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Abstract. We investigate global properties of the mappings entering the description
of symmetries of integrable spin and vertex models, by exploiting their nature of
birational transformations of projective spaces. We give an algorithmic analysis of the
structure of invariants of such mappings. We discuss some characteristic conditions
for their (quasi)-integrability, and in particular its links with their singularities (in the
2-plane). Finally, we describe some of their properties qua dynamical systems, making
contact with ArnoΓd's notion of complexity, and exemplify remarkable behaviours.

1. Introduction

We want to analyze in detail some realizations of Coxeter groups [1,2] by birational
transformations of projective spaces which have been shown to appear in the
description of the symmetries of quantum integrable systems [3-5, 6-10].

The first motivation to look at these realizations resides of course in their relations
with the star-triangle and the Yang-Baxter equations or their higher dimensional
generalizations such as the tetrahedron equations. A characteristic feature of the orbits
of the known solutions of the Yang-Baxter equations under these groups is that they are
confined to subvarieties of high codimension of the parameter space (actually curves),
signaling the existence of an unexpectedly large number of algebraically independent
invariants. The discovery and the analysis of the possible invariants is a decisive step
in the study of the Yang-Baxter (tetrahedron,...) equations, in particular for what
concerns the so-called baxterization problem [11].

Another motivation is to use these realizations to construct discrete time evolution
maps, as it is usual in the study a la Poincare of dynamical systems, by iterating some
element of the group. One of the main questions in this setting is again to bring to
light the possible presence of invariants and invariant tori [12-14, 15-19, 6-10].

If a realization admits algebraic invariants, we will say it has a property of quasi-
integrability.
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In [6,7] it was shown, among other things how the direct graphical investigation of
the group action by means of numerical calculations ("drawing the picture") leads to
a nice representation of the orbits. We want to elaborate on the problem and discuss
the deeper structure of the non-linear realizations by birational transformations of
projective spaces.

We first recall which kind of infinite Coxeter groups arise in the theory of solvable
models of statistical mechanics and collect some facts about birational maps which
we shall use in the sequel.

We then analyze the cohomological structure of the possible invariants. We give the
general (albeit formal) solution to the problem in terms of an algorithmic research of
linear systems on P n satisfying a covariance property with respect to the realizations
we handle. We then specialize to the case n = 2, analyze the singular locus of the
group, and discuss some illustrative examples.

In the final section we make contact with ArnoΓd's notion of complexity [20,21],
which measures the growth of the topological non-triviality of the intersection of
a fixed subvariety and the image of another one under an iteration map. We will
argue how our notion of quasi-integrability is related to a polynomial growth of the
complexity while the generic one is exponential.

2. Coxeter Groups and Birational Realizations

One of the outcomes of [6-10] is the construction of a number of groups generated
by involutions and of various rational realizations on projective spaces.

Consider the Coxeter group G generated by v involutions Ix,l2,... ,lk, (k =
1.. . ι/), verifying no relations other than the involution property. The group G is
infinite and there are two essentially different situations.

If v = 2, the group is the infinite dihedral group Z 2 x Z, and all elements may
uniquely be written I^(IιI2)

q, with a = 0,1 and q e Z. The number of elements of
given length / is 2.

If v > 3, the number of elements of length I grows exponentially with I, and the
group is in a sense bigger (still countable).

As an example for the groups described in [6-10], the number v of generators
depends on the dimension d of the lattice: it is just 2d~ι so that if d = 2, G is
generated by two involutions and if d > 3, G is generated by more than three
involutions.

One may then construct various realizations Γ of G by explicit transformations
of some projective space. They are obtained by specifying the realization of the
generators. Since it is precisely the realizations that we want to study here, and
especially the problem of the existence of invariants, we will mainly talk about Γ and
not G, and use the same notation Ik for the generators of G and their representatives
i n Γ .

The realizations Γ we consider are essentially obtained from operations on
matrices, especially matrix inversions, and transpositions of their entries, the matrices
being originally matrices of Boltzmann weights of statistical mechanical spin and
vertex models on the lattice or ^-matrices of 2-dimensional field theories. The
projective space we consider is just the space of entries of the matrices up to a
common multiplicative factor.

Let us describe here typical examples of such realizations.
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Suppose m is a q x q matrix. The ordinary matrix inverse / defines an involutive
rational transformation of F q2_ l 9 which reads in homogeneous coordinates:

I'.mi3 —> cofactor of mzj . (1)

We may also consider the element by element inverse (so-called Hadamard inverse):

J'mij -^ι/mzj- (2)

These two inverses appear in the study of spin models. Notice that I2 — J2 = 1 and
there is no other relation between / and J . In particular / and J do not commute and
φ — IJ is of infinite order.

It is of course possible to define all kinds of block inverses, the size of the blocks
ranging from the full matrix size (for /) to 1 (for J ) .

One may also mix / with linear transformations. This happens already when / and
J defined by (1) and (2) are collineated, i.e. when there exists a linear transformation
C such that / = C~ιJC (see [6]). We may also mix / with permutations of the
entries.

Let us describe here the transpositions of entries which appear in the study of
vertex models on a d-dimensional lattice [9,10].

Suppose M is a multiindex matrix of size qd x qd written in the form M1^2 "]d •

There exist d different partial transpositions tx, t 2 , . . . , td with the evident definition:

...jk...Jd -Mh...ιk...jd - w

We clearly have a product and an inverse I for these multiindex matrices. We may
define 2(d~1^ new inversions by:

where K — ( { α l r .. ,α s } , {α s + 1 , . . . ,αd}) is a partition of {1,.. . ,d}.
These various inverses yield involutive (bi)rational mappings of Ψqid_v They

are related by collineations, easy to write from the representation of the partial
transpositions. Note that the product of all tk 's is the full transposition t and commutes
with all the inverses. Such realizations appear in the study of vertex models.

We may further enrich the representations by imposing constraints on the entries
of the matrices, provided the transformations are compatible with these constraints
(see [6] for the notion of admissible patterns). This yields realizations on projective
spaces of lower dimensions.

Needless to say that along these ideas, one may construct a variety of involutions
acting on various projective spaces.

We stress that, at the level of the realization, there may exist additional relations
between the generators, possibly making it finite [as in Example (6.4)].

3. Some Facts about Rational Mappings

In this section we collect some results about rational and birational mappings between
algebraic varieties (see for example [22-25]).

Definition 3.1. A correspondence φz : X —> Y between algebraic varieties X and Y
is an algebraic subset Z C X x Y. φz is a rational map if there is a Zariski open set
U d X on which the correspondence is one to one.



114 G. Falqui and C.-M. Viallet

If Z C X x Y is a rational map, the inverse correspondence is defined by the graph
Z~ι: = {(y,x) e Y x X\(x,y) e Z}. If the correspondences Z and Z " 1 are both
rational mappings, then Z (or φz) is called a birational transformation. A birational
map is a biholomorphism except on subvarieties of codimension at least two.

A linear system D on X is a non-empty linear subspace of the space of global
sections of some line bundle 3% over X. Its base locus is the set of common
zeroes of all sections in D. A remarkable result is that [23] there exists a one to
one correspondence between linear systems on X of dimension d with base locus

of codimension not less than 2 and rational maps X—^d-i UP t 0 projective
automorphisms of P d _ 1 .

For what we are concerned with, the paradigm of the rational map is the so-called
σ-process or blow up of a point.

We refer to [24,25] for the general definitions. We shall call Hadamard in-
version and generically denote by J the prototypical birational mapping in P n .
Let xθ1 x{,...,xn and yQiy1?...,yn be coordinates in two different copies of P n

and let us consider the algebraic set Z c P n x P n given by the n equations
xoyo = xxyx = . . . = xnyn. By definition, the graph of J is Z.

It is valuable to specialize to n — 2: outside the triangle xQxlx2 = 0, Z is the
graph of the map [xQ,xι,x2] ^ [l/#o> ^lx\ > ^/xi\ The generic point on the line
x% — 0 is sent into the point pi whose only non-vanishing coordinate is yi9 while to
the points pi corresponds the entire line yτ = 0. One can say that J blows up pi to
the line xt = 0 and blows down the line xi = 0 to the point pi.

Finally, we recall the following properties, which will be used in what follows.
From the description of a birational mapping as an algebraic set in the product X xY
it is apparent that φ blows up p to a divisor D if and only if φ~ι blows down D
to p, and it is also evident that different points p{ and p2 cannot be blown up to the
same divisor D (otherwise the inverse map would not be rational).

Also, it is a standard result that blowing up a point adds a free factor Z in the
Picard group of X. It follows that if ψ is a birational map in P 2 which blows up n
points, then it must blow down exactly n exceptional divisors, as explained above.

4. Invariants and Quasi-Integrability

Let Γ be a group of birational transformations in P n . A meromorphic function
A: P n —• Pj deserves to be called a F-invariant if it satisfies

Δ(g(x)) = Δ(x) \/geΓ. (4)

Since a meromoφhic function on an algebraic variety can be thought of as the ratio of
two sections of a suitable line bundle, we are naturally lead to the following scheme.

A Γ one-cocycle is a collection of sections a(g, x) of some line bundles over P n

satisfying the cocycle condition:

a{gxg2,x) = a(gvg2x) a{g2)x). (5)

A section σ of a line bundle will be called a-covariant (for some cocycle a) if the
equation

σ(gx) = a(g, x) σ(x) (6)

holds. This equation may be reformulated in group cohomology terms [26] as a — 6σ
meaning that a is actually a coboundary.
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Finding a /"-invariant is equivalent to finding two sections σx and σ2 verifying
Eq. (6) for the same α. This means that we are interested in the coboundaries of
the 0-cochains rather than the cohomology groups. The strategy is to find 1-cocycles
admitting a sufficient number of primitives.

As a side remark, we notice that these equations, which will play a prominent
role in the sequel, are well defined at all points of P n . In fact for any birational
transformation g, the singular locus is a subvariety of codimension greater than or
equal to two in P n , and the equations above admit a unique holomorphic extension
to the whole of P n , even if they have meaning in the point set sense only on the
nonsingular locus of g.

We are interested in the case where Γ is a Coxeter group, i.e. is generated
by v involutions Ik of degree dk (the degree is a natural notion in terms of the
homogeneous coordinates [x 0 , . . . , xn]). A Γ one-cocycle will be completely specified
by the assignment of v sections α(/fc, x). Remarkably, the possible values of a(Ik,x)
may be found explicitly.

Each involution Ik defines a characteristic polynomial φk of degree d\ — 1 in the
following manner. The Ik being involutions, Ik appears as the multiplication by a
degree d | — 1 polynomial φk{x$,.. , xn). We then have the following

Lemma 4.1. If a(g,x) is a trivial Γ cocycle, the sections a(Ik,x) divide a suitable
power of φi for i = 1,.. ., v.

Proof. Suppose a — δσ. Then, from the coboundary equation (6) for g = 1^ we get
that a(lf)X) = φ(x)τn, with m = deg(σ). The assertion follows from the cocycle
condition (5).

Definition 4.1. We shall say that Γ is collineated when its generators are all conjugated
by means of elements of PGL(n -h 1, C) to a standard one, K.

This is the case for a number of models among which are the Baxter model (n = 3)
and the examples of Sect. 6.

3 d

If the characteristic polynomial φκ factorizes into φκ = Y\ pt

ι, then it is clear
z=o

that for every i there exists a set of global homogeneous coordinates [XQ\ . . . , X ^ ]
in which a(It)x) will be the product of the same polynomials pL, possibly weighted
with different exponents d[.

Remark. When K is the Hadamard inversion J in P n a straightforward computation

shows that φj = f[ 2 ^ n l ) so that we get
1=0

Proposition 4.1. A coboundary for a collineated Coxeter group of birational transfor-
mations with generators conjugated to the Hadamard inversion J in P n is a monomial
in some suitable homogeneous coordinates, with coefficient zb 1.

It is apparent that our cohomological setting gives an algorithmic prescription
for the search for invariants: find first the characteristic polynomials φk, which is
straightforward, then the possible coboundaries, which is a factorization problem, and
check how many primitives they have, which amounts to solving a linear problem.

The realization Γ in P n admits p invariants Z \ l 5 . . . , Δp if there exists an α-
covariant linear system Lp of projective dimension p and degree d for some cocycle
α. It is not guaranteed that the orbits of a realization admitting p invariants lie on
subvarieties of dimension n — p. Indeed the question of the algebraic independence
of the invariants has to be examined further [27].
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One has to realize how exceptional is the existence of any invariant of the birational
realization, as the following argument shows.

Let us consider covariance with respect to one generator K of Γ. Suppose K
is of degree dκ, and suppose we are looking for an invariant of degree m. Clearly
from Eq. (6) the degree q of the cocycle is related to dκ and m by m(dκ - 1) = q.
The dimension of the space ^ ( m , ή) of homogeneous polynomials of degree m in n

variables is ( | . The requirement of K-covariance selects a linear system
V m-\ )

1 / γi _[_ γγi 1 \

Lκ in 3^{m, n), of generic dimension at most - ( ). Imposing the same
2 \ m — 1 )

condition for another generator / leads to look for the intersection of hyperplanes
of at most complementary dimensions in 0°(m^n). This intersection is generically
empty. As a consequence we have
Proposition 4.2. The action of a generic Coxeter group of birational transformations
in Ψn does not admit any non-trivial invariant.

In the particular case of collineated realizations, this leads to the further property,
which we prove for v — 2 for simplicity.

Proposition 4.3. The set of collineated groups admitting a non-trivial invariant has
the structure of a quasi-projectίve variety.

Proof. The group PGL(n+1, C) admits a natural structure of quasi-projective variety,
since it is identified with the complement of the degree (n+1) hypersurface det A — 0
in P ( n + 1 ) - 1 . Choosing K as prototypical generator of Γ, I is specified (in the
collineated case) by the choice of an element C e PGL(n + 1, C) by / = C~ιKC.
If for any polynomial P we define Pc: — P(C~[x) and set y = Cx, then the
covariance equation with respect to I reads

Pc(Ky) = aI(C-[y)Pc(y).

For each possible cocycle α, this is an algebraic equation in the parameters ta of the
matrix C. The coordinates of any basis {ea} in L1 with respect to a basis in ^ ( r a , n)
completed from a basis of Lκ may be expressed as algebraic functions of the t o ' s .
The condition of nontriviality of the intersection is a condition on the rank of the
matrix

which in turn is an algebraic condition on the eτ

a(tlJ... , ί ( n + 1 ) 2_ 1 ), concluding the
proof.

5. Realizations in the 2-Plane

Let us discuss mappings in P 2 . Here our analysis is made quite complete by the
fact that all rational maps from an algebraic surface can be described in terms of
σ processes and also that singularities of birational maps can occur only at points.
Moreover a theorem of Noether [25] assures that the group of birational maps is
generated by the inversion J together with the projective group PGL(3, C). We will
restrict ourselves here to v = 2, i.e. Γ is generated by two involutions / and K.
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Definition 5.1. The singular locus of Γ, S(Γ) is defined as

S(Γ) = {x G Ψ2\3g G Γ s.t. g blows x up} .

Since Γ is generated by / and K, S(Γ) is obtained by the action of Γ on the singular
points of / and K.

Definition 5.2. We will say that Γ is properly singular if S(Γ) contains at least four
points in general position, i.e. such that no three of them are aligned.

Let Π(Γ) be the set of singular divisors:

Π(Γ) = {π G Div(P2)|3# G Γ s.t. g blows TΓ down to a point} .

Let us suppose that Γ admits a rational invariant Δ and let us look at what happens
at points in S(Γ). The equation Δ(g(x)) = Δ(x) is clearly meaningless at the
indetermination points of A Noticing that Vx G S(Γ), 3πx G Π(Γ) such that Πx is
blown down to x by some element g G Γ, we can conclude that x G S(Γ) is either
an indetermination point of Δ or Δ is constant along the corresponding divisor πχ9

i.e. πx belongs to the pencil of curves Δ = const. Then we can state the

Proposition 5.1. If S(Γ) is infinite, and Γ is properly singular, then Γ does not admit
any invariant.

Proof. With the above observation in mind, the only case we must rule out is that
Γ admits an infinite number of singular points and only a finite number of singular
divisors, since by Bezout's theorem, any rational degree d invariant admits at most
d2 indetermination points. Let us suppose that #S(Γ) — oo and #77(T) = N and let
us consider the set SP — {Πa} (α = 1 . . . 2N) of parts of Π(Γ). We can make a

N
partition of Γ into 2N disjoint subset Γ = (J ΓQ, where

OL=\

Γa = [g G Γ\g blows down exactly all the divisors in Πa} .

At least one of the Γa, say Γo is infinite. If we consider any pair of elements (/ι0, l0)
in ΓQ, the product h0 l^1 is a birational map without singularities, and hence an
element D G PGL(3,C). Since Γo is infinite, we can arrange things so that D is a
non-trivial word of even length. Since words of odd length in Γ are involutions one
has:

DKD = K, DID = I. (7)

It follows that D permutes the points of S(Γ)9 and some power Dk must be the
identity. As a consequence, there is some non-trivial product (IK)1 = 1, meaning
that actually Γ is finite, and contradicting the infiniteness of S(Γ).

Remark. The above proposition proves that a necessary condition for existence of an
invariant is the finiteness of the singular locus. It is tempting to conjecture that this is
also a sufficient condition for any properly singular realization. This is unfortunately
not the case, as the example of Sect. (6.6) will show.

The next step is to try to relate the singular locus of the group with the singular

locus of the would-be invariant. Let the Δ be a rational invariant for Γ and let S(Δ)

be the set of its indetermination points. If y G S(Δ) and y £ S(Γ), the (finite) orbit

Γy of y is made out of indetermination points of Z\, on which every element g G Γ

is regular. Since Γy is of even order, say 21, y is a fixed point for (IK)n'\ n G Z.

Let Ψ\ - ^ > P 2

 b e t h e 2-plane P 2 blown up at y. Since we are working with P 2, Δ
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extends to a function Λ on Ψ2

y with no indetermination points in a neighbourhood

of the exceptional divisor E = pr~ι(y). The restriction φ = Δ\E is a meromorphic
map on Pj whose value is determined by the limits of Δ(x) along lines in P 2 passing
through y.

We will say that Γ is non-degenerate if for every g G Γ the tangent map to g is
non-nilpotent at every isolated fixed point of g. Then we can state the

Proposition 5.2. Let Γ be a non-degenerate Coxeter group of birational transforma-
tions ofΨ2. If Γ admits an invariant Δ, then S(Δ) C S(Γ).

Proof Suppose y G S(Δ) and y £ S(Γ); the non-degeneracy of Γ ensures that there
is at least one line in PTF2(y) whose orbit under the tangents to {IK)n'\ I G Z is

infinite [recall that {IK)1 is a minimal length element in Γ which fixes y]. Hence φ
as defined above assumes the same value on an infinite number of points, i.e. it is
constant over the whole of Ey. But this in turn implies that Δ is well defined at y
which contradicts y G S(Δ) and ends the proof.

Notice that the converse inclusion S(Γ) C S(Δ) does not hold in general. If
the inclusion is strict, we have seen that for any x G S(Γ) and not in S(Δ), the
invariant Δ is constant along some divisor πx. This gives a useful information about
the invariant (see Example 6.3).

As for what the singularities of the generic curve Σλ of the pencil are related to the
singular orbit S(Γ) the following considerations hold. By Bertini's theorem, generic
curves are smooth outside the base locus S(Δ) whence the chain of inclusions

S(Σλ)cS(Δ)cS(Γ). (8)

Moreover, exploiting the genus formula for singular curves one can give relations1

between the degree of d of the invariant and S(Γ). If Δ is a degree d curve in P 2

with singular locus SingCΣ1), then [22]

p(ΞSing(I7)

with δp depending on the type of the singularity at p. Since Σλ is irreducible and
admits Γ as an infinite group of automorphisms, thanks to the inclusion (8) and to
the fact that δp = 0 if p is not in SingίΣ^), one has

( d - l ) ( d - 2 ) ^ . JO
2 Z δP = { 1

This relation shows that there is a balance between the degree of the invariants and
the number and nature of the singular points of the generic curve, and consequently
of Γ.

6. Examples

We describe here some specific examples in P 2 with two generators / and J. The
physical origin of the models we will be dealing with is to be found notably among

We thank M. Talon for useful remarks on this point
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two-dimensional spin models with interaction along the edges [3], and this explains
the terminology we use.

We fix J to be the Hadamard inversion [xt] —> [1/^J, and / to be / =
C~ιJC with the collineation matrix C G P G J L ( 3 , C ) . We will concentrate on the
parametrization by C and examine some algebraic families in PGL(3,C). For some
of them Γ admits a non-trivial algebraic invariant.

We can associate t o Γ a diagram DΓ whose vertices are the points in S(Γ) and
where two vertices px and p2 E SΓ are joined by an edge if either px = Jp2 or
pχ = Ip2. The edges are oriented if J (resp. J) can be applied in one direction only.
The diagram does not characterize the examples, but is a useful tool. In particular
the families we give here have been obtained by deformations of given collineations,
demanding the stability of the topology of the diagram.

The singular points of J are Px = [1,0,0], P2 = [0,1,0], P 3 = [0,0,1], and the
one of / are Qi = C~ι{Pi), (i = 1,2, 3).

One should notice that a number of the families we produce in this way fall
into the general form found in [28] (i.e. verifying G([ 1,0,0]) = [1,1,1] and
G2([l,0,0] = [1,0,0]), but with non-integer entries. This general form depends on
four parameters:

"2 a β

2 - I + 7 - I - 7 (9)

.2 -l-δ - l + < 5

6.1. The Z5 Family. The general Z5 (five-state chiral Potts) model is described
by a 5 x 5 cyclic matrix. We may consider its 2-parameter reduction obtained by
imposing that the matrix is symmetric. It falls into a family of quasi-integrable
models parameterized by a complex number q, which (whenever this makes sense) is
identifiable with the square root of the number of states [29]. The collineation matrix
is

• o 2 1 2

2 qL — 1 qL

λ — J + q — J

_2 ~\-q - 1 q_

(10)

iingular set is made of ten points: PX)P2) P 3 which are the usual singular points
L Qi = [151? 1] and Q± = [-4,1 ± q, 1 =p q], the singular points of I , and
_ 7ΎD \ τ> _ T ί Ί D

3 ) , R± — J(Q_j_). All these points are indetermination points

Its sin
of J x

R2 = I(P?)i R3 =

for the invariant

Δz =
(x -z)(y- z) ((q - 1) (x2 + y2) + 2(q + \)xy)

(2 + (q- 2) (zx + zy) + 2xy) (x - y)2

Notice that here S(Δ) — S(Γ). The diagram DΓ is the following:

a P a '

Q- " R.
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6.2. The BMV Family. The matrix of (Boltzmann) weights of the BMV model [6] is

X

z

y

y
z

z

y
X

z

z

y
z

z
y
X

z

z

y

y
z

z

X

y
z

z
y
z

z

X

y

z
z

y

y
z

X

The inversion / is just the matrix inversion. This model pertains to the one-parameter
family of quasi-integrable models whose collineation matrix is

1 w- 1 w

0 (Π)

and is reached for the value w = 3. The singular locus is made out of P 1 ? P2> ̂ 3 a n c *

Qx = [1,1,1], Q2 = [w- 1, -{w + 1), w - 1], Q3 = [1,1, - 1 ] ,

together with an extra point R = J(Q2) = [w2 - 1, (w — I) 2 , w2 - 1]. The case w = 1
is singular. The family admits the invariant

(y + z)\x - z)2(x - y) '

where
Pw(x, y, z) = (l- w) (z2 - xy) + (w - 3)z(x ~ y),

Qw(x, y, z) = (l- w2) (y3 - xz2) + (w2 - Aw - I)y2(x - z)

+ 2(w- lfyz(x-y).

Here again S(Δ) = S(Γ) and the singular graph is as follows:

6.3. The Symmetric Ashkin-Teller Model. By symmetric Ashkin-Teller model we
understand the 4-state spin model with the cyclic and symmetric matrix of Boltzmann
weights

Xc\ XΛ ^ 9 1

X\ %n %Λ %Ί

X' ) X i Xr\ XΛ
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for which the matrix inversion is collineated to the Hadamard inversion by means of
the matrix

1 2 1
CAT — 1 0 - 1 (12)

. 1 - 2 1

The singular points of the matrix inversion are Q1 = [1,1,1], Q2 = [1,0,-1],

The singular diagram is drawn below

,9 ' o:
It contains a loop connecting the two points P2 and Q2. This means that the points

P2 = [0,1,0] and Q2 = C~ι(P2) are not singular for IJ and hence it is no surprise
that they are non-singular for the invariant

ΔAT -
y2 -xz

y(x - z)

There is a strict inclusion of S(Δ) in 5(Γ), since the points P2 and Q2 are not in S(Δ).
The corresponding divisors Y[ = {the line y = 0} (resp. Y[ = {the line x = z})9 are

Pi Qi

indeed curves in the pencil Δ = const.

6.4. A Finite Realization. It is instructive to consider the group described by the
collineation matrix

1 0 1

CF{q) = 1 g
1 0 1

(13)

which is invertible for q φ 0. It is apparent that / and J share P2 — [0,1,0] as a
common singular point. Apart from P2, I admits as singular points Qx = [1,1,1]
and Q3 — [q,—(2 + q),—q\. The singular graph DΓ depicted below contains two
more points R = J(Q3) and 5 = I(Q2). This model admits at least two algebraically
independent invariants, which can be taken to be

Z2X2

q2zx(y - z)2 + q[(z2 - xyf - z(z - 2x) (x2 + y2)] + 2(z2 - xy)2

~" (z - y)2(z2 + x2) '

This, together with Bezout's theorem tells us that the orbit under Γ of any point
p e P 2 is finite and of order not greater than 16, i.e. Γ is finite. A direct inspection
shows that (IJ)4 = 1 and there are additional invariants, of course not algebraically
independent from the two previous ones.
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R

•P2

I Q WQ3

6.5. The Symmetric ZΊ Model. The symmetric ZΊ model [6] may be defined by the
collineation matrix

2 6 6

2 - l - ή / 7 - I + Z Λ / 7

2 - 1 +2Λ/7 -I-iy/l.

(14)

From the point of view of dynamical systems the model shows chaotic properties
in P 2 . It has an infinite singular orbit S(Γ). According to Proposition 5.1, it does not
admit any invariant, as it is confirmed by a direct inspection of the orbits. This model
behaves actually like a generic element of the family (9).

6.6. A Finite Diagram Model (FDM). Here Γ is generated by the Hadamard inverse
J and/ = D~ιJD with

2 0 2 "

1 1 - 1

- 1 1 1

Notice that D is not of the form (9). The singular diagram is finite but Γ does not
have any invariant. This provides a remarkable example for what we said in Sect.
(5), i.e. that the finiteness of the singular orbit is only a necessary condition for the
existence of a non-trivial invariant

P i I

7. About Complexity

In this section we will discuss the notion of complexity of the groups we have been
considering.

As we said earlier, we may consider the group G as generated by involutions and
relations. If the number v of generators is bigger than 2, G is "exponentially big"
[30]. We will not comment on this here, and limit ourselves to v — 2, as one would
concentrate on 1-dimensional subgroups of differentiable groups, and examine the
realizations Γ.

What we want to point out is that there is a very diverse behaviour of these
realizations, even in the case v = 2, manifesting itself in the complexity of the
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representing transformations. The notion of complexity we appeal to is a simple form
of the one introduced in [20].

Suppose F is a diffeomorphism of a compact smooth n-manifold M. Let Sk and
Rι submanifolds of M of dimension respectively k and /. Let S™ be the m t h iterate
of Sk by F and TSR(m) the intersection

Ts<R(m) = Rtn S™.

ArnoΓd [20] defines the complexity Cs R(jή) as

the bp's being the Betti numbers. He also proves that for a sufficiently generic choice
of Sk and Rι the complexity grows at most exponentially with m.

The analysis of complexity of plane mappings has already been achieved for
the case of polynomial and polynomially ίnvertible transformations [31,21]. We are
interested in a wider class of transformations, as the one described in Sect. (5), where
Γ is generated by two rational transformations.

Although these transformations are not diffeomorphisms there is a natural measure
of the complexity by the degree of iterates.

Generically, if the two generating involutions are of degree u and υ respectively,
the degree of φ — IK is w — uv, so that deg φ^ = wk. If Σx and Σ2 are two linear
subspaces of P 2

 t n e n Ψ^i^O should be for generic Γ a curve of degree wk, and the
complexity CΣ ^2(fc) would then be exactly wk.

However, due to the fact that we are working with projective space, there is a
simple mechanism for the lowering of the degree of the iterates φ(k\ for one has to
factorize out common factors from the expressions of the homogeneous coordinates of
φ(k\ This provides a variety of behaviours for the degree d as a function of the order
of iteration k, lying between exponential growth and periodicity, with the particular
case of polynomial (or polynomially bounded) growth.

The outcome of our analysis is that there is a connection between the existence of
an invariant and a polynomial (as opposed to exponential) rate of growth, as shown
in Table 1, inferred from the results of the direct calculation of the first few iterations
on the examples of Sect. (6) where the degree of φ is 4.

Table 1. Behaviour of degrees

Model

BMV

Finite
A-T
FDM

ZΊ

Growth

d(k + 1) + d(k - 1) - 2d(k) periodic of period 3
d(k + 1) + d(k - 1) - 2d(/c) bounded
d(k) periodic of period 4
d(k) = 4k
d(k) = 4k (generic)

d(k + 1) — d(k) = f2kifk} (a Fibonacci sequence)

Rank of
invariants

One

One

Two

One

None
None

A more detailed analysis of these properties, together with the study of other
properties of realizations of Coxeter groups qua dynamical systems such as finite
(periodic) orbits is the matter of further investigations (see [32,33]).
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