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Abstract. Optimal hypercontractivity bounds for the fermion oscillator semigroup
are obtained. These are the fermion analogs of the optimal hypercontractivity
bounds for the boson oscillator semigroup obtained by Nelson. In the process,
several results of independent interest in the theory of non-commutative integra-
tion are established.

I. Introduction

Observables pertaining to the configuration of a quantum system with n degrees of
freedom are operators Qu Q2> -> Qn which, depending on the system, may or
may not commute. Our main concern is with the case in which the configuration
variables are amplitudes of certain field modes.

For boson fields, these configuration observables do commute, and the state
space Jf can be taken as the space of all complex square integrable functions on
their joint spectrum. This is the Schrodinger g-space representation, and the fact
that in it the state space is a function space, and not just an abstract Hubert space,
is very helpful in the analysis of such systems. As one example, it sometimes turns
out that physically interesting operators preserve the cone of positive functions,
and this opens the way to the application of the Perron-Frobenius theorem in the
study of ground states of such systems.

For fermion fields, the configuration observables do not commute, and this
simple g-space representation is not available. However, the non-commutative
integration theory of Irving Segal [Se53] permits the construction of a suitable
substitute, and in fact it was created with such a purpose in view. This approach to
the study of fermion systems has been extensively developed by Gross [Gr72] who,
among other things, proved a version of the Perron-Frobenius theorem adapted to
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the setting and applied it to prove existence and uniqueness of ground states for
certain fermion quantum field models.

The main estimate which enabled Gross to apply his Perron-Frobenius type
theorem to fermion fields was a hypercontractivity estimate for the fermion
oscillator semigroup. Corresponding hypercontractivity estimates for boson fields
had been introduced earlier by Nelson [Ne66] who later obtained the optimal
bound for bosons [Ne73].

Our main result, Theorem 4 below, is the corresponding optimal hypercontrac-
tivity bound for fermions. Before stating this theorem, we describe its mathematical
and physical contexts in some detail because it cannot even be formulated naturally
in the conventional Fock space language. (Of course its perturbation theoretic
consequences can be expressed quite naturally in the usual language.)

The state space for a system of n fermion degrees of freedom is conventionally
realized as the Fock space

The basic "free Hamiltonian" on this space is the fermion number operator

Ho= Σ c*cj> (1-2)
7 = 1

where c-} and c* are the usual fermion annihilation and creation operators acting on
#". The fermion oscillator semigroup is the semigroup of operators exp( — tH0)
that it generates.

For n boson degrees of freedom, the state space may be realized either as the
boson Fock space, or as L2(R", (2π)~M / 2e~χ 2 1 2 dx). The natural isomorphism
between these spaces was pointed out by Segal, and the latter may be regarded as
the Schrόdinger g-space realization. The boson oscillator semigroup is the semig-
roup generated by the boson number operator. Though we have just defined it in
Fock space terms, it may also be considered as an operator semigroup on L2 (]RM,
(2π)~n/2e~χ2/2dx). In this setting, it is hypercontractive; i.e., for any finite p greater
than 2, there is tp sufficiently large, for which the semigroup is a contraction from
L2(R", (2πyn/2e-χ2l2dx) to Z/(R", (2π)"" / 2 e ' χ 2 1 2 dx) for all t ^ tp. Since tp is
independent of n, this result proved useful in treating perturbation theoretic
problems for boson fields. This hypercontractivity inequality cannot be formulated
naturally in the Fock space setting because no natural notion of "Z/" can be
introduced there. The i7(R", (2π)~w/2£Γ*2/2d:x) setting is essential.

In order to pass from the Fock space description for a system of n fermion
degrees of freedom to a non-commutative analog of the Schrodinger g-space
description (in which we have non-commutative analogs of Lp norms), we intro-
duce configuration observables Qj = c} + c*, and let ^(3) be the algebra with unit
which they generate. This is an operator algebra on the 2/1-dimensional Hubert
space J*\ As we explain in Sect. II, it is a Clifford algebra naturally associated to C"
with its usual inner product.

What follows here shall be explained in more detail in Sects. II-IV, but the key
fact for our present considerations is that the 2" distinct monomials in the Qj are
a basis for %>(£) as a vector space. Thus, any A in ζ6{Ά) can be uniquely written as

4 = a/ + £ a i Q j + Σ *].kQ]Qk +••• + « ! . . . . , , . Gi . . . β » (1.3)
j j<k
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It is not hard to see that any vector v in J^ can be written as v = ΛΩ for some
unique i e ^ ( i ) acting on the vacuum Ω. The operator exp( — tH0) acts on such
vectors υ. Thus, exp( — tH0)v = 5ί2 for some unique B e # ( J ) (which depends on
ί and A, of course). The map Pt\Av-*B is clearly linear, and a simple calculation
(elucidated in Sect. IV) shows that

P t A = * I + e - t Σ ( x j Q j + e - 2 t £ < * J t k Q j Q k + ••• + e " M ί α l p . . . , „ β x . . . Q n .

(1.4)

Instead of considering Fock space, J% and the operator exp( — tH0), Segal's
idea is to consider ^(β) and the linear operator Pt that acts on ^(Ά) as above.
Following Segal, we can construct Lp norms on # ( J ) , the most important case
being p = 2, in terms of which one can do quantum mechanics without mentioning
Fock space.

To construct the norms, define the linear functional τ:#(«2) -* (C by

τ(A) = (Ω,AΩ)^. (1.5)

It turns out, as we explain in Sect. Ill that τ(A) is, for A e ^{Ά\ nothing other than
the usual normalized trace on 3F applied to A.

The basic ingredients of a non-commutative integration theory are an algebra
of operators such as %l(Ά\ and a linear functional on it such as τ. Norms analogous
to the Lp norms of commutative integration theory can now be introduced by

\\A\\p = {τ{A*Aγ/2)llp for 1 ^ p < oo

Mil a, denotes the operator norm of A Let <βp(Ά) denote <g(Ά) equipped with the
corresponding norm.

Having expanded our horizons beyond Hubert space, we can ask for bounds
between | |Pίi4| | g and | |i4| |pfor different q, p and t. Our main result, Theorem 4, is
the optimal fermion hypercontractivity inequality; i.e. for all 1 < p ^ q < oo and
all A in <^(J),

\\PtA\\q^\\A\\p when e " 2 ί ^ ^ j , (1.6)

and the t saturating the inequality on the right is the smallest for which the
inequality on the left always holds. We prove this for n degrees of freedom with n an
arbitrary finite integer. Since the estimate is independent of n, a theorem of Gross
[Gr72] implies that it holds as well with infinitely many degrees of freedom.

The result (1.6) was conjectured by Gross [Gr75] who proved it [Gr72] in the
special case p = 2, q = 4. The cases p = 2, q = 2m, where m is an integer were
proved by Lindsay and Meyer [LiMe] following earlier work by Lindsay [Lin] on
the case p = 2, q = 2m. Since Pt is self adjoint, duality yields a corresponding family
of results in which q = 2. Until now all other cases (except when n = 1 or 2) had
remained open. The optimal relation between ί, p and q found here for fermion
hypercontractivity is the same as that found by Nelson [Ne73] for boson hyper-
contractivity.

By now there are many proofs of Nelson's inequality. Neveu's elegant proof
[Nev], like Nelson's original proof, is based on probabilistic methods. Proofs based
on geometric methods have been given by Carlen and Loss [CL90] and by Lieb
[Li90] who considers generalizations in which the Mehler kernel (the kernel for the
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boson oscillator semigroup) is replaced by an arbitrary Gaussian kernel. More
references can be found in the bibliography to Gross's article [Gr89, Gr92].
However, none of the existing approaches to the boson problem has been found to
solve the fermion problem. See also [Far].

As a corollary to the optimal fermion hypercontractivity inequality, we obtain
the optimal fermion logarithmic Sobolev inequality:

τ(\A\2\n\A\2)-(\\A\\2

2\n\\A\\2

2)S2τ(A*H0A), (1.7)

where \A\ = (A*A)1/2.
This inequality was conjectured by Gross, and proved by him in a weaker form

with the constant on the right increased by a factor of In 3. In studying perturba-
tions of Ho by multiplication operators V9 this inequality plays the same role as
does the usual Sobolev inequality in studying perturbations of — £Δ by multiplica-
tion operators V on L2(IR", dnx) [Fe69]. (The multiplication operator associated to
a self-adjoint element V of # ( J ) is defined to be the average of left and right
multiplication by V, and is denoted here by the same symbol V.) Again, in the
standard Fock space setting, there is no natural way to formulate such an a-priori
regularity inequality, or even to introduce the notion of a multiplication operator.

This paper is organized as follows: In Sect. II we study the structure oϊ<€(β) for
finite n. It is actually simpler, as well as technically advantageous, to consider it as
a subalgebra of the algebra ^(Jf) generated by the identity, the configuration
observables Qγ, . . . , Qn and their conjugate momenta Pί9 . . .,Pn. Since they both
turn out to be certain Clifford algebras, their structure has been worked out long
ago with the representation theory of the orthogonal groups. Thus, this section
contains no new result but simply introduces notation and prepares the way for
what follows. Of particular use are an explicit spin-chain representation of the
operator algebra #(JΓ), and the Jordan-Wigner transform identifying it with the
algebra generated by n "hard core bosons."

Section III concerns properties of the spaces ^p( X) and their norms. The main
result here is an optimal uniform convexity inequality for ^p(Jf), 1 < p ^ 2, which
is joint work with Keith Ball. We need only a special case of this inequality here,
and a proof is provided in an appendix for the reader's convenience.

Section IV introduces a convenient expression for Pt in terms of the conditional
expectation πM oϊ^(Jf) with respect to #(ϋ). The main result in this section is an
inequality for conditional expectations which enables us to prove that

sup {II Pf>4 | |q: M ||p = 1} = sup { | |P t ^ ||β : ^ ^ 0 and \\A\\P=1}.

Thus, to establish (1.6) in general, we need only consider positive A.
In Sect. V we establish the optimal fermion hypercontractivity bounds and the

corresponding optimal fermion logarithmic Sobolev inequality. This is done in
several steps. First, using results collected in Sects. II and III we establish that (1.7)
holds for 1 < p ^ 2 and q = 2. At t = 0 this is an equality; differentiating it there
yields the logarithmic Sobolev inequality (1.7). Gross showed that (1.6) would
follow from (1.7), if it were true (as we show here), for all self adjoint A. His result
rests on a deep inequality he established for positive operators. Since it is not in
general true that \\PtA \\q ̂  | |P f |A | \\q, as is trivially true in the commutative case,
Gross's result does not allow us to conclude (1.6) for general (i.e. non-self adjoint)
A from (1.7). The results of the Sect. IV do, however, allow us to draw this
conclusion.



Optimal Hypercontractivity for Fermi Fields 31

Finally, in Sect. VI we show that the same hypercontractivity relation (1.6)
holds for a mixed system of bosons and fermions.

Non-commutative probability theory has grown into a substantial branch of
analysis with a number of physical applications. The mathematical theory is
reviewed and developed in [Me85] and [Me86], while other sorts of physical
applications, besides those discussed here, are treated in [Da76] and [HuPa] for
example.

It is a pleasure to thank Leonard Gross for discussing his results and
conjectures with us, and for encouraging us to take up the latter. We are indebted
to Keith Ball for his collaboration on the subject of convexity inequalities that
led to Theorem 1 [BCL], which is one of the key ingredients in the present work.
Thanks are also due to G.-F. DelΓAntonio, A. Jaffe and A. Wightman for useful
discussions.

II. Fermions and the Clifford Algebra

We begin by recalling for later use some well known facts about fermions.
The fundamental observables for a system of n fermion degrees of freedom are

configuration operators QUQ2, • , Qn together with their conjugate momenta
operators Pu P2, . , Pn all acting as operators on a complex Hubert space Jtf* and
satisfying the canonical anticommutation relations:

QjQk + QkQj = 2δJk9 PjPk + PkPj = 2δjk, PjQk + QkPj = 0. (2.1)

We denote the complex algebra generated by the identity and the configuration
observables by ^ ( ϋ ) , and the complex algebra generated by the identity, the
configuration observables and the momentum observables all together by <£(Jf).
%>(£) is the object of primary interest; but many aspects of its structure are most
readily seen within the larger algebra # ( j f ) .

This algebra can be concretely represented as the algebra of observables for
a spin^-chain as follows. We define the matrices

_ Γ l OΊ _ Γ l OΊ _ Γ O Π _ Γ 0 ί

|O 1 ' I 0 - 1 ' 1 0 ' ~~ - i 0
L_ J L -1 L _l L

Let 2tf denote the w-fold tensor product of C 2 with itself:

and on 2t? define the operators

Qj = U® U®Q®I® ® J , Pj=U®'" U®P®I® ® J , (2.2)

where the Q and the P occur in the j t h places.
The operators Qu . . . , gM, P l 5 . . . , Pn just defined are easily seen to satisfy

the canonical anticommutation relations. Of great use in studying the algebra
#(JΓ) that they generate is the fact that it is also the algebra generated by n "hard
core boson" degrees of freedom. More explicitly, put

Qj = I® / ® β ® J® ®/, Pj = I® - - - I®P®I® ®J, (2.3)
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and call the algebra generated by the ̂ operators Ql9 . . . , Qn, Pu . . . , Pn the hard
core boson algebra, and denote it by Φ(Jί). To see that the two algebras coincide,
put

fc-l

Uj = I® - Ί(g)U®I® - ®I and Vk=\[Uj. (2.4)
j = i

Then since PjQj = PjQj = iUj, each Vk belongs to both the hard core boson
algebra and ^(J f) . Moreover

Qk=VkQk and Pk=VkPk (2.5)

with the inverse relation given as well by

Qk = VkQk and Pk = VkPk . (2.6)

Thus, βfc, Pk are in # ( j f ) , and Qk,Pk are in
What we call the hard core boson algebra was initially introduced by Jordan

and Klein [JoKl] as a first attempt to implement the Pauli exclusion principle
mathematically. The transformation of observables (2.6) was discovered by Jordan
and Wigner [JoWi] and used by them to write the algebraic relations characteriz-
ing the algebra in the familiar covariant form (2.1); today it is known as the
Jordan-Wigner transform. It has been used many times since - for example, in
a solution of the two dimensional Ising model by Schultz, Mattis and Lieb, whose
paper [SML] can be consulted for references to other applications. It is also the
key to Brauer and WeyΓs treatment [BrWe] of the Clifford algebra on which the
exposition in the rest of this section is largely based. Following them, we now show
that # ( j f ) is the full matrix algebra on Jf.

First, we introduce a basis in 3f. Let

and

be the standard basis of C 2 . For each j = 1, . . . , n, let σ, be either 1 or — 1. Then
the unit vectors

provide a natural orthonormal basis for jf.
Next introduce the fermion creation and annihilation operators

cj = i{Qj — iPj) a n d Cj = \(Qj + iPj) and their hard core boson analogs
cf = i (β j ~ iPj) and t5 = Mj + iPj). Now put L(σu . . . , σn) = Un

j=1 Bj9 where
Bj = Cj if ϋj = 1 and £,- = Cjdf if σ7- = - 1. Then L(σu . . . ,σn) eσι ? . . . , σn = Ω
where

Ω =

(2.7)
n times

is a d i s t i n g u i s h e d u n i t v e c t o r in Jίf cal led t h e ground state. Also, L(σu . . . , σn)
a n n i h i l a t e s all t h e o t h e r bas is vectors . M o r e o v e r , L * ( σ 1 ? . . . 5 j B ) Ω = β f f l ffn.
T h u s ,

L*(τl9 . . . , τn)L(σl9 . . . , σ π ) e σ i > . . . , σ n = e τ i , . . . , t n ,



Optimal Hypercontractivity for Fermi Fields 33

and this operator annihilates all other basis vectors. Manifestly this operator
belongs to <$(X)9 and hence to <€( X) as well, and the 2" operators of this kind form
a basis for the full matrix algebra on Jf.

This concrete description of ̂ (X) in terms of spin-chain observables is the
most useful for many purposes. Still, it is also useful to have a characterization of
^(X) which is less dependent on coordinates; i.e. on the choice of fermi configura-
tion observables Qu . . . , Qn.

Toward this end, consider the standard n-dimensional Hubert space <£n equip-
ped with its standard inner product ( , •) and complex conjugation. Let X denote
<£" considered as a real 2n-dimensional Hubert space equipped with the inner
product

Then complex conjugation on C π induces an involutory orthogonal transforma-
tion J on X. Let k and & respectively denote the eigenspaces of J corresponding
to the eigenvalues + 1 and — 1. The bilinear form on X given by 3(x,)0 is
symplectic so that X is naturally endowed with the structure possessed by the
classical phase space of a system of n linear degrees of freedom. J is called the
configuration space, & the momentum space, and the complex conjugation J is
usually identified with time reversal.

The Clifford algebra ^ ( J f ) is characterized up to automorphism as the algebra
with unit / such that:

(i) There is a linear imbedding / : Jf -• #(jf), and / ( J f ) generates
(ii) For all x, y e X,

To make contact with our previous concrete description, let {qί9 . . . , qn) be an
orthonormal basis of C" consisting of purely real vectors. For each j , let Pj = iq^
Evidently J is spanned by {qί9 . . . , qn) and & is spanned by {pί9 . . . , pn}. Any
xe X can then be written as x = Σ " = i ξjqj + Σ i = i VjPj- Using the notation
introduced above, put / : X -> <%(X) by

/(*)= Σ ZjQj+ ΣijPj

Let {xί9 . . . , x2n) be any orthonormal basis oϊ^(X). Then the monomials

together with / form a basis for the algebra. It is easy to see that the product of any
two such monomials is a third. Though the multiplication rule can be simply
expressed in terms of certain contraction rules, its precise form is not useful to us
here. What is useful to observe is that since the right side of (2.8) is invariant under
orthogonal transformations of X, the multiplication law of these monomials does
not depend on the choice of the orthonormal basis. For this reason, any orthogonal
transformation R of X induces an automorphism oίc€{X) which we shall also
denote by R. Indeed, with R: <g(X) -+ <g(X) defined by

R is evidently invertible and by the remarks made just above one easily sees that for
all A, Be^(X\ R(AB) = R(A)R{B), which is to say that R is an automorphism.
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Finally, we remark that <^(jf) is a *-algebra; there is a unique conjugate
linear involutory antiautomorphism A\->A* which is the identity on
It is given by

Of course, on ^(JΓ) regarded as a matrix algebra, this is just the usual adjoint.
Evidently the automorphism R of # ( j f ) induced by an orthogonal transformation
R of JΓ is a *-automorphism; i.e. Λ(A*) = (K(4))*.

The facts that orthogonal transformations of Jf induce automorphisms of
#( j f) , that # (X) is a full matrix algebra, and that all automorphisms of full
matrix algebras are inner; i.e. of the form A h-» SAS~* for some nonsingular matrix
S, are the basis of Brauer and WeyΓs treatment of the spin representations of the
orthogonal groups [BrWe]. We will use the fact that all automorphisms
are inner several times in what follows.

III. Analysis on the Clifford Algebra

Let srf be a von Neumann algebra of operators on some finite dimensional
Hubert space. By a trace on srf we shall mean a linear functional τ which is
positive in the sense that τ(A*A) > 0 for all non zero A in jtf9 and cyclic in the
sense that τ(AB) = τ(BA) for all A and B in jrf. Such a functional is evidently
unitarily invariant in the sense that whenever A and U belong to J^, and U
is unitary, then τ(U*AU) = τ(A). Since ^(Jf) is a full matrix algebra, it contains
all unitaries. Hence any trace on ^(Jf) must assign the same value to all rank
one projections, and thus must be a scalar multiple of the standard trace Tr on
the matrix algebra. Henceforth, τ shall denote this trace normalized by the
condition that τ(J) = 1 and Tr shall denote the standard unnormalized
trace.

In the non-commutative integration theories of Dixmier [Di53] and Segal
[Se53], the trace functional τ is the non-commutative analog of the functional that
assigns to an integrable function its integral. When the Hubert space is infinite
dimensional, some further regularity properties are required of τ in order to obtain
a useful analog. Since all of our estimations will be carried out in the finite
dimensional setting, we shall not go into this here, but shall simply refer the reader
to these original papers as well as the accounts in [Gr72] and [Ne74].

Norms on #( Jf) which are the non-commutative analogs of the Lp norms can
now be introduced; namely for 1 ^ p < oo we put

\\A\\p = (r((A*AYi2))^9 (3.1)

and denote the operator norm of A by \\A || «,.
^ p ( J f ) shall denote # ( J f ) equipped with the norm || \\p; evidently %2(Jf) is

the Hilbert space of 2n x 2" matrices equipped with the Hilbert-Schmidt norm.
Consider the monomials

Elai,...,ay,βi,...tβk] = 6 ^ Q^jPβ, Pβk > (3.2)

where ocx > > α,- and βx > > βk and j + k > 0. Evidently

^ [ α i , . . . , α , ;0 i , . . . , 0 k ] ^ [ « i , • » «;; βu . . . , βk] = *
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a n d t h u s | | J E [ α i , . . . , « , - ; / h , . ..,/**] lip = 1 f ° r a ^ P- M o r e o v e r

τ(Eι*ί,...,*j;βi,...,βki) = O' ( 3 3 )

To see this, first consider the case in which j + k is odd. The inversion x ι-> — x on
Jf is orthogonal. Hence it induces an automorphism of ^(Jf*), and hence there is
an invertible S in ^ ( J f ) so that

. ,βk] $

Then, by using cyclicity of the trace we get the desired result. Next consider the case
in which; + k is even and, say,; > 0. Then write E[aι .,aj βu ,βk] = δ«i^> a n ^
note that by (2.1), QaιX = — XQai- Again the desired conclusion follows from
cyclicity of the trace.

It is easy to see from this that

? ( £ [ % , . . . , αy; βX , . . . ,βk] E[yi , . . . , ym; όi , . . . ,δn]) = 0 (3.4)

unless the two monomials coincide. Thus, together with the identity, the assem-
blage of such monomials forms an orthonormal basis for ^ 2 ( Jf). Finally observe
that since Qe- = e+,

< β , £ [ β l , . . . f β j ] β > = 0 (3.5)

whenever; ^ 1, and, as indicated, k = 0. It now follows that, restricted to # ( J ) ,

(3.6)

for all A in
Formula (3.6) is very important for us. It permits us to calculate the "physically"

relevant quantity (Ω,AΩ} in terms of the apparently mathematically simpler
quantity τ(A).

Many familiar inequalities for Lp norms hold for the ^p norms as well [Di53].
This is true in particular of the Holder inequality

\\AB\\r^\\A\\p\\B\\q - = - + - .
r V q

Certain optimal inequalities expressing the uniform convexity properties of the
Lp norms also hold for the %>p norms, and this fact constitutes one cornerstone of
our analysis.

The modulus of convexity δp of (€p{ Jf) is defined by

1
2 '

δp(ε) = i n ϊ h - - \ \ A + B \ \ P : \\A\\P = \\B\\P= I, \ \ A - B \ \ p = ε } ( 3 . 7 )

for 0 < ε < 2. For 1 < p < oo, δp is always positive which means these norms are
uniformly convex. Useful geometric information is contained in the rate at which
δp(ε) tends to zero with ε. It is known [TJ74] that for 2 ^ p < oo, δp(ε) ~ εp, but
that for 1 < p ^ 2, δp(ε) - ε2.

An optimal expression of this fact is given by the following theorem which was
proved jointly with Keith Ball [BCL]:
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Theorem 1. (Optimal 2-uniform convexity for matrices). For all mxm matrices
A and B and all p for 1 ^ p ^ 2,

7'W -'. (3.8)
For 1 < p < 2, ί/ί£re is equality only when B = 0.

This result, which we interpret here as a statement about ^p(Jf\ is proved in
the appendix in the special case that both A + B and A — 5 are positive; this is the
only case in which we shall use it here, and the proof is considerably simpler in this
case. The full result is proved in [BCL], in which other geometric inequalities for
trace norms are proved as well.

The theorem implies that

^ ( Y for l<p^2 (3.9)

a s o n e s e e s b y c o n s i d e r i n g A = ( C + D)/29 B = (C - D)/29 \\C\\P= \\D\\P= 1 a n d
|| C — D ||p = ε. It is easily seen that the constant (p — l)/8 cannot be improved.

We make our main application of this result in Sect. V. There we will also
need to know that the norms on ^p(Jf) are continuously diίferentiable away
from the origin for 1 < p < oo. This is known [Gr75], but a simple proof can
be based on inequalities of the form δp(ε) ^ Kpε

rip) such as we have found
above for 1 < p < 2. This proof, moreover, gives the modulus of continuity of
the derivative, and is sketched in the appendix as well. Again, these estimates
are independent of the dimension and therefore apply to the case of infinitely
many degrees of freedom.

IV. Conditional Expectations and the Fermion Oscillator Semigroup

We are particularly concerned with the subalgebra # ( J ) of ^(Jf*), and
the conditional expectation [Di53, Um54] with respect to it shall play a basic
role in our investigation. For any A in ^ ( J f ) , the conditional expectation πΆ(A)
of A with respect to #(Ά) is defined to be the unique element of #(Ά) such that
τ(B*πΆ(A)) = τ(B*Ά) for all B in ί?(J). Otherwise said, πΆ is the ortho-
gonal projection from %2(Jf) onto ^2(1). It is well known that the condi-
tional expectation is positivity preserving; a familiar argument shows that

We can use the conditional expectation to give a useful expression for the
oscillator semigroup for fermion fields.

Let Rθ be the orthogonal transformation of Jf given by

Rθ(qj) = (cosθ)qj + (smθ)pj (4.1)

for each j . Of course Rθ gives the evolution at time θ on phase space Jf generated
by the classical oscillator Hamiltonian #(p,q) = Σ " = i kiv] + QJ) Let Rθ denote
the automorphism of <£{ jf) generated by the orthogonal transformation Rθ as in
the first section. For each t ^ 0, define θ(t) = arccos^"*) and define the operator Pt

on ^ 2 ( J Γ ) by

PtA = π1oRθ[t)oπ*A. (4.2)
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Note that π* is the natural imbedding of <β{ 1) into # ( Jf), and regarded as such, it is
a ^-automorphism. Formula (4.2) is the analog of the familiar expression for the
boson oscillator semigroup on L2(β, (2π)~M/2 e~q2/2 dnq\ i.e. the Mehler semigroup

p(boson) A(ψ = J

Note that since all of the operators on the right in (4.2) are positivity preserving,
so is Pt. Also, since the first two operations on the right preserve the ̂ p-norms, and
since the conditional expectation is readily seen to be a contraction from %>p( Jf) to
^P(Ά) for each p9 it is readily seen that Pt possesses this property as well.

To obtain a more familiar expression for Pt9 note that

RΘ{t)o %*(£[αi( .. s α k ] ) = e~ktE[aι,..., α k ] + (terms annihilated by πA) .

Hence

P t ( £ [ β ι . . . . i β k l ) = e - t e £ I β l i . . . . β f c l . (4.3)

Evidently {P,: t 2> 0} is generated by HQ where H0{Eiaί,..., β k ]) = fc£[αi,..., α k ] . It
is easy to see that under the unitary equivalence between %>2(Ά) and fermion Fock
space 3* described by Segal [Se56], Ho is equivalent to the usual number operator,
or in other words, the oscillator Hamiltonian on J*.

Our primary goal is to prove optimal hypercontractivity bounds for Pt. That is,
given 1 < p < q < oo we want to show that for some finite ί, Pt is a contraction
from (€v{3) to #«(J), and to find the smallest such t. Let

I | P J P ^ = S U P { | | P ^ | | , : M | | P = 1 } . (4.4)

As a first reduction, we shall show that the supremum on the right in (4.4) can be
restricted to the positive operators A with || A \\p = 1. In the boson case this follows
immediately from the fact that, in ordinary probability theory, the absolute value of
a conditional expectation is no greater than the conditional expectation of the
absolute value.

In general, matters concerning the absolute value in the non-commutative
setting are more troublesome than in the commutative setting. An example is
provided by the Araki-Yamagami inequality [ArYa] which, specialized to our
context, asserts that the map v4ι-»|v4| is Lipschitz continuous on %>2(Jf) with
constant y/ϊ instead of the constant 1 which we would have in the commutative
setting.

Thus while the conditional expectation in an operator algebra has many
properties analogous to those of the conditional expectation in ordinary probabil-
ity theory [Um54], it is not in general true that |πj(v4)| will be a smaller operator
than πj(|A|). The following theorem expresses a useful property in this direction
which does hold, and after proving it we shall show by example that stronger
properties do not hold. The theorem and its proof are easily extended to a more
general von Neumann algebra setting by the methods in [Ru72].

Theorem 2. (A Schwarz inequality for conditional expectations). For all A in ^(Jf)
and all p with 1 ^ p ^ oo ,

\\π*(A)\\ < | |π,(|^|)| |y2 | |π,(|^*|)| |y2. (4.5)
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Remark. If we let F(A) denote || πΆA \\ p, then the same argument which we shall use
to prove Theorem 2 also establishes that

F(A*B) ^ F{A*A)1/2 F(B*B)1/2 . (4.6)

In this form, the term "Schwarz inequality," by which we referred to (4.5), is more
evidently appropriate. Moreover, inequalities of the type (4.6) are well known in
matrix analysis for many familiar functions; for example when F(Ά) is the determi-
nant of A or the spectral radius of A. Further examples can be found in [MeDS].

In [Li76] it is shown that for a function F that satisfies (4.6), and which is
monotone increasing; i.e. satisfies F(B) ^ F(A) for all B ^ A ^ 0, the following
inequalities hold:

j = l

l /2 l/2

and
l /2 l/2

In particular, these inequalities hold for F(A) = \\π^A\\p.
Specializing the last inequality to the case m = 1 then yields (4.5). In our present

case however, the proof of the (4.6) is essentially the same as the direct proof of (4.5).
Nonetheless, it should not be considered novel that by taking \A*\ into considera-
tion as well as \A\, we can obtain a suitable bound on ||π^y4||p.

Proof. Let A = U\A\ be the polar decomposition of A. Then \\πΆ{A)\\p= τ{CU\A\)

for some C in <£{£) with || C \\p. = 1. Let C = V\ C\ be the polar decomposition of C.
Both F a n d \C\ belong to <£(£) as well. Thus

^ τ(\C\1/2 U\A\U*\C\1/2)1/2 τ(\C\1/2 V*\A\V\C\1/2)1/2

^( icKuμi i/* ) ) 1 /^

Finally, we note that [7|i4| U* = \A*\. D

Example. Let A be the matrix A = \ . Then

-^[ί ί]
Note that \A*\ is in ^(J), but A and \A\ are not. One easily finds

and
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Theorem 3. (Pt has positive maximizers). The norm of Pt from ^P{Ά) to <€q(Ά) is
achieved on the positive operators; i.e.

P q { q A \ \ p = l } . (4.7)

Proof Since Rθ and π * are both *-automorphisms, \Rθ(t) ° 7Γ*̂ 41 = Rθ(t) o π*\A\ and
| ( R β ( t ) o π ί 4 ) * | = R β ( f ) o π ί μ * | . Thus \\PtA\\q£ \\Pt\A\\\1

q

l2\\Pt\A*\||β
1/2, and of

course | | | ^ | | | p = | | M | | | P = M i l , . D

V. Hypercontractivity for Fermions

Our main result is the following theorem which is established in this section.

Theorem 4. (Optimal fermion hypercontractivity). For all 1 < p ^ q < oo ,
\\Pt\\p_+q = 1 exactly when

= q-\

The heart of the matter is the following lemma:

Lemma. For all 1 < p ^ 2, | |P t | | p- 2 = 1 exactly when e~2t ^ (p - 1).

/ Fix a positive element A of ^(=S) Pick a basis {g1? . . . , #«} °f ^ a n ^ let
n-i)) denote the Clifford algebra associated with the span of the first n — 1 of

these basis elements. It is evident from the form of our standard basis of <$(!) that
A can be uniquely decomposed as A = B + CQn, where B and C belong to
^(^(n-i)) Then using the Jordan-Wigner transform we can write
A = B + CF w β n . Now write

j f = ^ ( n _ 1 ) ( 8 ) C 2 (5.1)

so that 5, C and VnC can be considered as operators on the first factor Jf (n_ 1 }. Let

w± = (e+ ± e-)/yj2, so that βw± = ± M± . Then if f is any vector in Jf (n_1)5

?> j r ( | i _ i ) . (5.2)

We see from this that since A ^ 0, so are both £ + CFΠ ^ 0 and B - CKW ^ 0.
Now let TΓi and Tr2 denote the partial traces over the first and second factors in
(5.1), so that with Tr still denoting the full trace, we have Tr = Tr x Tr 2 . Now
applying Theorem 1 in the special case which is proved in the appendix

1 . \2/P
-Ίx\B + CVnQn\A

2/p ίΊv1 \B + CVn\
p + Tτx\B - CVn\

p\2/p

2/p

όPΊ) «Jti\B\p)2lp + (P ~ l ) ( T r i | C | * ) 2 " )

since Vn is unitary.
Thus \\A\\j^ \\B\\l + (p- 1 ) | |C | | J , where the norms on the right are all

norms on ̂ ( j ( n _ 1 } ) .
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Now we make the inductive assumption that the lemma has been established
for # ( S(Λ-i)). This is clearly the case when n = 1. We then have

where e~2t = (p - 1). But clearly from (4.3) || PtCQn | | | = (p - 1) || PtC\\l, where the
norms are once again norms on #(«2). Moreover by (3.4) PtB and PtCQn are
orthogonal. Thus \\PtB\\l + (p ~ l)\\PtC\\2

2 = || Pt(B + Cβ n ) | |2 = | | P t Λ | | I . D

Theorem 5. (Optimal fermion logarithmic Sobolev inequality). For all i

(5.3)

Proof By the lemma, ||f f̂̂ 4 ||f ^ \\A\\2

1 + e-2t) and there is equality at t = 0. Both
sides are continuously differentiable, and comparing derivatives at t = 0 we obtain
the result. Indeed,

4-\\A\\p = -\\A\\l-p(τ(\A\p\n\A\)-\\A\\p

pln\\A\\p) (5.4)
dp p

and of course

J A \ ΓΊ
lc\r± / . I—I

Gross refers to the quadratic form on the right side of (5.3) as the Clifford
Dirichlet form since it shares many properties of Dirichlet forms in the ordinary
commutative setting. An approach to the development of a theory of Dirichlet
forms in the non-commutative setting can be found in [A1HK].

Proof of Theorem 4. By a deep result of Gross, when ^ 4 ^ 0 and 1 < p < oo ,

p- i

Replacing A in (5.3) by APl2 and using the inequality just quoted we obtain,
following Gross's ideas [Gr75],

7<A\H0A} .
p - 1

By combining this with (5.4) a differential inequality is obtained which implies that
||Pί>l \\q(t) is a decreasing function of t when q(ή = 1 + e2t(p — 1). This establishes
the result for ATzO, and by Theorem 3 it is established in general. By (4.3), PtI = I,
and therefore || P t \\p-+q is always at least 1 for all p and q. That the inequality is best
possible follows from a direct computation with one degree of freedom. To be
precise, \\Pt(I + β i ) | | ρ = ||/ + e"~'6i IU *s e a s i t y computed and compared with
IIί + 2 i \\P [Gr72]. The first quantity is greater than the second if e'2t > (p - 1)/

VI. Hypercontractivity for Bosons and Fermions Together

As a result of the present work and of earlier work on bosons, we know that for
t given by e~~2t = (p— l)/(q — 1), both the fermion and the boson oscillator
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semigroups are contractive from the appropriate p-spaces to the appropriate
^-spaces, and that this value of t is optimal for each case separately.

It is natural to expect that the same condition governs hypercontractivity in
a situation in which we have bosons and fermions together. This is indeed the case,
as we now show using Minkowski's inequality in an argument based on Segal's
method for showing that the optimal conditions for hypercontractivity with
m boson degrees of freedom are the same as for one degree of freedom.

Let μ{dx) = (2π)~m/2 e~χ2/2 dx be the unit Gauss measure on IRΛ Then in our
mixed setting, with m boson degrees of freedom and n fermion degrees of freedom,
the relevant p-space is

Λ — L {US. , μ) Q9 Ίo \-l(n)) ,

which may be regarded as consisting of ^p(l{n)) valued measurable functions
x κ i ( x ) such that

\\\A\\\p

p= j \\A(x)\\*μ(dx)

is finite. This equation defines the norm on J*p. For p = 2, <9P is naturally
isomorphic to the tensor product of the symmetric tensor algebra over C m and the
antisymmetric tensor algebra over <C" as shown by Segal. On the latter space we
have the mixed oscillator semigroup generated by the sum of the boson and
fermion number operators

Σ cfo
Considered as operators on
are given by

p, the operators 0>t which constitute this semigroup

= J Mt(x,x')PtlA(x')-]μ(dx')> (6.1)

where Mt(x,x') is the Mehler kernel; i.e., the positive integral kernel for the boson
oscillator semigroup p(b o s o n) discussed in Sect. IV. Of course Pt denotes the fermion
oscillator semigroup studied throughout this paper.

Now successively applying Minkowski's inequality, our theorem on optimal
fermion hypercontractivity, and Nelson's theorem on optimal boson hypercontrac-
tivity, we have for e~2t ^ (p — l)/(q — 1):

= ί
R™

* J

μ(dx)

Mt(x9x')\\PtA(x')\\qμ(dx')) μ(dx)

Mt{x,x')\\A(x')\\pμ(dx')\ μ(dx)

\q/p

^ J \\A(x)\\p

pμ(dx)) =\\\A
\ /

\\q

p.
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Appendix

Proof of Theorem 1 when A ± B Ξg 0. Let Z and W be the 2m x 2m matrices given

• [ " ] •
Our goal is to establish that for all r with 0 ^ r ^ 1,

or what is the same,

Tr(Z + rW)2lp Z (Ύv(Z)p)2/p + r2(p - l)(Tr| W\p)2/p . (A.I)

First, note that the null space of Z + rW is exactly the null space of Z for 0 ^ r < 1.
Thus by carrying out all of the following computations on the orthogonal com-
plement of this fixed null space, we may freely assume that Z + r W > 0 for all
0 ^ r < 1. Next, both sides of (A.I) agree at r = 0, and the first derivatives in r of
both sides vanish there as well. We define ψ(r) to be Tr(Z + rW)p. Then the second
derivative in r of the left side of (A.I) satisfies

d2

 2/p 2 {2_p)lp d2

dr2 ~ p dr2

The second derivative on the right side is just

2{p-\){Ίx\W\p)2lp

i

and we are left with showing that

1 n w d2

-ψ(r)i2-p)lp-ΓτΨir) ^(p-ϊ) (Ύr\W\p)2lp (A.2)
p dr

for all 0 < r < 1. By redefining Z to be Z + r W9 it suffices to establish (A.2) at r = 0.

Now — ψ{r) = p(Tr(Z + rW)(p~1] W\ since A ± B ^ 0, Z -f rW ^ 0 for small

r, and we can use the integral representation

ί " t—(Z rW) dt

to conclude that

t. (A.3)

Consider the right side as a function, f(Z), of Z for fixed W. It is easy to see that
/ is convex in Z. (Simply replace Z by Z + tX, with X self-adjoint, and then
differentiate twice with respect to ί; the positivity follows from the Schwarz
inequality for traces.) Also, f(UZU*) =f(Z) provided U is unitary and U com-
mutes with W, In a basis in which fiKis diagonal, we form the set <9l consisting of the
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2 2 m distinct diagonal unitary matrices, each with + 1 or — 1 in each diagonal
entry. Each of these clearly commutes with W. Then

~2m Σ ι/zι/*)=/(z d i β g),

where Z d i a g is the matrix that is diagonal in the basis diagonalizing W9 and whose
diagonal entries are those of Z in this basis.

Replacing Z by Z d i a g in (A. 3), the integration can be carried out, and we obtain

d2 , , m ,
-nΨvJ) ^ P\P — 1
drz

where Zj and wj9 respectively, denote the j i h diagonal entries of Z and ϊ^ in a basis
diagonalizing W.

Now consider ψ(0) = Tr(Zp) as a function of Z. It is clearly convex, and thus by
the averaging method just employed, we obtain

ψ(0) £
2m

To establish (A.2), we are only left with showing that

2m

Σ
(2-p)/p 2m

Σ
J = l

2m

MΣ (A.4)

but this follows immediately from Holder's inequality.
To complete the proof, observe that equality in (A.I) for r = 1 and 1 < p < 2

implies equality in (A.4) for almost every r in [0,1]. Here, recall that zj in (A.4) really
denotes t h e ; t h diagonal element of Z + rW\ these are the numbers Zj + r\Vj, where
Zj denotes the j t h diagonal element of Z.

Let us assume that w7- Φ 0 for some j . Then equality in Holder's inequality (A.4)
requires that the vector with positive components z7- + r\Vj be proportional to the
vector with components |w7 |. Thus, for almost every r in [0,1] we require

zj + rwj = c{r)\wj\

for some number c(r) that depends on r but not on j . The left side above is a linear
function, and thus c(r) = a + rb for some numbers a and b. But then clearly
b = Wj/\Wjl and all non-zero eigenvalues of W would necessarily have the same
sign. This is impossible since Tr W = 0. D

We now give an application of the uniform convexity implied by this theorem
to the differentiability of the ^p(jf) norms. First we recall that for 2 ^ p < oo, the
modulus of convexity is given by an analog of an inequality of Clarkson for
integrals which Dixmier [Di53] established for traces. Specializing to ^p(Jf\ this
inequality reads

A + B

2

P

P

A-B

2

p <ι

= 2
oo ,

which implies that in this range (cf. (3.7))

(A.5)
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For any non-zero A in <P(jr), define 0 ( 4 ) by

0(4) = WAWy-rt

where A = U\A\ is the polar decomposition of A. Let p' be defined by 1/p 4-
1/p' = 1. Then for 1 < p < oo, \\2(A)\\p. = 1 and τ (0(4)4) = \\A\\P. Moreover,

with this property. We call the map
. The next theorem sharpens a result of

For all 1 < p < oo,

0(4) is the unique element of
4ι—>0(4) the gradient map on
Gross [Gr75].

Theorem 6. (Holder continuity of the gradient map on
the gradient map is norm continuous. Moreover,

and

, = 4 ( p -

First observe that for all 1 ^ p* ^ oo,

for 1 < p ^ 2 ,

for 2 ^ p < co .

B))

(A.6)

(A.7)

= 2{\\A\\P + \\B\\P) -

Thus,

1 - +

B\\p) - \\@(A) - @(B)\\p>\\A -

- 0(B)

But, by (A.5) and (3.7), we have

0 ( 4 ) + 0(B)
1 -

- 0(B)

(A.8)

(A.9)

for 1 < p ^ 2. By combining (A. 9) and (A. 8) we obtain (A. 6). Similarly, by combin-
ing (3.9) with (A.8) we obtain (A.7). D

The continuity of the gradient map for %>p( Jf) has been established by Gross
[Gr72], but his proof is more involved and does not yield an estimate of the
modulus of continuity. It is now easy to establish continuous differentiability of the
(€V{X) norms away from the origin since, with h(t) = \\ A + tB ||p, with A different
from 0 and with t and 5 sufficiently small, we have

tB)B) ^ (ί + s)B)B) (A. 10)

when s is positive. To see this, observe that h(t) = $lτ(@(A + tB)(A + tB)\ and
that h(t + s) ^ 5Rτ(^(4 + tB){A + (ί + s)B)) by Holder's inequality. By subtract-
ing the expression for h(t) from the estimate for h(t + s) and dividing by s, we obtain
the inequality on the left in (A. 10). The inequality on the right is obtained in an
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analogous manner. When s is negative, the inequalities are clearly reversed. Letting
5 tend to zero, we obtain
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