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Abstract. Band representations are analyzed from a pure group theoretical point of
view, with the aid of the dual of the crystallographic group (the set of equivalence
classes of unitary irreducible representations). It is shown on the examples of the one-
dimensional crystallographic groups that we have to introduce a distinction between
band and quasi-band representations, the word band being reserved for induced
representations.

The dual of the group F222 is explicitly constructed. It permits to show that two
elementary band representations which have the same decompositions into unitary
irreducible representations are not equivalent.

1. Introduction

Generally, in physics, the crystallographic groups (also called space groups) are
studied not as abstract groups but from their Euclidean properties, that is from crystals.
However, many of their properties can be investigated from a strictly group theoretical
point of view. Here, we propose to present some interesting facts concerning the
orthorhombic face centered group F222 (number 22 in the International Tables for
Crystallography [1]). The main parts of the work which is presented here are i) the
construction of the dual, that is the space of all classes of irreducible representations
of the group and ii) the analysis of some band representations [2—-12]. In many
respects, such an approach is different from the one based on the Brillouin zone and
Hamiltonian theory. From the point of view of representation theory, the Brillouin
zone is an object which provides a nice way of constructing the unitary irreducible
representations of the space group but, although it is related with the open part of
the dual, it hides all properties of band representations which are essentially related
with the topological structure of the dual. Another inconvenience of the Brillouin
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zone occurs for non-symmorphic groups for which the dual is a kind of a covering
of the Brillouin zone, playing the role of a Riemann sheet with respect to it. Even
in very simple groups as F'222, when we are dealing with band representations, the
dual permits to discover properties which cannot be seen easily in the Brillouin zone
approach. Let us explain why.

If we except the Euclidean group itself and its one and two-dimensional Euclidean
subgroups, all the subgroups of this group which are used in physics have a property in
common: all their unitary irreducible representations (unirreps) are finite dimensional.
These groups belong to one of the following categories:

1) The compact Lie subgroups,
2) the finite subgroups of O(3),
3) the crystallographic subgroups (space subgroups).

The dual of these groups have properties which depend on the category it belongs to.
The dual of an Abelian group is known to be itself an Abelian group. Moreover, if
this group is finite, the dual has as many elements as the group itself. At first sight,
topology seems to be involved in the compact Lie subgroups only. This is wrong.
In a sense, one even can say that a crystallographic group is the symmetric of a
compact Lie group. A compact Lie group has obvious topological properties but its
dual, that is its set of classes of unitary irreducible representations is discrete. On the
contrary, a crystallographic group is discrete but its dual is continuous and therefore
has topological properties which must be examined as such. These properties are more
complex than the ones of Lie groups since, except in some trivial cases, the dual of a
crystallographic group is quasi compact, i.e. it satisfies compactness properties except
that is not Hausdorff (not separated) [13]. Compact Lie groups and space groups have
a property in common: their unirreps are finite dimensional; we note that the unirreps
of a crystallographic group are of bounded dimension.

The crystallographic groups, the finite groups, the compact Lie groups, the semi-
simple Lie groups belong to a class of groups which have an interesting property: the
reduction of any representation into unirreps is unique. Almost all the subgroups of
the Euclidean subgroup we have listed above share also the following property: two
representations are equivalent if and only if they have the same content in unirreps.
Although we have to give this sentence a more precise meaning, we can already
say that there are infinite dimensional representations of crystallographic groups
for which non-equivalent representations may have the same content in irreducible
representations. In particular, there are 3-dimensional crystallographic groups for
which non-equivalent band representations have the same decomposition in unirreps.
One of these groups is the cubic group F222. This is the reason why we decided to
build explicitly the dual of this group.

The existence of topological properties in the case of a crystallographic crystal
has another important consequence: when one replaces a crystallographic group G by
one of its corresponding Born-von Karman analog, one must acknowledge a loss of
information, just because the Born-von Karman groups are finite. We note that if these
groups do not appear in our list, it is because they are not subgroups of the Euclidean
group. They are rather quotient groups of crystallographic groups as the group SO(3)
is a quotient group of SU(2). The dual of a quotient group is just a subset of the
dual of a group. No simple property of that kind relates the dual of a subgroup to the
dual of a group! In our particular cases, the dual of a Born-von Karman group is a
subset of the dual of the corresponding crystallographic group as the dual of SO(3),
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isomorphic to the set of natural integers (the spin), is a subset of the dual of SU(2),
namely the union of natural integers and half-integers.

It is not only for pedagogical purposes that we decided not to present immediately
our investigation on the group F222. We first apply our analysis to the one-
dimensional crystallographic groups. This will permit us to provide the reader with
group theoretical definitions of some concepts which are usually introduced with the
aid of Euclidean properties of crystals. The main advantage of this preliminary study
is the presentation of interesting facts concerning the general representations of the
crystallographic groups, already visible on these elementary examples. We repeat that
our study is independent of Hamiltonian theory, although any periodic Hamiltonian
can be studied from the point of view of representations theory. Here, the notion of
band representation is introduced directly as a group theoretical concept. However,
to be more precise, we felt obligated to define as a more general representation, that
of a quasi-band representation.

2. The Trivial One-Dimensional Space Group

1. Definition. We can define the elements of this group with the aid of the matrices

n_ 1 n
t —<0 1), 2.1)

where n is an integer (positive, negative or zero).
That it is a crystallographic group can be seen from its action on the real line. If z is
a real number, one has

(=61 6)=(7)

The definition (2.1) provides us with a finite dimensional representation of the
group. This is, by definition, a faithful representation. We will see that all finite unitary
representations of G by rational matrices are unfaithful. This does not contradict the
fact that the two-dimensional representation (2.1) is rational since it is not a unitary
representation.

2. Unitary Irreducible Representations (Unirreps). In the present article, the word
representation is used with its standard meaning, namely the one of “class of
equivalent representations.”

Since the element ¢ is a generator, we only have to know the operator or the matrix
which represents it to define a representation. The group being Abelian, all it unirreps
are one-dimensional. If k£ denotes an angle (—7 < k < ), it labels the unirrep defined
by t = exp(—ik). It readily follows that the dual of the group, that is the set of all
unirreps, has the topology of a circle. We will refer to this circle as the Brillouin
torus. This denomination is justified in the following way: when k is considered as a
real variable running from —oo to +00, it is called the quasi-momentum. Each “zone”
of the form 27(n — %) <k<2m(n+ %) is known as a Brillouin zone.

It is known that the dual of an Abelian group can be given a group structure, the
unit element of it being the trivial representation. Here the dual group is isomorphic
to U(1), the group law of the dual is given by exp(—:k) exp(—ik’) = exp(—ik — k')
and the trivial representation corresponds to the value k£ = 0. We note that the dual
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of the dual is isomorphic to the group itself, the representations of U(1) are labelled
by an integer (usually denoted by physicists by m, corresponding to t™).

3. The Regular Representation. By definition, the regular representation is the one
defined by the action of the group on the space of functions on the group itself. To
be more precise, let us introduce a basis for this space. The basis functions we have
in mind are e,, (n going from —oo to +00) where en(n’ ) = 0, That it is a basis is
obvious since any function f can be written as a linear combination

f=foeo+ Y (fnen+Fne )

n=1

The space we are dealing with is more usually supposed to be made of all functions
such that

ol + Z(|fni2 +1fonl®) < .

n=1

It is the Hilbert space named [?; its name comes from the hypothesis that the basis
we have defined is an orthonormal basis.
It is clear that the generator ¢ acts as follows:

(reg) , _—
t €n = en+l'

4. The Band Representation. Quasi-Band Representations. Let us consider a square
integrable function f(x). We can make each element of the group acting on that
function. The representation we obtain in this way is described by the action of the
generator ¢. The corresponding operator 1" acts as follows:

TH@) = f@-1, T"N@)=/[fz-—n=/[@), CTf[H)@)=/[f,@.

The functions f, (x) span a space which is the representation space. We decide to
call such a representation a quasi-band representation. It is a unitary representation
since the group maps the square integrable function f on square integrable functions.
Whenever these functions are linearly independent (which is obviously the case, for
instance, when the function f has a support with length less than 1), the representation
obtained does not depend on the function f. In that case it is the representation induced
by the trivial representation (the group is trivially acting on the one-dimensional
space which the function f belongs to). It is the (unique) band representation of the
group; since the f,,s form a basis of the representation space, this representation is
easily shown to be equivalent to the regular representation. According to the meaning
of the word representation we have adopted, the band representation is the regular
representation.

In the present work, we must underline that the words “band” and “quasi-band”
have a pure group theoretical significance. This does not mean that we are far from
physics. The problem we are studying here is physical. Any square integrable function
f describes a state |f). Any Euclidean transformed of f describes also a state.
Consider any subgroup G of the Euclidean group. When it acts on f it gives rise to
a Hilbert space. Such a space describes a subset of states for a spinless particle. The
decomposition of the representation into irreducible representations of the group G is
a problem which is well stated [14]. If the particle one is studying is lying in a periodic
structure, this structure involves a symmetry group (a crystallographic group). It is
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natural to know how to decompose a quasi-band representation of a crystallographic
group. The only point is that no reference to periodic potential theory is needed to
state that the space we are interested in has a physical meaning. The symmetry point
of view is the only one which is used in the present analysis.

When a Hamiltonian with a periodical potential is introduced, assumptions are
usually made about this potential from which band theory is derived. One of the
accepted results of that theory is that the energy spectrum is composed of bands
and that, for a given band, the energy is a function defined everywhere on the
Brillouin zone. The definition we proposed in the present article of the word “band
representation” is compatible with this assumption and this is a justification for such an
expression. However, from a pure quantum point of view, a quasi-band representation
is as physical as a band representation.

5. Decomposition on the Regular Representation into Irreducible Representations.
The problem of reducing a given unitary representation D of a group G on a Hilbert
space H is a well stated problem from the point of view of the physicist. When G
is compact or finite, we know that H can be written as the direct sum of Hilbert
subspaces on which the group acts irreducibly and unitarily.

Whenever the group is infinitely discrete as it is the case when we deal with
a crystallographic group, the problem is more subtle [14], essentially because the
decomposition of a representation does not coincide with the search of invariant
subspaces. In order to illustrate that point, we examine the case of the trivial
one-dimensional crystallographic group. The problem is to know how many times
the representation D) is contained in the representation D. A given unitary
representation D can be decomposed in a combination of direct integrals and direct
sums in the following way:

ko ky
D=/D(’“)dk+/D(’°)dk+--~+D(’"’+D(")+~-~. (2.2a)

ky ks

The corresponding spectral decomposition of the unit operator I on the space H is

k:z k4
I:/P(k)dk+/P(’“)dk+--~+P(m)+P(”)+---, (2.2b)
ky k3

where P®) dk denotes a continuous projection-valued measure and the P denote
self-adjoint projections, all of them of rank one (the dimensionality of irreducible
representations).

Equation (2.2a) gives the content of D in unirreps. When D®) appears in the direct
sum part of D decomposition, it is a subrepresentation of D. It means that there exists
a Hilbert subspace H® of H on which the group acts irreducibly and unitarily. If
D™ appears in one of the direct integrals, it is not a subrepresentation.

Let us now examine the unirreps contents of the regular representation of the group
G. It can be shown that each unirrep is contained once in the regular representation.
To prove it in the present case, we look for a linear combination of functions f, (),
namely 1, (x) such that T, (z) = e‘lk'(,bk(x) . It is easy to see that the only function
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(up to a factor) is given by the Bloch function
+co ] +oo '
Yp(@) =Y €S (@)=Y e fz —n). 2.3)
— 00 —00

From the uniqueness of this eigenfunction, one deduces that each unirrep is contained
once and only once in the regular representation. We have

+m
De® — / D® Gk = /D(k) dk. (2.4)
B.torus =7

Remark. Tt could happen that D® vanishes on a set of measure zero. For instance, the
function v, (x) may vanish for some value of k. This does not change the definition
of the integral (2.4). However, a unirrep is missing in the decomposition. We are now
going to examine that case with help of the Fourier transform.

6. Fourier Transform. Fourier transform permits to see precisely how the f,,s can
be linearly dependent. Let us denote by fn(p) the Fourier transform of the function
f,,(z). The action of T on fn(p) is given by

Tfn(P) = / Tfn(l‘)e_ipx dr = / Iz — e~ T dz = / e—ipfn(l.)e—ipz de,

that is . o . o
Tf,(p=¢e"f. (p) with f,(»)=e ""f(p).

The Fourier transform of the Bloch function is (in using the Poisson formula)
=R +oo ) +oo ] +o0
@ =Y e ) = e P fp) =21 " 8(p — k — 2mn) f(p)
— o0 —00 —0o0
+o00
=21y _8(p—k — 2mn) f(k + 27n). 2.5)
—o0
The action of the generator of that function is described, as expected, by
T (p) =21 Y e~ P6(p — k — 27m) f(p) = ey (p).
—o0

If the function Jk(p) vanishes at some point p, the representation is not induced. For
that, f(p) must have periodic zeros. It is the case, for instance, if f(p) is of the form

f®) = P(cos p, sin p)g(p),

where P is a function vanishing for some value of p. An example of such a function

is given by
2 12
f(x):exp(——(w—;l) )—exp(—(m 21) )
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The Fourier transform has periodic zeros !. It is, up to a factor, the function

A p2
f(p) = sinp exp ( — ?)

We note that the quasi-band representation obtained in this way is not equivalent to
the regular representation. Although it has the same decomposition (2.4), we cannot
say that each unirrep is contained once (and only once) as it was the case for the
regular representation.

7. The Associated Born-von Karman Groups. We just saw that two representations
which have the same decomposition may be non-equivalent, a fact which never
happens for finite groups. We must underline at this stage that solid state physicists use
to impose to the eigenfunctions of the Hamiltonian periodic conditions known as Born-
von Karman conditions. Such conditions can be interpreted as the replacement of the
crystallographic group by a finite group often referred to as a Born-von Karman group.
The Born-von Karman groups of a space group GG of dimension n can be defined as
quotient groups of G, namely G/H, where H is an invariant translation subgroup of
the same dimension n. When the group H is the entire translation subgroup of G, it
is called the point group of G. The unirreps of a quotient group G/H is a subset of
the dual of G. In other words, the dual of G/H is a subset of the dual of G. Since
the Born-von Karman groups are always finite, their duals are always finite subsets
of the dual of G. In the present case, the Born-von Karman groups are the groups
defined by (2.1) with the condition ¥ = 1 or, equivalently, with the matrix entries
defined modulo N. For N = 1 we get the point group which is the trivial group with
one element.

8. Concluding Remark. Let us denote by G* the dual of an arbitrary space group G.
Among the compact subsets there are ones which are not contained in other compact
subsets. We call them the maximal compact subduals. 1t is clear that in the case we
have just studied, the dual G* is the only maximal compact subdual and the only
band representation of GG has a simple decomposition on it.

3. The Non-Trivial One-Dimensional Space Group

There are only two distinct one-dimensional crystallographic groups, the one we
just studied (which is referred to sometimes as the infinite cyclical group) and the
following one (which is known as the infinite dihedral group).

1. Definition. This group, hereafter denoted by G, can be defined as the group of
2 x 2 matrices generated by the two following matrices:

1 1 -1 0
(0 = (7). o

! It is also possible to check directly that the Bloch function associated with this function vanishes
at points k = 0 and
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That G is a crystallographic group in one dimension can be seen from the action of
these matrices on the real line. If x is a real number, we have

O-C1) - e

which shows that ¢ generates translations and u is an inversion.
An alternative but more abstract definition is furnished by the following presenta-
tion:
G = (t,u|u? =1,(tu)® = 1). (3.3)

It means that elements of the group are classes of words of the type t*ubtcu?, ...
where the exponents a, b, c, d, ... are integers of arbitrary signs. The use of the two
relations u> = 1 and (tu)? = 1 permits to transform a word into a word of the same
class. One sees that the relation u> = 1 permits to write any group element in the
form t*utu .... The property t®*u = ut~* can be used to show that the elements
can be put? in one of the two forms t* or ut®. It is clear that the two definitions
of the group are equivalent. Indeed, the elements t* and ut® are represented by the

1 -1 -
matrices t* = < 0 ?), ut® = ( 0 Cll), respectively.

2. A Property Common to All Unitary Representations of the Group. Consider an
arbitrary unitary representation where ¢ is represented by 7' and u by U. We have,
obviously,

T =T7"', U*=U"', U*=I (TU?=1I. (3.4)
Define U L TU
p= +T and Q= +2 . (3.5)

Proposition. P and Q) are Hermitian projections. Conversely, given two Hermitian
projections P and Q) on a Hilbert space (finite of infinite dimensional), the operators

T=QQR-DHRP—-1) and U=2P -1 (3.6)
generate a unitary representation of the group G.

Proof. That P and () are Hermitian projections follow directly from their definition
(3.5) and Eq.(3.4). Conversely, if P and () are Hermitian projections, the operators
T and U defined by (3.6) satisfy the properties (3.4).

3. Unitary Irreducible Representations. First Method. There is a direct method to
obtain these representations. The one we are describing here is analogous to the one
used in Part 5 for the group F222. Let |k) be an eigenvector of 1" associated with
the eigenvalue exp(—ik), where k is an angle,

T|k) = exp(—ik)|k). 3.7)
From (3.4), TU = UT~!, which gives
TU|k) = exp(ik)U|k).

2 The trivial one-dimensional space group has the presentation G = (). It is a free group
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It follows that U|k) is also an eigenvector of T. The corresponding eigenvalue is
different from the original one, except if k£ is a multiple of 7. For convenience, we
will make the choice —7m < k < 7.

1. The general case (k # 0,7): We can always write U|k) = | — k). The vectors
|k) and | — k) are linearly independent. One obtains in this way a two-dimensional
irreducible representation denoted D", where k. denotes the absolute value of
k(0 < k < 7). In the basis |k),| — k), we get the matrices

D(K).(t) =T = (exp(—iﬂ) 0 ) , D(K)(’UJ) =U = <O 1 > . (3.8)

0 exp(ik) 1 0
2.k = 0. Since U? = I, we arrive at the following pair of one-dimensional
representations:
DYty =1, DOP(w) =1, 39
DOty =1, DO () = —1. (3.10)

3. K = m. We arrive at the following pair of one-dimensional representations:

D(W’H(t) =1, D("’+)(u) =1, 3.11)
D™y = —1, D™ I(u) = —1. (3.12)

In order to see what is going on about irreducible representations when « runs from
zero to m, it is better to “unify” the results in choosing an equivalent representation
for which U is diagonal. One obtains, for an arbitrary value of «,

—7 <1 1
DWWy =T = % TUME)  pegy U = %Y. a3
—1SINK  COSK 0 -1

For x taking one of the values O or 7, the two-dimensional representation reduces
into two inequivalent one dimensional representations.

Remark. We must underline that the variable k labels the unirreps of the translation
subgroup of G although the variable « labels the unirreps of the group itself. Solid state
physicists must have the feeling that this new labelling brings nothing new. However,
we must remind the reader that we are interested here, not in representations in the
strict sense, but in the classes of equivalent representations of the group G, a concept
which is difficult to describe with the aid of the quasi-momentum alone.

4. Unitary Irreducible Representations. The Projection Method. For irreducible rep-
resentations (unirreps), the projections P and  can only be of rank zero or one and
we readily see that the representations are of dimension 1 or 2.

1. Unirreps of dimension 1. We have the four following cases:

representation D)

representation D),

representation D™,
(m,—)

i
O = O =
DO DO
I

eRa B Miav
i
Il
—_— 0 O =

i

representation D
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0
0 0> and take, for Q,

the most general independent projection of rank one. It can be written

2. Unirreps of dimension 2. We can always choose P = (

1 /1+cosk 7sin K
Q—2<

—isink 1 —cosk

) with k # 0, .

It is a simple exercise to show that the projections

I _ 1 [ 14cos(nk)  isin(nk)
"2\ —isin(nk) 1 —cos(nk)

are such that
II,, =T"PT",
Iy = ™QT".

This furnishes an interpretation of the projections.

S. Dual of the Group G. Equations (13) contain all information needed to construct
the dual of the group. For « lying in the oper interval ]0, 7[, the representation is two-
dimensional. When it takes the value O or 7, we get two representations of dimension
one. It follows that the dual can be represented symbolically by the diagram of Fig. 1:
an open part and its closure represented symbolically by two forks of zero length.

At this stage, it is worthwhile to underline the method we have adopted for the
construction of the dual. We constructed a two-dimensional matrix for the generator ¢
of the group. This matrix depends on one parameter « labelling all the unirreps.
For k taking one of the values O or 7, the representation splits into two one-
dimensional non-equivalent representations. We will see later how such a construction
can be generalized for all crystallographic groups. Actually, that we deal with a
single parameter « is due to the fact that we are studying a one-dimensional space
group.

We already mentioned the advantage of introducing the notion of the dual of a
crystallographic group. For 3-dimensional crystallographic groups, the Brillouin torus
is three-dimensional and cannot be drawn easily, except if we accept to get in mind the
identification of opposite faces. We will see that, in contradistinction to the Brillouin
torus, the dual of the group F222 can be easily drawn in a three dimensional space
without the use of point identification. Generally, in order to go from the Brillouin
torus to the dual of a group, two kinds of operations must be performed. (1) One
must identify points of the Brillouin torus which belong to the same irreducible
representation. In the present case, one identifies k¥ with —k whenever k is different
from O or 7. (2) One must show clearly which parts of the dual cannot be separated.
In the present example, it is the case, in the one hand for the representations D+
and D7) and in the second hand for the representations D™*) and D™=, That they

(0,+) (m,+)
D™ D™
> <
D(O,-) D(‘lr.-)

D(K)

Fig. 1. The dual of G. « varies from 0 (left) to 7 (right)
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cannot be separated means that, in the dual, every neighborhood of DO intersects
any neighborhood of D).

In our example, we see that the dual is composed of a manifold (the open
interval) with a non-standard boundary. This is the general case ®. The dual of any
n-dimensional crystallographic group always contains a manifold of dimension n; its
boundary is complex and, more surprising, is not necessarily of dimension n — 1.

As a last remark, we note that the representation of dimension two defined by
Egs.(3.13) can be said to be irreducible almost everywhere on the dual.

6. A Property of all Representations of G. Any representation (finite dimensional or
infinite dimensional) of a crystallographic group is unitary and can be decomposed in
a unique way into irreducible representations. This means that the unit operator can
be considered as a direct integral plus a direct sum of projections in such a way that
the restriction of the representation to any subspace associated with a projection is
irreducible. In our simple example, this means that we have a formula of the type

%) K4
I:/P("“)dn+/P(”)d/H—-~-+P‘m)+P(")+-~, (3.14)
K1 K3

where 0 < Kk, m, n < .
Obviously, two representations for which these decomposition are different are
inequivalent. The converse is not necessarily true, as we will see in the next part.
The remark made about Eq.(2.3) is also valid for Eq.(3.14). The representations
associated with the values k = 0 and 7 can only appear in the direct sum. This subtle
difference between the two cases will be examinated later on.

7. Representations for which the Hilbert Space is made of Functions on the Ordinary
One-Dimensional Space. We have in mind the dual action of the one defined by
Eq.(3.2), that is: '

TH@) = fx -1, (3.15)
U @) = f(—2). (3.16)
In that case, the operators P and () have a simple interpretation:
P projects on the space of even functions with respect to z = 0,
I — P projects on the space of odd functions with respect to z = 0,
@ projects on the space of even functions with respect to x = %,
I — @ projects on the space of odd functions with respect to & = %
More generally,
11, = T" PT™ projects on the space of even functions with respect to x = n,
II,, ., = T"QT™ projects on the space of even functions with respect to z = n—t—%

8. Unirreps of the Associated Born-von Karman Groups. They are the groups G
(N > 2) defined by the same generators ¢ and u of Eq.(3.1), with the restriction

3 The only exceptions concern the trivial crystallographic groups, that is the pure translation groups.
For them, the dual has no boundary (Brillouin torus)
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that the matrix entries are defined modulo N. It follows that the group G has 2N
elements. These elements are ¢™ and ut™, where n takes the values 0, 1, 2, ..., N —1.
An equivalent way of defining the group is to give the following presentation:

Gy=tulv?=1, (tu? =1, tV =1).

We do not give here the construction of the unirreps of this group. We only want
to give the following results.
a) For N even but different from zero, the dual of G, contains the four one-

. . . N . .
dimensional unirreps D1, DO DmH - D=) and > - 1 two-dimensional

unirreps.
b) For N odd, the dual of G contains the two one-dimensional unirreps DO,
D©) and 52—_1 two-dimensional unirreps .

c) The unirreps of the point group (N = 0) are described by the points D) and
DO,

9. The Wigner-Seitz Torus and the Wyckoff Positions. From Eq.(3.2), we derive the
following action of G on the real line:

t"r=xz+n, ut"rz=-xr-—n,

It follows that we have three kinds of points:

1) the generic points (any point  such that 2z is not integer) for which the little
group is the trivial group {I},

2) integral points. The little group of point z = n is {I,ut~2"}, conjugate to the
little group {I,u}.

3) half-integral points. The little group is {I, ut~™"'}, conjugate to {I, ut~—'}.
Indeed, ut=2""! = tn(ut— ™.

We classify in this way the points of the real line in three categories, each category
being called a Wyckoff position. We note that, in contradistinction with what is done
in crystallography literature, our definition is pure group theoretical in that we are
not making use of the notion of Euclidean distance. The word position can be better
understood in introducing the Wigner-Seitz torus. This torus is obtained in identifying
all points of the real line which have the same fractional part. The Wigner-Seitz
torus is, in our case, a circle. This circle has three Wyckoff positions: the generic
one, the integral one (denoted 0), and the half-integral one (denoted %). With each
Wyckoff position corresponds a class of conjugate subgroups. There is an open
Wyckoff position represented by the generic point and two closed positions, namely

the ones represented by 0 and +. This roperty is discussed in [7, 15].
P y 2 p

10. Band Representations. Instead of looking at the action of GG on the real line, one
can make G acting on a localized 4 function f(z) on the real line in the way described
by Eqgs.(3.15) and (3.16). They are the quasi-band representations. The action of the
group introduces the following functions:

(T f(@) = ft"x) = f(z —n),

UT™ f(z) = fC "uz) = f(—z —n).

4 For instance a function with a compact support
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Suppose, for simplicity, that the function we start with has a compact support of
length less than one. In that case we are certain that we deal with a band representation
(i.e. an induced representation) and we have the three following cases.

1) Suppose that the function f we start with has no symmetry (that is the group
of symmetry of f is trivial, the little group of f being the one of the first Wyckoff
position). Suppose, moreover that its Fourier transform has no zero. Then, each
element of the group applied to f provides us with a distinct function. The functions
obtained in this way span a space on which the group GG acts. This representation is
the band representation induced from the trivial representation of the trivial group 1,
namely the little group associated with the generic Wyckoff position. It is equivalent
to the regular representation. Since we are interested in equivalence classes of
representations, we will denote it by I"™®, The regular representation is described
simply by the action of the generators on the basis functions f;f(z) = f(z — n) and
fn @) = f(=z—n),

Tf:f = :{+1a Tf, = fn—1>

Ul =fn, Ufy =1fa

When the function f has a given symmetry, we get band representations of
particular types. To classify these types, we have to say how the function f behaves
under one of the little groups of the non-trivial Wyckoff positions.

2) Wyckoff position 0: two cases occur. The function f either is invariant or
change sign under one of the little groups of this Wyckoff positions. This means that
we have, for instance,

3.17)

f(—z) = £f().
The plus sign corresponds to the representation v%*) of the little group, for which

I is represented by multiplication by 1,
u is also represented by multiplication by 1.

The minus sign corresponds to the representation 7%~ of the little group, for which

I is represented by multiplication by 1,
u is represented by multiplication by — 1.

These two representations are of dimension one. They induce band representations
%% and 1'%, respectively. ®

3) Wyckoff position %: The discussion is analogous to the one of case 2. We note
that the class of subgroups is now different but isomorphic to the groups of case 2.
The function f can be even or odd with respect to one of these groups. For instance,
f(1 — x) = £f(z). We arrive at band representations I"!/2) and I""/%7), induced
from the unirreps y(!/2+) and 41/, respectively.

In cases 2 and 3, the band representations are said to be elementary or (improperly)
irreducible because if we start with an arbitrary function f, we can always write it as a
linear combination of an even part and an odd part relatively to an arbitrary symmetry
point [12]. We note that elementary band representations are associated with closed
Wyckoff positions. These elementary representations are subrepresentations of the
regular representation.

3 Tt is perhaps necessary to insist: the word representation here means class of equivalent represen-
tations
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We will examine later on the case of quasi-band representations which are not
induced representations since the group action on the function f gives rise to linearly
dependent functions.

11. Decomposition of the Band Representations. Here we will show that the five
band representations of the group G which we have denoted I"®, O+ ©.—)
/24 and 1'"/%-) have different contents and, consequently, are not equivalent.
The contents are described by the diagrams of Fig. 2.

a) We start with the regular representation I"™®. The representation space is
spanned by the functions ff. We look for the linear combinations

+oo +00
U@ =Y aPf@—n)+) P f(-z—n)

which are eigenfunctions of the operator 7' with eigenvalue e~**. We get, with the
aid of a change of the summation index,

+o0 +o00
T =Y ol f@—n)+ ) BY, f(—z —n)
—0o0 —0o0
which provides us with the conditions

k —ik  (k k —ik ok
o), = ko, [, — e ikgY.

n—1

This shows that 1, () is a linear combination of the two Bloch functions
+oo +oo .
Z e f(x —n) and Z e~k f(—z — n).
—0o0 — 00
Define the following combination:
+00 ] +o0 )
Y@ =a) e f@—n)+BY e f(—z —n) (3.18)
—oo —00

with 0 < k < 7. We have Ty, (z) = e‘i"%/)n(x). In order to build the representation
(3.8), we have to introduce the other function

+00 +oo
U@ =a) e f(—z—n)+8> e ™ f(z—n)

We go to the representation (3.13) in taking the two basis functions

YE@) = ¢ (2) £ Uy, (@).

+ + + + + +
N  \ / \ /
/ N\ / AN N/

Fig. 2. The general contents of band representations. « varies from 0 (left) to 7 (right)
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The action of the generators 7" and U is given by the following equations:

TP (x) = cos kP (@) — i sin ki (@),
Ty (x) = —isin kypP(x) + cos Ky (),
UpP(x) = P (),

U (@) = —y(@).

(3.19)

Since the coefficients o and 3 are arbitrary, each representation D is obtained
twice. When we go to the limit cases k = 0 or 7, we get

P§E(@) = o(x) £ Uthy(a)
+o0 400 400 400
=a) f@-m+pY f(cz-mtad f(-z-n)*£B>  fl@—mn)

+o0
=@+B)) [fl@—n)* f(-z —n)] (3.20)
and, similarly,
+o00
(@) = @+ )Y (-)"[f(z — n) £ f(-z — n)]. (3.21)

This shows that we get each representation D+ DO D™+ and D™=) only
once. This result is shown on the first diagram of Fig. 2.

Let us now examine the representations I'»® for which the function f is even
(e = 1) or odd (¢ = —1) with respect to an arbitrary integral point (the origin, for
convenience). We set

f@) = ef(~).
Equation (3.18) simplifies

+0oo
Yo(@) = (@+eB) Y ™ fl@—n).

It proves that each representation D™ appears only once. Equations (3.20) and (3.21)
now read, up to a factor

+00
U@ =1+ f—n),

+o0
PP @) =1 F) ) ()"f—n).

A simple discussion permits to obtain the other diagrams of Fig. 2.
Since the five representations we arrived at have different unirreps contents, we
are sure that they cannot be equivalent. For the moment, we could check directly
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that the representations built on an even function f(x) and the translated function
g(x) = f(z — 1/2) are inequivalent, that is they cannot be intertwined.

We know already how the generators 7" and U act in the case of an even function
f. It is easy to see that the action of T" is the same on the set of functions z/zfj)(x) and
¥ (x) built on f and on the corresponding set ¢ (z) and ¢{(x) which is built
on g. Let us examine the action of U on ¢{”(z) and ¢ (z),

U¢f€+)(x)=UZei"”[f(x—n—%)+f(—w—n+%)]
=Zei"’“[f(—:c—n-%) +f(x—n+%)]
_ Zei(n—l)nf(_w_n+ %) +Zei("+l)”f(x—n—— %)

= cos kp D (x) + i sin kp ().

A similar calculation can be done for the action of U on ¢f:)(x). We get finally, for
the matrix U
U=< cos & isinn)7
—38inK —COSK

and it is easy to verify that none matrix commuting with 7" can intertwine this matrix

1 0
with the diagonal matrix ( 0 1 )
Remark. The fact that, in Fig. 2, the diagram of the regular representation can be seen
as the union of the diagrams of I'"®®) and I"®~) or those of I"!/2+) and (/%)
is due to the fact that any function can be regarded as the sum of its even and odd
parts.

12. Quasi-Band Representations. It is interesting to see what the four elementary
band representations become when we permit the functions to be linearly dependent,
that is when we turn towards quasi-band representations.

Let us examine, for instance, the case where an even function f is chosen in such
a way that z/;fj)(z) vanishes at one of the limit points of the dual (and nowhere else).
As an example, we take the function

f(@) = —e~@ V2 4 9e=0" /2 _ o=@tD?/2, (3.22)

It is a simple matter to check directly ” that the function (" vanishes at point x = 0.
In fact,

+o0
. 2 2 2
77[),(:—)(:1:) — Ze—znn[_e—(m-—n—l) /2 + 26—(113—71) /2 . e—(z—n+1) /2]
—00
+oco )
= 2(1 — cos A)Ze“i"“e'(“"") 2,
—o0

6 It is clear that the functions f(z £ 1), f(z +2), etc. would lead to the same representation as the
one built on f(z). This is due to the role of the Wyckoff positions
7 We could also use the Fourier transform to prove that property
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+

_/

Fig. 3. The quasi-band representation associated with the function (3.22)

We already know that 1{)(z) also vanishes at point x = 0. That is why we arrived
in this way at a quasi-band representation which could be represented by the diagram
of Fig. 3.

It is obvious that if we consider, instead of f(z), the translated function g(z) =
f(x—1/2), it will provide us with a quasi-band representation with the same unirreps
decomposition. It is natural to examine if these two representation are equivalent. The
answer is yes. The proof is very easy. We only have to perform a similar calculation
with the translated function g(z) = f(z — 1/2). We get

+o00o
¢£{+)($) _ Ze—inn[_e—(z—n—3/2)2/2 + 26—(:0—71—1/2)2/2 _ e——(a:—n+1/2)2/2]’

—00
that is
+o0 5
d)s:-)(x) — 26—15/2(1 — cos K)Z eznﬁe—(m—n) /2’
—o0

which shows directly that the functions 1" (z) and ¢ (z) only differ from a phase
factor.

The above calculation proves that the two representations I"®+ and I"'/2+) can
be transformed into equivalent representations provided the localized function we
start with is suitably chosen. The calculation we have presented for their explicit
inequivalence was valid for almost all functions f.

We can find other types of quasi-band representations. For instance, the function
which has already been considered

fz) = e—(z—1)2/2 _ e—(:c+l)2/2

provides us with a quasi-band representation which contains none of the limit unirreps.

We will conclude this part by an important remark. As we already saw, the unirreps
decomposition of a representation is described by direct integrals and direct sums. The
existence of a zero of a Bloch function on the Brillouin torus does not have the same
meaning when the zero lies on a symmetry point and when it lies elsewhere. In the
first case, a subunirrep is missing, in the second one, it involves the direct integral and
this direct integral does not change. In order to illustrate the fact, one can consider
the following family of functions parametrized by a by b:

2 2 —1)?
f(:c)=2aexp<— %) —b[exp<— (x—-;ll> +exp<— @2—1)” (3.23)

We note that the function (3.22) belongs to this family.

The Fourier transform of (3.23) has, as a factor, the expression a — bcosp.
According to the values of the parameters we have the following categories of quasi-
band representations:
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1) lal > (8]

™

I= / P® g + PO 4 pmH)
0

it is a band representation
2) laf < o]

™
I= / P dys  POD 4 plrd)
0

it has the same decomposition but it is not a band representation.
3) a=b

™

I= / P di + P
0
4) a=-b

ks

I= / P® g + pOD,
0

Our example underlines the difficulties appearing when we examine the set of all
quasi-band representations.

13. Concluding remark. Two Conjectures. The dual G* of the non-trivial one-
dimensional space group has four maximal compact subduals. Each of them is
associated with a unique elementary band. We are tempted to state the following
conjectures.

Conjecture 1. If G is a symmorphic group, each elementary band representation which
has a single branch decomposes with multiplicity one on a maximal compact subdual.
Conjecture 2. Given a maximal compact subdual, there exists at least one elementary
band representation associated with it.

4. The F 222 Group

1. Definition of the group. Let us start by the recall of some general facts. A three-
dimensional crystallographic group G can always be defined with the aid of matrices
of the form

Ju 912 %3 YJ1a

921 92 923 91

g =
931 9% 93 9
0 o 0 1
z
where the entries are rational numbers. We make the group acting on X = g
1
The little group G5 of X is made of those elements g which satisfy gX = X. The
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class [X] of points X which have conjugate little groups form a Wyckoff position. If
we denote a class of conjugate little groups by [G 51, we can define an order relation
between these classes as follows: [G ] < [Gx/] if there are points X and X’ such
that G 5 is a subgroup of Gx/. Then [X'] is contained in the closure of [X].

Given a localized function f(X), we can make the group acting on it as follows:

(9. HX) = f(g7'X).

We obtain in this way a set of functions which provide us with a quasi-band
representation or a band representation depending on the fact that those functions
are linearly dependent or not.

A band representation is said to be elementary (or, but improperly, irreducible) if
it cannot be reduced into other band representation. Equivalently, it is a representation
which is induced from a one-dimensional unirrep of a group of the class [G x ], where
X lies in a closed Wyckoff position (i.e. G x is a finite maximal subgroup [8]).

The group F222 if generated by the six following matrices:

1 1
1 00 (1) 100 X 10 0 5
010 = 2
2 010 O 1
0 1 3 0 0 1 5 01 0
0 0 1 0 0 0 1 00 0 1
1 0 0 0 -1 0 0 0 -1 0 0 O
L0 -1 00} o1 00| _f o0 -100
o o -1o0of ™2 | 00 -10fJ 2 | 0 010
0 0 0 1 00 01 0 0 0 1
We have the following relations, where a, b, c are integers:
UplUy = UpUy = U3, UpUz = U3Upy = Uy, UU) = U Uz = Uy, 4.1)
tity = tyty, tyts = t3ly, bty = tyts, 4.2)
tiu, = utyt tiu, = Uty 'ty tiuy = usty 'ty (4.3a)
tug =upty s, buy =ty tyus = usty 't (4.3b)
tyu, = u ty 'y, tyu, = uyty 'ty tyuy = uzty (4.3¢)

2. Closed Wyckoff Positions [1,8]. They correspond to four equivalence classes of
subgroups, all isomorphic to the dihedral group D,.

Class (a) subgroups conjugate to {1, u;, u,, us},

Class (b) subgroups conjugate to {1, u,t;'t; ', uyt; 't; 45, us},
Class (c) subgroups conjugate to {1, u;t7", uyt; !, usty'},

Class (d) subgroups conjugate to {1, wut; *t; 't;, uyt; 'ty 'ts, usty '}

3. Unitary Irreducible Representations. Denote by T; and U, (: = 1, 2, 3) the
representatives of the elements ¢, and u,; of the group in the most general unirrep.
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Let |k,, k,, k;) one of the eigenvectors of the (commuting) operators T},

T, lky, ky, ky) = exp(—ik))|ky, ky, k3),
Thlky, ky, k3) = exp(—iky|k, ky, ks),
Tilky, ko, k) = exp(—iky)|ky, ky, ks),

(ky, ky, ks are supposed to run from O to 2).

The relation t,u, = u,t]' shows us that the vector U,|k;, k,, k;) is an
eigenvector of ¢, with eigenvalue exp(ik,). Similarly, the relations tyu, = ut; 't,
and tyu; = ut;' show that U,|k,, k,, k;) is an eigenvector of T, (eigenvalue
exp(i(k; — k3))) and of T} (eigenvalue exp(i(k; — k,))). It follows that for almost
every value of the triple (k;, k,, k;) we must introduce a new vector

Ullkl’ ky, ks) = |- ki, ks —kyy by — ky).
The other relations (4.3) provide us with similar relations, namely

U2|k1, ks, ks) = |k3 — ky, —k'z» kl - k2>,
U3|k17 kza k3> = |k2 - ksa k1 - k3» —k3>-

We are led to examine the set of quadruples of triples
{(klv kz, k3)7 (_kl’ k3 - kl’ kZ - kl)’ (k3 - kZ’ _k2’ kl - kz)’ (k2 - k37 kl - k37 _k3)}'

Such a quadruple is known as a star in the Brillouin torus.

Among stars, there are “ordinary” stars made of distinct triples and “symmet-
ric”’stars made of two distinct triples or for which all triples are the same. We are
interested first in ordinary stars. For that, we divide the Brillouin torus (represents on
Fig.4) in six parts B, defined as follows:

B, ;. contains all triples for which 27 > k; > k; > ki, > 0.

1

Each of B, can be divided in

B, for which k; > 2,
Bi;,c for which kj < 2.

The union V' of the three parts B,,;, By, B3, has the property that each ordinary
star has one triple in V' and, conversely, each triple of V' belongs to an ordinary star.
In fact, if (k,, k,, k3) belongs to B, the triples 27 — k&, 2r+k; — ky, 2+ k, — k),
@+ ky — ky, 2 — ky, ky — k), (k, — k3, ky — k3, 2m — k3) belong respectively to
Bs,, Blhs, By, that is, lie outside V.

It follows that the open set V' describe the open part of the dual of the group. It is a
dense subset of the set of all unirreps of dimension four. This open set is represented
on Fig. 5.

Before analyzing the symmetric stars, which correspond to the boundary of V,
we will describe the general four-dimensional unirrep. In supposing that (&, &,, k3)
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Fig. 4. The Brillouin torus of the group F'222. Opposite faces of the parallelepiped must be identified.
The part B[,; is the solid limited by the faces JI'C\ K, JI'I|, JK|L I}, K|L,C;, and I'l, L, C,
Fig. 5. The open set V is the union of B ;;, By, and Bj;,

belongs to Bj,;, we can write it in the matrix form as follows:

exp(—ik,)
0
0
0
exp(—ik,)

It
o~ o0
oo~
= =)
o~ oo

0 0 0
exp(ik;) 0 0
4.4
0 explitk, — ky) 0 , (49)
0 0 exp(i(k; — k)
0 0 0
exp(ik, —k3)) 0O 0
4.4b
0 exp(ik,) 0 » (4.49)
0 0 exp(i(k; — ky))
0 0 0
exp(i(k; — k,)) 0 0
0 explilk, — k) 0 |0 %
0 0 exp(iks))
0 01 0 0 0 0 1
0 0 0 1 00 10
%0100 0 =101 0 0 @.5)
01 0 O 1 0 0 O

In order to simplify the investigation of the topology of the dual, it is convenient to
choose a new basis for which the U,/ s are diagonal. For this purpose, we perform the
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transformation defined by the following matrix:

1 1 -1 -1
1j]1 -1 1 -1
M=311 -1 -1 1 (46)
1 1 1 1
(the inverse of M is its transposed). We now get
1 0 00 -1 0 0O
0 -1 00 0 1 00
U = =
! o 0o -1 0] Y 00 -1 0
0O 0 01 00 1
-1 0 0
0 -1 00
U, = 4.7
3 0 1 0 I ( )
0 0 01
I —18] —18y; —15, + 1Sy ¢, — Cx3
T, = L —isi—isy o +oy GL-Cpn IS tisy . (4.82)
2| —isp+isy; ¢ — €ty S 18y
Cl — C23 _7:51 + i323 _’isl — i$23 Cl + 023
G tey  —is;tisy G —Cy —isy — 18y
T, = L —isy +is3 cz + c?1 —18, — 183, cz - c?1 . (4.8b)
2 C — C3 —18, — 183; C + ¢ —18, + 183,
—18, — 183, ¢y —C3 —18, + 183, ¢ + ¢34
¢ty C3—Cpp  —i83— 18, —1iS3+ 18,
T, = 1 G~ Cn &+ —i83+ sy —i83 — s . (480
2| —is3—1i8, —is3+1S), C3+cCp c3 —Cpy
—i83 +18), —i83— 1S, C3—Cp ¢+ ¢y

where c;, s;, C;j» Si; are put for cos k;, sink;, cos(k; — kj), sin(k; — kj), respectively.

We examine now what happens to the representation when we arrive on the
boundary of Bj,;. In general, three kinds of things may occur. Case a. The
representation reduces into equivalent unirreps. There is no bifurcation analogous to
the forks we got in Fig. 1 for the infinite dihedral group. Case b. The representation
reduces into an irreducible one of lower dimension (some matrix entries vanishes);
here too, we have no bifurcation. Case c. The representation reduces into inequivalent
unirreps. Then a “non-separated fact” takes place, as in Fig. 1. Obviously, there is
also a fourth case for which nothing happens.

It is easy to see that the only changes happen on the broken line I'J; K;C,. This
line is closed since, because of the identification of opposite faces in the Brillouin
zone, the points I" and C| are identical. The situation is as follows.

a) Point I" (k; = k, = k; = 0). We must emphasize that this point is the dual of the
point group, that is the quotient group G /T, where T is the whole lattice translation



Duals of Crystallographic Groups

381

subgroup. This group is isomorphic to D,. It is Abelian and has four elements. That
is why it provides us with four one-dimensional unirreps.

The three generators T are (obviously) trivially represented by 1. We get the four
following one-dimensional unirreps labelled by the corresponding eigenvalues of the

U;’s.

(I —
D U=+l
D U =-1
r

D U =-1

The last representation is the trivial one.
b) Point I, (k; = k, = m, k3 =0). Wehave T} = T, = ~1, T; = +1 and we

arrived at the representations

D&Y ) U =+1

+,—,-)

D U =-1

+—)

DD U =1

(=—+)

DYV . U =+1

(+,+,+)

DEY Uy =+1
DE'I—(,I‘)F,—) Uy =-1
DY U =1
Dgffl,w Uy=+1

U, = -1
U, = +1
U, = -1
U, =+1

U, = -1
U, =+1
U,=-1
Uy = +1

U2:+1
U2:_1

d) Open interval II'[}[ (k; =k, <, k; =0)

&
One gets T} =T, = 0
0

—18;

The two 2-dimensional unirreps follow:

(')

(03,—03,—1) Ul

('L _
D oy—o3-n U1 =

=0'3

_0'3

—18;
¢

U,

U2 = —03

e) Open interval |I, K[ (k; =k;+m, k, =)

_C3

One gets T} = —1; =

0

155

0

0

_c3

0

153

=1,
U, =1,
U, = +1,
U, = +1.

U, = —1,
U, = —1,
Uy = +1,
Uy = +1.

Uy=-1 Uy=-1,
U, =—1,
Uy = +1,
Uy=+1 U;=+1.

U, =1,
U3 = +1.

0
183
0
—c

T, = -1



382 H. Bacry

and the two 2-dimensional unirreps
pihry U=0; Uy=-1 Uy=—03,

(03,—1,—03)
Dk U=-03 Uy=1 U;=-—0;

(—o3,1,—03)

f) Open interval 1C\ K[ (k; =2, k, = k5)

s 0 0 —is,
0 —1 0
Onegets Ty =1 T,=T, = . —C:s Czs3 0 ’
3 3
—is3 0 0 [N

and the two 2-dimensional unirreps
(C1K71) _ _ —
D(l,-cr3,—0'3) U =1 U,=-03 Us=—o3,
(C1KY) _ _ _
D(—11,0'13,—0'3) Uy=-1 Uy=o03 Us = —o3

The interesting intervals and points of the boundary of B;,, are represented on Fig. 4.

4. The dual of the group. The dual of the group is constructed in two steps. The
fact that we are using the Brillouin torus for this construction does not mean that
this is always the easiest way for every crystallographic group. We will show, in a
forthcoming paper, the difficulties we encounter if we try to construct the dual of a
nonsymmorphic group with the aid of the Brillouin torus.

The two steps are the following:
1) We will examine first the boundary of B, is order to derive the topology of its
closure denoted B1,3.
2) Then we will consider the union of B{,3, B3, and Bg,; and we will identify
those points of the boundaries which must be identified.

Our only aim is to know the topology of the dual. We are not trying to define
a system of coordinates for the dual (we did it for the one-dimensional non-trivial
crystallographic group in introducing the parameter ). That is why we authorize
ourselves to perform any continuous deformation of the Bi;k,s. The first step is
described in Fig. 6, the second in Fig. 7.

For the first step it is convenient to give Bj,; the shape of a ball; then its
boundary (the one which appears in the Brillouin torus) is spherical. The successive
deformations shown in Fig. 6 permit the following identifications: (a) that of the
semi-closed triangles I, JK, and I; LK ; these two triangles concern identical (four-
dimensional) unirreps; the identification is described in the Brillouin torus by a folding
around I, K; these triangles are said to be semi- closed because the identification
also concerns the open intervals /,J and I,L,, the open intervals KJ; and KL,
and the points J and L;; (b) that of the closed intervals M;C; and JI'. The final
result of the successive deformations, namely B{,3 is shown in Fig. 6d. The open
intervals I K|, K;I" and I'I, are double intervals since they describe two distinct sets
of two-dimensional representations. For the sake of completude, we have supposed
the Brillouin torus to be oriented and this information is taken into account in the
successive deformations (see arrows).

The second step consists in sticking the three objects analogous to B;,3, namely
B, itself, Bygq, and Bj;,. To be more precise, we have to identify the points C|,



Duals of Crystallographic Groups 383

(c) (d)

Fig. 6. The successive deformations of the closure of B,

Fvc'lr C2tc3

F»C'l ) CZ 'C3

: I31K2

J 'Ll ) L2 |L3
M;,Mz, M3

Fig. 7. The construction of the dual of the group F'222

C,, and C; with I" and the points L,, L,, L;, M,, M,, M; with J, as shown on
Fig. 7. Finally we identify the following pairs of faces: (I'[,JI', I'K;JI"), (I'L,JT,
I'K,JI'), and (I'I;JI', I'K,JI). The final result is equivalent to a tetrahedron, but
a tetrahedron with special features.

1) The union of the open part V' of the tetrahedron and of open faces corresponds
to the set of all four-dimensional unirreps.
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2) It is non-separated: each open edge is double and each vertex is quadruple.

3) The union of the open edges corresponds to the set of all two-dimensional
unirreps. The union of all vertices describe the set of the one-dimensional unirreps.
(sixteen in number).

4) This dual space remembers only one thing from the orientation of the Brillouin
torus, namely the orientation of the closed contour K; K, Kj.

5) The topology of the set of lower dimensional unirreps has apparently a very
complicated topology which is described in Figs. 8 and 9.

The classification of unirreps is the following one

1. Four dimensional unirreps. We know that the set V' is the union of the three parts
B{,;, By, and Bj,. It is a dense subset of the four-dimensional unirreps set. For
Bj,; we already know that the unirreps are described by Egs. (4.7) and (4.8). For
B,;, and Bj;, we have to perform cyclical permutations. It is simple matter to show

(-0y0,-1)

(o,-1,-0)
(-0y1,-0)

{o,-1,-0)
(-0,1,-a)

(Ky) (Ky) (Kg) (Ky)

Fig. 8. a The topology of the boundary of the dual of the group F'222. Aspects involving the unirreps
of type (+ + +) and (— + —), represented by a circle and a square, respectively. b The topology of
the boundary of the dual of the group F'222. Aspects involving the unirreps of type (+ — —) and
(— — +), represented by a white and a black triangle, respectively

(K2)

To=-1

Fig. 9. Translations generators and the boundary of the dual of the group F222
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that these permutations are described by the following matrices:

100 0 1000
0010 000 1
000 1] ™ lo1 o0 o0
0100 0010

We must underline the strange fact that they perform the permutations

k, — k, — k; in Egs. (4.8),
but
U, —U; — U, inEgs. 4.7).

2. Unirreps of the six double edges and the four quadruple vertices. Each edge and
vertex is characterized by information about the operators U, and at least one of the
T,ss. The unirreps are described in Table 1.

The topology of this part of the dual can be easily understood if we use our notation
for the unirreps. We recall that the notation is only based on the way the operators
U,’s are represented. Since these operators are always diagonal and since we are only
concerned with unirreps of dimension one and two, each Uj is represented either by +1
(unirreps of dimension one) or by +03, where o5 denotes the usual Pauli matrix (for a
shorter notation it is simply denoted o). At each vertex, we have four unirreps, denoted
+,+,+), (+,—, =), (=, +,—), (=, —, +) respectively, where the signs indicate the
eigenvalues +1 of the operators U, U,, U; (in this order). A unirrep of the type
(4, 4+, +) is necessarily in the neighbourhood of a two-dimensional representation of
one of the following types (+o, +o, 1), (1,+0,+0), (£o0,1,+0) since they are the
only unirreps of dimension two which contain the eigenvalues (4, +, +). Similarly,
a unirrep of type (4, —, —) is necessarily in the neighbourhood of a two-dimensional
representation of the following types (+o, +0, —1), (o, —1,%0), (1,+0,+0). It is
a simple exercise to show that the dual has eight maximal compact subduals. These
can be labelled with the help of the one-dimensional unirreps in I', K|, K,, K; as
follows:

aby: (++HDE+HDE+HDE+H) cdp: (F+HDE -+ )= —+)
aby: (= =)+ =)+ — )+ ——) cdy: (= )+ + (= — )=+ -)
aby i (= + )=+ D=+ )=+ ) edy: (= + )= =D+ HE - )
aby i (=== =P =D =+ cdy: (== D=+ )+ =)+ +)

5. Band representations. The band representation obtained from an arbitrary localized
function, that is without any symmetry property 8 (corresponding to the generic
Wyckoff position), has the following decomposition: four times the direct integral
on the open part V' of the dual (four-dimensional irreps), four times the direct integral
on the open faces, twice the direct integral on the open double edges of the dual
(two-dimensional irreps) and the direct sum of the sixteen one-dimensional unitary
representations associated with the vertices of the dual. It is the regular representation.

It is more interesting to examine the elementary band representations induced by
one of the one-dimensional irreducible representations of one of the little groups
D, of Wyckoff positions, that is the band representations obtained from symmetric
functions. Here we only examine the band representations built from two functions

8 Let us repeat that we have a band representation if the Fourier transform of the function has no
zero
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f@ and f® corresponding to Wyckoff positions (a) and (b), respectively. To simplify
we only consider the case where these functions are invariant under the little groups
D, of the two Wyckoff positions. The other cases (other one-dimensional unirreps of
D,) can be studied in a similar way.

The functions have the following properties:

f(a)(x, Y, Z) = f(a)(xv -y, —Z) = f(a)(—x’ Y, —Z) = f(a)(_z) -Y Z),
O@y,2) = fO@,~y, 1 = 2) = fO=x,y,1 - 2) = fO(=z, -y, 2).

The first function is symmetric with respect to the origin (0, 0, 0) although the second
is symmetric with respect to the point (0, 0, %) We may have chosen instead functions
with analogous symmetry with respect to equivalent points (representative of the same
Wyckoff position).

We are first going to show that the two elementary band representations obtained
from these two functions have the same unirreps decomposition. This decomposition
concerns the maximal compact subdual denoted o;. As we said in our introduction,
this property does not mean that the two representations are equivalent.

In order to obtain the unirreps content of the two band representations, we will
use the method already used in part 3 of the present paper for the non-trivial one-
dimensional crystallographic group. We introduce the four following functions:

wﬁ"(}fl),k%ks)(x, Y, 2) = Z explik,n, + ik,ny + ikyns]

ninyn3
(a,b) ny, +n, nz +mny n+n,
X - g T 9 < )
! (“’ 2 YT T FT T
wé‘z;fl)’k%kﬁ(x, Y,2) = Z exp[—ik,(n| + n, +n3) + ikyng + tkyn,|
ninyng
(a,b) n, +ny ny+ny nt+n,
X ? — pa— —_—
f (w 2 b 2 b) z 2 b
1/’562}?1),&2,@)(9”’ Y, 2) = Z explik ny — ik,(n, + n, + ng) + ikyn, ]
ninyn3
(@.b) oy + n, N +ny o +n,
X f (x 2 ) y 2 ) z 2 b
wf“:}fl)’k%k})(x, Y, 2) = Z explik,ny — ikyn, — iks(ny + n, + n3)]
ninyn;
@vf, Mtn —nygtn  ntn
x f (z 2 Y 2 2 5 .

It is easy to check that if the generators act on a function as follows:

tlf(x,y’z) = f(x,y - %72 - %)7
tzf($,y,2) = f(.’l? - %,y,Z - %)a
t3f(x>yaz) = f(x - %ay - %,Z),
’U:lf(-’E, y»z) = f(.'L', -Y, —Z),
sz(l', Y, Z) = f(—IE, Y, —‘Z),
U3f($, Y, Z) = f(—‘IL', -vY, Z)?
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the generators of translations act as the matrices of Eq.(4.4) either on the space
spanned by the four functions 1/15‘(’,; ky ,c3)(:c, 1y, 2) or on the space spanned by the four
functions ¢§f}gl ky k) (@ Y5 2). However, the generators of m-rotations act differently
on these two spaces. We get

0100 0010 00 0 1
1 000 0 0 01 0010

(@) _ U@ — U@ —

Ui 0 0 01 2 1 000 3 0100
0010 0100 1 000
0 o 0 0 0 0 a O 0 0 01
*0 0 0 0 0 0 of 0010

g | ¢ U® — u® —

1 0 0 0 of| 2 o« 0 0 o) 73 01 0 0}
0 0 a O 0 a 0 0 1 000

where « is the phase factor exp[—i(k; + k, — k3)] and o™ its complex conjugate.
It is a simple matter to check that these four-dimensional “subrepresentations” are
equivalent °. For an arbitrary triple (k,, k,, k;) the matrices obtained can be intertwined

by the matrix
00

)

« 0
01 00
0 01 0
0 0 0 «

that is AU l(a) = Ul(b)A. This proves that the two band representations have the same
contents in unirreps of dimension four.

It is easy to go to the lower dimensional part of the dual and check that the two band
representations have also the same contents in two- and in one-dimensional unirreps.
For instance, if we suppose k; > k, > k3, one sees on the line I'I; (equivalent to
I'K;) that the functions +; and v, are equal and so are the functions 1, and s,
whatever is the Wyckoff position chosen. By use of the matrix transformation M of
Eq. (4.6), one readily sees that we only get the irreps (—o, —o, 1). In looking similarly
at the edges I, K, (equivalent to K;K ) and C| K, (equivalent to I'K,), it can be
shown that in both cases, we get the irreps (—o, 1, —0), (1, —0, —0). We can do the
same for the other edges and go to the vertices. We readily arrive at the maximal
compact subdual ab; or (+ + +)(+ + H)(+ + H)(+ + +).

We are left with the problem of showing why these representations are not
equivalent although they have the same unirreps content. To be equivalent means
that the two representations could be intertwined by a unitary operator A. Such an
operator has a decomposition on ab,,

A= /A(/‘C)d/‘é,

abl

where A(k) is a unitary matrix of dimension 4, 2 or 1, depending on the point .
The existence of such a matrix does not prove that A is a unitary operator. In fact
Eq.(4.9) provides us with such a unitary matrix A(x). This matrix is labelled by the
phase factor «.. This defines a section of a U(1) bundle of base ab,.

 They are not strictly speaking subrepresentations since these four dimensional spaces are not
Hilbert subspaces
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If A is unitary, it is diagonisable and, in multiplying the basis vectors of the two
Hilbert spaces by suitable phase factors, it can be mapped continuously on the unit
infinite matrix. This means that the section defined by A(k) would be trivial. But this
is not the case. One can easily check that A(k) takes the value 1 on the four open
edges K, K,, K,K;, I'K,, I'K; and the four vertices, since on this part the phase
factor o takes the value 1. The problem is that on the two other edges K;K; and
I'K,, the phase factor varies from O to 27. The difference between the intertwining
matrix A and the unit matrix is similar to the one which exists between a regular
band and a Mgbius band.

Table 1

H. Bacry

U, Uy, U

Edge K| K,

Edge K,Kj;

Edge KK,

Edge I'K,

Edge I'K,

Edge I'K;

(_07 -0, +1)
(_Uy a, -1)

(+17 ) —O')
(—11 ) 0)

(—0’, +17 _0)
(Ua ‘17 _0)

(+17 -0, _U)
(=1,0,-0)

(_U: +17 —O')
(_07 —1: —0')

(_Ga -0, +1)

(Uv —0, —'1)

—1
-1

-1
-1

-1
-1

Vertex I"

Vertex K|

Vertex K,

Vertex K,

(+,+,4)
4+ =)
(=+,-)
(==

(+,+,+)
(+ =)
(=+-)
(==

+,+,+)
+,—-)
-, .‘_7 _)
(= -+

—

[ Sy

-1
-1
-1

-1
-1
-1
-1

— et

—1
~1
~1

-1
-1
-1

[ S
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5. Conclusion

We have seen that the dual of the symmorphic group F222 has eight maximal
compact subduals. According to results of references [9] and [12], one can say the
two following things:

1) There exist sixteen elementary band representations; each of them is induced
by one of the four one-dimensional unirreps of a stability group associated with one
of the four Wyckoff positions a, b, ¢, d.

2) The content of an induced representation associated with Wyckoff position a
or b (resp. ¢ or d) corresponds to a maximal compact subdual of type ab (resp. cd).

The dual provides us with two types of information about band representations:

1) It permits to visualize a group theoretical result analogous to the one we
mentioned for the one-dimensional non-trivial space group: the content of the regular
representation is the “sum” of the contents of either the max. comp. subd. of type ab
or of the max. comp. subd. of type cd.

2) Since every max. comp. subd. has a non-trivial circle bundle, this is an indica-
tion that distinct elementary band representations may have identical decomposition. A
contrario, it is clear that the four max. comp. subd. of the non-trivial one-dimensional
space group only have trivial bundles. That is why we can say that distinct elementary
band representations have distinct contents.

The dual also gives indications about quasi-band representations. To clarify this
point, let us go back to the two elementary band representations of the group F'222
we have studied. We know that if we restrict the Hilbert space in discarding the
content associated with the edges K| K; and I'K,, we can construct an intertwining
operator. It seems to follow that if we choose as a starting function a function for
which the Fourier transform contains as a factor the function sin(p, — ps), instead of
band representations we would get equivalent quasi-band representations.

We have to prove that our bundle section argument is equivalent to the Berry
phase argument found by Michel and Zak [7]. These authors perform an integration
on the Brillouin zone. It seems necessary to understand how this is related with an
integration on the tetrahedron. One point is satisfactory: both arguments correspond
to a relative phase.

‘We must insist on the fact that all these points have no room in the case of Born-
von Karman groups since being finite groups their duals are finite. For them, two
band representations which have the same contents are always equivalent.

It is clear that we did not explore in the present article all kinds of facts which
can be discovered in band and quasi-band representations of the crystallographic
groups. In particular, we were not involved in the difficulties which could rise in the
case of multiple branches band representations. We intend to discuss this case in a
forthcoming paper.

To conclude, we mention a slightly weaker conjecture.

Conjecture 3. Every elementary band representation is multiplicity free, that is every
decomposition into two subrepresentations implies that these two subrepresentations
are disjoint.
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