - ((X + VtY) -

Finally, to prove (*) we will use the differential equation for G(z,t). Note that for
fixed ε, we may view it as an equation on K. + iε since dG/dz = dG/dx. Thus for
fixed ε > 0, and 0 < s < Γ we have

<9G
-τrr(x + ιε, s)
at

J(α; + iε,

+ iε, K)~ιd{x + zε, K)~2

Hence, replacing ε by ε + <5, we have that

Σ(υ( + i(ε + δ), s)) = / / v(x + iε, s)v(ΐ/ + iε, 5) log |(x - y) + 2iδ\dx dy
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is differentiable as a function of s and

— —2 I I (uv)x(x + iε, s)v(y + iε, 5) Re log(x — y + 2iδ)dx dy
j j

f f
= 2 (uv) (x -j- iε, s)v(y •+• όε, s) Re(x — y -f 2iδ)~ιdx dy

J J

= 2 (uv) (x + iε, s)v(x + i(ε + 2δ))dx dy .

Thus ε + £), Γ) - Σ(v( + i(ε + (5), 0)
T

f f
— 2 (uv) (x + zε, s)u(x + i(ε + 2δ))dx ds

o

and there are no problems with passing to the limit δ I 0, so that
T

f f
Σ(v( -f zε, T)) — Σ"(Ϊ;( + zε, 0)) = 2 / / (IA V) (X + zε, 5

o

To conclude the proof it suffices to use a known fact about the Hubert transform,
which we record, for further use, as the next lemma. Q.E.D.

3.3. Lemma. Let v e L3(R) and let u = —Hvy where H denotes the Hilbert
transform. Then we have

r

u2v dx = / v3dx .

Proof. In view of the L3-continuity of the Hubert transform it suffices to prove the
lemma when v has compact support. Then G(z) = / v(x) (z — x)~ιdx has boundary

values —π(u + iυ) and since |G(£)| 5U 0 + \z\)~l ^ o r ^ e z — ε ' w e easily infer
f G3(x + zε)dx = 0. Since G is in the Hardy space H3, we may take boundary
values as ε [ 0 and get the desired relation. Q.E.D.

3.4. Remark. The scaling behavior of Σ and Φ is given by the formulae:

Φ(aX) = a~2Φ(X),

where a > 0.
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4. Monotonicity and Subordination

In this section we prove that generically free convolution leads to analytic subor-
dination among the Cauchy transforms of probability measures on !L This implies
monotonicity results for the Lp-norms of the densities of the measures. In particular
for p = 3 we get monotonicity for the free information and hence for the free entropy.

We will use analytic subordination in the upper half-plane H = {z £ C| Im ̂  > 0 } .
This is quite similar to the well-known result in the disk [7]. Though we have no
doubt that the result for the half-plane has been known for a long time, since we
could not find a suitable reference we record it as the next lemma.

4.1. Lemma. Let f e LP(R) (1 < p < oo) and let F(x + iy) = (Py * f)(x) be
the harmonic extension to M (Py the Poisson kernel). If ω :M —> Ή. is analytic and
lim \ω(z)\ = oo and lmω(z) > Im z then we have

Z > O O

+ iε)\\p>\\F(ω(

where ε > 0.

Proof. Let

be the harmonic extension of \F\P from R + is to M + iε. It is a bounded harmonic
function in M + iε. By Jensen's inequality E(x + iy) > \F(x + iy)\p if y > ε. Hence

\\F(ω( + iε)ψp < ί E(ω(x + iε))dx .

Since yPy | 1 as y | oc we have

oo

/

J
— oo

E(ω(x + iέ))dx = lim (y - ε)E(ω(iy))
y^+oo

y — ε
< lim - — Im ω(iy) E(ω(iy))

y-^+oo lmuj{zy) oo

< / E(x
J

< lim sup Im ω(iy) E(ω(iy)) < / E(x + iε)dx
y->+oo J

= | |F( + iε ) | | p . Q.E.D.

The next lemma is essentially a fact about the reciprocals of Cauchy-transforms
from [14] (with a simpler proof).

4.2. Lemma. Let F:M —>• M be analytic and assume limIm(F(^) - z) — 0. Then
\z\—>oo

we have Im F{z) > Im z for z 6 M. In particular if G is the Cauchy transform of a
compactly supported probability measure on M, then
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Proof. The minimum principle applied to lm((F(z) - z) in Ω = (M + is) Π {z G
M| |z| < R} yields

^) - z) > min ( - ε. inf \m{F{z) - z)\ for z G Ω

and we let R —> oo. Using the expansion of 1/G at oc it is clear it satisfies the
assumptions on F. Q.E.D.

4.3. Proposition. Let μΊ (j = 1,2J be compactly supported probability measures on
R and let μ3 — μ{ EB μ2. Then we have

G3(HL) C G1(M)ΠG2(M),

where G is the Cauchy-transform of μ3.

F/ΌO/. Let KJ.RJ be the functions that go with Gj (see Theorem 1.4) so that
R{ -f- i?2 = β 3 or equivalently i?j + K2 = K{ + R2 = i^3 in a neighborhood
of 0. Since Rj(G3(z)) = K^G^z)) - {l/Gj)(z) = z-{\/G3)(z) we infer that
Rj(G (z)), initially defined in a neighborhood of oo has an analytic continuation to
M and Im R^G^z)) < 0 for z G H by Lemma 4.2.

By D • = {z e M\Gf (z) = 0} we denote the critical points of G and by
Δj = GjiDj) the critical values and let A = Z\j U Z\2

 u Λv
Assume (" G G3(2;) for some z G M. There is a polygonal path 7: [0,1] —» C

such that 7(0) = 0, 7(1) = ζ, 7((0, 1)) C (-M)\Z\ and such that K3 has an analytic
continuation along 7([0,1)) with K3(7([0,1))) n R = 0 and lim K3(j(t)) = 2.

Let 0 < ε < 1 be maximal such that KJ (j = 1,2) have an analytic continuation
along 7([0, ε)). We shall prove ε = 1.

Indeed, assume ε < 1, since 7((0,1)) Π Δ = 0 analytic continuation would break
down only if liminvImJ^Λ'jit)) = 0 or if lim sup \K?(7(t))| = 00, for j = 1 or

j = 2. The second possibility is immediately discarded since it would imply

liminv |7(0| = liminv \G(KΛ^(ί)))\ = 0
ί—^ε L—+ε J J

which is obviously excluded.
On the other hand Rj{z) — K-(z) — z~ι (j — 1,2) will have analytic continuation

along 7((0, ε)) and since

7((0,ε)) = G3(K3(rf(φ,ε)))) C G/M)

we infer -RJ(7((0, ε))) C -M. Hence for 0 < t < ε,

Im Kx(7(0) = Im K3(η(t)) - Im R2{η{ί))

> lmK3(ry(t)) and similarly lmK2(^(t)) > lmK3(~/(t))

Thus for jf = 1,2 we have

liminvImiiΓ (7(£)) > liminvlmi;ίo(7(t)) > 0.
t—>ε J t—>ε

Hence K (j = 1,2) can be analytically continued along 7((0,1)) and

]immvlmK(^/(t)) > liminvl^^t)) > 0.
έ->l J t-*\
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Again limsup \KΛη(t))\ = oo is immediately excluded. If 7(1) ^ Δ, K has analytic
ί->i J J

continuation to 7(1). If 7(1) G Δ3 , since K3 may have a branch-point at 7(1) and 7
is polygonal we again infer lim K3 (7(0) exists and G M. Hence

ζ = 7(1) = lim GΛKΛΊ(t))) = G ( lim K (Ί(t))\ G G(M). Q.E.D.

4.4. Proposition. Let μ3, G^ satisfy the assumptions of A3 and let Δ3 be the set of

critical values ofGj. Assume Δx Π Δ2 = 0. Then there are analytic functions

ω3 :M -> M such that G3 = G3o ω3 (j = 1,2).

Moreover limlm(cj (z) — z) = 0.

/V00/. Clearly it will suffice to show there is ωx. Also, the additional condition
involving the imaginary part of ω, at 00 is immediate from the series expansions at
00.

Thus in a neighborhood of 00 the function ωx is defined by

ωx =G~ι oG3 = KχoK~ι

and we must prove that this can be analytically continued to ΉL By the preceding
proposition G3(H) C GX(Ή) and hence, it is easily seen that it will suffice to prove
the following:

if 7], 73 are paths on the Riemann sphere, 7j ((0,1]) C M\(Z\1 U Δ2), 7^(0) = 00,
7,(1) = z3 (j = 1,3) such that Gx{ηγ{t)) = G3(73(ί)) and if Gx{z) - Gx{zx) has a
zero of order p > 1 at zx then G3(z) — G3(z3) also has a zero of order p at z3.

To see that this is indeed so, remark that in view of the definition of G3

via K3, when we perform analytic continuation to define G3 at z3, the formula
K3(O = ^ ( O + K2(ζ) - ζ~\ where ζ is in a neighborhood of Co = G3(z3),
still holds, but in the sense of multivalued functions. The assumption Δx Γ) Δ2 = $
implies that if Kχ has a branching point of order p > 1 at ζ0 then ζ0 is not a branching
point for K2 and hence ζ0 is a branching point of order exactly p at ζ0 for K3, which
means G3{z) — G3{z3) has a zero of order p at z3. Q.E.D.

4.5. Remark. The proofs of 4.3 and 4.4 are easily extended to show that for μ3 as in
4.3 we have

Δx U Δ2 D Δ3 D (Δx U Δ2)\(ΔX Π Δ2).

4.6. Remark. In case μx is infinitely divisible with respect to free convolution, the
function Rx is defined in a neighborhood of (C\M)U{0} (Theorem 4.3 in [26]) which
implies that Gx is univalent. Hence in this case 4.4 follows immediately from 4.3.

The analytic subordination result in 4.4 has immediately consequences for the
densities of the measures.

4.7. Proposition. Let μx,μ2 be compactly supported probability measures on M and
let μ3 = μx EB μ2. Then, for Gj the Gauchy transforms of μ3- we have

I Im G3( + fe)||p < II Im Gj
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where j = 1,2 and p E ( l , oo]. In particular, if μx is Lebesgue absolutely continuous
with density υx G LP(M) ( p G ( l , oo]) then μ3 is also Lebesgue absolutely continuous
and its density v3 satisfies

INIP<IMP

Proof Clearly the results in the case when μ{ is Lebesgue absolutely continuous are

obtained immediately from the inequalities on M + iε, so it will suffice to prove those.

If μ l 5 μ 2 satisfy the assumptions of Proposition 4.4 then G3 — G- o ω- {j = 1,2)

and using Lemma 4.2 we find Imω3{z) > Imz. Also clear from the expansions at

oo is that lim |ι^(2:)| = oo. We apply 4.1 with ε replaced by ε/2 to / = Pει2 * GJ

(respectively Pε/2 * lmGj9 Pε/2 * R e G p so that F(z) = G3(z + iε/2) [respectively

ImG3(z + iε/2), ReG3(z + iε/2)] and we take ω(z) = ω^z + iε/2) - iε/2. Then

F(ω( -f iε/2)) = G3( + iε) (and respectively the imaginary part or real part) and

4.1 gives the desired inequalities.
To prove the inequalities in general we will approximate μ2 by a sequence μ2 n

(n G N) so that μ 1 ?μ 2 j T l satisfy the assumptions of 4.4. If we define μ2 via a
homothethy then G2n(z) — anG2{anz) for some real numbers an —> 1. Remark
that if λ is a critical value for G 2, then α n λ is a critical value for G 2 n and hence
since G{ has countably many critical values, we may choose an so that the critical
values of G{ and G 2 n form disjoint sets. Thus μ l 5 μ2 n , μ 3 j n = μx ffl μ2 n satisfy the
assumptions of 4.4. Note also that realizing μ l 5 μ 2 as distributions of a free pair of
selfadjoint random variables X, Y in a C*-probability space, μ3 is realized as the
distribution of X + a~ιY and hence if Im z > ε, we have

so that
lim | | G 3 j n ( + iε) - G 3 ( + iε)\\p = 0 . Q.E.D.

5. The Free Analogue of the Cramer-Rao Inequality

Replacing in the Cramer-Rao inequality the Fisher information measure by the free
information measure, we have a free analogue for that inequality, which we prove
here. We also show that equality occurs only for semi-circle laws.

5.1. Theorem. Let v > 0, v e Lι(R) Π L3(R) and assume also Jυdx = 1,

J x2υ dx < oo. Then with xQ = J xv dx we have

λ ( f \ 3
v3 dx) I / (x - Xn)2v dx ) > -—r.

J \J J 4π 2

\ Replacing υ by a translate, it will suffice to prove

f \ ί ΐ \

j v3 dx j ί / x2v dx j > 4τr2'

Moreover we may assume υ has compact support. To see this, let

- 1

vχndx
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where χn is the characteristic function of [—n, n] and remark that the inequality for
υ follows from those for the vn by letting n —» oo.

Remark further that among all rearrangements of v the minimum of f x2v dx is
attained when v is symmetric (v(x) = v(—x)) and non-increasing on the positive
half-axis (0 < xγ < x2 => v(xγ) > v(x2)). Since rearrangements leave Jv3dx
unchanged, we may assume v satisfies these two conditions. Hence the Fourier
transform ϋ(ξ) = ϋ(—ξ) is assumed real and symmetric.

With H denoting the Hubert transform, using Lemma 3.3 and the Schwarz-
inequality we have

/

Γ ί f if

υ3 dx / x2v dx = 3 (Hv)2v dx / x2v dx > 3 ί / v(Hv)x dx
J J J \ J

d

f ι f
/ υ(Hυ)xdx = / (v) (ξ)ϋ(ξ)signξdξ

J 2π J

2

On the other hand

dζ =
J 2π
o

= -?-. Q.E.D.
2π

5.2. Proposition. Equality holds in the inequality of Theorem 5.1 iff v is a semicircle
law, i.e.

ί 2 π " 1 α " 2 ( α 2 - (x - xo)
2)ι/2 if \x - xo\ < a

[0 if \x — xo\ > a

for some a > 0.

Proof. From the proof of the theorem we easily infer that in order to have equality
the following conditions must be satisfied:
a) υ is symmetric about x0, i.e. v(x) = υ(2x0 - x),
b) x0 < xx < x2 => v(x{) > v(x2),
c) X(x - xo)v1/2 = (Hυ)v1/2 for some λ.

In view of a) and b) the set on which υ > 0 is an interval (possibly infinite)
centered at xQ. Thus, for some a G (0, oo] we will have

\x — xo\ < a => υ(x) > 0,

\x — xo\ > a => υ(x) = 0,

x ~ x0 = Hv(x) almost everywhere on (x0 — a,x0 -\- a).

It is easy to check that the semicircle laws satisfy these conditions. The last equality
is a singular integral equation for which solution formulae are known (see [16, Chap.
11 and the references therein]). However, for our purposes here we only need to
check uniqueness of a solution we know in advance and this can be done directly. It
is clear by examining Fourier transforms that there is no solution if a — oo so we will
assume 0 < a < oo. Further to simplify notations a translation on M will immediately
reduce the discussion to the case x0 — 0. Denoting by P the projection of L2(M) onto
L2((-a,a)) we will have

(PHυ) (x) = Xx
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a.e. on (—α, a). Let υ0 be the semicircle law which satisfies this last equality with λ0

and assume (i?1? λ^ also satisfies the equality. Then with υ2 = A^Q — XQV^ we have

PHv2 = 0

or equivalently
(Hv2)υ2 = 0.

Since υ2 G L3 we infer Hv2 G L3 and hence υ2 + ii7v2 £ ^ 3 ( m e Hardy space)
and therefore F = (υ2 + iHv2)

2 £ H3/2 so that 0 = 2υ2Hv2 = imF and
v\ - {Hv2f = Re F. Being in E3I2 we have Im F = 0 => Re F = 0 so that
υ | - (Hv2)

2 — 0 which implies v2 = 0 since v2(Hv2) = 0. Q.E.D.

The following is an immediate corollary of the result of this section.

5 . 3 . C o r o l l a r y . Let (A, φ) be a C*-probability space and let a-,b- E A(j — 1,2) be

random variables such that α̂  = α*, bJ — 6*, ̂ (α^) = ^(6^) = 0, φ(a2) = y?(6̂ ) απ<i

(/9(α1α2) = φζbγbj) — 0. Assume moreover the α̂  α^J ^ /zαve semicircle distributions

and {bλ,b2} is free. Then: Φ{ax + α2) > Φ(bγ + 62).

6. Monotonicity of Σ and Riesz Energies

Using the subordination results in Sect. 4 we derive here monotonicity results for
the free entropy (i.e. the logarithmic energy) and the energies associated with Riesz
potentials.

For a probability measure υ on R we consider the energies associated with the
Riesz potentials [12] for 0 < a < 2,

I α M = / ί \x-y\a~2dv{x)dv{y),

as well as the logarithmic energy

r t

\og\x - y\dv(x)dv(y),

so that I2[v] = —Σ(is). If v has density / we also write Ia[f]. The next lemma (like
Lemma 4.1 from which it is derived), is unlikely to be new.

6.1. Lemma. Let μ be a probability measure on R and let F(x + iy) = (Py * μ) (x) be
the harmonic function on M defined by the Poisson integral. Ifω:M —->• M is analytic
and lim \ω(z)\ = cχo, lmω(z) > Imz, then we have

z—> oo

Ia([F(. + is)]) > Ia([F(ω(. + iε))])

forO<a<2,ε>0.

Proof Let

so that

Ioav];δ) = cδ f(Pδ*

for some constant c.

I0(M, δ) = / / dv{x)dv{y) ((x - y)2 + 62)~l
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Assume 0 < a < 1 and consider the function I m ^ " 1 expressed as a Poisson
integral in HI + iβ for some β > 0 [we choose the branch of za~ι which is real on
(0, oo)]. Letting β —» 0, we obtain

/ π x - 1 f χεa~2ε 1
cί 2cos — (α — 1) I x~ι / —̂  ^ dε = — xa~ι = xα~2 .

V ^ / j # + £ x
o

Note that this equality may be continued analytically in a so as to establish its validity
for 0 < a < 2.

Using this identity to express Ia by means of the /0([ ]; δ) the proof of the lemma
reduces to showing that

. + iε))]; δ).

We have

/0([F( + is)]; δ) = \\Pδ/2 * F(. H- iε)\\l = | |F( + i(ε +

/0([F(α;( + ίε))]; (5) = | | P 6 / 2 * F(ω( + iε)) | | | = ||F(α;( + i

and the inequality is a consequence of Lemma 4.1. Q.E.D.

6.2. Lemma. Lei μ, F, ω satisfy the assumptions of'6.1 α^J assume moreover

lim ω(z)/z = 1.

/2([F( + zε)]) > /2([F(α;( + zε))]).

Proof This follows from 6.1, the equality

for probability measures on R with L°°-density, together with the remark that the
assumptions on ω imply that

F(ω(x + iε))dx = 1. Q.E.D.

6.3. Proposition. Let μvμ2 be compactly supported probability measures on R and
let μ3 = μλ EB μ2. Let further μfo) — Pt * μ3 so that μ3φ) — μ3 . Then w

for j = 1,2, 0 < t < oo, αrcd 0 < α < 2 αrad also for a = 2 and t — 0. In particular

Σ(μ3(t)) > Σ(μ3(f)) for 0 < t < oo and j = 1,2.

Proof The assertion about Σ1 is just the case α = 2 of the first assertion. Note further
that it suffices to prove the first assertion for t > 0. Indeed if £ J, 0 we have

- log \x + 2it\ t - log |x|

and hence
I2(μk(t))]I2(μk)

for jfc= 1,2,3 .
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The proof then proceeds along the same lines as the proof of Proposition 4.7: first
one deals with the case when the critical values of the Cauchy transforms of μ l 5 μ 2

are disjoint and then approximates. We leave the details to the reader. Q.E.D.

We are now able to strengthen the results of Sect. 3.

6.4. Proposition. Let X, Y be a free pair of random variables such that the distribution
of X extends to a compactly supported measure on R while Y is a (0,1)-semicircular
random variable. Then
a) [0, oo) 3 s —> Σ{X -f y/sY) G [—oo, co) is a concave, continuous, increasing

function.
b) For 0 < s < 1 we have

s

Σ{yfsX + Λ/1 - sY) - Σ(Y) = / V 1 (± - Φ(VtX + A/1 -tY^dt.

o

Proof a) In the next section we will prove Σ(Xι +tX2) is upper semicontinuous as a
function of t if XXlX2 are free (and have probability measures on R as distributions).
This together with the fact that

Σ(X + V7+ΊY) = Σ(X + V~sY + y/εYJ > Σ(X + y/sY)J 6.3 ,

where Yλ is (0, l)-semicircular and free w.r.t. (X,Y) implies the function s —»
Σ(X + \/sY) is increasing and continuous to the right (and hence continuous at
0). On the other hand by 4.7,

Φ(X = Φ(X < Φ(X

so that the concavity follows from 3.2. To get continuity for s > 0, we may use again
3.2 and the fact that by 4.7,

s~[Φ(Y)Φ(X

and φ(Y) < oo.
b) We have

\ log 5 .

Combining 3.2 and 4.7 we have

- Σ(X

< s~ιΦ(X),

where we used the fact that Φ(X + y/sY) is right continuous, being decreasing and
lower semicontinuous by 7.1. Thus Φ(X + y/sY) is the derivative to the right of
Σ(X + y/sY), so that Γ(X + \/s~l - IF) is left differentiable for 0 < s < 1 and we
easily get the integral formula in b), after remarking that since Σ(y/sX-{-y/l — sY) —
\ log(l s) +

because of 7.1 and 6.3.

+ Y") we have lim Σ{yβX + A / Γ ^
s ^ 0

Q.E.D.

6.5 Remark. In the context of the preceding proposition we have
1

> — oc
if s > 0, since Φ(X +
\Σ(X + y/sY)\ < C for all
< M and \s
v —* (log I

< 5 Φ(Y). Even more, this gives a uniform bound
with distribution supported in an interval of diameter

+ \s~ι\ < M. Indeed if C(L) is the norm of the operator L3([0, L]) 3
* v)\\0L) e L3/2([0,L]), then \Σ(μ)\ < (Φ(μ))2/3C(diamsuppμ).
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7. Free Entropy in W* -Probability Spaces

We now move away from the analytic function machinery used in the previous sections
to the operator algebra context. This is the natural context for semicontinuity properties
and for looking at quantities like Σ(X{,..., Xn) which generalize Σ(X).

Throughout we consider (*J&,τ) a VK*-probability space, where yM is a von
Neumann algebra and r is a faithful normal state. We will call (^#, r) "tracial"
if r is a trace-state (and hence Λί finite).

Working with unbounded operators affiliated with ,J&, if X = X* G yM the
definition of Σ(X) can be written:

Σ(X) = (τ®τ) (log |X <g> J - 7 <g> X I) = i (r <g> r) (log(X <g> 7 - 7 <8> X) 2 ) ,

and we may define more generally

, . . . , Xn) = \{τ 0 T) {\og{(Xx 0 / - / ^ I 1 ) 2 + . . . + ( I n ® / - / 0 Xn)
2))

where the right hand side is the trace of an element in yM ® ^ # o p , ^ o p denoting
the opposite von Neuman algebra (if n — 1 it doesn't matter whether the formula for
Σ(X) is w.r.t. ^S 0 ^M or ^ # 0 ^ # o p ) .

Since Σ(X) can be viewed as a measure of "how much resistance there is to
almost commutation with X," the quantity Σ(Xγ,... ,X n ) similarly measures "how
much resistance there is to almost commutation with X l 5 . . . , Xn"

It will be useful to use the notations τn = r (g) . . . (g) r (n-times), Δ(X) =
X (g> / - / <g> X and εfc(X) = 7(8>...(8>X(8>7(8)...7 (where X is in kth position and
the tensor product being n-fold is specified in the context).

7.1. Proposition. In the W*-probability space (^fά,τ) we have:
a) If δ [Q then

\r2(\og(Δ(X)2 + ε2)) I Σ(X).

b) Σ(X) is strongly upper semi-continuous on bounded sets, i.e. if Xn = X* and

Xn—>X, then

limsupI7(Xn)< Σ(X).
n—> oo

c) Let

r

(, z) = (δ/π)3 / (δ2 + (t — x)2)~ι(δ2 + it — y)2)~ι(δ2 + (t — z)2)~ιdt.

, ε2(X), ε3(X))) T Φ(X)

d) Φ(X) w strongly lower semicontinuous on bounded sets, i.e. if Xn = X* and

Xn-^X then

liminvΦ(Xn) > Φ(X).
n-+oo

Proof, b) and d) are immediate consequences of a) and respectively c) and the fact
that continuous functional calculus is strongly continuous on bounded sets. Also a) is
immediate from functional calculus.
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To prove d), let v be the measure obtained by applying τ to the spectral measure
of X. Then the quantity which has to be shown to increase to Φ(X) is just

((P£*v)(t)γdt

which is a fact we have already used. Q.E.D.

The inequalities which appear in the study of the usual entropy are also involved
in deriving inequalities for Σ(XX,..., Xn).

7.2. Proposition. Let (^M,τ) be a tracial W*-probability space and Xj\Yk self-

adjoint random-variables in <yM. Then

(a) Σ(XX,...,Xn)> Σ((X2 + Xl)ι'\X3,...,Xn).

( b ) eΣ(Xu...,Xn,Yu...,Ym) > eΣ(Xt,...,Xn) + eΣ(Yι,...χm) _

(c) Σ(XV. .. , X J > logn + n-\Σ{X{) + ... + Σ(XJ).

Proof, a) The Wigner-Yanase-Dyson-Lieb concavity [13,22] implies the concavity of
A -> A1 <g> Ax~l (A>0,te [0,1]) as an .M ® .J£?v valued map. The case t = 1/2
(already proved by Wigner and Yanase) gives in particular:

We have:

so that

Al/2 Θ Al/2 + BX/2 ^ βl/2 <

/\/γ \2 i /\/γ \2 / xr2 I
LλyΛγ) -\- ΔΛyΛ2) ~~ vAj -r

CA + B ) 1 / 2 ^

xl)®i -i$

> -2( |X 1 | 0 |X 1 + X2

> -2(X2 + X 2 ) 1 / 2 0 (X

ZHX^ + ZAPQ 2^

0|X2|)

? + x 2

2 ) 1 / 2 ,

Λ// γ^2 î  v2\

$(A + B)ι/2

$ (X 2 + X 2 )

1 / 2 ) 2 .

The inequality follows from

0 < A < B => τ(log A) < r ( logβ) ,

which is well-known.

b) Clearly this inequality will follow if we show that for A > 0, B > 0 e

rilo

er(iogΛ) _j_ er(iogβ) np0 s h o w m j s inequality it suffices to prove it in the case A > ε/,
B > εl, ε > 0. This in turn will follow from the following inequality for Λ > 0:

0 < — (eτ(log(A+λB)) _ eτ(logA) _ χeτ(\ogB)^

~ dλ

which is
0 < τ{{A + XBy1B)eτilog(Λ+χB)) - e r ( l o g β ) .

Putting X = - log(A + XB) + τ(log(A + AS)) and Y = logB - τ(logB) the last
inequality is equivalent to

τ(exeγ) > erm+τ<V = 1 ,

which is an immediate consequence of the Golden-Thompson inequality and Jensen's
inequality.
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c) This is an immediate consequence of the concavity of τ(log A). Q.E.D.

7.3. Remark. In finite-dimensional algebras, Σ(X) — — oo for all X. However there
is a related quantity, which may play the role of free entropy. If X = X* is a n x n
matrix and λ 1 ? . . . , λ n are its eigenvalues, then it is natural to define a free entropy
by

53 log(λp - \Ϋ .
\<p<q<n

8. Monotonicity and Orthogonal Subalgebras

The weakest form of independence of two subalgebras ^ , ^S2 in a non-commutative
probability space (./ ,̂ (/?), is the requirement φ(axa2) = φ(ax)φ(a2) for α G A . In
the tracial W* -context, these are the orthogonal subalgebras of [18].

The results of the preceding sections show that Σ(X + Y) > Σ(X), I(X + Y) <
I(X) if X = X* e ~&u Y = Y* G ̂ 2 and Jix,ls2 are free. In this section we
look at what happens more generally if <AX, L/^2

 a r e on^y orthogonal. We remark that
monotonicity holds when freeness is replaced by independence. We also provide some
further "infinitesimal" evidence in favour of a general monotonicity result for Σ.

8.1. Example. If (J%, τ) is a W-probability space, X = X* G «^C Y = Y* G J%,
[X, Y] = 0 and the algebras generated by X and Y are orthognal, then Σ(X + Y) >
Σ(X) and Φ(X + Y)< Φ(X).

The assertions are equivalent to Σ(μx * μ2) > Σ(μx) and Φ(μx * μ2) < Φ(μx) for
compactly supported probability measures on $L The inequality for Φ is immediate
from

In turn the inequality for Σ follows easily from the similar fact for the Riesz
energies. The Riesz-kernels are positive definite for 1 < a < 2 (the Fourier

transform of | X | λ ( - l < λ < 0) being - 2 s i n ^ Γ ( λ + 1) |CΓΛ~ 1 [10]). Hence

Ia[μι * μ2] < ^[^2] i s J u s t m a t convolution by μx is contractive in the /^-norm,
which is immediate expressing μλ as a weak limit of convex combinations of Dirac-
measures and using the lower semicontinuity of Ia [12]. By differentiation at a — 2
we get the inequality for Σ in case μ2 has a smooth density. The general case is
then obtained via replacing μ2 by μ2 * Pε and approximating μ2 * Pε by compactly
supported measures with smooth density.

82. Remark. Let O f , τ ) be a tracial W* -probability space and let 1 G ̂ , 1 G J&
be orthogonal W*-subalgebras. Let further X = X* G ̂ S, Y = F * G B and

Fδ(ε) = r2(\og((Δ(X + εY)f + δ2)).

Then we have

F'sΦ) > 2τ2(Δ(Y)Δ(X)2(Δ(X)2 + δzΓιΔ(Y)(Δ(X)2 + δ2)) > 0.

Indeed we have:

F^(ε) = τ2((Δ(X + εY)2 + 82)-\Δ{X)Δ(Y) + Δ(Y)Δ(X) + 2εΔ(Y)2).
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The orthogonality of ,ŷ , B implies the orthogonality of j& ® ,S, B ® B. Hence we
have

F'6(0) = 2τ2((Δ(X)2 + 62Γι Δ(X)Δ(Y)) = 0.

Further:

F6"(0) = τ2((Δ(X)2 + δ2Γι(Δ(X)Δ(Y) + Δ(Y)Δ(X))

x (Δ(X)2 + δ2yι(Δ(Y)Δ(X) + Δ(X)Δ(Y)))

= 2τ2((Δ(X)2 + δ2ΓιΔ(X)Δ(Y) ((Δ(X)2 + δ2)'ιΔ(X))Δ(Y))

+ 2τ2(Δ(Y)Δ(X)2(Δ(X)2 + δ2rxΔ{Y)(Δ(Xf + δ2Γι)

+ 2τ2(Δ(X)2 + δ2Γ[)τ2(Δ(Y)2)

> -2\\(Δ(X)2 + δ2yxΔ(X)Δ(Y)\\2

+ Rδ+ 2τ2((Δ(X)2 + δ2yι)τ2(Δ(Y)2),

where Rδ = 2τ2(Δ(Y)Δ(X)2(Δ(X)2 + δ2)~λΔ{Y) {Δ{X)2 + δ2)'1). Since

\\(Δ(X)2 + δ2ΓιΔ(X)Δ(Y)\\2 = τ2(((Δ(X)2 + δ2r{Δ(X))2(Δ{Y))2)

= τ2((Δ(X)(Δ(Xf + δ2Γι)2)τ2((Δ(Y)f)

we have

<τ2((Δ(X)2+δ2Γι)τ2(Δ(Y)2),

> Rδ •

Also Rb > 0 being the trace of a product of positive operators.
One further remark: if the spectral measure of X has no atoms, then lim Rδ =

r2(Δ(Xr2)τ2(Δ(Y)2). δ^°
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