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Abstract. Boundaries occur naturally in physical systems which satisfy the Vlasov—
Maxwell system. Assume perfect conductor boundary conditions for Maxwell, and
either specular reflection or partial absorption for Vlasov. Then weak solutions
with finite energy exist for all time.

§0. Introduction

We study the initial and boundary value problem of both the non-relativistic and
relativistic Vlasov—Maxwell system. We shall prove the global existence of weak
solutions under various boundary conditions.

Let Q be an open set in R* with C** boundary, for some p > 0. Consider the
non-relativistic Vlasov—Maxwell system:

1
G,fﬁ+—l)—'fo,;+Q<E+—va)-V,,fﬂzo, 1<B<N
mg mg C
OE—ccurlB= —j= —4n) e | frdv, (VM)
B R3

0B+ ccurlE=0,

where 0 < t < 00, x € Q and v € R3, with the constraints

divE=p=4nde;| fpdv,
£oR (0.1)

divB=0.
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The initial conditions are

150,%,0) = fop(x ) for 1S BN, E(,x) = Eolx), BO,) = Bo(x),
divE, = po and divB,=0. '
The boundary conditions are
{ Ex#n=0, 0.3)
fb("; X, U) = aﬁ(t’ X, U)(Kf;g(t, X, U)) + gﬂ(ta X, U)> 1 é B é Na ’

for x € 0Q and n+v < 0, where n is the outward normal vector of 0Q at x. Here the
reflection operator is defined as

Kf(t, x,v)=f(@t, x,v — 2(v-n)A), (0.4)

where © —2(v+ 7 )7 is the reflected vector of ¥ respect to 7. Also N is the number of
different types of particles with charges e and masses my, c is the speed of light. The
absorption coefficient a,4(t, x, v) and the boundary source gg(t, x, v) are two given
functions on n*v < 0 satisfying either one of the following conditions:

1. Purely specular reflection condition:
agt, x,v) =1, gst,x,v)=0. 0.5)
2. Partially absorbing condition:
0=ap(t,x,v)Sap <1, gelt,x,0)20, (0.6)

where aq is a constant. The purely absorbing condition is a; = 0 and g = 0.

These are two typical kinds of the boundary conditions for transport equations.
The assumed condition Ex#n =0 comes naturally from physics when Q is
surrounded by a perfect conductor. The integrated energy for the non-relativistic
case is

Er=dnYy [ (L+wP)mpfdtdxdv+ | (E*+ B*)dtdx. (0.7)

B (0, T)x2xR3 0, T)x Q2

Let y7(*) be the characteristic function of [0, T]. Our main results are as follows.

Theorem 0.1 (Non-relativistic case). Let 9Q € C**, for some u > 0. Let fo3 = 0 a.e.,
for 1 B <N, and let Ey and B, € L*(Q) satisfy divE, = po and divB, =0 in
the sense of distributions. Assume fop(1 + |v|?) € L*. In the purely specular case (0.5),
assume fz € L* nL'. In the partially absorbing case (0.6), assume fo; € L,
xrdp € L xrgs(1 + |v])* € LY, for some 2 < p < 0 and all T < oo. Then there exist
a weak solution of (VM) in 0 <t < o, x € Q, v € R® with finite energy &r, for all
T < oo. Moreover, if fop € L, xrgs € L% for all T < oo, then yrfy € L4, for all
T < 00, where 2 £ q £ 0.



Global Weak Solutions of the Vlasov—Maxwell System 247

The relativistic Vlasov—-Maxwell system (RVM) is the same as (VM) except that
s replaced by ¢ = ——U——. (See [GS1].) The energy is the same as for (VM)

mﬂ v2
/m,2;+%

2\1
except that (1 + |v|*)my is replaced by 2c2<m§ + lcv_i2> . We have a parallel
theorem (Theorem 5.1).

This paper is a first attempt to describe the plasma-wall interaction. An
important potential application is to a tokamak. However, there are several
sources of particle fluxes to the wall, such as ions and electrons that diffuse across
the confining field, runaway electrons, and neutral particles that are injected into
the plasma from the wall. According to [St], “the physics of the transport processes
within the plasma core and boundary regions and the atomic physics of the
plasma-wall interaction are sufficiently complex and the experimental evidence is
sufficiently limited, that it is very difficult to confidently predict the magnitude and
energy distribution of the particle fluxes to the wall.” Because of this uncertainty, it
is useful to remark that our proof works if we replace the second condition in (0.3)
by f; = A f; + g5, and eliminate (0.4), (0.5), (0.6), where 4" is any linear operator:
LP({n+v>0}) > L?({n*v < 0}), with ||| < 1, assuming that 2 < p < co.

Arsenev [A] first proved the global existence of weak solutions of the Vlasov—
Poisson system. Using a velocity averaging argument, DiPerna and Lions [DL]
proved the global existence of the weak solutions of the Cauchy problem of the
Vlasov—Maxwell system. Regularity of the global weak solutions with regular
initial data for the Vlasov—Maxwell systems (VM) and (RVM) were proved earlier
by Glassey, Strauss and Schaeffer in [GS1, GS2 and GSc], but they require some
restrictions on the data. In the Vlasov—Poisson case, regularity without extra
restrictions on the data have recently been proved by [Pf, H, Sc and PL].
Greengard and Raviart [GR] proved the uniqueness and existence of weak
solutions for the one-dimensional stationary Vlasov—Poisson system with bound-
ary conditions. The case of linear transport equations have been studied by many
mathematicians. In particular, Beals and Protopopescu [BP] gave a unified formu-
lation in a general setting. Cooper and Strauss [CS] treated the general initial-
boundary value problem for the Maxwell system in time-dependent domains.

Even in the case of the full (VM) or (RVM) system without the boundary, as in
[DL], the questions of uniqueness, regularity and conservation of energy are open,
unless the data is restricted as in [GS1, GS2 and GSc]. We have some positive and
negative results on these questions, which will appear in a later paper.

To prove the existence of the weak solution, we first approximate the phase
space 2 x R3 by a sequence of bounded domains. In each bounded domain, we
approximate a cut-off problem by a sequence of linear Vlasov equations and linear
Maxwell systems with suitable new initial and boundary conditions. Using the
results of [BP], we get a sequence of weak solutions (Sect. 2). We take the weak
limits of the solutions of the linear problems and obtain the energy estimate by the
compactness results of [DL] (Sect. 3). Then we get the weak solution of the partial
absorption problem as the limit of the solutions of the cut-off problems. We
approximate the purely specular problem by partial absorption problems (Sect. 4).
Finally we treat the relativistic case (Sect. 5).
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1. Notation and Weak Formulation

Definition 1.1. Let IT = (0, c0) x Q xR3, where Q is an open set in R*® with
CY* bioundary, p > 0. Let n be the outward normal vector of dQ at x. Let

yE={({t,x,v) € (0, 0)xI2xR3| +7-v>0}, (1.1)
70 = {(t, x,v) € (0, 0) x 02 xR3|7i-v =0} . (1.2)

Forany T>0,let I1, = (0, T)x Q, x Vy € II. Let
f=y*nl;. (13)

Let|*|, ;, bethe L? normonII;,and let |- |,z be the L? norm on y{ with respect to
the measure |dyg|, where

dyy = <ﬁ- i) do dvdt , (1.4)
mg

where do, is the standard surface measure of 02, and 1 £ p < + oo.

Most of the estimates in this paper depend on any fixed 7, but the solutions are
defined for 0 £t < .

Definition 1.2. The integrated energy in a region is

&(fy, E,B,Qy, Vi, T)=4ny my [ (1 + |v|]®)fydtdxdv+ | (E*+ B*)dtdx.
B 11y (0,T)xQ, (1 5)

We also define the initial-boundary energy as

&o(fop> Eo, Bo, g5, 2, T) = 47TZ mg f 1+ )U]Z)fOﬂdXdU + I(Eé + Bj)dx
B Q

QxR3

=Y my [ xr(1 4 [v1*)gpdys, forafixed T>0.
B Y

(1.6)
Definition 1.3. The test function spaces are
¢ = {a(t, x, v) € C2([0, ) x R*x R?*; RY)|
suppa =< {[0, 0)x QxR3}\{(0x0Q)uUy°}}, 1.7

M= {(, ) € C2([0, 0)x 2;R?), § € C2([0, 0) xR* R?)} . (1.8)

Definition 1.4. (Test functionals). Let I1, be as in Definition 1.1. Let fy € Lio(IT,),
fOﬂ € Llloc(Q XR3)9 f/;— € Llloc(yrl and gﬂ € Llloc(yl_)s with reSpeCt to dyﬂa fOT
1<BEN. Let E and Be LL((0, T)x Q), and Eo and By € Li,.(Q). Let ay € 7,
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and (x/j, @) € M. Define

Ag(fpof 5 E,Bog, @i, Vi) = — | fopo(0, x, v)dx dv — f(@a,;+V PR

Q1 xVy

+ (E 4+ vxB):V,0p)fpdtdxdv + [opf; dyg
te¥

C(E,B,,j,Q,, V) = —ffE (%,bdtdx—jlpOx) Eydx
0 Q;
T - -
—[f curllp-Bdtdx-i-jflﬁ'jdtdx, (1.10)
0 Q 0 Qy

where j = 4n{,, " vey fpdv, and

T
D(E,B, ¢, 9, V)= — [ [ B3,¢dtdx — | ¢(0, x)* Bodx
Q1

0 Q1

T
+ j {curlg-Edtdx . (1.11)
02
Definition 1.5. (Weak solutions). Let f; 20 ae., fye Li(II), ff 20 ae,
f5 € Li(y*) and E, B € Li,((0, ) x Q). They are a weak solution of (VM) w;th
conditions (0.1) through 03), if Voage ¥, Y(y,p)e M, 1 S <N,

Ap(f3 S5 E, B og, QR =0,
C(E,B,y,j, 2, R*) =0, D(E,B,$ QR =0, (1.12)
divE = p and divB =0 in the sense of distributions .

Since y° has zero surface measure (see [GMP]), it is omitted.
Lemma 1.1. div B = 0 is implied by the other conditions in (1.12).

Proof. For any { € CZ([0, o0)x Q;R). Assume ((t,x)=0 when ¢ > T. Plug
¢ = [, V{dt — [§V{dt into D(E, B, $, 2, R*) = 0 and the lemma follows.

Lemma 1.2. Suppose that fo4, Eo, g and a are smooth, that Eq xn = 0, on 69, that fg,
f#, E and B are a weak solution of (VM), that f; € C'(II), thatf,, e Cl(y*), that
E, B € C'((0, o) x Q), that fs have continuous extensions toy~ U y™ L {t = 0}, and
that E and B have continuous extensions to [0, T1x Q, for all T < oo. Then f;, f;,
E and B is a classical solution of (VM) with classical initial and boundary conditions
ony*uyTU{r=0}

The proof is standard.
Remark. If - By = 0 in the weak sense on 99, then 7i * B = 0 follows for all ¢. Since
div By = 0, the weak form of 7i* B, = 0 is fQVC Bodx=0,Y{ e C°°(R3) Choose

a test function { such that {(t, x) = Owhen ¢t > T. Plug y = fOV {dz — fo V {dtinto
D =0.We get — [{[,V{-Bdtdx =0, which is the weak form of 7i* B = 0.
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2. An Approximate Solution for (VM)

For notational simplicity in Sects. 2-4 we take only one species of particle, drop the
subscript f and set the basic constants equal to unity. Under these assumptions, we
treat the partially absorbing problem of (VM) in the next two sections.
Let’s assume fo(1 + |v]?) € LY(2 xR?), fo € L*(2 x R?), fo = 0ae., xr(1 + |v|*)g
eL'(y™), xrg € L®(y"), g =0 ae., for all T< oo, 0 L alt, x,v) £ ao < 1, and
Eo, By € L*(Q). In order to get good estimates, we cut the physical space Q to Qy
and the velocity space R® to Vy, where

Qv={xeQ||x| <N}, Vy={veR*}vJ<N}.

Let ITy = (0, N)x Qy x Vy, and ITy be its closure. For fixed N, we will define
a sequence of functions by solving a sequence of linear problems, (2.11) and (2.17)
below.

The first approximations are E° = E, and B® = B,. Suppose we already know
B* and E* e L%((0, N)xQN) for some k = 0. Let B’;, B € C¥((0, N)x Qy) such

that | E§, — EkIZ;(O,N)xQN = 2k oI Bk — B 0,mxay < 2k
by f**! will be defined following the procedure of [BP], as follows.

Definition 2.1. For fixed k, let (t, x, v) € ITy. The path I'*(s;t, x, v) is the solution
(t(s), x(s), v(s)) of the system

dx dv dt

— =10, _ = Ek k, -_— = 1 1

as =0 g T Bt Be g @1)
which passes through the point (t, x,v) when s =t, extended over the maximal
s-interval for which the path lies in I1y. By the length of this path we mean the length
of the maximal s-interval over which the path remains in Il y.

. The linear equation satisfied

Definition 2.2. (Incoming and outgoing sets). Let D™ (D™) be the subset of OIly
consisting of the left (resp. right) limits (in the parameter s) of all maximal paths with
initial values in ITy. Keep in mind that D* depend on k and N.

We also define y5 = y* n ITy. Clearly from (2.1) we have

yv <D*, {t=0}<D”, {t=T}<=D". (2.2)

We also define the following sets, which are also dependent on k and N.
{F‘ =D \Gyuf{t=0}), R-=D"\{t=0}=F uyy,
F*=D"\(pyu{t=T}), R*=D"\{t=T}=F*uyyi,

Definition 2.3. By & = ®* = &} we denote the test function space of the linear Vlasov
equation. It consists of all the Borel functions ¢ on Iy with the following three
properties:

(2.3)

1. ¢ is continuously differentiable in the variable s along the path I'*(s;t, x, v).

2. ¢ and Y¢ are bounded, where Y = 0, + vV, + (EX + vx B%)-V,,.

3. Among all the paths which meet the support of ¢, there is a positive lower bound to
their lengths inside I1y. This lower bound may depend on k and N.

If ¢ is smooth, then properties 1 and 2 are obviously satisfied. But we want to
allow ¢ to be discontinuous in some directions. Notice that the test function space
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depends on k and N. The following lemma shows that ¥~ belong to every @* after
being cut off.
Lemma 2.1. Given EX, B% € CZ((0, N)x Qy), and let Xy = {|x| < N}, let

¥y ={ae ¥ |suppacc [0, N)x(Q N Xy)x Vy}. (2.4)
Then ¥y < ®*, for all k.
Proof. Choose o € ¥'y. Let K, = the v-projection of suppa. Then K, c= Vy. Let
K, = the x-projection of (suppa N {t = 0}), then K; == Q. From the definition of
¥, and from (2.4), we know that o vanishes on a neighborhood of F . Now we let

dO = min {d(Kla Q?V)a d(K2> VfV)a d(supp a, F N )9 d(Supp a, ,})0)’ d(supp a, XLI;J)} )
(2.5)

where d is the Euclidean distance in R x R*® x R®. Certainly d, > 0 and o satisfies

properties 1 and 2. Let I'¥(s; ¢, x, v) be a path in ITy which meets supp «. Because

dt
Fr 1, and ¢ € [0, N], the path must emanate from some point (¢, x’, v') € D ™. So
s

we can write the path as I'*(s; ¢, x, v), where (¢, x, v) € D~. We shall find a lower
bound for |s — t|.

d
Case 1. d((t, x, v), supp @) ;T". Since the velocity is bounded, clearly there is

a lower bound of time to cover the distance %0.
d
Case 2. d((t, x, v), supp o) < ?0' From (2.5), we know

3
lxlgN—% and |v|§N—§§9. (2.6)

d
By (2.1), we have o |v]2 = v EX <|v(s)|* + |EX | By the boundedness of EX and
by Gronwall’s inequality, |v(s)|* < (Jv| + Ca(s — £)V/?)?, where C3 and C, are
A5 do
4C% 2N
o clearly is a lower bound for |s —¢t|. If t £ 5 <50, we know from (2.6) that

d d
[v(s)] < |v] +?O<N, and |x(s)| = |x| +?O<N. By (2.5) and (2.3), we know

constants depending only on || EX || . Let so = ¢ + min If s = s, then

(t,x,v) e {t=0}Uyy.

Now we treat two different situations. In case (¢, x, v) € (¢ = 0}, then from (2.5),

d(x, @5) 2 disupp o, @) — d(supp, 9 2 do — 2 = 0
Since |x(s) — x| < d—zo, d(x(s), QF) = d(x, Q%) — d(x(s), x) = EZ—O — % = df. Hence,

(s, x(s), v(s)) € ITy, when 0 =t < s < 54. Thus s is a lower bound for the length of
the trajectory. Finally in case (t, x, v) € 75, then we know that n*v < 0. From (2.5),
we have

dy 3dy

d((t, x, v), y°) 2 d(supp o, y°) — d(supp , (¢, x, v)) = d - 1
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Hence there is a 6 > 0, such that
n'v< — 9, forallsuch(t,x,v). 2.7

Since 9Q € C1'*, > 0, we know that |y — x|~ !|(y — x)-n| is uniformly small,
provided that |y — x| is small, and x,y e QN Xy. Now let x € 02, and

3d . d
|x| £N — TO. It is easy to show that there is a 70 > 5 > 0, such that

oly — x|

N then we have y € Qy . (2.8)

ifly—x|<n and (y—x)'n=< —

n P
2N’ 2()| E& |l + NI B% |l )

< Plo@)ldr < (s — N < g From (2.7),

Now let s, =t+min{so, } If t <s<sq, [x(s) — x|

(x(s) — x)*n= ;v(t)'ndr =§[v(7:) + }v’(é)dﬁ]%dr
S —6-00+(—0*(1E5w + N|Bslw) £ —(S—t)g-

.By(2.8), x(s) € Qy. Since v(s) € Vy, (s, x(s), v(s))

Hence (x(s) — x)'n< — %ﬁ

€ Qyand s, — tis a lower bound for the trajectory. Therefore we conclude there is
a lower bound for the trajectory in every case. Q.E.D.

Lemma 2.2. There are two unique positive Borel measures u* on D*, such that

[Ypdidxdv= [ ¢pdu* — [ pdu~,Vped. 2.9
Iy D+ D-
Moreover, du~ restricted to {t = 0} is dx dv and du® restricted to y5 is |dy|. These
measures depend on k and N.

Proof. Equation (2.9) is proved in Lemma 3.1 in Chapter XI of [GMP]. Choose
a=¢e¥yc ® By (2.3) we know a = 0 on F *. Therefore we can replace D* by
y% in (2.9). Applying the divergence theorem to the left side of (2.9), we deduce the
rest of the lemma.

Definition 2.4 (Trace). If u and Yu belong to LP(Ily), the trace of u is a pair of
functions u* in LY (D%, du*), such that V¢ € @,

(Yu, ) +<u, Yp) = [updu™ — | udpdu™ . (2.10)
D+ D-

From Prop. 1 of [BP], we know that trace of u exist and is unique. Now we are
ready to define our f**! as a unique solution of the linear Vlasov equation

Of t + 0 Vo ff T 4 (BY +ux BY) V, f*1 =0 (2.11)
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with the initial and boundary conditions
{f"“(O, x,0) =fo(x,0), f*THp- =0,
T s = alt, x, o)(Kf* )], + gt x,0),
satisfied in the sense of trace. More precisely, we have the following

(2.12)

Lemma 2.3. Given E% and B, there exist two unique nonnegative functions
f**1 e LP(ITy) and f%*' € LP(D*), such that V¢ € @,

(o) deddv = [ 9 du” ~ [HaKS + g dy”

— [ ¢fodxdv. (2.13)
=0
Proof. Recall from (2.3) that R™ = F~ U yy. Define

__Jg inyy _ akKq in yy
= d Kg=
g {0 T {0 in Fy
for any function g(t, x,v) on R™. Now we can write part of (2.12) as f**!|-
=K(f**!|z+) + §. By changing v-variables, we have
1 1
_ 14 p
IKql rig,anm) = { flaKqI"ldvl} = { — Jat, x,0)lq(t, x, v — 2(n'v)n)|”dv}
W 123
1

= { [a(t, x,v—2(n-v)v)lq(t, x, v)l”dv}i = { j+(Ka)”lq|"dy}

W

1
P

S aollqlleew+,anr) < 1qllLow,au+y -

Also Kq =0, if g =0. Now our lemma is an immediate consequence of the
following special case of the theorems in [BP].

Theorem 1 and 2 of [BP]. Suppose that A :LP(R*,du*)— LP(R™,du"),
1 £ p < 0, has operator norm less than 1. For any fy € LP(Qy x Vy), g € LP(R7),
the linear transport problem

Yu=0 inlly, ul,—o=fo u =Au"+g onR”

has a unique solution u e LP(I1y) with unique trace u* e LF(0Ily). Moreover, if
Vq € L*(R™), q =2 0 implies 4°q = 0. Then the solution u = 0 if fo = 0 and g = 0.

Lemma 2.4. The solution from the previous lemma has the following properties:
VMEVN, A(fk+1’f’f++1, E’;,B’;,O(, QN, VN)=03 (2'14)

1
(1 - ao)_"lJCTf’iH Ip;y;,' + |XTfk+1ip;HN é 23T(If0ip;ﬂo + (1 - aO)—ll}CTglp;y‘) (215)
for 1 < p £ oo, where I1, = Qy x Vy, alnd xr(*) is the characteristic function of
[0,7],0 < TZ N, Here we set (1 — ag)r = 1 if p = oo. Furthermore,

Je ' (L +[ol®)yr f"tdtdxdv < [ (1 + |v]?)fodxdv — [ yr(1 + [v]*)g dy
Iy -

Iy

7
+2[ e " yrEbvf* T dtdxdv . (2.16)
oy
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Proof. By Lemma 2.1 and 2.3, if « € ¥ = &, we recall that « =0 on F* and on
t = T. Plugging « into (2.13), we have

— [/ 'Yodtdvdx + jf"“adu — Ja(@Kf + gydp — | afpdxdv

Iy b2 t=0

= — jYaf"“dtdxdv+ jozf"+1dy+ [ @K% + g)ady — j afodx dv

N t=

= A(fk+1 fk+1 E’;,B’;,O(, QNa VN)
which proves (2.14). Next, let 15 =y ((0, T)x Qyx Vy), and let DF be

-t

its incoming (outgoing) sets. Multiplying (2.14) by e”!, we have
Y 'f** )+ e !f** 1 =0 in @(I1}). Since e 'f*** has e~ 'f%*! as its trace, by
Prop. 1 of [BP],

J S ydu” +pf (e7f* Pdtdxdv = [ (e7'f)Pdu™,
Di i Dr

for 1 < p < oo. Let’s write out every term above explicitly. Notice that
Df ={t=T}U{F*nl}}u{yx nIOE},
D ={t=0}U{F nOf}u{yy nII}}.

Since aKf%*! + g is the trace for f**! on y5, and since f**! >0 and f4** =0,
we get

§ e S hpdut + f e S Pdu® + [ xp(e™ f5dy +p § (e7'f* 1 Ydz
F+ 7" 1y

t=T
- IXT[e"(aKf"“ +9)1Pdy + | fEdxdv + I ar(e™ fE Pdu™
o

where dz = dt dx dv. Notice that the first and second terms are nonnegative, and the
last term vanishes. We estimate the first term on the right as

0= — [xrle™@Kf4 + )1 dy = | xale™"(Ka) /4" + Kg)17dy
< [arle™(@o /5" + (1 = ao)(1 — ao) ™" Kg)T7dy

<ao§Xr(e PRy + (1= ao) | xr[(1 — ao)"'e ™ KglPdy .

'?N
Therefore

(1 —ao) | xrle™ Py + [ xrle™'f* 1)Pdtdxdv
}'r: Iy

< [ fhdxdv — 5 [e™'(1 — ao) ' xrylPdy .

I,
This proves (2.15) for 1 < p < 0. Slnce all the measures here are finite, when
p — 00, (2.15) is valid. Finally we multiply (2.11) by e (1 + |v|?) on IT} to get

Y{e7'(L+ [v]2)f* "'} + e7'(1 + [v?)f**! = 2e7f* 0EX |
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where e " f**1yEX € L'(ITy). Noticing e "'(1 + [v]?)f** ! has trace e "'(1 + |v]|?)f%" 1,
repeating the argument as above, we get (2.16). Q.E.D.

We now define E¥*! and B¥*! as the weak solution of the linear Maxwell
system

a,Ek+1 —curlBk“ = _jk+1 - j‘vfk+1dv ,

Va 2.17
[&Bk“ +curlE¥*t1 =0 2.17)

with initial data E,, B, and boundary data E**! x n = 0. More precisely, we have

Lemma 2.5. For fixed k, supposej*™* = [, vf***dv e L*((0, N) x Q). There exist
E**'and B*** e L2((0, N) x Qy), such that V(Js, §) € .4, and suppyy =< [0, N) x Qy,
C(EF*1, B¥* 1, j** 14, Qy, V) =0, D(E**Y, B**1,$,Qy, V) =0, (218)

[ zre [IEFT1? + B2 dedx < [ (E3 + B3)dx
Q

(0, N)x Qy
=2 [yre 'E¥ o Y drdxdv, (2.19)
Iy

where 0 < T < N.

Sketch of the proof. Notice that Qy has a Lipschitz boundary which is not
necessarily C2. In case 0Qy happens to be C?, the proof is standard. See [CS]. In
the case 0Q is not C2, by [N], we deduce our lemma by approximating Qy with
smooth domains.

We summarize our constructions as follows.

Lemma 2.6. There is a well-defined sequence f*, f¥ , E*, B* satisfying (2.14), (2.15),
(2.16), (2.18) and (2.19).

3. The Cut Off Nonlinear Problem

In this section we let k — oo. This process will result in the following lemma.

Lemma 3.1. There exist f, f*, E, B such that Yo e ¥y, VY, p) € M with
supp ¥ =< [0, N) x Qy, we have

A(f;f+9 Ea B9 a, QN’ VN)=07 (31)

C(E,B,j, W, Qy, Vy) =0, D(E, B, Qy, Vy)=0, (3.2)

(1 - aO)l"IXTf*— |p; I + lXTpr;HN é zeT(lfOIp; o, + (1 - aO)_1|XTglp;y’) (33)
E(f,E,B,Qy, Vy, T) < eT6o(T), wherel1<p=<w, 0ZSTEN. (34

Proof. By (2.15) and (2.19), there exist weak limits f, f*, E, B and subsequences
such that f*—~f weakly in LP(ITy), f¥2f* weakly * in L?(y5 ), E*— E weakly in
L*((0, N) x Qy), and B*—~B weakly in L*((0, N) x Qy) for 1 £ p < oo. Since EX—E
and B%—B weakly in L2((0, N) x Qy), we get (3.3) by weak lower semicontinuity. In



256 Y. Guo

order to prove the lemma, we have to consider the limit of (2.14), (2.16), (2.18) and
(2.19), when k — co. Since in (2.18) every term is linear, (3.2) is valid. Our main task
is to prove (3.1), for which we take the limit in (2.14). It is sufficient to consider only
these two delicate terms as follows. We claim that for each o€ #7,

lim [o(a(Kf5) + g)dy = [ a(@Kf* + g)dy , (3.5)

k=w 0 "

lim [ (E% + vx B)V,af***dtdxdv= | (E + vxB)V,afdtdxdv, (3.6)
1,

k=oo .

Proof of the claim. For (3.5), we change v-variables, take the weak limit, and then
change v-variables back again. Thus,

Jim [aa(Kf5) + gydy = Jim J (=DKa((Ka)f"" + Kg)dy

N —
O 5

— [ (Ko)[(Ka)f ™ + Kgldy

= [a(aKf* + g)dy .

"
This proves (3.5). For (3.6), fix any n € C¥(Ily), 0 < 4 < 1. From our construction,
o f ) + v Vi) = — div, (n(EY + vx BY)f*TY)
+ V. (EX +vx BY)f*H!
+ T vV = B (3.7)

in 2'. Noticing that h* is a bounded sequence in L?(R x R2, H '(R})), by the
averaging lemma of DiPerna and Lions, ([DL]), we deduce that V¢ (v) € C2(R?),
[nf**1¢(v)dv is bounded in H*((0, o) x R?). Hence [#f**!¢(v)dv is compact in
L?. So there is a subsequence (still denoted by f**'), such that [nf**'$(v)dv—
{nf$(@)dv strongly in L* as k —» co. By a density argument, we can assume o
of the form o ()a,(t, x), where o;()=0, if [v|= N, and o,(t, x)
may not vanish on the boundary. We wish to show that [Vaf**'dv con-
verges strongly in L2((0, N)xQy). We break up f**!' —f=n(f**1—f)
+(1 = n)(f*** —f), and estimate these two terms separately. We have

|: | cx%{j(l—n)(f"“—f)V,,rxldv}zdtdx:r§C[j(l—n)zdtdvdx]i,
Vn

(0,N)x Qy Iy
(3.8)

by (2.15), we can choose C depends only on a4, &,, fo, @y and g. Now for any ¢ > 0,
we choose 1 such that C[ [ (1 —n)*dtdvdx]* < ¢/2. Then for this fixed 7, we
choose k so large that [ [, y,.q, o3 (fy, n(f*" ! — f)Va; dv)* dt dx]* < /2. Thus we
have shown

1

2 2
lim[ f a%(f(fk“—f)Vocldv) dtdx] =0.
k> (0,N)xay Vy
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Now in (3.6), [ (0. nyxa, Ex(] v Vof**1dv)dt dx converges because one factor con-
verges weakly in L? and the other converges strongly in L?. The second term in
(3.6) is

[xBY) Vof* tdtdxdy = Bi(f(va,,a)f"“dv)dtdx.

Iy (O,N)xQ Vy

Regarding v x V,a as another test function, we deduce our claim.

Finally let’s consider the limit of (2.16) and (2.19). By exactly the same method
as in the proof of (3.6), both |, )(TE"e“vf"+1 dtdx dv and S xrE e of* dt dx dv
converge to fn xrEe” vf dt dx dv. The reason is that xre” ‘v now behaves like a test
function, since our IIy is bounded. Letting k — oo in (2.16) and (2.19), using the
weak lower semicontinuity, then adding (2.16) and (2.19) together, we finally prove
(34). QED.

4. Solution of (VM)

In this section, we begin with the partial absorption problem and conclude with the
specular case. We let N — oo in the cut off problems. The method is similar to the
previous section.

Theorem 4.1. Suppose 0Q € C**, for some u > 0. Let fo(1 + |v|*) € LY (Q x R?),
foe L*(Q@xR3),and fy=0ae. Let 0 < a(t,x,v) L ao < 1, xrg(t, x,v) € L®(y7),
A+ 10|})yrg e L*(y7), for all 0 < T < o0 and g =0 ae. Let E, and By € L*(Q)
with the constraint conditions div By = 0, div Eq = pg in 2'(Q). Then there is a weak
solution f, f*, B, E of the partial absorption problem, with

(1= a) xSy + e flpn < 271 fo Iy, + (1 — a0) ™ Hxrgly,,-) @.1)

E(LLE,B,Q T)<eT¢o(T), for 1<p=< 0, VT < 0 . )
Proof. We now have sequences fy, fx , By, Ey satisfying (3.1), (3.2), (3.3) and (3.4).
We extend the functions fy, 5, Ex, By by 0 outside IT\ITy. The extended functions
still satisfy (3.1) to (3.4) in the cut off domains. Abusing notation, we call them fy,
fx, Ey and By again. It is easy to show that there exist measurable functions f, [ ¥,
E and B defined for 0 <t < oo, and subsequences (still denoted by N), such that

xrfy—xrf weakly in L2(IT), xrfn = xof *, weakly * in L*(3%),
xrEx—yrE weakly in L?((0, c0) x Q),
xrBy—yrB weakly in L((0, o0) x Q), for all T. 4.2)

By weak lower semicontinuity for f, /*, E and B, (4.1) is valid. We also have
Yo e ¥y, Y, @) € M with suppy == [0, T) x Qy,

A(fN9fI.V+9 EN9 BNa a, Q’ R3) = A(fNa fl.\li-a EN& BN’ a, QN; VN) =0
C(ENaBN3jN5 ‘pa Qa R3) = C(ENa BN!jNa lljy QNs VN) = 0
D(Ey, By, ¢, Q,R®) = D(Ey, By, @, Qy, Vy) = 0. 4.3)

Now fix any « € 77, and (lﬁ @) € M. There exists a r > 0, such that suppo cc
[0,)x(Qyn Xy)x Vy when N >r, and suppnp cc [0,7)x 2y when N >r.
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In other words, (4.3) holds for any o and (1/7, ¢ ) when N > r, r depending on o and
Y. When letting N — oo in (4.3), we only need to consider

[ Wiydtdx and [ (Ey+ vx By)(V,0)fydtdxdv . (4.4)
0,nxQ i

In the former integral, we break up jy = jRa vfydv into its parts over |v| £ R

and |v| > R. Then we get lj(o,,)xgxqvbR)vadtdxdvlg%lj(1+|v|2)f,vdtdxdv|

— ,. thanks to the energy inequality (3.4). Ye > 0, choose R big enough

!

C .
that -E<%' For this fixed R, by (4.2) we have [(.xax (< qWtfydt dxdv —

Jonxaxs R)lva dtdx dv. Hence the former one goes to the correct limit.

For the latter integral in (4.4), we follow the proof of (3.6). We first choose
ne CP(I), 0 <y = 1, such that (3.8) holds for (fy — f). There exists No() such
that when N = Ny (), suppn =< ITy. Therefore the rest of the argument for (3.6)
holds with N = Ny(n) and T = Ny(n). Hence A, C and D are zero with f, f*, E
and B.

Finally, in order to complete the proof of Theorem 4.1, we only need to check
divE = p in the sense of distributions. To accomplish this, we use the following
observation, which is a fundamental motivation of this paper.

Lemmad2 If A=C=D=0 holds with feL®((0 T)xQxR?, Eec
L((0, T)x Q), and yr(1 + |v|2)}f € L'(IT), VO < T < 0. Then divE = p.

Proof of Lemma 4.2. Under above assumptions, we claim that A = 0 holds for any
a(t, x) € CE([0, oo) x Q) which is independent of v and vanishes near 0Q. In fact, let
2
by(lv]) € C®(R3), with by = 1, for |v| £ N, by = 0, for |v] = 2N, and |Vby| £ N
Then bya € 4. Assume a(t, x) = 0 if ¢t = T. Plugging it into A = 0, we know that
— [ byofo dx dv — [ byd,af dt dx dv — [ fbyD - Viodt dx dv — [ (E + v x B)f V,byadt dx dv
equal to zero, since there is no boundary term. Notice that V,by is parallel to 7, so
thatvx B V,by = 0. When N — oo, only the last integral will present any difficulty.
Noticing that the volume of {N < |v| £ 2N} is O(N3), we have

IjEvachxdtdvdx|§< ) |E|2dtdx>z< | (fvabNocdv)zdxdty

0, T)xQ
2 2 ’21‘
§C< < f—= dv) dxdt)
(OT)xQ N<]v|<2N N
§C< Nfzdvdtdx>
0, T)x Q x N<|v|<2N}

IIA

C< 1+ |v|2)%fdtdvdx) .
0,T)x2x N<( | < 2N}

The last integral goes to 0 as N — co. This proves A = 0 for such .



Global Weak Solutions of the Vlasov-Maxwell System 259

Now for any a(z, x) € CE([0, o) x ). Notice that &(z, x) = [ adt — Lgfxdt is
again a test function of the form given above. Replacing « by & and (¥, ¢) by
([, Vadr — jOT Vadt,0) in A, C, and D, we deduce divE =p from the
div EO = po. QED

Now we can extend our results about the partial absorption problem.

Theorem 4.3. Suppose 0< T < 0, foe LP(QxR?), xrge LP(y~) for some
2 £ p < oo, where f, and yrg are not bounded. Let the other assumptions of The-
orem 4.1 remain the same. Then there is a weak solution f,f*, E, and B with given
data fy, a, g, Eo, By, and satisfy (4.1) for above p.

Proof. We first treat the case of 2 < p < 0. Let f& € L*(Qx R?), x79™ € L*(y7),
such that | f§" —foll 11wy = 0 1xr (9™ — ) . 14y > O When n— 0. By
Theorem 4.1, there exist weak solutions @, f®* E® B® with given data f, E,,
By, a, g™. Also f™, f®* E®_ and B™ satisfy the estimate (4.1) with the fixed p.
Hence there exist weak limits f, f*, B and E of the corresponding sequences such
that (4.2) holds for these functions. By weak lower semicontinuity, f, f/*, B and
E satisfy (4.1) with the fixed p. To prove they are weak solutions, the only difficult
term is again the nonlinear one [(E®™ + vx B™)f™V,adt dx dv. By the L? boun-
dedness of /™, we can follow the proof as in (3.6). We only need to replace (3.8) by

I= [ [ a3(Jad = (f* — f)Va, dv)? dtdx]_
0, 0)xQ

§C[ [} ( | (1—n)2d0>< | (f‘")—f)zdv>dtdx]i. 4.5)

supp a2 \ supp oy supp o1
. . N S .
Next we use Holder inequality with 5 + 1_7 =1,p>2 Since [, fe L?, we get

1

zgc[ j (l—n)zthdxdv]z_q[ { (If‘"’l"+|f|”)dtdxdv]—p

Supp a2 X supp a1 supp a2 X supp a1

< C|: § (a- n)zthdxdv] ,
supp a2 X supp a1

where C depends on a,, o,, fo, dg and g. We thus conclude the proof for p > 2 by

the same arguments in (3.6).

Now let p = 2, and we repeat the process of case 1. It suffices to show that I in
(4.5) can be arbitrarily small. To this end, we follow the idea of [DL] and [S2]. It is
easy to show if f, and yyg in L? then there exist a C? function 6(u):
[0, c0] — [0, o0), such that 8(0) = 0, O(u; + uy) < 0(uy) + O(uy), lim, ., . 0(u) = oo,
and

§ 0(fo)f§dxdv < oo, | 1r6(9)g*1dy| < Cr < o0 .

QxR3 y

With this 6, we claim that both [, 0(f“)(f®)? yrdtdxdv and {, 0(f) f? yrdt dx dv
are uniformly bounded on n, where /™ and f are the same as in case 1.
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Proof of the claim. It suffices to show that (2.15) holds for @(f{**1), where
O(u) = O(u)u*. Since Y(e 'O(f**1)) + e 'O(f**!) =0, by the same proof in
pp. 380-382 of [GMP], it is easy to show that e '@(f¥**!) has trace
e 'O(f£*1). By Prop. 1 of [BP],

fero(fQidut + (et O dtdxdv = fe“‘@(f("”‘“)d,u . (4.6)
D} I'IT
From the same argument as in (2.15), by the boundary condition, we get

f p; = jy- + §,=0. By the properties of 6(u), for any integer M > 1, we write the
integral over y~ as

| xre”'O@K Lt + g)ldy| = | + ] =1, +1,.
e Mg < Kf@4*t Mg z Kffe™!

. 1 . . .. .
Sincea<ag <1, aq+ M < 1 when M is large. Since 6(u) is increasing,

1
I < jxre-t@qao T M}Kf%'?'f“)ldv |2 [ e QKSR DIar],
e a
which can be killed by the same integral on y*. Since 6((M + Du) < (M + 1)6(u),

I, = | < [ xre”'O((M + 1)g)2|dy| £ C(M) | xre™'O(g)ldy] .
Mgz Kf@ &ty 7"
The remaining terms in left side of (4.6) are nonnegative, hence
{m,e " xrO(f%**)dtdxdv is uniformly bounded on n and k. Thus our claim
follows through the limiting procedure as k, N — oo from Sects. 2 to 4.
Now we can estimate (4.5) by the standard method. Since

I§C|: [} < | (1—n)2d0>< f (f‘"))2+f2dv>dtdx:|3,

supp a2 \ suppaj supp oy
it suffices to estimate /™ and fseparately. The integral with /™ is split to two parts,
fy < mand [jw 5 pr. The term with /™ < M is bounded by CM [ [(1 — n)*dtdx dv]%,

and the term with f® > M is bounded by [ fOCf™(f"y* dedx dv] For any

O(M)

¢ > 0, we first choose M large, such that jfw > m < —, then for this fixed M, choosing

Z)
&
n such that jf{n)é M<

1 It is the same for f. Hence I can be arbitrarily
small. Q.E.D.

Next we study the purely specular problem. Now the boundary condition for
the Vlasov equation is f,- = Kf,+. In other words, a(t, x,v) =1, g =0.

Theorem 4.4. Suppose 0Q e C**, for some u>0. Let f, € L nL'(2xR3),
fol +|v]*) e L°(2xR3), and f, =0, ae. Let Eqe L*(Q), B, € L*(Q) with
constraint conditions div Eq = pg, div By = 0in 2'(Q). Then there is a weak solution
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f. 1, E, B of the purely specular problem. Moreover

|XTf|p;H g ZeTlfolp;Hoa fOI' 1 § P é @ ,

IXTf+‘o:>;y’r é zeTlfoloo;Hm fOI‘ p=® Vo é T< s (47)

E(f,E,B,Q,R* T)< e"&o(T) .
Proof. Choose 0 < a,, < 1, lim,,, , a,, = 1, where a,, is a constant. For fixed m,
consider the partial absorption problem (VM) with the boundary conditions
E™x7=0and fi” = a,f"%, and with initial values f,, B, and E,. Since g = 0,
by Theorem 4.1, there is a solution f™, ™" E®™ and B™ satisfying (4.7) for all m.
Now as m — oo, there are global weak limits f, f ¥, E, B of corresponding sequences
such that (4.2) holds. So we get (4.7) by weak lower semicontinuity. Since in (4.7) the

constants are independent of m, we get the correct limit by the same method in
Lemma 3.1. Q.E.D.

5. Relativistic Case

Let IT, y* and y° be the same as before. When the particles with which we are
concerned move very fast, we have to consider the following (RVM) system [GS1]:

Ofp + 05 Vifp + e,;<E + %ﬁ,;xB)-V,,f,, =0, 1SN
OE—ccurlB= —j= —4nY e[ 05 fydv (RVM)
B
0B+ ccurlE=0
with the constraint conditions
divE=p= 4n§e5fﬁ;dv, divB=0 (5.1)

and with the same initial and boundary conditions as (VM), (0.4) through (0.8).
Here

N v

bp = ————c,
m32 +_lv|
B c?

We shall make the following definitions for (RVM).

I1<B=N.

The surface measure dyg is the same as (1.4) except that mi is replaced by o,

B
1 £ p < N. The test function spaces for (RVM) remain the same as (1.9), (1.10) and
(1.11). The energies & and &, for RVM) are the same as (1.5) and (1.6) except that

2
the factor (1 + |v|?)my is replaced by 2¢* [m} + l—z—L—, 1 < < N.For the new dy,
the test functionals and the definition of a weak solution for (RVM) are the same as

in (1.12), except that ;nv_ is replaced by 0;. With the new definitions, Lemma 1.1 and
B
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Lemma 1.2 are still valid for (RVM). Our major results about (RVM) are parallel to
those for (VM). We summarize these results in the following Theorem.

Theorem 5.1. (Relativistic case). Let 0Q € C**, for some p > 0. Let f, 5 2 0 ae.,
1 <B = N. Let Ey and By in L*(Q) satisfy div Eq = pg, div By = 0 in the sense of
distributions. There are two kinds of conditions for fog.

(1) Ifag=1, and gy =0, let foy € L™ A LY@ xR?), fos/(I + [0]?)e L (@ x R?).

2 If 0=Zapt,x,v)<ap<1, and ga(t,x,v)20 ae., let fop/(1 +|v|?)
e L'(QxR®), fop € LP(Q X R®), xrgg € LP(y™) and yrgs/(1 + [v?) e L'(y7),
for2<p=<o00,0<T< .

Then there is a weak solution of (VM), denoted f;, f; , E and B with finite energy.
Moreover, if fog € LY x R?), xrgs € LP(y™ ), then yrfy € L(IT), where 2 < q < oo.

Sketch of the proof of Theorem 5.1. We follow the arguments step by step from

Sects. 2 to 4 with some suitable changes. We first modify the definitions in Sect. 2.

Definition 2.2 remains the same for (RVM). Definition 2.1, 2.2 and 2.3 still make

sense if we define Y =0, + 9V, + (EX + 6xBX)-V, instead of Y =20, + vV,
v

VA + (%)

Lemma 2.1 and Lemma 2.2 now are valid. Hence Definition 2.4 makes sense for

(RVM) with Y and dji*, where dfi* is the new measure in Lemma 2.2. In order to
prove Lemma 2.3 for (RVM), it suffices to modify the results of [BP] as follows.

Theorem 1" and Theorem 2'. Suppose that A :LP(R*,dji*)w~— LP(R™,dji"),
1 < p < o0, has operator norm less than 1. For any f, € LP(Qyx Vy), g € LP(R™),
the linear transport problem

Yu=0 inlly, uli—o=fo, u* =Hu +g onR”

+ (EX +vxBY)-V,, where o= Under these new definitions,

has a unique solution u € L? with trace u* € L?. Moreover, if Vq € LP(R™), that
q = 0 implies A'q = 0. Then the solution u =2 0 if fo =0 and g = 0.

Proof of these two Theorems. Theorem 1 and 2 of [BP] are exactly the same as
Theorem 4.3 and Theorem 4.4 in Chapter XI of [GMP]. We deduce these The-
orems by the same proofs as in Theorem 4.3 and 4.4 of [GMP].

So our Lemma 2.3 for (RVM) follows easily. Therefore our Lemma 2.4 holds by

multiplying (2.11) with 2(1 + lvlz)%. Now (2.16) takes the form

2 [ e (1 + [o|2yrf** Ldtdxdo < 2§ (1 + [v]2) fodxdo — 2 | yr(1 + [0* g dy
Iy -

Io Y

+2 [ e 'yrEof* tdtdx dv .
My
Lemma 2.5 is also valid with ¢ in (2.19). In Sect. 3, we need the relativistic version of
DiPerna—Lions’s Lemma, see [S2]. Then Lemma 3.1 is true for (RVM) by using

the same argument. In Sect. 4, since we get /(1 + |v|?)f e L1(IT) for (RVM), the
first term in (4.4) goes to the correct limit with j = [ ?fdv. So is Lemma 4.1. Using
the same method as in Theorem 4.1, Corollary 4.3 and Theorem 4.4, we establish
Theorem 5.1. Q.E.D.
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