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Abstract. The paper provides the complete list of local models for Ί)2-invariant
generic germs of Lagrangian submanifolds of dimension < 3. Classification is
done directly for genrating functions of Lagrangian submanifolds and contains both
elementary singularities and non-elementary ones with continuous moduli. The results
demonstrate, in particular, that in contrast to the non-equivariant case the classification
of equivariant Lagrangian singularities is not subordinated to the classification of
symmetric functions up to the right equivariant equivalences.

1. Introduction

One of the most important steps in the initial development of singularity theory
of Lagrangian submanifolds was finding that the singularities of (non-equivariant)
canonical Lagrangian projections are completely determined (at least locally) by
singularities of smooth generating functions (or generating families of functions). A
crucial contribution to the problem was made by Arnold [2] who found the complete
classification of stable singularities of Lagrangian submanifolds of dimension < 5,
inspiring further investigations in that direction (cf. [4, 3, 8, 25]). The standard (non-
symmetric) theory of Lagrangian singularities has various important applications. In
many of them non-trivial symmetries appear as an additional constraint and thus the
problem of classification of 3^-invariant Lagrangian submanifolds (with ^ being a
compact Lie group of symmetry) emerges naturally. This problem was introduced
and initially investigated in [13], then the formal stability theory was continued in the
papers [15, 16].

In the present paper, we investigate the discrete groups of symmetries Z|. Such
symmetries appear for instance in the problem of determination of symmetric caustics
in geometrical optics of lenses [5, 17], in thermodynamical phase transitions in
ordered systems [15] and in equivariant bifurcation theory [10]. The considerations
are more complex and technical than in the non-equivariant case. On top of the usual
complications caused by the symmetry we encounter additional obstacles. Firstly,



322 S. Janeczko and A. Kowalczyk

in contrast to the non-equivariant case, the classifiction of equivariant Lagrangian
singularities is not subordinated to the classification of symmetric functions up to the
right equivariant equivalences. Secondly, at this stage the implication "infinitesimal
stability =Φ> stability" in our case has to be proved on a case by case basis. In the
paper, this problem is implicit in the process of derivation of normal forms and is
crucial, in particular, in providing the proper and rigorous identification of moduli.

One has the following two alternative approaches to the classification of equivariant
Lagrangian singularities [16].
(i) An expansion of the original, partially heuristic approach of Arnold [2] which was

based on derivation of the infinitesimal condition with the explicit use of hamiltonian
vector fields on the ambient symplectic space.
(ii) A method based on direct use of versal unfoldings (following, in particular,
Zakalyukin [25] and Arnold etal. [3]) modified by a respective addition of symmetry
in the unfolding parameters (cf. [17]).

Unlike the non-symmetric case, the infinitesimal conditions yielded by (i) and (ii)
have different forms. Roughly, (i) provides a more complicated, non-linear condition
but involving fewer variables than the linear condition given by (ii). Those two
infinitesimal conditions are equivalent at least at some particular simple cases of
symmetry [16]. Leaving the question of equivalence in its full scope aside, we choose
(i) for considerations in this paper. The reason for this is pragmatic: we find fewer
variables as a considerable advantage in practical computations.

In the paper we give a complete list of local forms for Z1

2 -invariant generic germs
of Lagrangian submanifolds of dimension < 3. We find that continuous invariants of
normal forms appear in dimension 3 (cf. singularity Ξ3 in Table 2 below) in contrast
to the standard (non-symmetric) theory where the modal parameters appear from di-
mension 6 onwards [25]. Although the family Ξ3 of all equivariant Lagrangian germs
forms only two equivalence classes up to non-equivariant Lagrangian equivalences, it
splits into uncountably many orbits under the action of equivariant Lagrangian equiv-
alences (cf. Remark 3.8 below). Furthermore, examination of this family provides a
direct elementary proof for independence of two classifications: (i) the classification
of the equivariant Lagrangian singularities up to equivariant Lagrangian equivalences
and (ii) the classification of the symmetric functions up to equivariant right equiva-
lences (cf. [20, 24]).

The paper is organised as follows. Section 2 contains some introductory results
concerning Z1

2 actions on R2 and R3, equivariant Lagrangian germs, pull-backs of
Lagrangian manifolds and infinitesimal stability conditions. The main results of the
paper are presented in Sect. 3. In particular the classification of generic Lagrangian
singularities of dimension < 3 with Z1

2 symmetry and their normal forms (up to an
equivariant Lagrangian equivalence) are described by Theorems 3.3 and 3.6 and listed
in Table 2; proofs are deferred to Sect. 4.

2. Preliminaries

We do not give proofs of most results in this section as they are fairly straightforward
extensions of the results of Arnold [2] to the equivariant case. All functions, mappings,
germs, etc., considered in this paper are C°°. Symbol 5? will be used to denote a
compact Lie group. All actions of & on the Euclidean spaces Rn are assumed to be
orthogonal (with respect to the Euclidean inner product). Symbols C|?(n), ^(n),
C|?(n, ft) and ^(n, k) are used to denote the spaces of ^-invariant functions on

Rn and their germs at 0, of ^-invariant mappings Rn i-> Rk and their germs with
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the source and target at the origins, respectively. By m^(n) we denote the ideal in
<^(n) of all germs with all derivatives of order up to k — I vanishing at 0. If on Rn

and Rk we have actions of different groups, say & and &' , then the set of & 0 &' -
invariant functions, £^ Θ 5̂  -invariant germs, etc., on Rn x R^ will be denoted by
C*|?ê ,(ra + A;), ^φ^/(n + A), etc. It is known [18, 19, 6] that there exists a Hίlbert

map £:(Rn,0) -> (Rα,0) such that C™(n) = £*C°°(α), &<?(ri) = £*^(α) and that
the <?^(n)-module 3^(n, m) is finitely generated over <¥^(n). In most of this paper
the group 5? under consideration will be Z1

2 = Z2 θ . . . θ Z2 (/ terms), where Z2

denotes the multiplicative group {—1, +1}. For integers s1? . . . , sz > 0 and s;+1 > 0
we have the canonical representation v of Z2 on Rn = RSl x . . . x Rsι x RSl+l defined
as follows:

( \ — ΐ ( \vg\x\ι j ^ / j ^Z+l/ = wi^i ? •> εlxlι xl+\)

for every (zj, . . . , zz,zz+1) € RSl x. . .xR^xR^1 and every 0 = (ε1? . . . , εt) e Z£.
The multi-index (s1? . . . , sl sl+l) is called the rank of the representation v on Rn

[24]. We will refer to v as the representation of (/+l)-terms sum Z20. . .0Z2Θl ~ Z2

on the (/+ l)-factors Cartesian product R51 x . . . x R5' x RSί+l if we want to avoid the
explicit writing down of the rank of v. By straightforward calculations and elimination
of cases with zero-dimensional space of fixed points we obtain the following result
(cf. [23, Sect. 6]).

Lemma 2.1. A linear action of Z2 on R2 or R3 is via a group homomorphism onto
one of the following eight effective groups operating as described.

For R2:
(i) the trivial group 1 with the trivial action,

(ii) Z2 with the canonical action <9/rank(2),
(iii) Z2 w Z2 0 1 with the canonical action 6>/rank(l \ 1),
(iv) Z2 0 Z2 with the canonical action 0/rank(l, 1).

ForR3:
(v) the trivial group 1 with the trivial action,

(vi) Z2 with the canonical action 0/rank(3),
(vii) Z2 w Z2 Θ 1 with the canonical action <9/rank(2 1),

(viii) Z2 « Z2 0 1 with the canonical action 0/rank(l | 2),
(ix) Z2 Θ Z2 with the canonical action 0/rank(l, 2),
(x) Z2 0 Z2 « Z2 0 Z2 Θ 1 with the canonical action 0/rank(l, 1 1 1),

(xi) Z2 0 Z2 0 Z2 with the canonical action 0/rank(l, 1,1),
(xii) Z2 0 Z2 w {(α, β, 7) G Z2 0 Z2 0 Z2; aβj = 1} w/ίA fλe αcί/o/i induced by the

canonical action in (xi).

Lemma 2.2. The Hίlbert maps and generators of the modules of equivariant mappings
for non-trivial effective group actions of Z1

2 on R2 and R3 with άim{space of fixed
points} > 1 are given in Table 1.

Let us denote by (x,ξ) the canonical coordinates on T*Rn w R2n induced by
the natural coordinates x on Rn, by π the canonical projection T*Rn — > Rn,
(x,0 ^> x and by ω the canonical symplectic form X)d^ Λ dx^ on T*Rn. An

orthogonal 3^-action z/ on Rn has the natural lifting z/* w z/ 0 z/ to T*Rn of the
form ^*(x, 0 ι-̂  (^(x), ̂ (£)) An n-dimensional immersed submanifold L = i(Rn),y y y
ί:Rn — > T*Rn, is called a Lagrangian & -invariant submanifold (L& -manifold) if
£*α> = 0 and v*(L) = L for every g G ̂  such /, is called a Lagrangian immersion.
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Table 1. Selected Hubert maps and generators of <^(n, n)

Rn/Effective group/ Hubert map Generators of <^(n, n)

Repres. rank

1 R 2 /Z 2 Θl/( l

2 R3/Z2 θ 1/(1

3 R3/Z2 φ l/(2

4 ~p3 /y /TS y /TNjv i z^2 tp Λ-/2 tp

p . |̂ n ^ j^α 2; h- > V (x) G Rn

1) (x?,χ2) (x1?0),(0,l)

2) (χ2, x2, x3) (χ} , 0, 0), (0, 1,0), (0, 0, 1)

1) (χ2,χ1χ2,χ2,χ3) (χ1,0,0),(x2,0,0),(0,x1,0)

(0,x2,0), (0,0,1)

1/(1, 1 1 1) (x?, x^, x3) (xj , 0, 0), (0, x2, 0), (0, 0, 1)

£>(Rn) c Rα

*ι >0

«ι >0
^z3 = zf

zλ,z2 >0

Let / and J be two multi-indices such that /ΠJ — 0, / U J = {1, . . . , n} and

R7 =f {$/ G Rn;^j = 0}, RJ =f {y G Rn;y7 = 0} are ^-invariant subspaces
(for convenience we identify y G Rn with the pair (?//,?/ j)). A transformation
i'.W1 -> T*Rn of the form

^—
Vj, (1)

where 5 G C|?(Rn), is a ί^-invariant Lagrangian immersion. Function 5 will be
def -t

called an IJ -function of the Lagrangian submanifold L = i(Rn) C T Rn. A
germ (L,0) of an L^-manifold L C T*Rn at 0(e I/) will be called an L&-
germ. We say that (5,0) = (5(^,^,0) G ^(n) is an IJ-germ of (L,0) if

8S

the germ (L5,g0) (of the L^-manifold L5 generated by the /J-function 5 at

'
equals (L, 0) up to translation (x, £) H^ (x, £) — ̂ 0 of

T*Rn. The JJ-germ (5(ζj,Xj),0) is called minimal if d2S/dξίdξτf\() = 0 for every
z,^ G /. In this case #/ (= cardinality of /) equals dimker((Tπ)|T()L) and for any

/' J'-germ of (L, 0) the inequality #1' > #1 holds. A minimal / J-germ with 7^0 will
be called non-trivial. As we shall see soon, any LS^-germ can be transformed into one
having a minimal /J-germ by a smooth equivariant transformation Φ : T*Rn — » T*Rn

preserving both the fibration π and the symplectic form ω (i.e. such that Φ*ω = ω).
Such a Φ is called an equivariant Lagrangian equivalence (L& -equivalence). An
/J-germ and an /' Jx-germ corresponding to L ̂ -equivalent L^-germs will also be
called L& -equivalent. A germ of L ̂ -equivalence is of the form

+ da , ry G Γ*Rn , (2)

where ^:(Rn,0) — ->• (Rn,0) is an equivariant diffeomorphism and α G ̂ (n) [25].
With the help of /^^-equivalences the /J-germs (or, equivalently, the immersion (1))
can be simplified as follows.

Lemma 2.3. Any IJ-germ (Sf(ξ/,xJ),0) G
(i) ίΛe IJ-germ (S - j\S, 0) G m|,(n),

LS? -equivalent to:
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(ii) an {1, . . . , n}Φ-germ (S/(ξl^ . . . , £n),0) G m^(n),

(iii) an I" J"-germ (S(ξΣ,,, xjfί\ 0) G πφ(ra).

We omit the straightforward proof of this result.

2.7. Morse families of Fullbacks

We recall that a germ (F, 0) G m|>(m+n) of a family of functions Rn 3 x \-^ F(λ, x),
λ G Rm, is called a Morse family germ (Mf-germ) if

rank
/ d2F d2F \

I I

\ /

(3)

As it is known from Arnold [2] (see [13] for the equivarίant case) such Mf-germ
(F, 0) generates an LS^-germ in Γ*Rn, say (L(F),0), by means of the equations

dF OF
-(λ,x) = 0, ί= ^(λ,*). (4)

Any L^-germ is generated by an Mf-germ (e.g. by F(A,x / 5 Xj) = S(X,Xj) —
Σ \χ

τ, where S(ξI,xJ) is an /J-germ).

Let (0, α) G ^(n, n) x ̂  (n) and (L, 0), L C Γ*RΛ be an L^-germ. Following

[14] we define the pullback (0, α)* (L,0) of (L,0) Z?j means of a relation (φ,oί) as
the germ at 0 G T*Rn of the subset

{φlη + dα|x G Γ*Rn; x G Rn, φ(x) = π(η) and 77 G L Π ί7} ,

where £7 is a sufficiently small neighbourhood of 0 G Γ*R^.

Lemma 2.4. Let (F, 0) G m?^(Rm x R™) fo? α/7 Mf-^erm generating an L^-germ

(£,0)

w/zerβ (0, α) G ̂ (n,n) x m?^(n

(i) (0, α)* (L, 0) w g/ve/7 /7j ̂ j. (4).
(ii) 7f 0 satisfies the mapping condition

lm(T0φ) + Im(T0(π \ L)) = T0R^ , (5)

(iii)
(L, 0) d= (0, α)* (L, 0) w βn LS?-germ.
F w ύf/ί Mf-germ if and only if (5) holds.

Proof, (i) can be checked directly, (ii) is obtained by a slight reformulation of the
trans versality condition in [11, 12, Proposition 4.1]. (iii) The equivalence of (5) and
(3) can be verified directly. Q.E.D.

The L.^-germ (L, 0) as in Lemma 2.4.ii will be called an L^-pullback of (L, 0) by
means of the L& -relation (φ, α). It is easily seen that if Λφβ : (T*R^, 0) -^ (T*R^, 0)

is an L ̂ -equivalence of the form (2), then (ψoφ, a+βoφ) is an LS^-relation inducing
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Lemma 2.5. Let (L, 0), L C T*(Rm x Rk) be an L^-germ generated by an Mf-germ
F G m^(m -\-m-\-k) of the form

λixi, for ( λ , z , w ) G R m x R m x R f c , (6)
i=\

where f G πφ(ra + ra). Let (L, 0), L C T*Rn, fee an L^-pullback of(L, 0) fey means
of(φ,θί) G ̂ (n,m + fc) x ^(n) swc/z f/κzf rank(<90/<9x)|0 = /. TTzew ί/zere exists a

& -space Rs , s == n — m > 0, swcA ί/zαί & -spaces Rm x Rs αwα7 Rn are isomorphic
and the L^-germ (L, 0) /zas, wp ίo an L& -equivalence, an Mi- germ (F, 0) of the form

771

F(λ, x, t) = /(λ, Ϊ7(a?, ί)) - ]Γ λ x - ((λ, x, Q G Rm x Rm x Rs w Rm x Rn) ,
i=\

where U : (Rm x Rs,0) — » (Rm,0) w aw equivariant transformation such that
rank(ai7/a(x,t))|0>ί-m.

This follows directly from the above properties of pullbacks. Note that the ^-space
Rs is isomorphic to the ker(T00) c T0R

n « Rn.

2.2. Infinitesimal Stability Conditions

A family of transformations Φ t:T*Rn -> T*Rn, |ί| < ε, is a family of
equivalences if and only if it is a flow of a time dependent Hamiltonian vector field
on T*Rn:

χ def A dHt d dHt d
Ht" ~\ ~&ΰ &Zi ~ ̂ 7 Wi'

where each Ht belongs to the space ^<^(T*Rn) of symmetric hamiltonians (C
C^(T*Rn)) of the form

H ( x , ξ ) = ( a ( x ) \ ξ ) + b(x) (7)

(see Arnold [2], or [15] for the equivariant case). Here { | } denotes the inner product
on Rn, a G CJ?(n, n) and b G C|?(Rn).

Proposition 2.6. For α smooth family of L^-germs (Lt,0), Lt C T*Rn, |ί| < ε,
corresponding to a family of U-germs (St,Ό) G m|o(Rn), 5t = S^ξj^Xj), the
following conditions are equivalent.

(i) There exists a family of L&-equivalences Φt : T*Rn —> T*Rn α«ύ? an open
neighbourhood U of 0 G T*Rn swc/z ί/wί Φt(LQ Π U) C Lt and Φt(0) = 0 /or
|t| < ε.
(ii) There exists a smooth family of Hamiltonians Ht G ̂ ^(T*Rn) ίwc/z that for
each t, \t\ < ε, w /zαv^

-§=^©'^'^'-1^) we- « M ) € T * R « x R , (8)αr V ας r ox τ)\ ^J c/ /

I"). (9)
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Proof. This theorem is a sort of equivariant version of the Hamilton-Jacobi Theorem
[1] (for the symplectic structure ]Γ d^ f\dxi- Σ dξj Λ dxj on Γ*Rn rather than

ιei j£J
the canonical one). The proof is similar to the proof of Proposition 3.3 and Lemma
3.2 in [15]. Q.E.D.

We say that an LS^-germ (L,0), L C T*Rn, is infinitesimally stable [16] if

^(Γ*Rn)|L = ̂ (T*Rn)|L . (10)

This condition has a form independent of the immersion ί:Rn —> L C Γ*Rn but
it is not very convenient for explicit calculations. We introduce below (after [16]) a
few more useful versions of (10).

Lemma 2.7. Let (S(ξI,xJ\ 0) G m|(Rn) be an IJ-germ of(L, 0), let ρ : Rn -> Rα

/?<? a Hilbert map and V^ . . . , Vj, £e generators of^^(n, ri) over &%>(ri). Let Vl G m(α)
and U = ([/!,..., t/"α) G ί?(α, α) 6e swc/z ίAαί

( i = l , . . . , 6 ) , (11)

The following conditions are equivalent.
(i) The L&-germ (L, 0) w infinite simally stable.

(ϋ)
( ^ , . . . , C / α > y α + ( V l , . . . , V ς , l ) R + (α), (13)

where ^MQ(a) denotes the ideal in <?(ά) of all germs vanishing on

(iii) Let a compact Lie group &' operate orthogonally on Rk, and let (S"
ί), 0) G m|,0^/(n + k) be such that Sr

 ί=0 = S. Every a G ̂ Θ^/(n + A;)

where Hif B G ̂ 0Ssp/(ra + fc).

Proof of the above result is straightforward. Every / J-germ (5, 0) satisfying one
of the conditions (ii)-(iii) will be called infinite simally stable. Equation (13) depends
actually on (F, 0) G <^(α) such that 5 = F o ρ and on the choice of / and J. We
will call it an inf-/ J -stability condition for (F, 0) G <§?(α). From (i) the following two
corollaries follow immediately.

Corollary 2.8. If the IJ-germ (S, 0) is infinite simally stable, then the IJ'-germ (S1 ', 0)
as in (v), where J' = J U {n + 1, . . . , n + fc}, w α/^o infinite simally stable.

Corollary 2.9. Condition (iί) of Proposition 2.6 holds for every smooth family of IJ-
germs (St, 0) G m|>(Rn), |ί| < ε, swc/z ίAαί (50, 0) = (S, 0) z/αwd 6>«/j of the IJ-germ
(S, 0) w infinite sίmally stable.
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Example 2.10. Let us consider the group & = Z2 Θ Z2 = {±1,±1} acting on
R4 as V(εiίε2y(zι, • • - , #4) ^ (ε1x1,ε2x2x2,x4) for each (ε l5ε2) G Z2 Θ Z2, a

Hubert map ρ:R4 —» R4, £>(#) = (Xj,x 2 ,x 3 ,x 4 ) and the following four generators

of ^z2θz2(4,4):Vi = (x1?0,0,0), V2 = (0,x2,0,0), F3 =f (0,0,1,0) and P4

 d=

(0,0,0,1). Obviously £(R4) = {z G R4; zl > 0 and ̂ 2 > 0} and so ̂ (4) c m°°(4).
Easy calculations show that for an /J-germ

(5(^,^,0) - (^,x2,ξ3,x4),0) = (F(z)U(ξ25Xμ3)X4),0) G m|20Z2(4)

the condition of inf-/J-stability (Eq. (13)) takes the form

dF dF OF
^—'2^—ι3ι9^ dz2 4 R

By Nakayama's Lemms [3, 7] this is equivalent to the equation:

^^^^^FiF^^^ + ^F,,^,!),,, (15)

where F}1

 f

3. Classification of Generic / J-Germs with ZZ

2 Symmetry

In this paper we consider a restricted notion of genericity of Lagrangian submanifolds
expressed in terms of their / J-functions. It is based on an observation that an / J-
function, if exists, is determined up to an additive constant by its L^-manifold. We
shall say that a class of germs W C <^(n) is generic (non-generic) if there exists
a residual subset & C &j°(n) such that for every F E &* and every & -invariant
point x0 E Rn the germ (F(x + x0),0) belongs (does not belong) to W.

Now we state an equivariant version of Thorn's Trans versality Lemma useful as
a technical tool for finding generic classes. It is a simple consequence of continuity
and openness of the transformation ρ* :C°°(a) — > C7|?(n). Below the s-jet extension
of / G C°°(Rn) is denoted by jsf, the (trivial) fibre bundle of js-jets over Rn by
Js(Rn) and its fibre over x e Rn by JJ(Rn).

Lemma 3.1. Let & operate trivially on Rk and orthogonally on Rn with 0 being the
only fixed point. Let ρ : Rn — » Rα be a Hubert map for (Rn, 3̂ ) and X be a stratified
submanifold of J(f(Rα x R fc) of codimension cx. Then the subset of ^^(n -f- k) of all
germs (5, 0) G g^(n + A) such that S(x, t) = F(ρ(x), t), where F G C°°(a + k) and
jqF G X, is generic if cx < k and non-generic if k < cx.

Up to an L ̂ -equivalence (a translation in T*Rn) any /J-germ belongs to m|?(n)
(Lemma 2.3). To accommodate this simplification in our task of classification of
typical L.^-germs up to L ̂ -equivalences we modify slightly the above definitions
as follows. We shall say that a class C C m?^(n) of IJ -germs is generic (non-generic)

if the class C of all germs in ^(n) of the form
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where S G C and cα G R, is generic (non-generic) in 2^(n) (in the previously
defined sense).

According to Lemma 2.3, an LSP-germ (L, 0) is either trivial (dimKer(π | L) = 0)
or, up to an L ̂ -equivalence, is generated by a non-trivial minimal /J-germ from
nτ^(n). Thus we observe the following.

Remark 32. If non-trivial generic /J-germs exist in rn^(n), then the subspace of
fixed points of Rn has a positive dimension.

Now we formulate the main results of the paper.

Theorem 3.3. We are given an orthogonal action of & = Z1

2 on Rn (n = 2, 3) and
multi-indices I, J, (I Π J = {1, . . . , n}, / Π J = 0). Any IJ-germ (S, 0) G πφ((n)

(i) belongs, up to an equivariant orthogonal change of coordinates on Rn, to one of
the non- trivial, minimal and generic classes of IJ- germs (Cases) in Table 2, or
(ii) belongs to a generic class of trivial IJ -germs, or

(iii) belongs to the non-generic class of all remaining IJ -germs.

Proof. In virtue of Remark 3.2 and Lemma 2.2 it is enough to consider all possible
pairs of multi-indices IJ for all cases in Table 2. The proof is similar in all these

cases. We consider here in detail the Case 2 of Table 1 (& = Z2 Θ 1 operates of R3,

ρ(x) = (Xp£ 2> x3)) and I — {!}> J — {2,3}, only.
Let (z , /, faβΊ) be coordinates in 5-jet space J5(R3) corresponding to

Let us consider the following submanifolds of Jp(R3): M0 = {/100 ^ 0}, Mj =

ί/ioo = ° ^ /2oo(/πo + /ι2oι)l and M2 defined by the conditions /100 = /200 = 0 φ

Λoo and

0 0 3/300 4/400

rank /HO /210 /310 /410

-/101 /201 /301 /401 J

O

Obviously Mt, z = 0,1,2, is a submanifold of Jo(R3) of codimension i and

TV =f J0

5(R3)-(M0UM1 UM2) is a stratified submanifold of codimension 3 in J0

5(R3)
[3]. In virtue of Lemma 3.1 /J-germs in m2^(3) are divided into the following four

classes. (We recall (5,0) e m2^ (3) is of the form S = F o ̂ , F e m(3).)

(a) The generic class of germs F o ρ such that J^F G M0, containing no minimal
/J-germs.
(b) The generic class of germs F o ρ such that j^F G Mj, containing only minimal
/J-germs.
(c) The generic class of germs F o ρ such that j^F G M2, containing only minimal
/J-germs.
(d) The non-generic class of germs Foρ such that j^F G Nl containing only minimal
/J-germs.

Obviously classes (b) and (c) correspond to case (i) (Cases 4 and 5 of Table 2)
while (a) and (d) correspond to the cases (ii) and (iii) of the Theorem. Q.E.D.
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By straightforward check we obtain:

Proposition 3.4. Generic IJ -germs of all classes in Table 2 except Case 5 are inf-
IJ-stable.

An /! Jrgerm and an /2J2-germ from m|>(n) are called L& "-equivalent if the
L^-germs generated by them are L ̂ -equivalent.

Lemma 3.5. Let (5t,0) = (Ft o ρ,0) G iϊφ(Rn), -α2 <t <b2,be a smooth family
of IJ -germs belonging to a single Case 1-4 or 6-11 m Table 2 (with the appropriate
action of & on R2 or R3). Then any two germs (St , 0) and (Sf

t , 0) m this family are

-equivalent.

Outline of a proof . In virtue of Proposition 2.6 it is enough to show that there exists
a smooth family of Hamiltonians Ht G ̂ ^(Rn) (of the form (7)) satisfying Eqs.
(8)-(9) in some open neighbourhood of (0,0) G T*Rn x R. From Proposition 3.4
and Lemma 2.7. iii (for &' — 1, k = 1) we obtain the expansion

(for (ξ/5 xj, t) near (0,0,0) G Rn x R), (16)

where the symmetric hamiltonians (Ht,Q) G J^p(T*Rn) have the form

b

Ht(x, o = Σ(γi^ I ̂ A^ *>+ 5(χ' *)' <17>
i=l

with (^,0), (5,0) G <§^p(n) and (t^,0)'s being generators of <^(n, n). The idea is
to show that in all cases of interest (16), (17) and additionally (9) can be satisfied for
all t sufficiently close to 0. This can be shown case by case with some mundane but
straightforward algebra, with the use of the following equivalent from of (16):

dF+ A
£ /~\ X T / ( ~ -f \ A n TJίy +\ _J_ f? o TJί? fΛ ^1R^

i=\ ^^1 '

where (^,0), (B,0) G ^(α), F , . . . , V^ G m^01(n + 1) and the ^-invariant
transformation U:Rn -> Rα is defined by (11)-(12) (with St instead of S).

Now we shall discuss the derivation of normal forms.

Theorem 3.6. Column 5 of Table 2 contains normal forms for all L&-equivalence
classes of all non-trivial, minimal and generic IJ-germs for all non-trivial orthogonal
actions ofZl

2 on R2 and R3.

Proof. At first we make a simplification. Let

satisfy the set of conditions in Columns 3 and 4 of Table 2 for one of the Cases
1̂  or 6-11. Then there exists a family Ft satisfying the same set of conditions
and joining F to a polynomial F G &^(ri) having all coefficients zero except those
explicitly appearing in Table 2. By Corollary 3.5 / J-germs (F, 0) and (F, 0) are L&-
equivalent, so further considerations can be restricted to finding such families and the
normal forms for such polynomial germs (F, 0).
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Case L The family Ft(z) = sgn(/03)((l - t)|/03| - t)z% = j^z\ satisfies the

conditions of Case 1 and joins F0(z) — f$βZ\ with Fλ(z) = εz\, where ε = sgn/03.

So {!}{2}-germs (S(x^ξ2),0) = (/03£2

3,0) and (S^x^ξ^O) = (ε£2

3,0) are LS?-
equivalent. Now note that the change of sign (x l 7x 2) ̂  (χι, ~~xι) on R2 induces a
Inequivalence of T*Rn making {1} {2}-germs (-ξ|, 0) and (ξ|, 0) ̂ -equivalent.

Cases 2, 3 and 6-11. These cases can be proved analogously as in Case 1 (we omit
this part of the proof). Note that in cases 3 and 4 we can utilise an observation that
the subspace of matrices of rank n is open in the space of all n x ra matrices, and
each connected component of it contains a matrix [d^] with entries du = ±1 and
d^ = 0 for i ̂  j.

Case 5. We have separated this case from the others since it requires a slightly
different approach and is the only non-elementary "catastrophy" [3, 7, 22] we
encounter here. We divide this part of the proof into several steps.

We shall consider R4 with the canonical action of S? = Z2 0 1 of rank(l | 3) and

the Hubert map ρ:R4 —> R4, (x l 5 . . . , x4) >-» (x2

l,x2,x3,x4). Assume / = (1) and

J = (2,3,4).

Step 5.1. An /J-germ (5,0) € m|,(n), 5(£1,x2,x3,x4) = F(Z)\Z=(^^X^X^XA} is inf-
IJ-stable if

/1000 ~ /2000 — ̂  7̂  /3000 '

4/4000 /4100 /4010 /4001

t-onV /̂3000 /3100 /3010 /3001
0 f f fu /2100 /2010 /2001

^ /1100 /lOlO /1001-

Proof. The inf-/J-stability condition has the following form:

-4. (20)

=(zlF*)ίf(zι) + (zlFι,F2,F3,F'A,l)1i, (21)

where '"' indicates the restriction to z2 = z3 = z4 = 0. From the assumptions
of the lemma it follows immediately that m5^) = (zlF^l)^(zιy Thus to show
(21)_it is enough to prove that every polynomial in zl of degree < 4 belongs to
(z{F'tl, F2, F3, F4,1}R mod m5(z1). This easily translates into a 4 x 4 system of linear
equations with non-vanishing determinant of the form (20) (up to a multiplicative
constant).

Step 52. Let (5t,0) = (Ft o ρ,0) G m^(4), -ε < t < 1 + ε, 0 < ε, be a smooth
family of JJ-germs such that conditions (19) and (20) are satisfied for each t and

/3000 = 3/J(ί) Λ'ooO > /4000 - 4/J(t) /4

£ooo , (22)

where /? is a smooth function and the expansion dFt/dt — ̂  ji

i-klz\z3

2z^z\JroOG(z) is

assumed. Then there exists a smooth family of Hamiltonians Ht G ̂ ^(T*R4) of the
form (7) satisfying Eqs. (8) and (9) in some neighbourhood of {0} x [0, ί] C T*R4 x R.

Let (5ί(ξ1,x2,x3,x4),0) = (Ft$,x2,x3,X4),Q) e m|201(l + 3) be a family
satisfying assumptions (19)-(22) of Step 5.2. Equations (16) and (18) take the
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following form in this case:

dt 1 J 2' 3' 4 \^£ι ' 2' 3' 4' 1 ? <9χ2' dχι' <9x4/
4 (23)

dΉ , , „ . „

where
4

i=2

U = $Fll(z),x2,x3,x4) and A^ , B e C°°(4). To show that (9) holds let us
consider

We find by virtue of (22) that

a1 = Omod{ξ1

10,x2,x3,x4).

According to Step 5.1 there exists the following smooth family of expansions (for
sufficiently small t):

4

of(z) = ̂ Ftίl(z)Atl o U(z) + ]ζ Ftjl(z)Ati o U(z) + Bto U(z)\z=^2)X2}X3jX4),

where Atl,Ati,Bt G ^(4) and U(z) = (zlF
2

l(z),z2,z3,z4). From this equation

taken moά(ξl°,x2,x3,x4)^2 x x x } we find immediately that Atj(0) — Bt(0) =

dBt/dx^O) = 0. Now setting Atl(z) ά= Atl(z) + zvFtΛ(z)β(t) for z G R4 we obtain

Hamiltonian (24) belonging to m|2(Γ*R3) and satisfying (23).

Step 53. We show that an /J-germ (5,0) = (Foρ, 0) as in Step 5.1 is L^-equivalent
to the /J-germ (F o ρ? 0), where F has the form

F = εz3 + az4 + x z + x z2 + x z4 , (25)

with ε = ±1 and α =f /40001/3000 ~
4/3.

By virtue of the previous two steps and an argument analogous to that in the
beginning of the proof of this theorem the /J-germ (5,0) is LS^-equivalent to an
/J-germ (S", 0) = (FΌρ, 0) with F' - ̂  /41...Q4^

1 . . . z%4 being a polynomial with
all coefficients vanishing except, perhaps, those appearing explicitly in (19), (20) and
/4000- N°w utilizing Step 5.2, an observation on homotopic connected components in
the space of n x m matrices (cf. Cases 2, 3 and 6-11, above) and solving Eq. (22)
for suitable β we find an L^-equivalence of (5', 0) with (S", 0) = (F" o ρ, 0), where

π / / / \ def / /• \ 3 , 4 i i 2 i 4F (*1? . . . , z4) = sgn(f3m)z{ + azl ± z^z{ ± z^z\ ± ̂ ^j ,

where {^^3^4} = {2,3,4} and α is as above. Finally we get the form (25) by
applying to (Sff, 0) an L ̂ -equivalence of T*R4 induced by a suitable diffeomorphism
of the form (xl, . . . , x4) ι—> (xl, ix , ±x , ±x ).
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Step 5.4. Let (Z/,0), L' C T*R3, be an L^-germ generated by an {1} {2,3}-germ
|X(S', 0) = (Ff o g, 0) G m|XR3) as in Case 5 of Table 2 (Columns 1-4). Then (I/, 0)

has an Mf-germ

x) = ±λ6

(26)

/ G m^(3) uTid {i^, i3} = {1,2, 3} . (27)

To show this let us define an {1} {2, 3,4}-germ

4

where F(z) = F'(zl,z2,z3) + z4 Σ
 ciz\ and q, . . . , c4 G R are such that (20)

i=l

holds. Let (L,0), L C T*R4 be the LS^-germ generated by (5,0). The LS^-germ
(L',0) is an L^-pullback of (L,0) via an L^-relation (0,0) e 8^(3,4) x g^(3),
where transformation φ : ( x l ^ x 2 ^ x ^ ) •— >• (x l 5x2 '

x3'^) ^as rank^. So, according to
Step 5.3, (L,0) is an L^-pullback of an L^-germ (L,0), L C T*R4, generated
by /J-germ (F(ξ^ x2>

x3ι X4^ ^) ^ m|̂ (4) with F of the form (25), by means of an
LS^-relation ($,α) e ^(3,4) x (̂3), with rank^|0 = 3. On applying Lemma 2.5
we find that, up to an L ̂ -equivalence T*R3 -> T*(R3), (L', 0) has a Mf-germ of the
form (26), where ^(^,^2^3) ^ m^(3), ^ = 1,2,3, are such that the ^-invariant
transformation u = (ul,u2, u3) : (R3, 0) — > (R3, 0) has rank > 2 at 0. It follows that the
det[<9(î  , ui2)/d(x2, ^3)]|o ̂  0, for some indices il and i2, so choosing (xl , w^ , w^2)

as new equivariant coordinates on R3, we find that u has the form (27).

Step 5.6. To complete the proof it remains to notice that in Column 4, Case 5 of
Table 1 we have the implicit definition of a minimal {1} {2, 3}-germ of (£',0) in
terms of an Mf-germ (26)-(27). Q.E.D.

Remark 37. All /J-germs described by Column 3 of Table 2, with the exception of
Case 5, are structurally stable in the following sense. Let (S'(ξ/,ίCj),0) G m|^(n) be
an / J-germ belonging to one of these Cases. If (57, 0) 6 CJ?(n) is sufficiently close
to 5 in Whitney's topology and L' C T*Rn is a Lagrangian submanifold given by
equations:

as" as7

then there exists a ^-invariant point p0 G I/ such that L^-germs (L',p0) and (L, 0)
are I/ ̂ -equivalent.

Remark 3.8. The natural question arises at this stage: are singularities of type Ξ3

L ̂ -equivalent among themselves or not. We will not attempt to resolve this question
here in its full scope but only show that there exist uncountably many different LS?-
equivalence orbits (LS? -orbits) in this family.

In a particular case, when (uλ , u2, u3) (x) = (0, x2, x3) and α G R, the Lagrangian
germs of type Ξ3 (Table 2, Case 5), denoted here by (£^,0), are given by the
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equations
_
— ' o — s 5ox — ' oαλ ox

where M^(Λ,x) = ±λ6 -j- αλ8 + x2X
4 4- x^X2 — λx j is a Morse family belonging

to <<?% (R x R3) with Z2 having the canonical representation v of rank(2 | 2) on
R4 = R x R3, i.e. such that vε:(λ,xl,x2,x3) ι-> (ελjεxj,^?^)- We claim tnat

L^-germs (Lj,0) and (Lj,0) are not L ̂ -equivalent if a ̂  b.
Indeed, assume that (I/J,0) and (1/^,0) are L ̂ -equivalent. If so, their Morse

families, M+ and M6

+, must be equίvariantly R+ -equivalent. This means that there
exist an equivariant diffeomorphism germ Φ:R x R3 — » R x R3 of the form
(λ,z) H-» (Λ(λ, x), JΓ(z)) and a function α G <^z2(R4) such that

M +(λ, a:) - M+(Λ(λ, x), X(a;)) + α(αO + const , (28)

which can be proved by generalization of its non-equi variant version in [25] or in [3,
pp. 303-309]. Now, a straightforward symmetry argument shows that A and Xl9 the
first coordinate of X = (Xl , X2, X^), must be as follows:

, x) = λA(λ2) + XjB(A 2 ) + C(λ, x) ,

where (7 and D, as well as X2, X3 and α, are certain C00 functions belonging to the
ideal {^ι,^2'x3)c°°(λ x) Assuming the expansion ^4(λ2) = a0 + ^iλ2 + <Xλ4) and
taking (28) modulo (x2,x2,x3, λ

10,x1λ
5)COo(λ ^^ we get the equation

λ6 + αλ8 - Xxl = aβ

0X
6 + (6α^α1 + α^6)λ8

- ald\zxl (for (λ, X j ) G R2) . (29)

It follows immediately that we must have 1 = a0d and 0 = 04 d, so αj = 0. Further,
Eq. (29) implies that 1 = α£, thus comparison of coefficients of λ8 yields equations
α = όα^αj + a8

0b — a\b = 6 which finally proves our claim about splitting of the
family Ξ3 into infinitely many L ̂ -orbits.

The symmetric function λ *-»• λ6 -f- αλ8 on R with the canonical representation
of Z2 of the rank(l|0), i.e. such that λ H-» ελ(ε G Z2), is equivariantly right
equivalent to the function λ H^ λ6 (note that λ ι-» λ(l + αλ2)1/6 is the appropriate
diffeomorphism). Given that, we conclude immediately that the classification of
equivariant Lagrangian singularities up to L ̂ -equivalences is not subordinated,
in general, to the classification of symmetric functions up to right equivariant
equivalence. For this reason it is independent from classifications of versal unfoldings
like those of Wasserman [24] or Siersma [20].

4. Final Remarks and Applications

Let L be a ^-invariant Lagrangian submanifold in T*X. In usual applications to
physics L represents the space of states attainable, in the phase space T* X, by the
concrete, mechanical, thermodynamical or optical system. In optics of symmetric
optical instruments L is a system of rays orthogonal to the transformed wavefront.
The set of critical values of the projection πx :L —•> X (πx :T*X —> X), which is
also the envelope of the outgoing rays, is a caustic of the system (cf. [5]). The list of
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classified symmetric Lagrangian submanifolds provides the classification of symmetric
caustics. An alternative approach to the classification of caustics is presented in [17].
In that approach classification is obtained through Morse generating families and so-
called "caustic equivalence." However this equivalence, keeping the diffeomorphic
type of the caustic invariant, is not preserving the physical sense of the Lagrangian
submanifold itself. Symmetric Lagrangian submanifolds arise naturally in a number of
contexts. The magnetic stable and metastable phases of a ferromagnetic crystal can be
modelled by symmetric Lagrangian submanifolds with invariant generating functions,
F, as a free energy function (cf. [15, 13]). The point symmetry group of the crystal
acts on internal and external variables and F must be invariant under this action (32
point groups). The locus of hysteresis and phase transitions can be identified with the
local bifurcation set of F. In other problems with the general branching of symmetry
the classification of generic symmetric Lagrangian submanifolds provides the typical
models for stationary processes with qualitative changements. It forms a basis for a
thermoelastic analysis of phase transitions in elastic crystals as it was formulated by
[9].
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for his help in preparation of this paper. S.J. wishes to thank Monash University for a visiting
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