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Abstract. The paper provides the complete list of local models for Z.-invariant
generic germs of Lagrangian submanifolds of dimension < 3. Classification is
done directly for genrating functions of Lagrangian submanifolds and contains both
elementary singularities and non-elementary ones with continuous moduli. The results
demonstrate, in particular, that in contrast to the non-equivariant case the classification
of equivariant Lagrangian singularities is not subordinated to the classification of
symmetric functions up to the right equivariant equivalences.

1. Introduction

One of the most important steps in the initial development of singularity theory
of Lagrangian submanifolds was finding that the singularities of (non-equivariant)
canonical Lagrangian projections are completely determined (at least locally) by
singularities of smooth generating functions (or generating families of functions). A
crucial contribution to the problem was made by Arnold [2] who found the complete
classification of stable singularities of Lagrangian submanifolds of dimension < 5,
inspiring further investigations in that direction (cf. [4, 3, 8, 25]). The standard (non-
symmetric) theory of Lagrangian singularities has various important applications. In
many of them non-trivial symmetries appear as an additional constraint and thus the
problem of classification of Z-invariant Lagrangian submanifolds (with & being a
compact Lie group of symmetry) emerges naturally. This problem was introduced
and initially investigated in [13], then the formal stability theory was continued in the
papers [15, 16].

In the present paper, we investigate the discrete groups of symmetries Zé. Such
symmetries appear for instance in the problem of determination of symmetric caustics
in geometrical optics of lenses [5, 17], in thermodynamical phase transitions in
ordered systems [15] and in equivariant bifurcation theory [10]. The considerations
are more complex and technical than in the non-equivariant case. On top of the usual
complications caused by the symmetry we encounter additional obstacles. Firstly,
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in contrast to the non-equivariant case, the classifiction of equivariant Lagrangian
singularities is not subordinated to the classification of symmetric functions up to the
right equivariant equivalences. Secondly, at this stage the implication “infinitesimal
stability = stability” in our case has to be proved on a case by case basis. In the
paper, this problem is implicit in the process of derivation of normal forms and is
crucial, in particular, in providing the proper and rigorous identification of moduli.

One has the following two alternative approaches to the classification of equivariant
Lagrangian singularities [16].

(i) An expansion of the original, partially heuristic approach of Arnold [2] which was
based on derivation of the infinitesimal condition with the explicit use of hamiltonian
vector fields on the ambient symplectic space.

(i) A method based on direct use of versal unfoldings (following, in particular,
Zakalyukin [25] and Arnold etal. [3]) modified by a respective addition of symmetry
in the unfolding parameters (cf. [17]).

Unlike the non-symmetric case, the infinitesimal conditions yielded by (i) and (ii)
have different forms. Roughly, (i) provides a more complicated, non-linear condition
but involving fewer variables than the linear condition given by (ii). Those two
infinitesimal conditions are equivalent at least at some particular simple cases of
symmetry [16]. Leaving the question of equivalence in its full scope aside, we choose
(i) for considerations in this paper. The reason for this is pragmatic: we find fewer
variables as a considerable advantage in practical computations.

In the paper we give a complete list of local forms for Z!-invariant generic germs
of Lagrangian submanifolds of dimension < 3. We find that continuous invariants of
normal forms appear in dimension 3 (cf. singularity =5 in Table 2 below) in contrast
to the standard (non-symmetric) theory where the modal parameters appear from di-
mension 6 onwards [25]. Although the family =} of all equivariant Lagrangian germs
forms only two equivalence classes up to non-equivariant Lagrangian equivalences, it
splits into uncountably many orbits under the action of equivariant Lagrangian equiv-
alences (cf. Remark 3.8 below). Furthermore, examination of this family provides a
direct elementary proof for independence of two classifications: (i) the classification
of the equivariant Lagrangian singularities up to equivariant Lagrangian equivalences
and (ii) the classification of the symmetric functions up to equivariant right equiva-
lences (cf. [20, 24})).

The paper is organised as follows. Section 2 contains some introductory results
concerning le actions on R? and R?, equivariant Lagrangian germs, pull-backs of
Lagrangian manifolds and infinitesimal stability conditions. The main results of the
paper are presented in Sect. 3. In particular the classification of generic Lagrangian
singularities of dimension < 3 with Z5 symmetry and their normal forms (up to an
equivariant Lagrangian equivalence) are described by Theorems 3.3 and 3.6 and listed
in Table 2; proofs are deferred to Sect. 4.

2. Preliminaries

We do not give proofs of most results in this section as they are fairly straightforward
extensions of the results of Arnold [2] to the equivariant case. All functions, mappings,
germs, etc., considered in this paper are C*°. Symbol & will be used to denote a
compact Lie group. All actions of & on the Euclidean spaces R™ are assumed to be
orthogonal (with respect to the Euclidean inner product). Symbols C'2(n), & .(n),
CP(n, k) and &, (n, k) are used to denote the spaces of -invariant functions on

R™ and their germs at 0, of %-invariant mappings R™ — R and their germs with
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the source and target at the origins, respectively. By m’;(n) we denote the ideal in
&,(n) of all germs with all derivatives of order up to k — 1 vanishing at 0. If on R"
and R¥ we have actions of different groups, say % and %, then the set of & @ &'~
invariant functions, & @ % -invariant germs, etc., on R® x R* will be denoted by
Coey(n+ k), E4gy(n+k), etc. It is known [18, 19, 6] that there exists a Hilbert
map o:(R™,0) — (R*,0) such that C32(n) = 0*C*(a), &,(n) = 0*&,(a) and that
the &, (n)-module &g (n,m) is finitely generated over &,(n). In most of this paper
the group % under consideration will be Z} = Z, ® ... ® Z, (I terms), where Z,
denotes the multiplicative group {—1,+1}. For integers s, ..., s, >0 and s;,; >0
we have the canonical representation v of Z} on R™ = R®! ... x R% x R%+!1 defined
as follows:

def
Vg(xl, ey T Ty ) = (X, -, €T, T4 )
forevery (z,, ..., z;,z,,,) € R x... xR xR+ andevery g = (¢, ..., &) € Z.
The multi-index (s, ..., s;|s;,;) is called the rank of the representation v on R™

[24]. We will refer to v as the representation of ({+1)-terms sum Z,®. . .®Z,d1 ~ Zl2
on the ({4 1)-factors Cartesian product R*1 x ... x R% x R+! if we want to avoid the
explicit writing down of the rank of v. By straightforward calculations and elimination
of cases with zero-dimensional space of fixed points we obtain the following result
(cf. [23, Sect.6]).

Lemma 2.1. A linear action of le on R? or R3 is via a group homomorphism onto
one of the following eight effective groups operating as described.
For R*:
(1) the trivial group 1 with the trivial action,
(ii) Z, with the canonical action of rank(2),
(iil) Z, =~ Z, ® 1 with the canonical action of rank(1 | 1),
(iv) Z, ® Z, with the canonical action of rank(1, 1).
For R3:
(v) the trivial group 1 with the trivial action,
(vi) Z, with the canonical action of rank(3),
(vii) Z, = Z, ® 1 with the canonical action of rank(2 | 1),
(viil) Z, = Z, ® 1 with the canonical action of rank(l | 2),
(ix) Z, ® Z, with the canonical action of rank(l1,2),
(x) Z,®Z, ~ L, ®Z, ® 1 with the canonical action of rank(1,1]1),
(xi) Z, ® Z, ® Z, with the canonical action of rank(1, 1, 1),
(xii) Z,®Z, ~ {(a, 3,7) € Z, ® L, B ZL,; afy = 1} with the action induced by the
canonical action in (Xi).

Lemma 2.2. The Hilbert maps and generators of the modules of equivariant mappings
for non-trivial effective group actions of Z% on R? and R3 with dim{space of fixed
points} > 1 are given in Table 1.

Let us denote by (z, &) the canonical coordinates on T*R™ ~ R?" induced by
the natural coordinates  on R™, by 7 the canonical projection T*R™ — R",
(z,€) — z and by w the canonical symplectic form Y d¢; A dz; on T*R™. An

i

orthogonal %-action v on R™ has the natural lifting v* ~ v ® v to T*R™ of the
form V;k(l’, & — (vg(:v), ug(g)). An n-dimensional immersed submanifold L = «(R™),
t:R™ — T*R", is called a Lagrangian % -invariant submanifold (L% -manifold) if
t*w=0and v} (L) = L for every g € ¥; such . is called a Lagrangian immersion.
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Table 1. Selected Hilbert maps and generators of £y.(n, n)

R™/Effective group/ Hilbert map Generators of & (n,n) o(R™) C R®
Repres. rank o:R™ — R? z+— V(z) e R
1 RZ/Z2 dL/(D (w%,xz) (z,0),(0,1) z, >0
R3/Z,®1/(1]2) (23,25, %5) (z;,0,0),(0,1,0),(0,0, 1) 2, >0
3 R3/Z2 ®1/2|1) (m%,xlmz,m%,w3) (z,0,0),(z,,0,0),(0,z,,0) 2,2 = z%
0, z,,0),(0,0,1)
4 R¥JZ,0Z,®1/(1,1|1) (z3,23,%;) (z;,0,0),(0,x,,0),(0,0,1) 21,2, >0

Let I and J be two multi-indices such that INJ =0, ITUJ = {1, ..., n} and
R! & {y € R%y; = 0}, RY &f {y € R™"y; = 0} are $-invariant subspaces
(for convenience we identify y € R™ with the pair (y;,y;)). A transformation
1:R™ — T*R" of the form

oS oS
L(yl,yj): (3_y1 (y[)y‘])’yjaylv_@(y[vyj)> ’ (1)

where S € CP(R™), is a “-invariant Lagrangian immersion. Function S will be

called an I.J-function of the Lagrangian submanifold I & ,(R") C T*R™ A
germ (L,0) of an L% -manifold L C T*R™ at 0(¢ L) will be called an L%-
germ. We say that (S,0) = (S(;,2;),0) € &,(n) is an IJ-germ of (L,0) if

the germ (Lg,q,) | of the L% -manifold Lg generated by the IJ-function S at

Gy = <g§ o8 )) equals (L, 0) up to translation (z, &) — (z,£) — g, of
I 0

) 07 07 T a.
0 Oz,
T*R". The I.J-germ (S(£;, ), 0) is called minimal if 82S/0¢,0¢,|, = O for every
i,4' € I. In this case #I (= cardinality of I) equals dimker((Z'm)|7,,) and for any
I’ J'-germ of (L, 0) the inequality #I’ > #I holds. A minimal I.J-germ with I # () will
be called non-trivial. As we shall see soon, any L& -germ can be transformed into one
having a minimal J.J-germ by a smooth equivariant transformation ®: T*R" — T*R"
preserving both the fibration 7 and the symplectic form w (i.e. such that ®*w = w).
Such a @ is called an equivariant Lagrangian equivalence (L% -equivalence). An
IJ-germ and an I’J’-germ corresponding to L& -equivalent L% -germs will also be
called LY -equivalent. A germ of L% -equivalence is of the form

£
A'z/),oz(n) ‘3;
where ¢:(R™,0) — (R™,0) is an equivariant diffeomorphism and o € & (n) [25].
With the help of L ¥ -equivalences the /J-germs (or, equivalently, the immersion (1))
can be simplified as follows.
Lemma 2.3. Any IJ-germ (S(&;,x i])’ 0) € &, (n) is LY -equivalent to:
() the 1J-germ (S — j{S,0) € m%.(n), where

S E SO + Y 69S/06,0) + Y 2;05/92,(0),

iel jed

@ Y*n+da, neT*R", 2
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(i) an {1, ..., n}0-germ (S'(¢,, ..., ,),0) € m%(n),
(i) an I"J"-germ (S, @ ;1),0) € mi,(n).

We omit the straightforward proof of this result.

2.1. Morse families of Pullbacks

We recall that a germ (F',0) € ng,(m—}-n) of a family of functions R" > x — F()\, x),
A € R™, is called a Morse family germ (Mf-germ) if

2 2
rank(aF aF)

N naz )| =™ )

0

As it is known from Arnold [2] (see [13] for the equivariant case) such Mf-germ
(F,0) generates an L¥-germ in T*R", say (L(F),0), by means of the equations

oF OF

Any L¥-germ is generated by an Mf-germ (e.g. by F(\ z}, 2 ;) f S\, z;) —
> Az, where S(&;, ;) is an IJ-germ).
iel

Let (¢, @) € &,(n, @) x &,(n) and (L,0), L C T*R™ be an L% -germ. Following
[14] we define the pullback (¢, )™ (L,0) of (L,0) by means of a relation (¢, o) as
the germ at 0 € T*R™ of the subset

{¢¥n+da|, € T*R; 2z € R",¢p(x) = () and n € LNU},
where U is a sufficiently small neighbourhood of 0 € T*R™,

Lemma 2.4. Let (F,0) € mé(Rm x R™) be an Mf-germ generating an L& -germ
(L,0) and

def

F\z) = F\, ¢(2)) + (),

where (¢, @) € £,(n,7) x m?,(n). Then:
() (¢, )* (L,0) is given by Eqgs. (4).
(ii) If ¢ satisfies the mapping condition

Im(Ty¢) + Im(Ty(w | L)) = T,R™, (5)

then (L,0) © (¢, )* (L, 0) is an L% -germ.
(iii) F' is an Mf-germ if and only if (5) holds.

Proof. (i) can be checked directly. (ii) is obtained by a slight reformulation of the
transversality condition in [11, 12, Proposition 4.1]. (iii) The equivalence of (5) and
(3) can be verified directly. Q.E.D.

The L:¢-germ (L, 0) as in Lemma 2.4.ii will be called an L% -pullback of (L,0) by
means of the L% -relation (¢, ). It is easily seen that if A,,5:(T*R",0) — (I"*R",0)
is an L.¢ -equivalence of the form (2), then (1)0¢, a+[Bo¢) is an L ¢ -relation inducing
(L,0) from (A¢BL, 0).
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Lemma 2.5. Let (L,0), L C T*(R™ x R¥) be an LS -germ generated by an Mf-germ
F e m%.(m + m + k) of the form

FQz,w) = fOu) =Y ANz, for (\z,u) ER™xR™xRF,  (6)

i=1

where f € m:*?(m+m). Let (L,0), L C T*R™, be an LS -pullback of (L,0) by means
of (9, ) € &L (n,m + k) x Ey(n) such that rank(0¢/0x)|, = l. Then there exists a

% -space R®, s Y r—m > 0, such that &-spaces R™ x R® and R™ are isomorphic

and the LY -germ (L, 0) has, up to an LS -equivalence, an Mf-germ (F', 0) of the form

FO\z,t) = fOU@,t) = Y Az (A7) €ER™ xR™ x R* ~ R™ x R"),

i=1

where U : (R™ x R%,0) — (R™,0) is an equivariant transformation such that
rank(9U /O(x, t))|p > 1 —m

This follows directly from the above properties of pullbacks. Note that the & -space
R? is isomorphic to the ker(Ty¢) C TyR™ ~ R™.

2.2. Infinitesimal Stability Conditions

A family of transformations @,:T*R™ — T*R", |t| < ¢, is a family of L%-
equivalences if and only if it is a flow of a time dependent Hamiltonian vector field
on T*R™:

defz 0H, 0 6Ht 8

where each H, belongs to the space %y(T*R") of symmetric hamiltonians (C
CZ(T*R™)) of the form

H(z, &) = (a(z) | &) + b(z) @)

(see Arnold [2], or [15] for the equivariant case). Here (|) denotes the inner product
on R",a € CP(n,n) and b € CP(R™).

Proposition 2.6. For a smooth family of LS -germs (Lt,O) L, C T*R", |t| < ¢,
corresponding to a family of 1J-germs (S,,0) € mg(R”) S = S5,(;,x ), the
following conditions are equivalent.

(i) There exists a family of L% -equivalences @, : T*R™ — T*R™ and an open
neighbourhood U of 0 € T*R™ such that ®,(Ly N U) C L, and $,(0) = 0 for
t] < e.

(il) There exists a smooth family of Hamiltonians H, € F,(T*R™) such that for
each t, |t| < e, we have

ds, 05, 05, *on
= H(@E T &, — J) near (0,t) ¢ T"R"” xR, ®)

(H,,0) € m,(T*R™). )
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Proof. This theorem is a sort of equivariant version of the Hamilton-Jacobi Theorem

[1] (for the symplectic structure Y d€; A dx; — 3 d§; A dx; on T*R™ rather than
1€l JjeJ
the canonical one). The proof is similar to the proof of Proposition 3.3 and Lemma

3.2in [15]. Q.E.D.
We say that an L% -germ (L, 0), L C T*R™, is infinitesimally stable [16] if
ELT*R™)|, = HH TR . (10

This condition has a form independent of the immersion ¢:R™ — L C T*R™ but
it is not very convenient for explicit calculations. We introduce below (after [16]) a
few more useful versions of (10).
Lemma 2.7. Let (5(;,2,),0) € m'z%(R”) be an I1J-germ of (L,0), let o : R® — R?
be a Hilbert map and Vl, ceey Vb be generators of £,(n,n) over £,(n). Let V, € m(a)
andU = (U, ..., U,) € &(a,a) be such that

- (88 oS .
‘/zog(glyxj):<‘/;<6_€i$:cj> <£I7_%J>> (1’=17"~7b)y (11)

oS
UOQ(fj,CL'J):Q(b?wTJ) . (12)
I

The following conditions are equivalent.
(1) The L% -germ (L,0) is infinitesimally stable.
(ii)
@)= Uy ., Uy +(Vis -5 Vi Dy + .7 ,(a), (13)
where M () denotes the ideal in &(a) of all germs vanishing on o(R™).

(iii) Let a compact Lie group &' operate orthogonally on R¥, and let (S'(¢;,x,
t),0) € m?;,eay,(n + k) be such that S'|,_y = S. Every a € &g q1(n + k) has the

expansion
b
. (08 oS’
oAl x5t = Z <Vi (a_éz’xj> ‘ (51, - B_:q,—>>

i=1
. (08’ ~ (08
| = - 14
le<a§I,mJ,t>+B<B§I,xJ,t), (14)
where H;, B € &, 51(n+ k).

Proof of the above result is straightforward. Every I.J-germ (S, 0) satisfying one
of the conditions (ii)—(iii) will be called infinitesimally stable. Equation (13) depends
actually on (F,0) € &(a) such that S = F o p and on the choice of I and J. We
will call it an inf-1.J-stability condition for (F,0) € &(a). From (i) the following two
corollaries follow immediately.

Corollary 2.8. If the I.J-germ (S,0) is infinitesimally stable, then the I.J'-germ (S’,0)
as in (v), where J' = JU{n+1, ..., n+ k}, is also infinitesimally stable.

Corollary 2.9. Condition (ii) of Proposition 2.6 holds for every smooth family of 1J-
germs (S;,0) € mé,(R"), [t| < e, such that (S,,0) = (S, 0) if and only of the I.J-germ
(S,0) is infinitesimally stable.
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Example 2.10. Let us consider the group & & Z, ®7Z, = {£1,+1} acting on
RY as v, i@y, o0y Bg) > (€121, 6,85T5,2,) for each (e1,6) € Z, ® Zy, a
Hilbert map o:R* — R*, o(z) = def (z2, 23, 75, 2,) and the following four generators
of & 02,& 4V, € (2,,0,0,0), ¥, £ (0,,,0,0), ¥; £ (0,0,1,0) and V, =
(0,0,0,1). Obviously o(R*) = {z € R*; z; > 0 and z, > 0} and s0 .7,(4) C m™(4).
Easy calculations show that for an /J-germ

(SEr,7,),00 = (8¢, 73,5, 74),0) = (F(2)] 22,13 ¢ 4 O) € M7,02,(4)
the condition of inf-IJ-stability (Eq. (13)) takes the form

OF\? oF
)= (2l 5 ) 25
(21, 24) <ZI<3Z1) 2 823 z4>Pf(Z1YZ2113’24)

OF OF  OF
+< ,1> + A, 4).
R

“1 8—21’22 —672"23’ 02,
By Nakayama’s Lemms [3, 7] this is equivalent to the equation:

(21, 23) = <Z1F,217F,3>5(zl,z3) + (ZIF,I’Z37 Dg> 15)

where F'| o OF [0z ,,_.,—o-

3. Classification of Generic I.J-Germs with Z,, Symmetry

In this paper we consider a restricted notion of genericity of Lagrangian submanifolds
expressed in terms of their IJ-functions. It is based on an observation that an IJ-
function, if exists, is determined up to an additive constant by its L% -manifold. We
shall say that a class of germs & C &,.(n) is generic (non-generic) if there exists
a residual subset . C Z2°(n) such that for every F' € % and every &-invariant
point x, € R™ the germ (F(m + x,),0) belongs (does not belong) to .

Now we state an equivariant version of Thom’s Transversality Lemma useful as
a technical tool for finding generic classes It is a simple consequence of continuity
and openness of the transformation o*: C*°(a) — CZ(n). Below the s-jet extension
of f € C°°(R™) is denoted by j*f, the (trivial) fibre bundle of j®-jets over R™ by
J°(R™) and its fibre over € R™ by JZ(R™).

Lemma 3.1. Ler & operate trivially on R¥ and orthogonally on R™ with 0 being the
only fixed point. Let ¢ : R™ — R® be a Hilbert map for R™, %) and X be a stratified
submanifold of J§(R® x R¥) of codimension cy. Then the subset of &,(n + k) of all
germs (S,0) € &y.(n + k) such that S(z,t) = F(o(x),t), where F' € C*°(a + k) and
JjoF € X, is generic if cxy < k and non-generic if k < cx.

Up to an L% -equivalence (a translation in 7*R™) any I.J-germ belongs to mé(n)
(Lemma 2.3). To accommodate this simplification in our task of classification of
typical L% -germs up to L% -equivalences we modify slightly the above definitions
as follows. We shall say that a class C' C m_?y(n) of IJ-germs is generic (non-generic)

if the class C' of all germs in &.(n) of the form

Enz) e SELT)+e+ Y b+ Y ¢,

1€1 jeJ
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where S € C and ¢, € R, is generic (non-generic) in £, (n) (in the previously
defined sense).

According to Lemma 2.3, an LY -germ (L, 0) is either trivial (dim Ker(r | L) = 0)
or, up to an L. -equivalence, is generated by a non-trivial minimal /.J-germ from
m;} (n). Thus we observe the following.

Remark 3.2. If non-trivial generic I.J-germs exist in m@(n), then the subspace of
fixed points of R™ has a positive dimension.

Now we formulate the main results of the paper.

Theorem 3.3. We are given an orthogonal action of & = le' on R"™ (n = 2,3) and
multi-indices I, J, INJ = {1, ..., n}, 1N J = 0). Any IJ-germ (S,0) € m% ((n)
either

(1) belongs, up to an equivariant orthogonal change of coordinates on R", to one of
the non-trivial, minimal and generic classes of 1.J-germs (Cases) in Table 2, or

(ii) belongs to a generic class of trivial 1.J-germs, or
(ii1) belongs to the non-generic class of all remaining I.J-germs.

Proof. In virtue of Remark 3.2 and Lemma 2.2 it is enough to consider all possible

pairs of multi-indices IJ for all cases in Table 2. The proof is similar in all these

cases. We consider here in detail the Case 2 of Table 1 (¢ def Z, © 1 operates of R3,

o(x) = (@2, 3y, x)) and T = {1}, J £ (2,3}, only.

Let (z;, f, f,p,) be coordinates in 5-jet space J3(R?) corresponding to

ootB
02002y 0z

(Zl, F(z),

Let us consider the following submanifolds of J3(R%): M, Lf g fi00 # 0}, M, &f

{fi00 = 0 # froo(fio + fio)} and M, defined by the conditions f) = fopo = 0 #
J300 and
0 0 3f30 4fa00
rank | fi10 So0 Ja0 a0 | =3
fioo foor Jaor faon

Obviously M,, ¢ = 0,1,2, is a submanifold of Jg(R3) of codimension ¢ and

N J3(R*) — (MyUM,UM,) is a stratified submanifold of codimension 3 in J3(R?)
[3]. In virtue of Lemma 3.1 IJ-germs in m?f (3) are divided into the following four

classes. (We recall (S,0) € m?; (3) is of the form S def Fop, Fem(3).)
(a) The generic class of germs F' o p such that ng € M,, containing no minimal
IJ-germs.
(b) The generic class of germs F o g such that j3F° € M, containing only minimal
I.J-germs.
(c) The generic class of germs F o g such that j3 ' € M,, containing only minimal
1J-germs.
(d) The non-generic class of germs Fo g such that j3 F' € N, containing only minimal
1.J-germs.

Obviously classes (b) and (c¢) correspond to case (i) (Cases 4 and 5 of Table 2)
while (a) and (d) correspond to the cases (ii) and (iii) of the Theorem. Q.E.D.
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By straightforward check we obtain:

Proposition 3.4. Generic I.J-germs of all classes in Table 2 except Case 5 are inf-
1J-stable.

An I,J,-germ and an I,J,-germ from m%.(n) are called L% -equivalent if the
L% -germs generated by them are L% -equivalent.
Lemma 3.5. Let (5,,0) = (F, 0p,0) € mg,(R") —a? <t < b%, be a smooth family
of 1.J-germs belongmg to a single Case 1-4 or 611 in Table 2 (with the appropriate
action of & on R? or R®). Then any two germs (St1 ,0) and (Stz, 0) in this family are
L% -equivalent.
Outline of a proof. In virtue of Proposition 2.6 it is enough to show that there exists
a smooth family of Hamiltonians H, € . (R™) (of the form (7)) satisfying Eqgs.

(8)—(9) in some open neighbourhood of (0,0) € T*R™ x R. From Proposition 3.4
and Lemma 2.7.iii (for &’ =1, k = 1) we obtain the expansion

05, oS
t (ﬁzaxj) ((% &€ — bm—;>
(for (§;,z4,t) near (0,0,0) € R" x R), (16)

where the symmetric hamiltonians (H,,0) € %Z,(T*R") have the form
b

Hy(@,6) € > (Vi) | A, ) + Bz, 1), a”n

i=1

with (4,,0), (B,0) € &,(n) and (V,,0)’s being generators of &,.(n,n). The idea is
to show that in all cases of interest (16), (17) and additionally (9) can be satisfied for
all ¢ sufficiently close to 0. This can be shown case by case with some mundane but
straightforward algebra, with the use of the following equivalent from of (16):

dFt()_ZV(z t)A OU(Z t)-I—BOU(Z t)[ ( (L'J)’ (18)
o8y’

where (4;,0), (B,0) € &(a), V;,...,V, € myg (n + 1) and the Z-invariant
transformation U :R™ — R is defined by (11)-(12) (with S, instead of S).

Now we shall discuss the derivation of normal forms.

Theorem 3.6. Column 5 of Table 2 contains normal forms for all L% -equivalence
classes of all non-trivial, minimal and generic 1J-germs for all non-trivial orthogonal
actions of Z on R? and R®.

Proof. At first we make a simpliﬁcation. Let
F@)=Y_fi 2 - 2 +0°(2) € £(a)

satisfy the set of conditions in Columns 3 and 4 of Table 2 for one of the Cases
14 or 6-11. Then there exists a family F, satisfying the same set of conditions
and joining F to a polynomial F' € &4(n) having all coefficients zero except those
explicitly appearing in Table 2. By Corollary 3.5 IJ-germs (F,0) and (£, 0) are L%-
equivalent, so further considerations can be restricted to finding such families and the
normal forms for such polynomial germs (F',0).
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Case 1. The family Fy(z) & sgn(fos) (1 — £) |fos] — 123 = fhz3 satisfies the
conditions of Case 1 and joins Fy(2) = fy;23 with Fj(z) = 23, where ¢ o sgn fo3.
So {1} {2}-germs (5(x,,£,),0) £ (f3€3,0) and (S, (x,,£,),0) £ (63,0) are L~
equivalent. Now note that the change of sign (ccl,acz) = (z, xz) on R? induces a
L% -equivalence of T*R™ making {1} {2}-germs (—&;,0) and (¢3,0) L% -equivalent.

Cases 2, 3 and 6-11. These cases can be proved analogously as in Case 1 (we omit
this part of the proof). Note that in cases 3 and 4 we can utilise an observation that
the subspace of matrices of rankn is open in the space of all » X m matrices, and
each connected component of it contains a matrix [d;;] with entries d;; = +1 and
d;; =0 for i # j.

Case 5. We have separated this case from the others since it requires a slightly
different approach and is the only non-elementary “catastrophy” [3, 7, 22] we
encounter here. We divide this part of the proof into several steps.
We shall consider R* with the canonical action of ¥ & Z, ® 1 of rank(1|3) and
the Hilbert map o:R* — R*, (z, ..., z,) — (z,2,, 75, 2,). Assume [ & (1) and
JE@2,3,4).
Step 5.1. An IJ-germ (S,0) € m%.(n), S, &y, %3, x4) = F(Z)lz=(§%
1J-stable if

2p,@3,w) 1S inf-

Jio00 = fa000 = 0 # f3000 » (19
4fa000 faoo  Jaoro  Saoor
rank 3f3000 Sai00  fro10 Faoon | _ 4 20)

0 f2100 f2010 f2001
0 f1100 flOlO flOOl

Proof. The inf-IJ-stability condition has the following form:
E(z) = <51F,21>;£(zl) + (2 F |, Fy, F3, F oy g, (21

where ‘7’ indicates the restriction to z, = z§ = O From the assumptions
of the lemma it follows immediately that m (zl) = (5, F3), 1)#(z)- Thus to show
21) it is enough to prove that every polynomial in z, of degree < 4 belongs to
(z)F |, F,, Fy, Fy,1)g modm*(z)). This easily translates into a 4 x 4 system of linear
equatlons with non vanishing determinant of the form (20) (up to a multiplicative
constant).

Step 5.2. Let (S;,0) = (F, 00,0) € my(4), —¢ <t < 1+4¢, 0 < g, be a smooth
family of IJ-germs such that conditions (19) and (20) are satisfied for each ¢ and
f 3tooo =36@) f. 3tooo ) ﬁooo =4p(t) fzfooo’ 22)

where 3 is a smooth function and the expansion dF,/dt = 3 f! Tijwit 2] b 2f+0®(2) is
assumed. Then there exists a smooth family of Hamiltonians H, € .7, (T*R*) of the
form (7) satisfying Egs. (8) and (9) in some neighbourhood of {0} x[0,1] € T*R*xR.

Let (5,(§;, 2y, 73,74),0) = (F, (§1a$2a$3ax4),0) € m%2@1(1 + 3) be a family
satisfying assumptions (19)—(22) of Step5.2. Equations (16) and (18) take the
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following form in this case:

ds, _ 95, as, 0S8, 0S8,
dt ({:1,111'2,1!3,.1’4) - Ht<8£1 ,x2’x37x4a§17 al’z?— 85173 T —5—5 '

dF 4 (23)
- ‘Ef (2) = 2 F | Ay o U + ZFt,lAti U+ B oUl_ 20y 320
=2
where .
def
H(&,0) F 2,6 A0(2) + D 6 A + BUD_2 1y 00,00 (24)
=2

v (ELF71(2), 29,5, 2,) and Ay, B € C*°(4). To show that (9) holds let us
consider
dF,

t def
(e (flax25x3ax4) = - %

(») — ZlFty1(2)/6(0]7,:(5%,12,13,&:4) :

We find by virtue of (22) that
ot = 0mod(¢1°, z,, x5, 2,) .

According to Step 5.1 there exists the following smooth family of expansions (for
sufficiently small ¢):

4
al(2) = 6 F, () A, 0U@) + > _F, ((2) A, 0U(2)+ B, o U@~
=2

1T2,T3,24) 0

where A,,A,;,B, € £(4) and U(z) o (2, F7(2), 23, 23, z,). From this equation
taken mod(¢!°, z,, x5, ;) (€2 ,03.03,9) WO find immediately that A,;(0) = B,(0) =

8B, /0z,(0) = 0. Now setting A,,(2) € 4,,(2) + 2, F, ,(2)B(t) for z € R* we obtain
Hamiltonian (24) belonging to mj, (T*R?) and satisfying (23).

Step 5.3. We show that an I.J-germ (5,0) = (F'op,0) as in Step 5.1 is L% -equivalent
to the I.J-germ (F' o g,0), where F' has the form

F =2 +az} + 2,2 + 2327 + 1,27, (25)

with e = +1 and ¢ & Fao00 1 3000 ™3

By virtue of the previous two steps and an argument analogous to that in the
beginning of the proof of this theorem the /.J-germ (S5,0) is L% -equivalent to an
[J-germ (8',0) = (F'og,0) with F' = 37 fl, 2" ... 2" being a polynomial with
all coefficients vanishing except, perhaps, those appearing explicitly in (19), (20) and
fi000- Now utilizing Step 5.2, an observation on homotopic connected components in
the space of n X m matrices (cf. Cases 2, 3 and 6-11, above) and solving Eq. (22)
for suitable 5 we find an L% -equivalence of (S’,0) with (S”,0) = (F" o p, 0), where

iz def 3 4 2 4
Fo(z, o5 z) = sgn(fz000) 21 + 2] + 25,2 £ 2,27 + 2,27,

where {i,,45,7,} = {2,3,4} and a is as above. Finally we get the form (25) by
applying to (S”,0) an L% -equivalence of T*R* induced by a suitable diffeomorphism

of the form (z, ..., z,) = (z,, *w, , Tz, , £x,,).
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Step 54. Let (I/,0), L’ C T*R?, be an L% -germ generated by an {1} {2, 3}-germ
(8',0) = (F' 0 p,0) € m%(R?) as in Case 5 of Table 2 (Columns 1-4). Then (L', 0)
has an Mf-germ

def

F N z) = £X 4 ad +uy (@) A + uy(@) A + ug(z) A8

—\z; € My g(143), (26)

(uil 9 u127ui3) = ($2,$3, f(a:%,a:z,%)),
where f € my(3) and {i,,1,,13} = {1,2,3}. 27)

To show this let us define an {1} {2, 3,4}-germ

def
(S0, 92,934 0) = (F@) o2 y,45,000 ) € ML),

4 .
where F(2) £ F'(2,2y,2) + 2,3, ¢;zi and ¢, ..., ¢, € R are such that (20)
i=1

holds. Let (L,0), L C T*R* be the L% -germ generated by (S,0). The L% -germ
(L',0) is an L% -pullback of (L,0) via an L¥-relation (¢,0) € £,(3,4) x &,(3),
where transformation ¢:(x,,z,, ;) — (z,Z,,T3,0) has rank 3. So, according to
Step 5.3, (L,0) is an L% -pullback of an L%-germ (L,0), L C T*R*, generated
by IJ-germ (F(&2,z,,25,2,),0) € m>,(4) with F' of the form (25), by means of an
L% -relation (¢, @) € &4(3,4) x &4(3), with rank ‘Zfo = 3. On applying Lemma 2.5
we find that, up to an L% -equivalence T*R> — T*(R3), (I, 0) has a Mf-germ of the
form (26), where ui(x%,xz,%) € my(3), i = 1,2,3, are such that the ¥ -invariant
transformation u = (u,, u,, u3): (R*,0) — (R, 0) has rank > 2 at 0. It follows that the
det[0(u; , u;,)/ Oz, x3)]|g # O, for some indices %, and 4,, so choosing (zy, u; , u;,)
as new equivariant coordinates on R>, we find that « has the form (27).

Step 5.6. To complete the proof it remains to notice that in Column 4, Case 5 of

Table 1 we have the implicit definition of a minimal {1} {2,3}-germ of (L’,0) in
terms of an Mf-germ (26)-(27). Q.E.D.

Remark 3.7. All I.J-germs described by Column 3 of Table 2, with the exception of
Case 5, are structurally stable in the following sense. Let (S(§;,2;),0) € mé,(n) be
an IJ-germ belonging to one of these Cases. If (S,0) € C¥(n) is sufficiently close
to S in Whitney’s topology and L' C T*R™ is a Lagrangian submanifold given by
equations:

05’ 05’
= [ é:] = - )

0¢; Oz

Ty

then there exists a & -invariant point p, € L’ such that L% -germs (L', p,) and (L,0)
are L% -equivalent.

Remark 3.8. The natural question arises at this stage: are singularities of type E3
L¥-equivalent among themselves or not. We will not attempt to resolve this question
here in its full scope but only show that there exist uncountably many different L% -
equivalence orbits (L& -orbits) in this family.

In a particular case, when (u,, u,, u3) () o (0,z,,z,) and a € R, the Lagrangian

germs of type =g (Table 2, Case 5), denoted here by (Lff,O), are given by the
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equations
OMF _ oOM*

A ’ or &

where ME(\, ) & £X° 4 aA8 + 2,A* + 2,02 — Az, is a Morse family belonging
to gzz(R x R®) with Z, having the canonical representation v of rank(2|2) on
R* = R x R, i.e. such that v_:(\,z(,2,,73) — (), €2, 2,,25). We claim that
L% -germs (L}, 0) and (L;,0) are not L% -equivalent if a 3 b.

Indeed, assume that (L}, 0) and (L;,O) are L% -equivalent. If so, their Morse
families, M and M,", must be equivariantly R*-equivalent. This means that there
exist an equivariant diffeomorphism germ @:R x R> — R x R3 of the form
(A, 2) = (A, ), X(2)) and a function a € &, (R*) such that

M\, z) = M) (AN, z), X (2)) + o(z) + const, (28)

which can be proved by generalization of its non-equivariant version in [25] or in [3,
pp- 303-309]. Now, a straightforward symmetry argument shows that A and X, the
first coordinate of X = (X, X,, X;), must be as follows:

A\ ) = MAN) + 7, BOV?) + C(\, 2),
Xy(x) = z,(d+ D3}, 1), 3)) ,

where C' and D, as well as X,, X5 and «, are certain C*° functions belonging to the
ideal (2}, ,,23)poo(x z)- Assuming the expansion AN = a, + a;X* + o(X*) and
taking (28) modulo (z7, 2, 3, A%, 2, X%) sy ) We get the equation

M4 aX — Az = aSX\® + (6ada, + adb) AP
—a,d\z; —a;d\z, (for (\,z;) € R?). 29

It follows immediately that we must have 1 = a,d and 0 = a,d, so a; = 0. Further,
Eq. (29) implies that 1 = a$, thus comparison of coefficients of A3 yields equations
a = 6a3a; + alb = a¥b = b which finally proves our claim about splitting of the
family =3 into infinitely many L% -orbits.

The symmetric function A ~— X° 4+ a)® on R with the canonical representation
of Z, of the rank(1(0), i.e. such that A — eA(¢ € Z,), is equivariantly right
equivalent to the function X — X\° (note that A — A(1 + a)?)!/% is the appropriate
diffeomorphism). Given that, we conclude immediately that the classification of
equivariant Lagrangian singularities up to L. -equivalences is not subordinated,
in general, to the classification of symmetric functions up to right equivariant
equivalence. For this reason it is independent from classifications of versal unfoldings
like those of Wasserman [24] or Siersma [20].

4. Final Remarks and Applications

Let L be a Z-invariant Lagrangian submanifold in 7% X. In usual applications to
physics L represents the space of states attainable, in the phase space 77X, by the
concrete, mechanical, thermodynamical or optical system. In optics of symmetric
optical instruments L is a system of rays orthogonal to the transformed wavefront.
The set of critical values of the projection 7y :L — X (75 :T*X — X), which is
also the envelope of the outgoing rays, is a caustic of the system (cf. [S]). The list of
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classified symmetric Lagrangian submanifolds provides the classification of symmetric
caustics. An alternative approach to the classification of caustics is presented in [17].
In that approach classification is obtained through Morse generating families and so-
called “caustic equivalence.” However this equivalence, keeping the diffeomorphic
type of the caustic invariant, is not preserving the physical sense of the Lagrangian
submanifold itself. Symmetric Lagrangian submanifolds arise naturally in a number of
contexts. The magnetic stable and metastable phases of a ferromagnetic crystal can be
modelled by symmetric Lagrangian submanifolds with invariant generating functions,
F, as a free energy function (cf. [15, 13]). The point symmetry group of the crystal
acts on internal and external variables and F' must be invariant under this action (32
point groups). The locus of hysteresis and phase transitions can be identified with the
local bifurcation set of F'. In other problems with the general branching of symmetry
the classification of generic symmetric Lagrangian submanifolds provides the typical
models for stationary processes with qualitative changements. It forms a basis for a
thermoelastic analysis of phase transitions in elastic crystals as it was formulated by

[9].
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