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Abstract. We give a description of all complete simply connected Riemannian
manifolds carrying real Killing spinors. Furthermore, we present a construction
method for manifolds with the exceptional holonomy groups G2 and Spin (7).

1. Introduction

Let M be an rc-dimensional complete Riemannian spin manifold. A spinor field ψ is
called Killing spinor with Killing constant α if for all tangent vectors X the equation
\jx\l/ = α X ψ holds. Here X ψ denotes the Clifford product of X and ψ. Killing
spinors occur in physics, e.g. in supergravity theories, see [11], but they are also of
mathematical interest. Friedrich showed that if M is compact and the scalar
curvature satisfies S ̂  S0 > 0, S0 e R, then for all eigenvalues λ of the Dirac

operator the estimate λ2 ^ - -S0 holds, see [13]. If we have equality in this
4 n — l

estimate, then the corresponding eigenspinor is a Killing spinor.
If M carries a Killing spinor, then M is an Einstein manifold with Ricci

curvature Ric = 4(n — l)α2. In particular, we have three distinct cases; α can be
purely imaginary, then M is noncompact and we call ψ an imaginary Killing
spinor, α can be 0, in this case ψ is a parallel spinor field, and finally α can be real,
then M is compact and ψ is called a real Killing spinor. This terminology is
somewhat misleading, because a real Killing spinor is not necessarily a real spinor
field; we always work with complex spinor fields.

Hitchin showed that manifolds with parallel spinor fields can be characterized by
their holonomy group, see [28, Th. 1.2 and footnote p. 54]. See also [15] and [35].

Manifolds with imaginary Killing spinors have been classified by Baum in
[1-3], shortly later the classification has been extended by Rademacher to general-
ized imaginary Killing spinors where we allow the Killing "constant" α to be an
imaginary function, see [32],

Most results on real Killing spinors known so far are statements for particular
(low) dimensions. For example, Friedrich showed in [14] that a complete
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4-dimensional manifold with a real Killing spinor is isometric to the standard
sphere. The analogous result in dimension 8 is due to Hijazi, see [27]. We will show
that in fact in any even dimension n φ 6 only the standard spheres carry real
Killing spinors (Theorem 1). In dimension 6 we recover the theorem of Grunewald,
see [26], that the manifolds besides the standard sphere carrying real Killing
spinors are precisely the nearly Kahler, non-Kahler manifolds (Theorem 2').

Friedrich and Kath showed in [17] that the complete simply connected 5-
dimensional manifolds with real Killing spinors are exactly the standard sphere
and the Einstein-Sasaki manifolds. We prove the analogous result in all dimen-
sions n = 1 (mod 4), see Theorem 3'. In dimension n = 3 (mod 4), n ̂  11, we get the
standard sphere, the Einstein-Sasaki manifolds and the Sasaki-3-manifolds,
according to how many linearly independent real Killihg spinors there are
(Theorem 4').

In the remaining dimension n — 7 we also get a description of all complete
simply connected manifolds with real Killing spinors (Theorem 5'). Parts of this
theorem have already been known to Friedrich and Kath, see [18] and [19].

Exceptional holonomy groups. The study of the exceptional dimension 6 pro-
vides us with a construction method of Riemannian manifolds with exceptional
holonomy group G2. The recipe is as follows. Take any compact simply connected
nearly Kahler, non-Kahler manifold of dimension 6, normalize the metric such that
the Ricci curvature is Ric = 5, now the cone over this manifold has holonomy
group G2. Using this method we recover Bryant's first explicit example which is the
cone over the complex flag manifold SU(3)/T2, see [8]. Further examples are
obtained by taking the cones over S3 x S3 and CP3 with certain non-standard
metrics.

Similarly, the cones over certain 7-dimensional manifolds have exceptional
holonomy group Spin(7). Examples are the cones over SO(5)/SO (3) and over the
squashed 7-sphere. Most of our examples can be found elsewhere in the literature,
see [9, 21, and 33], but at least one series of examples of Sρin(7)-manifolds is new,
namely the cones over the Wallach manifolds. This series is interesting because
infinitely many homotopy types occur and there are homeomorphic, non-dif-
feomorphic examples.

The paper is organized as follows. First we modify the spinor connection
because we want to interpret Killing spinors as parallel sections. To do this we have
to enlarge the structure group Spin(n) of the spinor bundle to Spin(n -f1). Then we
show that this connection is related to the Levi-Civita connection of the cone over
the original manifold. Since Killing spinors correspond to fixpoints of the holo-
nomy group of the cone we can use the Berger-Simons classification of possible
holonomy groups to see how the cone can look like. In the last sections this
information is retranslated into conditions on the original manifold itself.

For facts about Killing spinors the reader can consult [4 or 10], holonomy is
explained in [5].

I would like to thank W. Ballmann, C. Kaiser, and H.-B. Rademacher for
helpful discussions.

2. The Modified Connection

Let M be an ^-dimensional Riemannian spin manifold. By PSO(M)(M) we denote the
bundle of positively oriented orthonormal frames, by PspmwC^O the spin structure.
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Let φ: Pspin(n)(M) -> PSo(n)(M) and θ: Sρin(π) -> SO(n) be the twofold covering
maps. Furthermore, let ωLc be the connection 1-form of the Levi-Civita connection
of M and ώLC its lift to PsPm(n)(M). The spinor bundle is the bundle ΣM
= PSpin(H)(M) xβn Σn , where pn: Spin(rc) -> U(Σn) is the complex spinor representation.

Given a local section /Γof PSpin(π)(M) we can express the spinor connection on
ΣM as

Vχ[/Γ, σ] = [£ 3xσ + (pn)*(ωLC(dK X)) σ'] .

If r. SO(n)-» GL(n) is the standard representation we can write
TM = Pso(n}(M) x ,R" and under this identification we have

for any local section h of PSo(«)(M). Here η is the solder form.
We view Spin(n) as sitting in the real Clifford algebra Cln. The Lie algebra

spin(n) is the vector subspace of Cln spanned by the elements EI EJ9 1 ̂  i < j ^ n,
where £1? . . . , £ „ is the standard basis of R". But we can also discover spin(n + 1)
sitting in C\n\ its Lie algebra is spin(n + 1) = spin(n) φ Rn.

Since pn is the restriction of a representation of <C/n = Cln (x) C we can also
consider pM | Spin(n 4- 1). If n is even ρπ | Spin(n 4- 1) is the spinor representation of
Spin (rc + 1), if n is odd it is one of the half-spin representations.

Let α e 1R. To study Killing spinors we consider the modified connection V on
I'M defined by Vxψ = Vxψ +a X \l/. We want to calculate its connection 1-form.
Let /Γbe a local section of Pspm(n)(^X h = h° φ,

V*[/r, σ] = VX[K, σ] + α [Λ, f/(dft X)] [/Γ, σ]

Therefore the "connection 1-form" of V is ώ = φ*(θ* 1 °ωLC + α τ/). This is
a 1-form on Pspin(«)(^) with values in spin(n + 1) = spin(X) © R".

One easily calculates that ώ is Spin(n)-equivariant. We use the embedding
Spin(π) c Spin(n +1) to enlarge the structure group of Pspin(«)(^) and we get
Pspin(n+l)(M).

Let feePSpin(M)(M)cPSpin(n+1)(M). Then we obtain 7;PSpin(π+1)(M) =
7iPSpin(Π)(M) Θ dLb R", where Lb : Spin(n + 1) -> PSpin(M + 1}(M)5 yl -* b Λ. We de-
fine ώ(dLb v):= ί eR" c: spin(n +1). We extend ώ to a Spin(n + l)-equivariant
1-form ώ on Pspm(» + i)(^) Clearly, ώ is the connection 1-form of V on

Similarly, we extend Ps0(n)(M) c PSO(n + i)(M) and φ: PSpin(« + i)(M) ->
We have ώ = θ* 1 ° 0*ω, where ω is an so(n + 1)- valued 1-form on
We calculate ω.

Consider the diagram (C/^+1 is the even part of Cln + ί):

m m

C/ Π 5C/J + 1

u u

sρin(n) θ Rn ̂  spin(n + 1)
IB.

so(n + 1)
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If we restrict Θ* to spin(rc) we get again θ* : spin(n) -» so(rc). But how does θ% look
like on the IRΛpart?

Let Ak = (atj)eso(n + 1) where

ίl, if i = kj = n +1

dij = I — 1, if i = n -h 1, j = k

(0, otherwise.

We get θ~lAk=-:kΣijaijEiEj=-%EkEn + 1^-%Ek. Therefore θ*Ek

= — 2Ak. Thus ω has the form

= / ωLC - 2aη
ω \2<*rf 0

3. The Cone M

We consider the warped product M = M x r 2R
+, in other words M is the cone

over M carrying the metric < , >M = r2 < , >M + dr2. We pull back the bundle
Pso(n+i)(M) via the projection M->M and obtain Pso(M + i)(M). This is not the
same bundle as Pso(n + i)(M) but it is equivalent to it. The map

induces an isomorphism of Riemannian vector bundles TM = PSO(n+i)(M) x !R"4"1.
We calculate the connection 1-form ώ on Pso(n + i)(M) for the Levi-Civita connec-
tion V of the metric < , >M Using the formula Vξ [_h, υ] = [ft, dξv + ώ(dh ξ) υ~\
for the local section ft = (Xl9 . . . , Jίπ, 9r) and the formulas for warped products
(see [31, p. 206])

VΛ = 0,

VrX = Vxdr = -X,
r

where X and 7 denote vector fields on M viewed as vector fields on M, one gets

ώ(dh X) £k = ωLC (dft X) Ek - ηk (dh X) £„ + 1 , 1 g fc g n .
Thus

We see that for α = — i, ω equals the connection 1-form ω of the preceding section.
If we change the orientation of M, we get the local section

ft = (Xl9 . . . , XΛ9 - dr) and obtain

-η
= o

Now for α = 2 we get co = ω.
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For some fixed base point let Hol(M) c S0(n +1) be the holonomy group of
M. This is the holonomy group of the principle bundle PSO(n + 1)(M) with the
connection ω. Let Hol(M) c Spin(n + 1) be the holonomy group of PSpin(n + 1)(M)
with the connection ώ. We have shown

Lemma 1. Let M be simply connected (such that all holonomy groups are connected).
Then if a = — 2> Hol(M) = θ(Hol(M)) and Hol(M) is the identity component of
θ~1(Hol(M)). If v. = 2 the same is true if we change the orientation of M.

For a proof of the following lemma see [20, Prop. 3.1].

Lemma 2. Let M be compact and simply connected. //Hol(M) is reducible, then M is
flat and therefore M is isometric to the standard sphere.

4. The Classification

Let M be a compact simply connected Riemannian spin manifold of dimension
n carrying a Killing spinor ψ with real Killing constant α φ 0, i.e. Vxψ = — α X ψ
for all tangent vectors X. Rescaling the metric if necessary we can assume that
α = ± 2 Killing spinors are parallel sections for the modified connection V of the
second section. Therefore they correspond to fixpoints of the holonomy group
Hol(M) c= Spin(77 +1) under the spinor representation if n is even and under one
half-spin representation if n is odd. If n is even the number of linearly independent
Killing spinors with constant α = \ is the same as that for α = — \. For n odd
switching from α = i to α = — i corresponds to changing the orientation of
M = Mx r 2 ]R + . This is equivalent to conjugating Hol(M) c S0(n +1) by the

/ I o \
matrix I " \eO(n +1). For Hol(M) this means that we interchange the

half-spin representations. We use the classification theorem of Berger and Simons
(see [5, p. 300]) and Lemma 2 to see which Hol(M) (and thus which Hol(M)) can
occur. Since the Ricci curvature of M is Ric = 4 (n — 1) α2 = n — 1 the manifold
M is Ricci-flat and cannot have the holonomy of a symmetric space of rank ^ 2.

Definition. We say that M is of type (p9 q) ifM carries exactly p linearly independent
Killing spinors with Killing constant α = \ and exactly q linearly independent Killing
spinors with Killing constant α = — ^ or vice versa.

For example, the standard sphere is of type (2[nl2\ 2[n/2]). Now the remaining
possibilities for Hol(M) are (compare also [35])

n = dimension of M Hol(M) type

n arbitrary
n + 1 = 2m, m odd
n + 1 = 4m
n + 1 = 4m
n + 1 = 8
n+l =1

trivial
SU(m)
SU(2m)
Sp(m)
Spin(7)
G2

Sn

(1,1)
(2,0)
(m+1,
(1,0)
(1,1)

0)
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We deduce

Theorem 1. Let M be a complete Riemannίan spin manifold of dimension n carrying
a Killing spinor with Killing constant α = \ or α = — ̂ .Ifnis even, n φ 6, then M is
isometric to the standard sphere.

Proof. If M carries a Killing spinor, so does its universal cover M. In particular,
M is compact. The only nontrivial holonomy group for n +1 odd in the above list
is G2 for n = 6. Thus M is isometric to the standard sphere Sn. For n even the only
quotients of Sn are non-orientable (and hence non-spin) projective spaces RP".
Thus M = M = Sn.

The same proof also shows.

Theorem 2. Let M be a 6-dimensional complete simply connected Riemannian spin
manifold with Killing spinor for α = 2 or α = — 2. TTzew there are two possibilities:

(i) M = S6

(ii) M is of type (1, 1) αnrf M = M x r 2R+ /zαs holonomy G2.

Remarks. 1. Theorem 1 has already been known in dimension 4 (Friedrich) and
8 (Hijazi), see [4] and [27].

2. We can use Theorem 2 to construct examples with holonomy group G2, see
Sect. 7.

Looking again at the list of possible holonomy groups we can immediately deduce
the following three theorems.

Theorem 3. Let M be a complete simply connected Riemannian spin manifold of
dimension n with Killing spinor for a = %ortt = —^.Ifn — 2m—l,m^3 odd, then
there are two possibilities:

(i) M - Sn

(ii) M is of type (1,1) and M is Kάhler.

Theorem 4. Let M be a complete simply connected Riemannian spin manifold of
dimension n with Killing spinor for α = ^ or α = — \. Ifn = 4m — 1, m ̂  3, then there
are three possibilities:

(i) M = Sn,
(ii) M is of type (2, 0) and M is Kάhler, but not hyperkάhler,
(iiϊ) M is of type (m +1, 0) and M is hyperkάhler.

Theorem 5. Let M be a 1-dίmensίonal complete simply connected Riemannian spin
manifold with Killing spinor for α = \ or α = — \. Then there are four possibilities:

(i) M = S1,
(ii) M is of type (1, 0) and M_has holonomy group Spin(7),
(iii) M is of type (2, 0) and M is Kάhler, but not hyperkάhler,
(iv) M is of type (3, 0) and M is hyperkάhler.

In the theorems we have additional information about the geometry of M if
M is not the standard sphere. We are going to translate this into conditions on the
geometry of M itself.
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5. The Case Hol(M) = SU(m)

The condition Hol(M) = SU(m) means _that M is Kahler (and Ricci-flat), i.e._there
is a parallel complex structure J on M. We identify M with M x {1} <= M and
define

Lemma 3. .Y is a Killing vector field of length \X\ = 1.

Proo/

is skew symmetric in F and W.

We recall the definition of a Sasaki structure. If X is a vector field, 77 a 1-form,
and φ a tensor field of type (1, 1), then (φ, X, η) is called a Sasaki structure if

(i) (φ, X, η) form a metric contact structure,
(ii) X is a Killing vector field, and
(iii) (Vvφ)(W) = <F, W")X ~η(W}V .

It is easy to check that (φ, X, η) as defined above form a Sasaki structure.
Conversely, given a Sasaki structure on M we define on M :

J(rdr):=X,

J(X):=-rdr,

J(V):= - φ(V] for VLX, rdr.

Again, it is a simple playing with the definitions to see that J defines a Kahler
structure on M. We note

Lemma 4. There is a l-l-correspondence between Kahler structures on M and
Sasaki structures on M.

Therefore we can replace Theorem 3 by

Theorem 3'. Let M be a complete simply connected Riemannian spin manifold of
dimension n with Killing spinorfor oc = j or α = — 2- Ifn — 2m — 1, m ̂  3 odd, then
there are two possibilities:

(i) M - Sn

(ii) M is of type (1, 1) and M is an Einstein-Sasaki manifold.

Conversely, if M is a complete simply connected Einstein-Sasaki spin manifold of
dimension as above, then M carries Killing spinorsfor a = | and for a = — .̂

Froo/. To prove the converse one has simply to observe that the Ricci curvature of
an Einstein-Sasaki manifold is Ric = n — 1. Thus M is Ricci-flat. Now the Sasaki
structure yields a Kahler structure on M, therefore its holonomy is reduced to SU(m).
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Remark. In dimension 5 this theorem has been shown by T. Friedrich and I. Kath,
see [17]. They also gave a different proof of the "converse" part of Theorem 3' for
arbitrary dimension n = 2m—\,m odd, see [19].

6. The Case Hol(M) - Sp(m)

The condition Hol(M) = Sp(m) means that M is hyperkahler, i.e. there exist
parallel complex structures /, J, and K such that IJ = — JI = K. On M identified
with M x { l } c M w e define three Sasaki structures by

X,:=-K(dr).

Recall that three Sasaki structures are said to form a Sasaki-3-structure if the
following conditions hold:

(i) Xl9 X2, X$ are orthonormal.
(ϋ) [*19 *2] = 2*3, [*2, *3] = 2χι> t*3, *ι] = 2X2.
(iii) φ3φ2 = - φt + η2 ® X*, Φ2Φ3 = Φi + *b ® ̂ 2 ,

φ2φ1 = - φ3 + ηι ®X2, φiφ2 = φ3 + η2®X1 .

Here ηt is the dual form of Xt and φι = — VXt. It is easy to check that the three
Sasaki structures coming from /, J, and K form a Sasaki-3-structure.

Conversely, given a Sasaki-3-structure on M we define on M:

I(rdr):=Xl9

J(rdr):=X2, J(X2}:=-rdr, J(V):= - φ2(V) for

K(rdr):=-X^ K(Xι):=rdr, K(V):= - φ3(V) for

Now it is simple to check that IJ = - JI = K. We note

Lemma 5. There is a l-l-correspondence of hyperkahler structures on M and
Sasaki-3- structures on M.

From Theorem 4 we get

Theorem 4'. Let M be a complete simply connected Riemannian spin manifold of
dimension n with Killing spinorfor α = 2or α = — 2. Ifn = 4m — 1, m ̂  3, ί/zerc ίter^
αr^ f/iree possibilities:

(i) M - Sn .
(ii) M is of type (2, 0) and M /s an Einstein-Sasaki manifold, but does not carry

a Sasaki-3-structure.
(iii) M is of type (m -h 1, 0) and M carries a Sasaki-3-structure.

Conversely, if M is a complete simply connected Riemannian spin manifold with
a Sasaki-3-structure, M Φ Sn, then M is of type (m -f 1, 0). IfM is a complete simply
connected Einstein-Sasaki spin manifold which does not carry a Sasaki-3-structure,
then M is of type (2, 0).
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Proof. To prove the converse one simply has to recall that a manifold with
Sasaki-3-structure is automatically Einstein with Ricci curvature Ric = n — 1,
compare [4].

Again, there is a different proof of the second part of this theorem due to
T. Friedrich and I. Kath, see [19].

7. The Case HoI(M) - G2

Lemma 6. Let V be a 1 -dimensional oriented Euclidean vector space, φeΛ3V*
a 3-form, E0eV, \EQ\ — 1. Then the following assertions are equivalent:

(i) For every X^V, \X\ — 1, the restriction of the interior product ixφ to the
6- dimensional orthogonal complement XL defines a complex structure on it and
X* A ixφ Λ ixφ = ό vol. Here X* is the l-form dual to X.

(ii) The assertion of(ϊ) holds for X = E0 and for all X 1£0.
(iii) One can extend E0 to a positively oriented orthonormal basis E0, El9 . . . , E6

such that

φ = ω°12 +ω034 +ω056 +ω135 -ω146 -ω236 -ω245 .

Here ω°, . . . , ω6 are the dual basis for E0, . . , , E6 and ωljk = ω1 Λ ωj Λ ωk.

Proof, (i) -» (ii) is clear and (ii) -> (iii) is simple linear algebra. To prove (iii) -» (i) one
first considers the case X = EQ and then one uses that G2 acts transitively on the
unit sphere in V and leaves fixed the form φ, compare [8, p. 539].

If φ satisfies the above conditions we will call φ nice. Since G2 is precisely the
stabilizer of a nice 3-form, see [8], the condition Hol(M) c Gj is equivalent to
the existence of a parallel_nice 3-form on M For our cone M = M x,,2lR + , M
6-dimensional, only Hol(M) = {1} and Hol(M) = G2 are possible (Lemma 2). So
in this case Hol(M) = G2 is equivalent to the existence of precisely one parallel nice
3-form.

Now letjfr be a parallel nice 3-form on the cone M. We identify M with
M x {1} c: M and define the almost complex structure J by

Elementary calculation shows

= \χ\2\ γ\2 - (x, γy2 -
In particular, (Vx J)(X) — 0, but Vx J Φ 0. A complex structure J satisfying the
above equation is called a nearly Kahler structure of constant type 1.

Conversely, let J be a nearly Kahler structure of constant type 1 on M, then we
define on M

φ(dr, X,Y) = - φ(X, dr, Y) = φ(X, 7, δr) := r\

φ(X, Y,Z):=r\Y,(VxJ)(Z))M.

Here X, Y, and Z always denote vectors tangent to M. It is easy to see that φ is
alternating. To prove tihat φ is parallel the only a bit more difficult part is to show
that the components (Vxφ)( Y, Z, W\ all entries tangent to M, vanish. Here one has
to use formula (2.9) of [25] and Lemma 7(i) of [4, p. 132]. To show that φ is nice
one uses characterization (ii) of Lemma 6 with E0 = dr. We have
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Lemma 7. There is a l-1-correspondence of parallel nice 3-forms on M and nearly
Kάhler structures of constant type 1 on M.

We remark that by Theorem 5.2 of [25] a 6-dimensional nearly Kahler
manifold which is not Kahler is automatically of constant type 1 (after possibly
rescaling the metric) and Einstein with Ricci curvature Ric = 5. We replace The-
orem 2 by

Theorem 2'. Let M be a 6-dίmensional complete simply connected Riemannίan spin
manifold with Killing spίnorfor α = + 2. Then there are two possibilities:

(i) M = S6

(ii) M is of type (1,1) and M is nearly Kahler of constant type 1.

Conversely, if a complete simply connected Riemannian manifold M φ S6 is nearly
Kahler, not Kahler, then M is of type (1, 1).

This theorem was first shown by Grunewald, see [26].
We have obtained a way to construct Riemannian manifolds with holonomy

group G2, namely

Corollary. Let M φ S6 be simply connected nearly Kahler of constant type 1, then
M = M x r2lR+ has holonomy group G2

Example L The complex flag manifold F1 § 2 - SU(3)/T2. Let T2 = S(U(l) x
(7(1) x C7(l)) c SU(3) be the maximal torus. F1 > 2 = SU(3)/T2 can be naturally
identified with the set of pairs (/, p), where /, p c C3 are complex linear subspaces of
dimension 1 and 2 resp. with / c p. The normal metric induced by the biinvariant
metric of SU(3) gives F1>2 the structure of a Riemannian 3-symmetric space,
compare [24]. The automorphism of SU(3) of order 3 which induces the almost

lζ ° °complex structure is given by conjugation with the matrix 0 1 0 , where

\0 0 ξj

£e<C, ξ3 = 1, ξ φ 1. Since the metric is normal it is naturally reductive, hence
F l j 2 is nearly Kahler by [24, Prop. 5.6]. But F l j 2 with this metric is not Kahler.
Thus FI, 2 is of type (1,1) and if the metric is scaled such that Ric = 5, then the cone
over F1 > 2 has holonomy group G2. This example was first discovered by Bryant
and can be found in [8]; it is the first explicit example of a Riemannian manifold
with holonomy G2.

Example 2. S3 x S3. For a compact simply connected simple Lie group G the
product G x G can be given the structure of a Riemannian 3-symmetric space. To
do this one writes G x G = G x G x G/G, where G is diagonally imbedded in
G x G x G, see [24]. If g is the biinvariant metric of G, then g x g x g is biinvariant
for G x G x G and we give G x G the corresponding normal metric. The metric on
G x G is naturally reductive, but it is not the product metric g x g. The automor-
phism of G x G x G which induces the almost complex structure is given by
(0ι, 92,03) -> (03, 0ι, #2). We take G = Sl/(2) w S3. Thus S3 x S3 is nearly Kahler
and not Kahler because the second Betti number vanishes. Therefore S3 x S3 is of
type (1,1) and the cone over it has holonomy G2 if the metric is scaled appropri-
ately.

Example 3. The complex projective space (DP3. We write CP3 =
SP(2)/Sp(l) x U(l) and give CP3 the normal metric induced by the biinvariant
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metric of Sp(2). Conjugation with the matrix I ), ξ e(C, £3 = 1, ξ φ 1, gives

rise to an automorphism of Sp(2) inducing an almost complex structure of CP3. Of
course, this is not the usual integrable complex structure. We have made CP3 into
a Riemannian 3-symmetric space which is nearly Kahler because the metric is
naturally reductive. But with this metric (CP3 is not Kahler, see [36]. Again we
conclude that this CP3 is of type (1, 1) and the cone over it has holonomy G2.

Direct proofs that these three examples are of type (1, 1) can be found in [4,
pp. 141-148].

8. The Case Hol(M) = Spin(7)

Lemma 8. Let V be an ^-dimensional oriented Euclidean vector space, ΦeΛ^V*
a 4-form, E0eV, \E0\ = 1. Then the following assertions are equivalent.

(i) For every unit vector X e V the restriction of the interior product ix Φ to the
7 -dimensional orthogonal complement XL is equal to a nice 3-form φ on XL and the
restriction of Φ itself is *7<£ where *7 denotes the Hodge star operator on XL.

(ii) The assertion (i) holds X = E0.
(iii) Φ can be written as Φ = ω° Λ φ + *70, where φ is a nice 3-form on EQ and

ω° is the l-form dual to E0.

Proof. The implications (i) -> (ii) and (ii) -> (iii) are clear. To show (iii) ->• (i) prove it
first for X = E0 and recall that Spin (7) acts transitively on the unit sphere in
V while it leaves fixed the form Φ, see [8, p. 545].

If a 4-form satisfies the above conditions we call it a nice 4-form. Since
Spin(7) c= 5Ό(8) may be defined as the stabilizer of a nice 4-form, see [8], the
condition Hol(M) c Spin(7) is equivalent to the existence of a parallel nice 4-form
on M .

Let Φ be a parallel nice 4-form on M. We define on M:

One easily calculates

φwφ)(X, Y, Z) = Φ(W, X, Y, Z) = (*φ)(W, X, Y9 Z) .

Hence φ is a nice 3-form on M with Vφ = *φ.
Conversely, given such a 3-form on M we can define on M:

Φ(dr9X, Y,Z):=r3φ(X, Y, Z) ,

Φ(W9 X, Y, Z):= r4(Vwφ)(X, Y, Z) .

Then Φ is a parallel nice 4-form.

Lemma 9. There is a \-\-correspondence between parallel nice 4-forms on M and
nice 3-forms φ on M satisfying Vφ = *φ.

Theorem 5'. Let M be a 1 -dimensional complete simply connected Riemannian spinor
manifold with Killing spinor for α = + .̂ Then there are four possibilities:

(i) M = S7.
(ii) M is of type (1, 0) and M carries a nice 3-form φ with Vφ = *φ, but not

a Sasaki structure.
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(iiί) M is of type (2, 0) and M carries a Sasaki structure, but not a Sasaki-
3-structure.

(iv) M is of type (3,0) and M carries a Sasaki-3-structure.

Conversely, if a 1-dimensional complete simply connected Riemannian spin manifold
M carries a nice 3-form φ with Vφ = *φ, but not a Sasaki structure, then M is of type
(1, 0). If M is an Einstein-Sasaki manifold without Sasaki-3-structure, then M is of
type (2, 0). // M Φ S7 carries a Sasaki-3-structure, then M is of type (3, 0).

Remark. One can replace the concept of nice 3-forms φ with Vφ = *φ by the
notion of nearly parallel vector cross products A via the definition
φ(X9 Y,Z) = <*, A(Y9 Z)>, compare [22] and [4, ch. 4.6].

As for G2 we obtain a construction method for examples of Riemannian manifolds
with holonomy group Sρin(7).

Corollary. // M is a 1-dimensional complete simply connected Riemannian spin
manifold of type (1, 0), then M = M x r 2 R + has holonomy group Spin(7).

Example L SO (5)/SO (3). We consider M - SO (5)/SO (3) where the inclusion
SO(3) d SO (5) is induced by the representation of SO (3) on the 5-dimensional
space of harmonic polynomials homogeneous of degree 2 in 3 variables. M is an
isotropy irreducible homogeneous space. Bryant shows in [8] that the cone over
M has holonomy Spin (7). Therefore M is of type (1,0).

Example 2. The squashed 7-sρhere. If we consider the Hopf fibration S1 -> S4 with
fiber S3 the canonical variation of the metric yields a second Einstein metric besides
the metric of constant curvature. In [11] it is shown that this squashed 7-sphere is
of type (1, 0). Thus after rescaling the metric such that Ric = 6 the cone over this SΊ

has holonomy Spin(7).

Example 3. The Wallach manifolds. We consider the Wallach manifolds
lzk 0 0

NkJ = SU(3)/S1 where the inclusion S1 -> SU(3) is given by z -> Q zl 0

\0 0 z~k~l

It is shown in [4, p. 115, Th. 12] that for k φ 1 or / Φ 1 there exist two Einstein
metrics on NkJ such that NhJ is of type (1, 0), see also [34] and [11, pp. 89-90].
Thus the cones over the ΛΓM's provide a series of examples with holonomy Spin(7).
This series is interesting because infinitely many homotopy types occur
(H4(NkJ;Z) is cyclic of order k2 +/c/ + / 2) and Kreck and Stolz showed that
there are examples of homeomorphic non-diffeomorphic NM's (for example
^-56788,5227 and AΓ_ 4 2652, 6 1 2 1 3 ) ? See [29].
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