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Abstract. The subject of this article is a family of (partly conjectural) spectral
invariants of a Laplace operator with a discrete spectrum λj known as its /c-level
correlation functions pk and level spacings distribution v. The 2-level (or pair)
correlation function p2> f° r instance, measures the asymptotic number of spacings
λf — λf between normalized eigenvalues λf as the eigenvalues tend to infinity. The
normalization is so that the mean level spacing λf+ x — λf is one. These invariants
have been studied by many physicists, including Wigner, Dyson, and Berry, and are
conjectured to have certain universal forms depending on the qualitative behaviour
of the corresponding classical (geodesic) flow. In particular, when the flow is
a generic completely integrable system, these invariants are conjectured to conform
to Poisson statistics.

Our main result is an explicit formula for these invariants for the Laplacian on
a Zoll sphere: that is, for a metric on the 2-sphere all of whose geodesies are closed.
More generally, we can determine these invariants for a Schrodinger operator on
the sphere. Our results show that they are determined from a certain Hamiltonian
flow on the space of geodesies of the Zoll sphere (exactly for these metrics, the space
of geodesies is a well defined manifold).

Although Zoll metrics have very special properties, they form the largest class of
surface metrics with completely integrable geodesic flow. Their Laplacians also
appear to be the first (infinite dimensional) family of operators for which one can
determine the above spectral invariants. Our methods suggest that in general the
nature (even the existence) of these invariants is closely related to the noncom-
mutative geometry of the geodesic foliation of S*M. In the Zoll case, the geometry
is commutative (in the sense of A. Connes). In all other cases, the geometry is
noncommutative and our methods seem to lead into correspondingly nonclassical
kinds of Fourier Integral Operators.

1. Level Spacings and Correlation Functions

We begin by defining these invariants in the general context of compact Rieman-
nian manifolds.

First, recall that from the spectral point of view there is a gross dichotomy
among metrics: (1) the Zoll case considered here (where (M, g) has periodic
geodesic flow), and (2) the generic case, where the set of closed geodesies has
measure zero. In the Zoll case, the eigenvalues of the square root yfλ of A cluster
around an arithmetic progression

2π
yk + β;k = 0 , 1 , 2 , . . .

where T is the period and β is closely related to the common Morse index of the
periodic geodesies of period Γ([16, 10]). More precisely, if 0 = λ0 < λ1 <£ λ2 ^
denote the eigenvalues of Δ9 then the eigenvalues {-y^} n e i*1 intervals of size

O(l/k) around the < — k + β >. In the generic case, the eigenvalues of J~A are

more uniformly distributed: in particular, the number N(λ,ε) of eigenvalues

^/λj in [λ — ε, λ + ε] is asymptotically Cn2ελn~ίYol(M) (n being the dimension

of M).
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Our definitions of the /c-level correlation functions (kefs) and level spacings
distribution (lsd) correspondingly differ a little between these two cases. The
general idea ([14,25,30]) is to measure the limit distribution of normalized
spacings between eigenvalues of yJΔ in [A — ε, λ + ε] as λ -» oo. By "normalized"
we mean that the eigenvalues are rescaled to have a fixed mean level spacing
independent of λ. In the generic case, the mean level spacing of the eigenvalues in
\_λ — ε, A + ε] i s evidently

1

(1)

(The sum runs over ^/λje [A — ε, λ + ε].) In the generic case,

DC

where C = (Cn Vol(M)) 1. Henceforth we will rescale the metric so that C = 1.
Thus, the rescaled eigenvalues I>Γ1(\Mj) have unit mean level spacing. We now
define the pair correlation functions (pcf's), ρ\ of the normalized eigenvalues in this
interval by:

Definition 1.1.

where as usual the sum runs over y/λi9 y/λjE\_λ — ε, λ + ε]. Thus, p\ ^ a measure on
R with δ-functίons at each normalized spacing. Note that p\ is not of mass one, or
even of bounded mass (in λ). Hence, there is no guarantee that the family {p^} has
any limit points, much less a unique one, nor that a limit is a measure on R.
Nevertheless, one can ask what the limits are. We will denote any such limit by p 2 ,
and call it a pcf.

The lsd is defined in a similar way except that we only sum over nearest
neighbors: i=j+ 1. The resulting measures, say {vλ}, are then of mass one, so
there surely are weak limit measures. We will denote any one by v, and refer to it as
an lsd.

The kef's for k > 2 are in general measures on R*" 1 . For each fc-tuple

(y/λΐl9 . . . , \f^ϊh) of eigenvalues in \_λ — ε, λ + ε], we put a <5-function at the point

Dλ \

in R * ' 1 . The kef, p£, for \_λ - ε, λ + ε] is then:

Definition 1.2.

Σ ^k =

Any weak limit, pfe, of the family {p£} will be called a limit kef.
In the Zoll case studied here, these definitions (1.1, 1.2) need to be modified to

insure the existence of a unique weak limit. To see this, we recall that by Weinstein's
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theorem, [29], the Zoll Laplacian is unitarily equivalent to Δo + A for some zeroth
order ΨDO, A:

F'ίΔF = ΔΌ + A. (2)

Moreover, A can be assumed to commute with the standard Laplacian, Δθ9 on S2

[17]. Let

where Hι is the space of spherical harmonics of degree /. Then Ax is
a (2/ + 1) x (21 -f 1) Hermitian matrix, with 2/ + 1 eigenvalues which will be de-
noted {μι,k}- Clearly

and so the spectrum of A comes in the bounded clusters

Q = {/(/ + 1) + μιjc; k = 1, . . . , 2/ + 1, / = 1, 2, . . . } .

Therefore the spectrum of *J~Δ comes in the clusters

el'2 = {l+ 1/2 + ΓHμiΛ ~ 1/4) + O(Γ2); fc = 1, . . . , 2/ + l,i = 1, 2, . . .} .

Since these clusters are of size O(/~1), and are separated by intervals of size
1 — 0(1//), there will be no unique lsd or kefs in the sense of Definitions 1.1, 1.2.
However, there is clearly only one interesting limit, obtained by fixing

In other words, we will define the lsd of J~Δ (e.g.) as the limit lsd of the clusters C}/2.
Since the width of C}12 is 0(1//), and since there are 2/ + 1 eigenvalues in it, the

mean level spacing Dt of the cluster is 0(l//2). The implicit constant in Dt can be
fixed as follows: According to [28], the eigenvalues {μι,k} have a limit distribution
as / -> oo. To describe it, let σA be the principal symbol of A. Since [̂ 4, zJ0] = 0, σA

is invariant under the geodesic flow of the standard metric g0 on S2. Hence, it
descends to the symplectic quotient

Θ = S*(S2)/S1 ,

where S1 acts by the geodesic flow of g0. Let ω& be the symplectic volume form of
Θ. Then Weinstein's result is that the push-forward (σA)*ωΘ is the piecewise
smooth measure μA on the interval [min σA, max σA ] according to which the {μZίfe}
get distributed. Since all but a sparse subsequence of the μUk's must lie in
[minσ^, maxσ^], it seems sensible to define:

max σA — min σA
Dι= 27TΊ

By a little rescaling, we will henceforth assume Dt = 1//.
We therefore set:



Spectral Statistics on Zoll Surfaces 317

Definition 1.3. In the Zoll case,

^ _ 1

Zί -f- tj

21 + I i

1 ^ ,
*

Hence, we take advantage of the fact that terms of order O(/~2) in the formulae
for the eigenvalues of VΛ4 will drop out in the limit.

We finish this section with some general remarks that motivate our approach to
the pair correlation function of an elliptic operator. (Suitable generalizations apply
to the kef.) Let P be a positive, self-adjoint, first-order elliptic pseudodifferential
operator on a compact manifold M, and let μ± ̂  μ2 ^ . . . denote its eigenvalues
with multiplicities. Define the operator

-I®P (3)

on functions o n M x M . Then the differences of pairs of eigenvalues

μj - μ k , j , k ^ l

are clearly eigenvalues of Q, and thus by a theorem of Helton the operator Q will
generically have dense point spectrum. Q is a pseudodiίferential operator of order
one on M x M, with the minor complication that its symbol σQ is non-smooth on
({0}xI)u(Ix{0} | , where X = Γ*M\{0}. In the informal discussion that fol-
lows we will safely ignore this fact and treat Q as an ordinary first-order, self-
adjoint pseudodifferential operator of real principal type. The latter means that (a)
zero is a regular value of the principal symbol of P, and (b) at any point of the
manifold 7,

γ=σQ1(0) = {(χ,ξ;y,η);\ξ\x = \η\y}, (4)

the Hamilton vector field of σQ is non-radial. Notice that, by the ellipticity of P, Y
does not intersect the set ( { 0 } x I ) u ( I x {0}), where σQ is non-smooth.

The flow of the Hamilton vector field of σQ on Y (the null bicharacteristic flow
of Q) is obviously given by

{χ9ξ;y,η)>-+(φt{χ9ξ);Φ-t(y9η)), (5)

where φt denotes the Hamilton flow of the symbol of P on X.
Thus by the introduction of the operator Q we can cast the problem of the pair

correlation function as a particular case of the following problem: How does the null
bicharacteristic flow of an operator of real principal type describe the asymptotic
distribution of its small eigenvalues? (In cases of interest one has a commuting
operator, P, jointly elliptic with g, which orders the small eigenvalues of Q and
makes this problem precise.)
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Theorem 4.1 of [8] says that if Q is any first-order self-adjoint operator of real
principal type whose null bicharacteristic flow is periodic, then a suitable perturba-
tion of Q has an infinite-dimensional kernel, 3fQ. (More precisely, it has such
a kernel in the FIO category: i.e. some projection into the kernel is an FIO.) In
some sense, J^Q is the quantization of the symplectic manifold quotient of the
bicharacteristic variety of Q by its null flow. In case Q is of the form (3), this
theorem implies the clustering results of Duistermaat-Guillemin/Colin de Ver-
diere/Weinstein: if the flow φt is periodic, the eigenvalues μ̂  cluster around an
arithmetic sequence.

In the non-periodic case, the situation is a great deal more complicated.
First, the orbit space of the null bicharacteristic flow on ch(Q) (the characteristic
variety of Q) need not exist as a Hausdorff topological space, much less as
a manifold. Secondly, there need not exist a quantizing Hubert space JfQ either.
Indeed, an (FIO) projection Π to J^Q would have to lie in the algebra $Ch{Q)
associated to ch(Q) by Guillemin and Sternberg in [19]. But ^ch«2) might not
have any projections. To see this, we observe (following Guillemin-Uribe in [23])
that the symbol calculus of ^Ch«2) is essentially the Connes C* algebra of the
null foliation of McHQ). For some foliations (for example the horocycle foliation
of a compact quotient of SL(2, R)), this C* algebra is known to have no projec-
tions, [13]. In general, the existence of projections in this algebra is a difficult
question.

Even when a projection exists, the problem of determining the asymptotics
of ρ\ seems to be quite non-standard. The novelty stems from the eigen-
value rescaling that goes into the definition of p\. It amounts to replacing Q
by RQ, where R is a ΨDO of order (n — 1). The asymptotics of p\ then reduces
to the asymptotics of the traces ΎrΠφλ(RQ), for suitable test functions φλ.
But Πφλ(RQ) is not an FIO in the classical sense, since the order of RQ is
greater than one. The Π factor has the effect of reducing the order of RQ by
one (since the symbol of Q vanishes on the canonical relation of 77). Hence if
n = 2, Πφλ(RQ) has order one, in the sense of the non-commutative symbol
algebra of &ch(Q).

In sum, the problem of determining the asymptotics of p\ in general leads
to a number of new, and subtle, problems in non-commutative microlocal
analysis.

2. Spectrum in the Completely Integrable Case

We now briefly review what is known (rigorously) about the spectrum of (M, g)
under various conditions of complete integrability. We will also review some
well-known conjectures and partial results, especially as regards the lsd and kef's.
In the rest of the paper we will discuss in more detail the special case of Zoll
surfaces.

2.1. Classical Complete Integrability. Let q(x, ξ) = \ξ\ denote the norm function
of the metric g, viewed as a function on T* M. The flow generated by the Hamilton
vector field Ξq is the geodesic flow and will be denoted G\ It is completely integrable
if there is a smooth, positively homogeneous map

/:Γ*M\{0}-+IRn\{0}
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(n = dimM) satisfying:

vy {fi,fj} = o9

i/ iΛ Λ i / B Φ 0 , (6)

where the third condition should hold on some open dense set Ωh

r, the set of regular
points of /

The collection {/)} of commuting Hamiltonians generates an R" action,
φ\ t = (ί l 5 . . . 9 tn\ on Γ*M\{0}. Since all the //s are homogeneous of degree one,
Φι is homogeneous of degree zero, and so it restricts to an action on the unit sphere
bundle, S*M = ̂ ( l ) . We let Ωr = Ωh

rnS*M.
The decomposition of S*M into orbits of Φι defines a foliation with singular-

ities along Ωs = S*M\Ωr. The foliation is regular along Ωri and the leaves are of
the form ΊR.n/Γix>ξ), where Γ{Xtξ) is the isotropy subgroup at (x,ξ). Since, by
definition, the Hamilton vector fields of the fj are linearly independent at each
point of Ωr, the isotropy subgroups Γ{Xtξ) are discrete. Let us denote by Ωc the
subset of Ωr such that Γ{Xtξ) is co-compact, i.e. so that the orbit through (x, ξ) is an
n-torus. Ωc is an open subset of Ωr, and f:Ωc-^Λ (where A =f(Ωc) is a proper
submersion onto an open set in Rn, whose inverse images f~ι{b) are finite unions
of n-torii. In particular, if Ωc is connected. f\Ωc is a fibration. The same holds for the
homogeneous set Ωh

c = R + Ω c .
The well-known Bohr-Sommerfeld-Maslov (or BSM) quantization rule selects

from among the invariant torii Λk of Ωh

c those satisfying

±-$oc-l/4m(yj) = kjeZ, (7)
z π yj

where {γl9 . . . , γn} is a basis for ffi(Λfe, Z) and m(yJ ) denotes the Maslov index,
[11]. The discrete set {Λk} of such quantizable torii is important because, at least
heuristically, it corresponds to an orthonormal basis of eigenfunctions of the
Laplacian. Further, the quasi-classical spectrum

QSpec(V^) = {q(Λk)\ keΈ"} = {0 = μ0 < μ i £ μ2 . . . -> oo}

is supposed to provide a first approximation to the true spectrum of ̂ /A. By
adding lower order terms to q, it is supposed to provide an arbitrarily good
approximation of the spectrum oί-J~Δ. In particular, the lsd and kef of Spec ~f~Δ are

V — V

supposed to coincide with those of QSpecί^/zl).
To substantiate this picture, one must construct a bijection

between quasi-classical and true eigenvalues so that \μk — λj(k)\ is of lower order
than the mean level spacing near -Jλj{k). (Actually, initial eigenvalues {μj j-^N}
resp. {λj'J ̂  N} can be ignored without compromising any principles.) In general,
however, there is no natural definition of j . Specifically, in this approach one must
solve the following problems:

(a) The Approximation Problem. Is there an injection j from the quasi-classical
spectrum {τr} to specy/j so that \j(τr) — τr\ = o(Dtr\ where Dτr is the mean level
spacing near τr?
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(b) The Exhaustion Problem. Assuming one has constructed j as in (a), does the
image of; contain a coίinal set {λyj ^ N}Ί (A weaker condition is that the image of
j is a set of spectral density one.)

The standard approach to these problems is by the construction of quasi-
modes. We now recall the notion (discussed in [11]) of a quasi-mode.

Definition 2.1 [11]. A quasi-mode of order σe lR + u {oo} is a sequence of pairs
(ur, τr) where:

?0 = τ l = τ 2 = ' ' ' "* °°

tends monotonically to infinity, and

\\(A-τr)ur\\=O(τr12).

Thus a quasi-mode is a sequence of approximate eigenfunctions and approxim-
ate eigenvalues. The main significance of a quasi-mode is that {τr} are indeed
approximate eigenvalues: there is an increasing function j : r\->jr of N into itself
such that

λjn = τr + 0(τr12)

([11], Cor. (1.4)). However, the ur do not necessarily approximate true eigenfun-
ctions in L2(M), [1]. Rather, they are associated to quantizable torii:

Theorem 2.2 ([11], Theorem 7.1; [15] §1.5). Let A c Γ*M\{0} be a Lagrangian
torus, contained in S*M and satisfying:

(i) A generalized Maslov quantization condition: If\^ξdx']eH1(A, R) is the class of
the pull-back to A of the canonical 1-form, andoceH1(A, TL) is the Maslov class, then
there exists a sequence {nr} a R + so that \nr+1 — nr\ ^ C > 0 and so that

d i s t a n c e ^ Iξdx] - α/4, H\Λ9 Έ)\ = O(l/nr) .

(ii) For any feC^(A) such that jΛfdμΛ = 0 (where dμΛ is Liouville measure), there
exists geC^iA) such that Hq(g) =f

Then: There is a quasi-mode {(ur, τr)} of order oo so that

00

τr~n2+ X P ; ( & , ! , . . . , βrtH)n-J,
i = o

where we have written

with {et} a basis ofH1(A, R), βrJ = 0(1) and Pj is a polynomial of degree (j + 1) in
n variables.

Without condition (ii), one can only construct a quasi-mode of order zero, i.e.
λjr = Πr + 0(1). Such a quasi-mode is of no use in the study of lsd's or kefs, since
I λjr — n21 is not of smaller order than the mean level spacing. Also, as Colin points
out, condition (ii) only holds if each geodesic in A is dense.
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The correspondence between quantizable torii and quasi-modes can be
strengthened to encompass the asymptotics of the {ur}. The idea is that the ur

micro-locally concentrate on A as r-> oo (or: A is the micro-support of the
quasi-mode), [11]. In contrast, there is generally no such natural correspondence
between modes (actual eigenfunctions) and quasi-modes [1].

Theorem (2.2) cited above gives one solution to the approximation problem (a).
A second approach is to use intertwining operators to microlocal normal forms,
([12]). However, this only seems to construct quasi-modes of order zero, so it does
not solve the approximation problem accurately enough.

As for the exhaustion problem (b), the only approach in general is to count the
number

of quasi-classical eigenvalues less than Γ, and show it has the same growth rate as
N(λ). This at least confirms the weaker form of (b). Nsc is evaluated by decompos-
ing S*M into open subsets { β j on which action-angle variables χi can be defined.
BMS torii Ak in Ω\ are distinguished in that the action variables [J ί s 1 ? . . . , lUn]
take Λk to k -f α/4, so essentially convert the BMS torii to the lattice Έn n Xi{Ωhi).
Thus, counting BMS torii Ak in Ω\, with q(Ak) ^ Γ, is converted to counting lattice
points in χi{Ω\) with Kt'.= q°χι^T. This is a classical van der Corput problem if
K'l is of maximal rank; the number of lattice points then grows like the volume of

Thus, one gets the optimal growth rate for the BSM spectrum in Ω\. If the Ω\ were
disjoint and the complement of their union had measure zero, one would like to
conclude that

Nsc(T)

N(T)

This, however, is a difficult programme to implement. First, while the existence of
such a decomposition may be possible in general, no proof of it seems to exist in the
literature. To our knowledge, the best available result only uses the existence of
a decomposition of S*M up to measure ε ([11], p. 32). Secondly, the van der
Corput problem alluded to above becomes singular where K'l degenerates, this
giving rise to a higher concentration of eigenvalues (see [9]). Hence, the exhaustion
problem is unresolved in general.

2.2. Quantum Integrability. In spectral theory, and in this paper, one is usually
dealing with the more specialized situation of a quantum completely integrable
system. This means «J~A = Pί is one in a collection of commuting first-order
ΨDO's, P 1 ? . . . ,Pn: [JPj,P, ] = 0 Vi,;. (This setting also covers the apparently
more general small h setting for operators ft-admissibles, as in [26].) The principal
symbols (p 1 ? . . . pn) are assumed to be a.e. independent, and hence define a classi-
cal completely integrable system. But the additional assumption that the pf are
symbols of commuting ΨDO's leads to somewhat stronger conclusions about the
spectrum of A than before.

The strongest conclusions can be drawn if the {Pt} come from the infinitesimal
representation of a quantum torus action: i.e. a representation of ί e R n / Z n as
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unitary FIO's (Fourier integral operators), U(t), on L2(M). This always holds if
classically the {pt} come from a closed torus action. See [12] §2, and [18] for
discussions of conditions under which a completely integrable system is a Hamil-
ton torus action, and [12] for a proof that such an action can be quantized.
Following Colin's paper, we let q = (qu . . . qn) denote the infinitesimal generators
of the torus action so that the flow of Hq. is periodic of period 2π, and let
(βi» βn) denote generators of the corresponding commutative algebra of
ΨDO's so that the joint spectrum

S p e c ( β 1 , . . . , β l l ) c Z » + μ,

where μ is the Maslov index.

Theorem 2.3 ([12], Theorem 3.2).
(i) There exists R>0 such that

, . . . , β B ) n { μ | | > R} = q(T*M\{0})n {\\λ\\ >R}nΈn + μ,

(ii) Each joint spectral point λ with \\λ\\ > R has multiplicity one.

Thus, up to a finite number of possible exceptions, the BMS torii q~ *(A) are in
one to one correspondence with Spec(β1 ? . . . , Qn\ and hence both the approx-
imation and the exhaustion problems can be optimally solved.

Unfortunately, few quantum integrable systems are globally quantum torus
actions. In particular, the Zoll surface system is generally not. However, the
existence of {Pu . . . ,Pn} at least allows the eigenvalues of P1 — JA to be
separated out: i.e. the joint spectrum {y/δ9 μ2, . . , μn) of {Pi, . . . , Pn} can be
widely separated even though the first coordinates y/δ are not. This of course
depends on the choice of generators for the infinitesimal torus action.

In good cases the joint spectral points can be put in a single 1-1 correspondence
with the quasi-classical joint spectrum of values (p^Aj,), . . . ,pn(Λk)\ but no
definitive statement seems to exist in the literature. When S*M can be decomposed
into a finite number Ωt of invariant open sets, such that S'*M\lJ.ί2I has measure
zero and one has toral actions on each Ωu one is tempted to try and apply Theorem
(2.3) to each Ωt and conclude that the exhaustion problem is solved. However, the
joint spectrum will be in general highly concentrated along the boundaries of the
q{Ωi\ and such a conclusion is at least not at all clear.

2.3. Some Conjectures and Results on the lsd and kefs. Next, let us review some
prior conjectures and results on the lsd and kefs in the completely integrable
case.

The problem of determining the lsd and kefs of a spectrum was apparently
raised by Wigner in his work on nuclear Hamiltonians, H = 1/2A + V, ([30, 25]).
The potential V was not known explicitly, so it made sense to consider it as
somewhat random (see [14 or 25]). Wigner, therefore, proposed modeling the
spectrum by the expected spectral properties of random N xN matrices in the limit
N -• oo. The spectral theory of random matrix ensembles was subsequently
developed by Dyson, Mehta and others who in particular calculated explicitly the
limiting lsd and kefs for the main ensembles. At the same time, numerical studies of
the spectrum of nuclear Hamiltonians, of Laplacians of various manifolds and
domains, and of zeroes of the Riemann zeta function have produced a lot of data to
compare with the random matrix lsd's and kefs. These data seem to support
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Wigner's conjecture for Hamiltonians whose associated classical systems are in
some sense chaotic ([25] p. 7, [2]). However, the data go against the conjecture for
simple systems like the Laplacian on a torus or the harmonic oscillator, which of
course are completely integrable.

M.V. Berry and M. Tabor have proposed that the normalized eigenvalue
spacings S^ in the generic completely integrable case should behave like indepen-
dent, Poisson distributed random variables, [3]. In particular, the spacings should
be uncorrelated, and hence the spectrum should have more gaps and also
more degeneracy than in the chaotic case. The heuristic idea seems to be this:
As observed above, one approximates the eigenvalues by the values of the
classical Hamiltonian K = q°χ, expressed in terms of action-angle variables, at the
lattice points 7Ln + μ. Level spacings then correspond to values Sj such that the
region

contains a lattice point on each boundary component, but none in the interior (n is
the dimension of M). In case K is homogeneous, the surfaces K = R are dilates of
K = 1, and the values Sj may be viewed as the normalized spacings between the
times when the dilating family K = R touches a lattice point. If the surface K = R is
sufficiently "generic" (in some sense), these times are supposed to be Poisson, i.e.
like the times at which a radioactive nucleus emits a particle ([3] p. 379).

A precise definition of "generic" has not been attempted in [3], but it certainly
excludes systems, such as the harmonic oscillator, for which K" = 0. In fact, the
authors suggest that no unique lsd and kef's exist in those examples, and in
dimension two this has recently been proved by P. Bleher, [5]. The Zoll case we
study is also non-generic in the sense that K" = 0 [11], p. 32. However, it is
completely unlike the case of harmonic oscillators in that unique lsd's and kef's do
exit.

The heuristic principle we described above does not seem very plausible for
individual integrable systems. For example, if K = 1 is real analytic, then the times
at which dilates touch lattice points along one direction would determine the times
for any other direction. The spacings would then seem highly correlated and far
from Poisson.

It would seem however to make more sense if the contour K = 1 is itself
regarded as random, and in particular if the law is such that modifications of K = 1
at one point are independent of modifications at any other point. Such a random
set up has recently been studied by Sinai, [27], and subsequently by Major, [24].
They consider the spectrum of the Laplacian on torii of revolution (obtained by
revolving a symmetric profile curve y = G(x), — 1 ^ x ^ 1 around the x axis, and
identifying the ends x = +1). Such torii have completely integrable geodesic flows.
Sinai defines a probability measure on the space of G's so that the resulting
measure on the space of K's has the independence property alluded to above. He
shows that the average value of the lsd for these K exists and equals a generalized
Poisson distribution. Major develops these ideas further to show that, with prob-
ability one, each curve K has such an lsd. However, the K in this set do not,
unfortunately, seem to correspond to smooth metrics on torii of revolution, [24].

Finally, we note that in dimension two, completely integrable geodesic flows are
only possible for metrics on the sphere and torus. In the case of the torus, the above
metrics of revolution are apparently the only known ones. In the case of S2, the
only known completely integrable metrics are metrics of revolution and Zoll



324 A. Uribe and S. Zelditch

metrics. Thus, Zoll metrics actually form the most substantial family (of functional
dimension two rather than one) of completely integrable surface metrics.

3. Pair Correlation of a Zoll Metric

3.1. Statement of the Result. Before stating our result, we need to introduce some
notation. Let

denote the function induced on Θ by the principal symbol of the operator A of (2).
Let S*(S2) be the unit cosphere bundle of S2. By definition of Θ, we have a natural
projection

π:S*(S2)-^Θ (8)

which is in fact a circle bundle, the action given by the Hamilton flow of
H0(x,ξ) = \ξ\ restricted to S*(S2). Let α denote the pull-back to S*(S2) of the
canonical one-form on T*S2. Then it is trivial to check that α is a connection form
on (8) whose curvature is the symplectic structure on Θ.

Definition 3.1. For every closed curve γ: [α, ft]-• 0, we will denote by ϊ)(y)e
S1 = R/2πZ the holonomy of y with respect to the connection α.

We will henceforth make the following

Assumption M: H: Θ -> 1R is a Morse function.

No explicit formula for H is known in the case of Zoll surfaces. Hence one
cannot check directly if the generic H coming from a Zoll metric is Morse.
However, our analysis certainly applies to generic zeroth-order perturbations of
the round Laplacian, a class of operators very likely to include operators unitarily
equivalent to generic Zoll Laplacians.

Let ^ c R b e the subset of the image of H consisting of regular values, and let
cx < < cκ +! be the critical values of H (K ^ 1). Then & is the disjoint union of
K open intervals, $v:

< v̂ = (c v,c v + 1 ) , ve{l, . . . 9K} .

For every ve{l, . . . , K} the inverse image H~ι(&v) consists of a certain number
N(v) of connected components X), each one of which is diffeomorphic to a cylinder

N(v)

Definition 3.2. We will call X) the (v,j) branch ofH.

Each level surface H~1(E) with Ee&v intersects each X) in a periodic traject-
ory y)(E\ whose minimal positive period will be denoted T)(E). As the notation
suggests, for given v andy the period T)(E) can be regarded as a function of the
energy Ein&v. Although not essential for the calculation of a pcf, we will make the
following assumption for ease of exposition:
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Assumption T: For all v,j the function E\->T](E) has non-zero derivative every-
where on Mv.

On a branch one can also introduce global action-angle coordinates. Recall (see
[1]) that the action coordinate is

=logh(yJ(E)), (9)
ι%^j - J

from which it follows that

T){E) = ̂  -j== log h(7}(£)) . (10)

By assumption T, one can (and will) regard any of the functions Γ], I) and
H restricted to X) as a function of any of the other two.

Our result can be loosely stated as follows: the pair correlation function is
determined by the pairs of (possibly identical) branches with the same index v and
commensurate period functions. Let's be more precise. For a given index v, let Sv

denote the set of all couples (j, fe), j , fce{l, . . . , N(v)} for which the functions
T) and T\ are related by an identity of the form

T<V r\J> ) rr<V
1 1

with p(j, fe), q(j, fe) relatively prime positive integers. The case j = k and p = 1 = q
is not excluded; in fact the set S is the graph of an equivalence relation in
{1, . . . , N(v)}. It follows from (10) and V(j, fe)eSv,

Uy](E))^k^(yl(E)y^k) = e^ , (12)

for some constant c ^ e l R and all EeMv. With these notations we can now state
our main result:

Theorem 3.3. Under assumptions M and T9for every φ with compactly supported
Fourier transform one has

1 K ilrcj.k imj,krπ/4.

2 π v = 1 0 \ * ) e S v r e z P U > * M Λ K ) J(j,k;v)

modulo o(l), where J(j, fe; v) is the interval

HI k; v) = ίq(j9 fe)min ΓJ, q(j9 fe)max ΓJ]

αnίί m i5 fc is an integer (Maslov factor).

A couple of remarks. First, notice that since φ is compactly supported, the sum
on the right-hand side is finite. Second, the apparent asymmetry of the (j, fe)-th
term evaporates if we recall (11). An equivalent, symmetrical formulation of the
asymptotics in question is

1 K gilrCj,kpintj,krπ/4

YπΣ Σ Σ v ( i k ) g ( i k ) ί ΦiriTjmTjWUDdE, (13)
z π v = l (7,Λ)eSv reZ " U ? K)(i\]^ K) Rv

which is symmetric in (j, fe) since qTj = pTk.
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3.2. Reduction to the Trace Formula. The proof of our result will be divided in two
steps. The first reduces the problem to an application of the main result of [22] and
the second is to carry out that calculation. Throughout we shall keep the previously
introduced notation.

Let P denote the operator on S2 which on Hi is multiplication by /, V7eZ + .
Then

P = JΔ0 + 1/4 - 1/2 , (14)

which by a theorem of Seeley implies that P is a first-order pseudodifferential
operator with symbol

The unitary one-parameter group exp(ίtP) is 2π periodic, and the corresponding
canonical transformations constitute an S1 Hamiltonian action on Γ*S2\{0}
which of course is just the geodesic flow parametrized by arc length.

Consider now on S2 x S2 the operators

These operators are commuting pseudodifferential operators with singular sym-
bols, namely

σPί{x,ξ;y9η) = \ξ\

(and analogously for P 2), and away from the singular points (ξ = 0 for P l 5 η = 0
for P 2) their Hamilton vector fields are 2π-periodic. Hence they define a Hamil-
tonian action of the standard torus T = S1 xS1 on the symplectic manifold

X = {(x9 ξ; y9 η)eT*(S2 x S2); ξ + 0 and η Φ 0} ,

with moment map

Φ:X-+WL2^t* (16)

g i v e n b y Φ ( x , ξ; y, η) = (\ξ\, \η\).

Our analysis will lead us to consider the following co-isotropic submanifold of
T*{S2xS2):

Θ = {(x9ξ;y9η):\ξ\ = \η\}. (17)

The leaves of the null-foliation of this co-isotropic Θ are the fibers of the natural
projection

(18)

where K is the anti-diagonal subgroup

K = {(ei\e-it)}czT. (19)

Lemma 3.4. Y is a six-dimensional conic symplectic manifold with a free circular
Hamiltonian action induced by the restriction ofσPχ to Θ. Moreover, the symplectic
quotient (reduction) of Y with respect to this action is naturally symplectomorphic to
the reduction of X with respect to the T action at (1, l)eIR2, which itself is
symplectomorphic with Θ x Θ:

Φ~1(ll)/T=ΘxΘ . (20)
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This reduced symplectic manifold, Θ x &, has a natural pre-quantum circle
bundle, namely the quotient of Φ - 1 ( l , 1) by K:

W = {(x, ξ; y , η)eT*(S2 x S 2 ) ; \ξ\ = 1 = \η\}/K -> 0 x Θ . (21)

In terms of the pre-quantum circle bundle S*(S2) -» Θ of (P, we can write (21) as

W = πf S*(S2) (x) π?S*(S 2 ) , (22)

where π ; : © x & -+ Θ is the projection onto the j t h factor.
A simultaneous diagonalization of P 1 ? P2 yields an orthogonal Hubert space

decomposition

where

is the joint eigenspace of P 1 ? P2 with joint eigenvalue (/, m). Introduce the space

^ = 0 H U , (24)

and let Π\ L2(S2 xS2)-+Jtf the orthogonal projector. This is the "ladder" of
representations of T associated to the line through the weight (1, 1).

Lemma 3.5. (See Theorem 6.7 of [20].) The projector Π is a Fourier integral
operator associated with the flow-out in T*(S2 xS2)\{0} of the co-isotropic Θ.

In [19], Guillemin and Sternberg show how the family of Fourier integral
operators

&π = {ΠQΠ} , (25)

where Q ranges over the pseudodifferential operators on S2 x S2 is a ring, which has
a symbol calculus with phase space the reduced manifold Y. We will make use of
this below. In fact, we will use a slight extension of it: we will consider Fourier
integral operators of the form

ΠeiθPlQΠ .

These are Fourier integral versions of the operators in Mπ.
Consider next the operator

A®I-I®A (26)

on L2(S2 x S2), where A is the operator in (2). Clearly

Spec A(2>| f l l i I = {μhJ - μltk;j9 k = 1, . . . , 2/ + 1} . (27)

Our main analytical object of study is the following:

Y(θ) = TτlΠφ(P1A
i2))eiθPιΠ] , (28)

where φ is a function satisfying φeCo(K). Y is a well-defined periodic distribu-
tion infact

= Σ e"β Σ φ(i(μι.j - μι.k)). (29)
1 = 1 j , k = 1
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We will next invoke Theorems 1.1 and 1.2 of [22], applied to the operator

R = P 1 X ( 2 ) (30)

and the representation of Γ,

(eit\eit2)\-+ei<fίPι+t2P2) ,

both compressed by Π. By the remarks following Lemma 3.4, the symbolic
calculation can be carried out in the reduced symplectic manifold Y. Two more
technical remarks:

(1) The operators R, P1 and P2 have singular symbols. However, all the proofs and
statements below occur microlocally in a neighborhood % of the inverse image by
Φ of the diagonal, where all operators in sight have smooth symbols. Hence all the
arguments go through in the present case.
(2) The operator R is not elliptic in °lί. One can easily check that what is needed in
[22] is that P be a first-order, self-adjoint pseudodifferential operator whose
symbol does not vanish anywhere o n Φ " 1 (0). Since in our case Φ~1 (0) = 0 (i.e. the
group action itself is elliptic) this is automatic.

Theorem 3.3 is proved by a symbolic calculation just like the one proving
Theorem 1.2 of [22] (with the energy E equal to zero). We will now indicate how
the symbolic calculation goes, referring to [22] for more details. We break this
discussion in the following two subsections.

3.3. Period Manifolds and Holonomies. The symbol of R descends to a function
p on Θ x Θ, which is simply

p(zuz2) = H(z1)-H(z2). (31)

As in Theorem 1.1 of [22], the singularities of Y are created by the periodic
trajectories of p on the energy surface {p = 0}. More precisely, consider the
pre-quantum circle bundle, W, of & x Θ. Let us denote by ί)(y) the holonomy of
a closed curve y c Θ x Θ in this bundle.

Theorem 3.6. (See Theorem 1.1 of [22].) The singularities of Y given by (29) are at
those θ such that there exists a periodic trajectory of the Hamilton flow of p, y,
contained in p~x(0), and such that

ew = i)(T)

Let us now study the space of periodic points (z1 ? z 2 )ep~ 1 (0). Consider the set
0* equal to

{{zl9z29 T)eΘxθx suppφ; p(zu z2) = 0 and (zuz2) = exp(ΓΞp)(zl9 z2)Y .

If {./t} denotes the Hamilton flow of H on Θ, then clearly

( z 1 , z 2 , Γ ) e ^ o H ( z 1 ) = H(z 2) and Zj=fτ(zjl j = 1,2 . (32)

It will suffice to work with the regular points in ^ , that is, define for all
v e { l , . . . , K }

^ = {(zl5z2, T)eP;H(zj)e(Xv} , (33)

where, we recall, < v̂ denote the intervals of regular values of H.

1 Ξp is the Hamilton vector field of p
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Lemma 3.7. Keeping the notation of Sect. 3.1, the connected components of 0>v are
the sets &),k,n where (j, k)eSy and reΈ, consisting of all points (zί9 z2, T) with

z,eX), z2eXl H(Zl) = H(z2) and T = rq(j,k)T] = rp(j,k)Γk .

Notice that all these connected components have dimension three, whether
T = 0 or not. This will imply that all the singularities of Y have the same strength,
and all will contribute to the pair correlation function.

Let us next compute the holonomy of a periodic trajectory of p defined by
a point in ^},k,r. (It is easy to see that all such trajectories have the same
holonomy.) In general, the holonomy in Woϊ a curve on & x Θ is the product of the
holonomies in S*(S2) of the projections of the curve into the factors. Furthermore

p)(zu z2) = (ft(Zl)9 f-t(z2)) . (34)

It follows that the holonomy in W of the trajectories in 0>\ k j r is

eirCj'k, (35)

where the constants cjik were defined in (12).

3.4. The Pair Correlation Density. Under certain "clean intersection" conditions
we can symbolically obtain the asymptotic behavior of the Fourier coefficients of Y.
The clean intersection condition is that <P be the clean intersection of

9 -* ρ~1(0)xlR

i ϊ (36)

where Θ2 = Θ x (9, the bottom arrow is the diagonal inclusion, and the right arrow
is the Lagrangian immersion given by the flow of p. In the present case this is not
a clean intersection diagram; however, it fails to be clean precisely at finitely-many
points. Just as in [31], this is enough to yield the leading order behavior of the
Fourier coefficients of Y. The following is proved just like Theorem 1.2 and
Corollary 7.2 of [23], working with 77-compressed operators and the phase space
Y:

Theorem 3.8. (See Theorem 1.2 and Corollary 7.2 of [23].) Under the assumptions
M and T, the clean intersection condition on (36) is satisfied in the complement of

(J ^ (37)
v = l

for which furthermore t is in the support of φ. Moreover, the Fourier coefficients of
Y are asymptotic, as the frequency tends to infinity, to the sum over the connected
components of έ?v of

e™** f φ(T)δ9 (38)

where δ is the density on ̂ },fc,r given by the product of the Liouville half-densities on
Θ2 and on p~ 1 (0)xR.

We have observed already that all the connected components of 0>v have the
same dimension (three). For this reason each one contributes to the leading order
behavior of the Fourier coefficients of Y.
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We next determine the density δ appearing in (38). We present this calculation
in the next subsection, in a slightly more general setting, for future reference.

3.4.1. The Trace Formula for Periodic Flows. We begin with some general consid-
erations on the trace formula for periodic flows with variable period. Other than
the case considered here, there are known examples of potentials in R n having
periodic energy levels, with variable period. Then the considerations below would
apply to the semi-classical trace formula for them.

Let (X, ω) be a symplectic manifold, GeCco(X) a Hamiltonian. Assume zero is
a regular value of G, and that all trajectories of the Hamilton flow of G on

Σ = G~1(0)

are periodic, although NOT of the same period. For example, take X = Θ x Θ and
G = p as in the previous section; one knows there exist other examples of such
Hamiltonians. More explicitly, we assume there is a smooth function,

such that

VxeΣ the trajectory through x is periodic with minimal period T(x) . (39)

Consider now the intersection diagram

1 if (40)

X -* XxX,

where the bottom arrow is the diagonal embedding, / is the map

f{x, t) = (x, φt(χ)), (41)

where {φt} is the Hamilton flow of G restricted to Σ, and

= &(*)} . (42)

Assuming that Σ is connected, by (39), the decomposition of & into connected
components takes the form

9 = U ̂  '
/ceZ

where

V/ceZ 0>k = {(x,kT(x));xeΣ} . (43)

Obviously & is a smooth manifold, and each 0>k is naturally diffeomorphic with Σ,
being the graph of the function kT.

Lemma 3.9. Under the previous assumptions the diagram (40) is always clean.

Proof Let xeΣ and keZ. Assume veTxΣ and τelR are such that

v = d(φkTix)){v) + τΞX9 (44)
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where Ξ is the Hamilton vector field of G. This condition means that df{xΛT{x))(v, τ)
is in the tangent space to the diagonal in X x X. What we must prove is that this
forces (v, τ) to be tangent to &k, which by (43) means that

τ = kdTx(v) . (45)

Differentiating the identity

ΦkT(x) — x

one sees that (44) is satisfied with any v and τ = kdTx(v). Hence (44) implies

τΞx = kdTx(v)Ξx .

Since zero is a regular value of G, Ξ is nowhere zero on Σ and this implies
(45). D

Endow X with the half-density

and Σ x R with the half-density

where dλ denotes Liouville density on Σ. One knows then that the clean intersec-
tion of X and I x R , ^ , inherits naturally a density δ, which is roughly the product
of δx and δΣ (see for example [22], Lemma 2.7). We now describe δ.

Lemma 3.10. For every keΈ identify 0*k with Σ in the natural way. Then the density
δ on Θ>k is identified with Liouville measure, \dλ\.

Now in the trace formula, applied to a test function φ with φeCg 3, one is to
compute

ί Φ(t)δ . (46)

Clearly in the present case this integral equals

\ Y\ (47)
k Σ

kthSince φ is compactly supported, this sum is finite. The kth term in the sum can be
written as the integral of φ against the push-forward of dλ by the function kT\

J φ(kT(x))dλx = J φ(kt)dμt, where dμ = T*(dλ) . (48)

We next compute dμ in the case of interest:

X = ΘxΘ, G = p .

3.4.2. Computation of the pcf. We now go back to the computation of the pair
correlation function, and apply the results of Sect. 3.3 to the calculation of Sect. 3.2.

Let (/i, #i) and (J2, θ2) be two pairs of action-angle coordinates on a couple of
branches X)y Xk with commensurate period, and let T be the minimal common
period function

T]q(j,k)=T=Tlp(j,k),
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see (11). Interpreted in the obvious way, this function is the primitive period
function of ρ(zuz2) = H(zi) — H(z2) on

Lemma 3.11. Let i: Σc^X be the inclusion map. Then Liouville measure on Σ is
defined by the three form

1 T
η = ι*(dlx A dθx A dθ2) .

2π p

Proof. We begin with two identities: The symplectic form on X = X) x Xv

k is

Ω = dlx A dθi + dl2 A dθ2 ,

which we write as

Q = ^L±-dH1 A dθ1 + ~dH2 A dθ2 ,
dHi dH2

w h e r e Hj = H(zj). I n t r o d u c e g = Hί + H2. T h e n , c h a n g i n g t o t h e p,g,Θl9θ2

var iab les

Hence:

(Ill i (111 2

On the other hand,

_ 2 _
^-^dHl' lk~^dH2'

as functions on XJ, resp. XJ. We can then write

— = dp A η0

with

η0 = O

J

 2

kdg A dθί A dθ2 .
oπ

By definition, the pull-back of η0 to Σ is a three form defining the Liouville density
of Σ. Since

and
T

1 1 k — ?

P

the lemma follows. •
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Next we need to find a two-form, β, such that

η = dT Λ β .
From

one easily gets

and from here we find β:

T '

When we restrict \β\ to the fiber T = t (which is the product of two circles) and
integrate, we obtain the density of the pair correlation function:

Here, as in Theorem 3.3, Hj and /,- are regarded as functions of the period, ί.
Applying Theorem 3.8 we obtain the formula appearing in Theorem 3.3. D

4. The Trace Formula for Commuting Operators

In this section we sketch a proof of the semi-classical trace formula for commuting
operators, which is needed for the calculation of the kef. Since many of the results
are simple extensions of the trace formula for a single operator we will be sketchy,
and refer the reader to [22] for details.

4.L Preliminary Results. Let M be a compact manifold, and Qu . . . , Qm be first
order, self adjoint, commuting classical pseudodifferential operators on M. Let
W = Γ*M\{0}, and denote the principal symbol of βj by qjm

Definition 4.1. We will say that Ql9. . . ,Qmare a system of real principal type iff:

1. Zero is a regular value of the map

Φ = (qi,...,qmy.W^JRm.

2. The radial vector field on W is nowhere tangent to

Σ φ-^O)Σ = ^ )

The Hamilton vector fields associated with the principal symbols of the Qj are
the infinitesimal generators of an R m action on W. The result of acting by
t = (tu . . . , £ m )eR m on we W will be denoted ft(w).

Lemma 4.2. Let Ql9. . . , g m be a system of real principal type, and let φ be
a Schwartz function on R m such that φ 6 C Q ^ R " 1 ) . Then the operator φ(Q1,. . . , Qm\
defined by the spectral theorem, is a Fourier integral operator associated with the
flow-out of Σ; more precisely with the canonical relation

cβ = {(w,/f(w)); ίesuppφ and weΣ] . (49)
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Proof. In an obvious sense,

<P(Q) = rΓvi ί eitQφ(t)dt. (50)

One can interpret this equation as follows. Let $ denote the Schwartz kernel of eitQ

considered as an operator from M to MxIRΛ Thus $ is a distribution on
MxM x Rm. Then (50) says that the Schwartz kernel of φ(Q) is the push-forward
of the product φ(t)S by the natural projection

/ 7 : M x M x R w - > M x M .

One can easily prove (see e.g. [22]) that $ is a Lagrangian distribution associated
with the so-called character Lagrangian of f9 which is

Γf = {(w,/f(w)', U Φ(w)); we W9 ί e R m } . (51)

Since φ has compact support, the product φ(t)δ has compact support and the
push-forward by Π will be a Lagrangian distribution associated with # (49) if
Γ/ intersects cleanly the submanifold of Wx Wx Γ*Rm given by

This is guaranteed by the first condition of Q being of real principal type. The result
now follows from a general theorem on the push-forward of Lagrangian distribu-
tions (see for example Chapter 6 of [21]). D

Now assume that there is an additional first-order self adjoint classical
pseudodifferential operator, P, commuting with the Qj and with the property

spec(P) cz TL . (52)

Then θ i—• eiθP is a representation of S1 = R/2πZ by Fourier integral operators. For
every / e 2ζ, let Jfi be the eigenspace of P with eigenvalue / (̂ f) may be trivial for
some /). Then one has a Hubert space direct sum,

i

Since the Qj commute with P, they preserve this decomposition. For each / e Z, let

hj = (λιj9. . . , λιj\ 7 = 1, 2 , . . .

be the joint spectrum of the operators (Ql9. . . , Qm) restricted to Jfz.

We will henceforth assume that P, Ql9. . . , Qm are jointly elliptic, that is

p" 1 (O)nΣ = 0, (53)

where p is the principal symbol of P. We are interested in the large / asymptotics of

Σ - ( 5 4 )
The assumption of joint ellipticity ensures that, for each /, this series converges
absolutely; in particular the exact ordering of the λ is irrelevant.
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4.2. Reduction. We will obtain the asymptotic behavior of (54), under suitable
assumptions, but we will first need to do a little symplectic geometry. We begin by
assuming that the Hamilton flow of p induces a free action of S1 on Z = p~ι(\)\
then the quotient space

x-.^z/s1

is a manifold with a natural symplectic structure. More precisely, if aw is the
canonical one-form on W and i: Z c» W is the inclusion,

α : = ι*otw

is a connection form on the circle bundle

whose curvature is ( — 1) times the natural symplectic structure of X.
The functions q 3 Poisson commute with p, and hence there are smooth fun-

ctions HjGC°°(X) such that

qj\z = π*(Hj) .

The Hj Poisson commute among themselves in X, and thus define a Hamiltonian
Rm action on X, which we denote by φt. Our next assumption is: zero is a regular
value of the map

Ψ = (Hl9...9Hm):X->ULm.

By Lagrange multipliers this is equivalent to say that (0,. . . , 0, 1) is a regular value
of t h e m a p (ql9. . . 9qm9p).

The previous assumption implies that Xo = Ψ~ί(0) is a codimension m sub-
manifold of X. It is known that the flow out of φ is a canonical relation on X;
consider the diagram

i i Φ (55)
X -+ XxX ,

where U is an open set containing the support of φ, and 0> is the fiber product:

Our final assumption is that this is a clean diagram, meaning that 0> is a manifold
and the tangent space of & at any point (x, T) is the intersection of the image of dφ
at (x, T) with the diagonal.

If φj denotes the Hamilton flow of Hj, then

ΦT = Φτx°' ' '°Φτm •>

and so & consists in, loosely speaking, those points in Xo which are periodic under
a combination of the flows φj. Let's be more precise. Assume xeX0 satisfies

Then the φ-orbit through x is covered by

Wn/TZm:= i r / ^ Z x x TJL .
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If the covering is trivial we will say that T is the primitive period of x. More
precisely, the covering is given by the flow evaluated at x: consider the map

g: l

The following is easy to prove:

Lemma 4.3. The map g is a covering map of the orbit of x which is an ίsotropic
submanifold, that is, if Ω is the symplectic form of X,

g*Ω = 0 .

It follows that the pull-back, #*Z, of the circle bundle Z with its induced
connection is a flat bundle. Hence if y is a closed curve in TR.m/TΈm, the holonomy
with respect to α of the curve g o y only depends on the homology class of y.
An important number attached to the couple (x, t) is the holonomy of the
"diagonal" homology class in ΊRm/TZm, represented for example by the closed
curve

[0,1]->X

s^φlTlo oφ?τJx). (56)

We will denote the holonomy of this curve by ί)(x, T).

Corollary 4.4. // the diagram (55) is clean and K c R is compact, the set

{ί)(x, T);(x9 T)e0>, Te^^S1

is finite.

Proof The map ί): & -• S1 is locally constant, by the previous lemma. D

4.3. Conclusions. We are now ready to state the trace formula, and to sketch some
applications.

Theorem 4.5. // the diagram (55) is clean, the distribution

1 = 1 J

is a classical Lagrangian distribution on S1 with (finitely-many) singularities at the
points ί)(x, T) with (x,

Proof We sketch the proof. One first notices that

Y(s) = Ίr(Πφ(Qu...,Qm)eisP)i (57)

where Π is the Szegό projector. The punctured cotangent space Γ*5fl\{0} of S1

has two components, T+ and T~. Symbolically, the action of Π on a Lagrangian
distribution is to "erase" the part of the wave-front set contained in T~, leaving
untouched (symbol and all) the part contained in T+. In other words, it is enough
to show that Tvφ(Q1,. . . , Qm)eίsP is a Lagrangian distribution and compute its
symbol.
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The process of forming the trace of φ ( β i , . . . , Qm)eisP is the application of
a certain Fourier integral operator to the Schwartz kernel of

Φ ( G i , . . . , β m ) ^ P . (58)

The latter is a Lagrangian distribution, so the trace will likewise be Lagrangian
provided a certain "clean intersection" condition is satisfied. Exactly as in
[22], that condition can be shown to be equivalent to the cleanness of the
diagram (55).

It remains to be shown that the singularities of Y are at the holonomies of
periodic orbits. By Lemma 4.2, the singularities of the trace of (58) (as a distribution
in 5) are easily seen to be at those s for which there is a point weΣ and a t in the
support of φ such that

efa /t(w) = w, (59)

where we have denoted with a dot the action of the Hamilton flow of p. Since
p Poisson commutes with the qfs (and by the joint ellipticity), there is an w satisfy-
ing this equation iff there is an w satisfying this and, additionally, p(w) = 1. Such an
w projects to a periodic trajectory of φ, of period t. Hence all we must show is that
the map

t ι->/t(w)

is horizontal with respect to α. The image of d/dtj under the differential of this
map is the Hamilton vector field of #7 at points on Σ. Since g7- is homogeneous
of degree one, the contraction of aw and the Hamilton vector field of q3 is equal
to qj9 which is identically zero on Σ. Hence for every j the image of d/dtj is
horizontal.

The principal symbols ar

0 of the singularities of Y at the sr determine the leading
order asymptotics of the Fourier coefficients of Y.

Theorem 4.6. // the diagram (55) is clean, there is an asymptotic expansion of the
Fourier coefficients of Y of the following form: As I —• 00,

Σ<ρ(Xj~ Σ e'lSr Σ 4'*•"*»
j r=ί k=0

where:

(i) The index r labels the connected components &r of & with periods in the support
of φ,
(ii) For each r, elSr is the holonomy of the corresponding trajectory,

(iii) For each r

ar

Q = eW J φ(t)δr , (60)

where δr is the density on £?r product of the Liouville densities of the diagonal in
X x X and the flow-out of Xo and μr is an integer (Maslov factor).
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5. A>level Correlation Functions

In this section we describe a formula for the kef and sketch its proof.

5.1. Statement of the Formula. Recall Definition 1.3:

Pk 9/ I 1 2-f ^l(μιJ2-μι,iι, • • , μι,ik~ μiJk-i)
Δ l "i~ i h ,. . . , ik

We will reduce the computation of the weak limit of these distributions as / -* oo to
the trace formula for k — 1 commuting operators with a circular symmetry having
for reduced phase space the product of k copies of &:

X = Θx" - xΘ (61)

(k factors). We next describe the formula for the kef, which is a natural generaliza-
tion of the pair-correlation formula found in Sect. 3.

We keep the notation of Sect. 3.1: H:Θ ->1R is the reduced symbol of the
operator A. We will assume it is a Morse function. Denoting points in X by
z = (zu. . . ,zk)9zjeΘ, define

Hj(z) = H(Zjl l^j^k (62)

and

Gj = Hj - HJ+1, \ ύ j ύ k - \ . (63)

Then G l 5 . . . , Gfc_i are commuting Hamiltonians on X.
We will prove that the kef is a sum over fe-tuples of branches of H with the same

index v and rationally related period functions. For simplicity of notation we will
simply state the summand corresponding to a fe-tuple

XI,..., XI, (64)

where the same branch may appear repeatedly with different subindices. Let
TjeC^i^v) be the period function of X\j91 ^ ^ k. The assumption that the
period functions are rationally related is that there exist integers mh such that

wii7\ + +m feΓ fc = 0 . (65)

This implies that every point in X Jx x X Jk is periodic for the lRfc~1 action generated
by (G 1 ? . . . , Gfc-x). Let's denote by eis the holonomy of this periodic manifold, in
the sense of Corollary 4.4 (see also Lemma 5.4).

Finally, let (/,-, θj) be action-angle coordinates on X). We will regard the period
functions 7} as functions of a real variable h, namely the Hamiltonian. We can now
state the formula for the kef:

Theorem 5.1. Under the same assumptions as in Theorem 3.3, the sequence
{Pk, I = 1, 2,. . .} has a unique weak limit pk. Moreover, if φ is a test function with
φeCo^lRk), (pι

k, φ) is asymptotic, as /—>oo, to the sum over all k-tuples (64)
satisfying (65), of the following terms:

Cenim,4eils J fop^ . . . ? ^ ( f t ) / \\ Tj(h))dh , (66)
/
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where m is an integer (Maslov factor) depending on the k-tuple, C a universal constant
and

5.2. Reduction to the Trace Formula. We begin the proof by showing how the kef
for a Zoll metric can be computed by an application of the trace formula for k — 1
commuting operators. We will work on

M = S2 x x S2 (k factors) .

We will consider the following operators acting on functions on M:

Aj = /<g) A® •/, 1 ^ j ^ f c ,

where A is the operator in (2) and it appears in the j t h position. We then define, for
1 <^ j ^ k — 1, the operators

We are actually interested in the compression of the Qj to the "diagonal" ladder,
which we now define. Clearly

where 2tf\3 is the space of spherical harmonics of degree ij considered as functions of
the j t h component of M. Define

1=1

and

77:

the orthogonal projection.

Lemma 5.2. The projector Π is a Fourier integral operator whose canonical relation
is the flow-out of the following coisotropic in Γ*M\{0}:

θ = {(xuξu...9xk9ξk);ViJ\\ξi\\ = \\ξJ\\}.

Proof On M we have k commuting operators which generate a unitary representa-
tion of the circle group, namely

P. = / (x) P (x) / l^j^k,

where P is the operator (14) in the / h factor. For our purposes, Pj can be treated as
a standard first-order pseudodifferential operator with symbol

P j ( x u ξ u . . . 9 x k 9 ξ k ) = \\ξj\\ .

The space Jt is the space of vectors transforming under this representation by one
of the irreducible representations with weight of the form (/,. . . ,/), Z > 0. Notice
that Θ is the inverse image of the ray {(A,. . . , λ); λeW) a R k under the moment
map of the torus action, namely (px . . . pk). Now the proof follows that of Theorem
6.7 of [20]. D
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The coisotropic Θ is of course conic. It ίibrates over a conic symplectic
manifold, Wf of dimension 2/c + 2. This symplectic manifold is the phase space of
the algebra of Toeplitz-type operators of the form

ΠoQoΠ,

where Q ranges over the pseudodifferential operators on M, see [19]. We are
particularly interested in the operators

Qf = ΠoQ.oΠ

and

pπ = ΠoPjoΠ

(by the definitions the latter is the same operator for all j). We summarize some
rather obvious facts about these operators:

Lemma 5.3. The non-zero eigenvalues of Pπ are the positive integers, and the
eigenspace of' I is J^j (x) (x) Jf \. Furthermore, the operators Qf commute among
themselves and with P 7 7, and the joint spectrum of the restriction of (Qf,. . . , Qk-ι)
to 3^1 (x) (x) J f \ consists of

hi = 0*ui - Ri2> > μuk-i - μuJ >

where ί is a multi-index with 1 ^ ^-^ 2Z + 1.

The kef is the weak limit of— times the distribution of the μu as / -> oo. But

this is precisely what the trace formula for (βf,. . . , Qk-ι) computes, under the
circular symmetry generated by Pπ. Although these operators are not pseudodif-
ferential, by the symbol calculus for Toeplitz-type operators associated with
fibrating coisotropics, developed in [19], the statements of the previous sections
remain valid, provided we use the symplectic manifold W as the initial phase space
of the problem. We now make that calculation explicit.

5.3. The End of the Proof As stated, the co-isotropic submanifold Θ fibrates over
a symplectic manifold W of dimension 2fe + 2. To see this, notice that the null-
leaves of Θ are the orbits of a free Hamilonian action of the (k — l)-dimensional
torus, generated by the k — 1 Hamiltonians

( x l 9 ξ l 9 . . . 9 x k 9 ξk)^ || ξj\\ - || ξJ+1\\, 1 ^ ; g fc - 1 .

Then W is the quotient of Θ by this action. Let

p: Θ-+ W

be the natural projection, and denote by p: W -± ]R the function induced by the
restriction to Θ of the principal symbol of P1, namely

Θ -> R

( x l 9 ξ l 9 . . . 9 x k , ξ k ) * - + \\ξj\\

(any j). The Hamilton flow of p induces a free action of S1 = R/2πZ on W. The
trace formula of the previous section involves the reduction of W with respect to
this action of the circle.
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Lemma 5.4. The reduction of W with respect to p, that is

is, as a symplectic manifold, isomorphic with the product of k copies of the manifold of
oriented great circles, Θ:

X = Θx- xΘ .

Proof Since one can "reduce in stages," X can be identified with the space of leaves
of the null foliation of the coisotropic

©i := 0 n {|| ξ, || = 1} = {(xl9 ξu , **, &); Vi II & II = 1} . (67)

This is precisely the Cartesian product of k copies of the unit cosphere bundle of S2.
Since Θ is the space of null leaves of the latter, we are done. D

Next we identify the reduced flow of the symbols of the operators Qj Recall the
notation (62,63) and let π\Θ1 -+X be the natural projection. It is obvious that
π*Hj is the restriction to Θx of the principal symbol of Aj9 while π*G7 is the
restriction of the principal symbol of Qj to Θi. Hence Gl9. . . , Gk-λ are the
reduced symbols of the Toeplitz-type operators Qf. Let

Ψ:X -+ Wi^1

z ι - (G 1 (z) , . . .G J k - 1 (z))

be the the moment map of the resulting IR''"1 action. As we know now from the
previous section, the kef is determined by the points in Ψ~ 1(0) which are mapped
onto themselves by the action of some t e R k ~ x with t in the support of the Fourier
transform of the test function appearing in the kef. We now discuss this R^" 1

action and the Liouville measure of its period manifold.
It is clear that, if {/s} denotes the Hamilton flow of H on Θ, the Hamilton flow

of Gj is

(s, z) h-> (zu . . . 9fs(zj)if-s(zj+ί)9. . . , zk) .

Hence the action of t = (tί,. . . , ίfe-JeR^"1 is

and periodicity of z with period t is equivalent to the equations

fSj(zj) = Zj, l ^ j ^ k , (68)

where

si = ίi, s f c = - ί f c _ ! and V 2 ^ j ^ / c - l , sJ = tJ-tj-1. (69)

Conversely, (^-periodic orbits are solutions of (68) under the additional condition
that

5i + 52 + ' + Sk = 0 , (70)

which means that the Sj are of the form (69). In addition, to contribute to the kef the
point z must satisfy ze Ψ'1^), which is equivalent to

. . • =H(zk). (71)
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It follows from (68) to (71) that the kef is determined by the /c-tuples of branches
having rationally related primitive period functions and same index v. Specifically,
if Xv

h,. . . , X)u is a /c-tuple of branches whose primitive period functions satisfy
a relation of the form (65), namely

WIT-L + ' + mkTk = 0 ,

where the m/s are integers, then we obtain a solution of (68) and (70) by letting

(zu . . . , zk)eX\ x x l ί and V; Sj = m Tfa) .

Just as in the case k = 2, the diagram (55) is clean off a submanifold of positive
codimension, and the data above determine a connected component of Φ in the
region of clean intersection. The periods t of φ are, inverting the upper triangular
transformation (69),

tj = m1 7\ + m2T2 + * * + nijTj. (72)

To be more precise, let

γ:= ψ-1(0)n(X\x • • • x I J ) . (73)

Every point in Y is ^-periodic: define the period map ZΓ by

Z !->(ίi(z), . . . , ί f e -!(z)),

where the tj are given by (72) (Tj is regarded as a function of Zj). Clearly

VzeF φ^i2)(z) = z.

Then the graph of F

(75)

is an open set of & where the intersection is clean. The general clean connected
component of 0> is of this form if we do not assume that the m's are relatively prime.

Lemma 5.5. Let π: ^ 0 -> Rk ~1 be the natural projection. Just as in the trace
formula for a single operator with periodic null-bicharacteristics, the integral ofπ*φ
with respect to the density induced by the Liouυille densities in the diagram (55) is
equal to

where η is the Liouville form on Y.

Proof This is trivially equivalent to the statement that under the obvious dif-
feomorphism between ^ 0

 a n d Y the density on ^ 0 corresponds to Liouville
measure on Y. We leave the proof of this as an exercise. D

We will compute the Liouville measure on Y in a moment, but first some
remarks on the function 3Γ. Introduce action-angle coordinates Ij9 θj on the / h

branch, 1 ^ j ^ k. Then Tj is a function of Hj, namely

T3 = 2n%L. (76)
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It follows that there exist functions Fj of a real variable, V l ^ j ^ / c — 1, such that

^ ( z 1 , . . . , z J k ) = ( F 1 o f f , . . . , F k - 1 ° i ί ) , (77)

where # denotes the function on Y such that

H(zl9...9zk) = Hj(zj)

for any j . In fact,

Fj = m1T1+ + mjTj, (78)

where we consider each of the terms on the right-hand side as a function of the
same real variable, //, via (76).

To compute the Liouville measure on 7, recall that the symplectic form on the
open subset of X consisting of the Cartesian product of Xy

jι9. . . , X)k is

Ω = dhAdθι+--+dIkA dθk. (79)

Lemma 5.6. Let g = H1 + H2. Then

C ( k \
Ωk = —~-k I f ] Tj \dG1 Λ Λ dGfc-i Λ dg A dθx A Λ dθk .

(2π) \j=i /

Proo/ From (79) and 7} = 2π — ^ we get

Thus it suffices to check that

dH1 A - " A dHk = CdG1 A Λ dGfc_i Λ rf^ (80)

This follows by inverting the transformation from Hu . . . Hk to g, Gί9. . . , G f c_ t

given by the defining equations for the latter. The calculation will be omitted. D

Corollary 5.7. Let i: Yc^X be the inclusion map. Then the Liouville measure on Y is
given by the (k + \)-form on Y

Proof. It follows from the previous lemma and the remark that

ι*(g) = 2ι*(H1) = 2H. D

We can now finish our calculation: To compute \Ύ(β~*φ)n, use the previous
expression for η and the fact that

(see (77)). Performing the dθ integrals produces a factor of (2π)k. We finally get

f (^*φ)η = C f φ(iM/ι),. . . , Fk-X{h))( Π Tj(h))dh ,

which proves the formula. D
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6. On the Level Spacings Distribution

As we stated in Sect. 1, the only rigorous approach we know of to the problem of
computing the level spacings distribution is by using the Bohr-Sommerfeld
quantization rules. As explained there, one needs that the BS eigenvalues exhaust
the spectrum and that they approximate the true eigenvalues to a higher order than
the mean level spacing. As a model problem for this we take an operator of the form

D = A0 + A, (81)

where Δo is the standard Laplacian on S2 and A is a zeroth order self-adjoint
pseudodifferential operator on S2 commuting with A and whose reduced symbol,

H: Θ->ΉL

satisfies the following strong assumption:

H is a perfect Morse function, that is, it has only two critical points and they are
non-degenerate.

This is of course very restrictive, and we cannot prove that the operator
A arising from a Zoll metric has this property. However, for operators of the form
(81) whose reduced symbols satisfy this assumption one can compute the level
spacings distribution, as we will see.

The spectrum of an operator of the form (81) forms clusters, just like a Zoll
Laplacian:

spec(D) c 0 [/(/ + 1) - C, /(/ + 1) + C] ,
1=1

where for large / the interval [/(/ + 1) - C, /(/ + 1) + C] contains precisely 21 + 1
eigenvalues:

spec(D) n [/(/ + 1) - C, /(/ + 1) + C] = {/(/ + 1) + μltk\ k = 1,. . . , 2/ + 1} .

Introduce the distribution function of the Hamiltonian H:

F(t):= A r e a / T x ( - oo, ί] , (82)

where the area is with respect to the Liouville measure on Θ. Our assumption on
H implies that F is a continuous function on the real line, C °° on (min H, max H). If
N, SeΘ are respectively the maximum and minimum of H, and if we let

Θ:=Θ\{N,S},

then the function / := F ° H,

I: Θ-+WL,

is the action function of the action-angle coordinates of the completely integrable
system (Θ, H) (see [1]). The Hamiltonian H is, on Θ9 a function of the coordinate /:
there is a function E on (0, 4π) such that

H = EoI. (83)

The following theorem says that the Bohr-Sommerfeld eigenvalues approximate
the spectrum of (81) very well:
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Theorem 6.1. For every I = 1,2,. . . and every k = 1, 2,. . . , 2/ + 1 let

Ink
ElΛ = E

Then there exists C > 0 such that for all I and k

\^Ί k — βl k\ ==. t-V * \P v

This result follows from Colin's work, see [12].
Let us see how Theorem (6.1) allows a straightforward calculation of the level

spacings distribution vι

2. More precisely we will compute, for every test function φ,
the limit of

fi-μu)). (85)

(The normalization here differs a little from that of Definition (1.3), for simplicity of
calculation.) An elementary argument shows that by virtue of (84) the limit of (85) is
the same as the limit of

L f c + 1 - E h k ) ) . (86)
11 + k

To estimate this sum use the mean value theorem to write

EE ^ ()(cl<k) (87)

for some cUk between - — - and — - — - — . Then (86) becomes

1̂  i- U = 1

But this is (/ + l)/2π(2Z + 1) times a Riemann sum for the integral

If we recall that E is the expression of the Hamiltonian H in action-angle coordin-
ates, we see that we can state the conclusion as follows:

Theorem 6.2. // H is a perfect Morse function, for every test function φ one has:

ί™ 2TTΊ? φi{l + 1 ) ( ^ + 1 - μ'>k)) = Tn I φ { W ) Γ '
where T(s) is the period of the trajectory of H with action s.
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