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Abstract. We study the concentration behavior of positive bound states of the
nonlinear Schrόdinger equation

Under certain condition on F, we show that positive ground state solutions must
concentrate at global minimum points of V as h -> 0+; moreover, a point at which
a sequence of positive bound states concentrates must be a critical point of V. In
case that V is radial, we prove that the positive radial solutions with least energy
among all nontrivial radial solutions must concentrate at the origin as h -» 0+.

Section 1. Introduction and Description of Main Results

Of concern are standing wave solutions of the following nonlinear Schrόdinger
equations:

~V w i t h x e R " , (1.1)
ct 2m

i.e., solutions of the form

(1.2)

where h, m, y and p are positive constants, p > 1, EeR, V is real and belongs to
C 1 (R") and u is real. In [FW], Floer and Weinstein proved for small h > 0 (and for
p = 3, n = 1) the existence of standing wave solutions concentrating at each given
nondegenerate critical point of the potential V, under the condition that V is
bounded. In [O1? O3], Oh generalized this result and obtained for small ft > 0 the
existence of multi-lump standing wave solutions with u in (1.2) being positive and

* Research supported in part by NSF Grant DMS-9105172.



230 X. Wang

concentrating at any given finite collection of nondegenerate critical points of V,

under the condition n ̂  1, 1 < p < —r I we use the convention:
(n - 2)+ \

τ = oo when n = 1, 2 1, and Ve(V)a (namely, either V= a or V(x] > a
(n-2)
and (V— a) 1/2eLip(R")). The arguments in these papers are based on the
Lyapunov-Schmidt reduction.

Substituting (1.2) into (1.1) and assuming without loss of generality, 2m = 1 and
y = l, one has

h2Au - (F(x) - E)u + \u\p~lu = 0, xeR" .

I O

Throughout this paper, we shall assume 1 < p < -—- and Vis bounded below.

A suitable choice of E makes V — E bounded below from zero. Thus, without loss
of generality, we shall assume throughout this paper that E = 0 and V is bounded
below by a positive constant. Now the equation for u can be rewritten as

h2Au- V(x)u + \u\*-1u = Q, x e R M , (1.3)

or

Av-V(hx)v + \v\p-ίv = Q, x e R " , (1.4)

where v(x) = u(hx) and inf V > 0. The existence of solutions of (1.3) (or (1.4)) and
its various generalizations has long been studied extensively (mostly by variational
methods). The interested readers may consult, in addition to the papers mentioned
below, the survey articles [1̂ ] and [N] and references listed therein. Most of the
results provide existence of solutions for arbitrary h > 0. Several papers deal with
existence of ground states, i.e., in case of (1.3), solutions with least "energy"

^ J (h2\Vu\2+ Vu2)dx l— J \u\p+ίdx (1.5)
2 R P + 1 R

among all nontrivial Hl(ΊSίn) solutions of (1.3). Here we mention two papers that
can be directly applied to (1.3). In [DN], Ding and Ni proved among other things,
that if Fis, roughly speaking, ultimately increasing along n independent directions
and "almost symmetric", then for h > 0, (1.3) (or (1.4)) has a positive ground state
(it was not stated in [DN] that the solution is a ground state, yet it is possible to
check the solution is one). Another general result of [DN] implies that if n ̂  2 and
Fis radial, then for every h > 0, (1.3) (or (1.4)) has a radial positive solution with
least energy among all nontrivial H1(RΛ) radial solutions. (We shall call them
radial ground states.) Recently, Rabinowitz [R] showed that (1.3) (or (1.4)) has
a positive ground state for every h > 0 if liminf.^^ V(x) = sup V or for small
h > 0 if lim inf x _ „ V(x) > inf V. In both [DN] and [R], more general nonlinearity
was treated, and the Mountain-Pass arguments were used.

In this paper, motivated by a question in [R], we study the concentration
behavior of positive bound states (i.e., solutions with finite energy) of (1.3) as
Λ-»0 + . Concerning positive ground states, we obtain what can be roughly de-
scribed as follows, //lim infx _ „ V(x) > inf V, any sequence of positive ground states
of (1.3) contains a subsequence concentrating at a global minimum point of V as
h -> 0+. (In particular, if the global minimum point of V is unique, then all positive
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ground states concentrate at that point as /ί->0+.) On the other hand, if we only
know a sequence of ground states uhk exists and there is a sequence of local maximum
points moving toward a certain point x0ashk^Q+, then x0 is a global minimum point
of Vand {uhk} concentrates at x0ashk^>Q + . (Thus if Vnas no global minimum, the
positive ground states, if any, do not concentrate) As for radial positive ground
states of (1.3), we prove that if n ̂  2, all of them concentrate at the origin as h -> 0 +.
For general positive bound states, we show that under the condition \W(x)\
= 0(ea\x\) near x = oo for some a > 0, a point at which a sequence of positive bound

states of (1.3) concentrates must be a critical point of K(this result is converse to
those of Floer, Weinstein and Oh). For the precise statements of our results, see
Theorem 2.1, Theorem 2.3, Theorem 2.5 and Theorem 3.1.

We should mention a recent work of Ni and Takagi [NT] concerning the
asymptotic behavior of least energy solutions of the Neumann problem for (1.3)
(with V = 1 but more general nonlinear term) on a bounded domain Ω. They
proved in [NT] that positive least energy solutions must exhibit "point-condensa-
tion" character on the boundary dΩ. More recently, they announced that they have
proved that these solutions concentrate at a point on dΩ where the maximum mean
curvature of dΩ is achieved. Some of our arguments in Sect. 2 are inspired by [NT].

Finally, we wish to take this opportunity to point out that the main results in
[FW] and [O1,03] are still true as long as V is bounded - we do not need VE Kato
class ( V ) a in this case. (So V can be highly oscillatory at oo as in the case of
V(x) = sin|x | 2 or sine1*1.) The reason is that Ve(V)a is only needed in these
papers to show

\\(-A + V(hx) - E)u ||L2(R.) £ A || ι< ||^(R») , (1.6)

where λ > 0 is independent of h > 0, V(hx) - E ̂  δ > 0 in R" (see (2.9) in [FW],
(21) in [Ox] and the inequality following (38) in [O3]). (We shall present the short
proof of (1.6) in the Appendix.) This answers a question raised by Oh [Ox] after he
found a technical error in an argument of Floer and Weinstein concerning (2.9) in
[FW] (which is the reason that he required Ve(V)a even when Fis bounded).

Recently, Gui [G] pointed out that the nondegeneracy condition on critical
points of V in [FW, Oί9 O3] can be weakened.

Section 2. Positive Ground States

To study (1.3) and (1.4), following common practice, we define Eh to be the Hubert
subspace of H ^R") consisting of real-valued functions i? such that

\\v\\ϊh= f (\Vv\2+Vhv
2)dx< + 0 0 ,

R"

where Vh(x) = V(hx). Since i n f K > 0 (as we always assume), Eh is imbedded
continuously into H1(RΠ). We also define the energy functional associated with
(1.4),

») = - J ( \ V υ \ 2 + Vhv
2)dx J \v\p+1dx. (2.1)

2 R" P + 1 R»
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Then it is well-known (see, e.g. [DN]) that Ih is well-defined on Eh,
IheCί(Eh, R), and any critical point of Ih gives a classical solution of (1.4). To
study critical points of 4, we further introduce

Mk = ίveEh\{0}\ ί(\Vv\2+Vkv
2)dx = J \v\'+1dx\

I R" Rrt J

(Mh is called the solution manifold because all H^R") solutions of (1.4) must
belong to MΛ),

Γh = {*?eC([0, l],E fc)lf(0) = 0, η(l) φ 0, Ih(η(l)) ^ 0}

and the mountain pass minimax value

ch = inf max Ih(η(t)) .

Then for any ί;e£fc\{0}, there exists a unique θ > 0 such that

furthermore,

Ih(θv) = max Ih(tv\ θveMh; (2.2)
t > 0

0<ch= inf Ih(v) = inf max Ih(tυ) (2.3)
vEMh veEh\{Q} ί ^ O

(see, e.g., [NT] for the case of Neumann problem).
As mentioned in the Introduction, under the condition

lim inf V(x) > F° = inf V > 0 . (2.4)
jc-* oo

Rabinowitz [R] proved for small h the existence of a classical solution vh of (1.4)
with Ih(vh) = ch. In view of (2.3), vh is a minimizer of Ih on Mh. We remark that each
minimizer vh of Ih on Mh is of one sign. Indeed, by (2.2), there exists an θ > 0 such
that θ\vh\εMh and

/ Λ -4 \

ί

This and (2.3) imply 0^1. But since

J (\V\vh\\2+Vhvl)dx^ I ( |7rJ 2 +F Λ t ) Λ

2 ) ί ίx= J \vH\"+1

R" Rπ K."

and θvheMh, we have 0^1. Thus θ = 1 and |u f c |eMΛ. Hence \vh\ is also a mini-
mizer of//, on Mh. A routine argument implies \vh\ is a classical solution of (1.4).
Now by the strong maximum principle, \vh\ never vanish and hence vh is of one sign.

Throughout this section, we shall always assume vh is chosen to be positive
(note Ih is an even functional). Let

«»(*) = » » . (2.5)
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Then uh is a positive ground state of (1.3). Conversely, such a ground state uh of (1.3)
corresponds to a counterpart of (1.4). In this section, if not stated otherwise, uh

always stands for an arbitrary positive ground state of (1.3), uh and vh are always
related by (2.5).

Theorem 2.1. Suppose (2.4) holds. For each sequence hk-+ΰ, there exists a subsequ-
ence {hk} such that uk = uhk concentrates at a global minimum point of x0 of Vin the
following sense: For each large k > 0, uk has only one local (hence global) maximum
point xk, xk -> x0 as k -> oo, and for any δ > 0 and large fe,

max uk(x) > (V°)J=ϊ , (2.6)

uk(x) ^ C
X — Xk

for\x-x0\^δ, (2.7)

where C is independent of fe, δ, uk and V (but dependent of F°).

Remark 1. If the global minimum point of V is unique, then all ground states uh

concentrate at that point as /z->0+ . In general, K(x fc)-» V° = inf V as ft->0+,
where xh is the local maximum point of uk whose uniqueness for small h is assured
by this theorem.

Remark 2. By the proof of this theorem presented below,

u(h- +xh)-+u0( ) inC?o c(R"),LO T(R")and#1(K''), a s / ι ^ 0 + ,

where u0 is the unique solution of (2.8) below. In particular,

as h -» 0 + .

The proof of Theorem 2.1 will be lengthy, but the basic idea is to compare vh to
the positive solution w0 of

Δu - F°w + up = 0, M > 0 , w(oo) = 0, w(0) = m a x w . (2.8)

By [GNN], u0 is radial, u'0(r) < 0 for r φ 0 and

MO, \u'o(r)\ ^ C r - e - ' . (2.9)

By [K], uQ is unique. Define £"°, I°(v) and M° by replacing Vh by the constant F°
in the definitions oϊEh,Ih(v) and Mh. Define Γ° and c° by modifying the definitions
of Γh and ch in the obvious way. Then (2.2) and (2.3) with the corresponding
modifications hold true. Moreover, 0 < c° = /°(MO)> and UQ and its translations are
the only positive critical points of the functional /° (by [GNN] and [K]).

To prove Theorem 2.1, we shall need

Lemma 2.2. lim ch = c° .
h^0 +

Remark. What we only need in proving this lemma is F° > 0 - no requirement on
lim inf v _> ^ V.
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Proof of Lemma 2.2. For any R > 0, take a φReCo(TSin) such that φR = 1 on
BΛ(0) = {|x| ^ #}, <?* ΞΞ 0 in Bi + ι(0), 0 ̂  «!* ̂  1, | VφR\ ^ c(n). Let ι>Λ = φRu0.

Take a sequence yk such that V(yk) -> V°. Let w(x) = UR ί x — -— ). Then there

exists a unique θ > 0 such that 0weMΛ, i.e.,

ιw 2 )Λc = 0'+1 J
R"

)υ2

R)dx = θp-1 J ι;^+ 1rfx.
R" R"

Whence,

= /I + /2 -

Since MO is a solution of (2.8), it is easy to see I± -> 1 as R ->• oo. Also, for a fixed #, if
we take a large fe so that V(yk) is close to F° and fix such a /c, then /2 is small as
h -> 0 +. Thus when R and k are taken large and fixed, θ is close to 1 as h -> 0 + .
Observe

[ 1 _ ΛP-1 Ί
/ f t(w) + ̂ — J w'+ 1dx

P + 1 R» J

°(w) + ̂  J (V(hx)~ K°)w 2 rfx + 1 ~ g P J

°(^) + ^ J (V(hx + Λ) - V°)v2

Λdx + 1 "^

Obviously /O(I;R)->/O(MO) = CO and R -> oo. This and the property of 0 discussed
above imply that the last quantity in the above inequalities is close to c° if R and
k are taken large and fixed, and then we let h -> 0 +. Thus lim suρΛ _> 0+ ch ̂  c°. On
the other hand, since Ih(υ) ^ /°(t;) for veEh, we have ch ̂  c°. Now the desired
conclusion follows. #

Proof of Theorem 2.1. First, we observe that since

as /z ->• 0+ , || ί;/, || H^R") is bounded as h -» 0 + .
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Claim 1. There exists a sequence {yh} and positive constants R and β such that

liminf J vϊ(x)dx ^ β > 0 . (2.10)
Λ ^ 0 + BR(yh)

For otherwise, for any R > 0, there exists a sequence t>k = vhk such that

lim sup J ι?fc(:x)dx = 0 .
/c-»oo

By Lemma I.I in [L2] or Lemma 2.18 in [CR], t^->0 in Lq(R") for any

2 < q < - — f . This is impossible because

Claim 1 is proved.
Now let Wfr(x) = t?h(x + yh) = uh(hx + hyh). Then by (2.10),

liminf J wϊ(x)dx ^ β > 0 . (2.11)
Λ - 0 + BΛ(0)

Furthermore,

Awh - V(hx + hyh)wh + w^ = 0, WΛ > 0 in R" , (2.12)

1 1

2 P + 1 / R"

f w £ + 1 d x . (2.13)

2. fe>;Λ is bounded for small h > 0. Otherewise, there exists a sequence
+ such that /ίmyΛw -> oo. By (2.13) and Lemma 2.2, wm = wkm is bounded in

Hl(Rn). Hence by passing to a subsequence if necessary, ww -> w0 ^ 0 weakly in

2 < 4 < - - -— and a.e. in RM. By (2.11),
(n - 2) /

w0 ^ 0. So there exists a θ > 0 such that 0w0eM0. On the other hand, since
lim infx_ oo V(x) > F°, it is easy to see from (2.12) that there exists ε > 0 such that

zJw0 - (F° + ε)w0 + wg ^ 0 in the H~l(Rn) sense .

In particular

J ( |Fw 0 | 2 + F°w§)dx< J
IR" R"
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Thus 0 < θ < 1. Now, we have

M°

2 p + 1 / £

R

g; lim inf I - -- - ) J w£+1dx (Fatou's Lemma)
m-+oo \ 2 P + 1 / R"

= lim /Λ w(wm) = c° ((2.13) and Lemma 2.2) .
m -»• oo

This is impossible and hence Claim 2 is proved.

Now for any sequence h'k-+Q, there exists a subsequence hk such that
*k = hkyhk -> Λ O, wfc = wΛk -* w0 ^ 0, ̂  0, weakly in Hl(JSίn) and a.e. in IRΛ

/m 3. x0 is a global minimum point of V.

By applying the elliptic regularity theory to (2.12), we have wfe -> w0 in Cι2

oc(Rπ) and

zlw0 - F(XO)WO + < = 0, x e R M . (2.14)

So

f (I Fwol 2 + F°wg)rfx ^ j (I Fwol 2 + F(x0)wg)rfx = f wg + 1 Λc .
IR" R" R."

Therefore, there exists a 0 < θ ̂  1 such that 0w0eM°. Now

c° = lim chk = lim ( - - — — ) J w£+ 1<*x
f e - o o f c - o o \ ^ P + l / R "

^ inf /°(t>) ̂  c° .
Λ/o

Thus θ = 1 and hence V(x°) = V°(= inf F). The proof of Claim 3 is complete.
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Now observe

J I Fw0 |
2 + K(x0)w§Λc ^ liminf J (| Vwk\

2 + V(xQ)w2

k)dx
R" fc->oo R"

^ limsup J (I Fw f c |
2 + V(x0)wj;)dx

fc-> oo R"

g limsup J (I Fwfcl 2 + K(λfcx + xk)\vk)dx
k-> oo R"

(by Claim 3)

"ίVi i \ f i i
2 p +

= ί ( | F w o | 2 + K ( x o ) w g ) d x .
R"

Thus ί R n | ^w f c | 2 + F(x 0 )w f c

2 rfx^J R n | F w o |2 + F(χo)w2 and hence W f c _> W o

strongly in H^R"). In particular,

J w2* dx -> 0 as # -* oo uniformly w.r.t. k , (2.15)
\χ\^R

where 2* = - - if w ̂  3, and an arbitrary large number if n = 1, 2. Note wfc isn — 2
a subsolution of An + c(x)w = 0 with c(x) = wjp1. By the one-sided Harnack
inequality (see [T]), we have

( V
max wfc g c I J w2* dx J

where β is an arbitrary point in IRW, c is a constant depending only on n and the
bound of ||wfe||L2*(£2((2)). Thus by (2.15),

wk(x) -> 0 as I x I -» oo uniformly w.r.t. fc .

/ Y y \

Hence wλ(x) = uhk(x) = wfc ( —-—- J decays to zero uniformly for x outside any
\ hk J

fixed neighborhood of x0 as k -> oo. Let xk be a local maximum point of uk. By (1.3)

and the strong maximum principle, uk(xk) > ( V ° ) p - ί . Therefore xk -> x0 as k -> oo.
It remains to show the uniqueness of xk and (2.7). Let w fc(x) = uk(hkx + xfc).

Then

A wk(x) - F(/zfcx + x k)Wfe + W f c = 0, wk > 0 in R", (2.16)

i
O is a critical point of wfc and wk(0) > (F0)^1. The arguments similar to those
concerning wfc presented above show that after passing to a subsequence of {wfc},
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wfc-> w0 in CίUR"), H^JR") and L°°(RW) where w0 φ 0 satisfies (2.14); further-
more, Wfc -> 0 as x -> oo uniformly w.r.t. fc. Since 0 is a critical point of wfc, it is also
a critical point of w0. By [GNN], w0 is spherically symmetric about some point P,
and wΌ(s) < 0 for 0 Φ s = \x — P|. Thus P = the origin, i.e., w0 is radial. Since wfe

decays to zero in x uniformly w.r.t. fc, so does w0. Now Kwong's result [K] says
w0 = MO (see (2.8)).

To show the uniqueness of the local maximum point of uk, it suffices to do so
i

for Wfc. Observe at each local maximum point of wfc, wk > ( V°)l>^ϊ. Since wfc decays
to zero uniformly w.r.t. k as x -> oo, all the local maximum points of wfc stay in
a finite ball in R". Since wfc -> w0 = w0 in C^R") and O is the only critical point of
w0, these points must approach the origin and hence stay in a small ball Bε(0) as
k -> oo. As can be easily seen, we can take ε so small that u'ό(r) < 0 for 0 ̂  r ^ ε.
Now by Lemma 4.2 in [NT], for large fc, wk has no critical points other than the
origin.

To show (2.7), we recall that w fc(x) decays to zero at x = oo uniformly w.r.t. fc.
Applying the argument in the proof of Proposition 4.1 in [GNN] (see also Kato
[Ka]), we have

l-n _

for |χ| ^ 1 and large fc ,

where C is independent of fc, wk and V (but dependent of F°). This implies
(2.7). #

Our next result deals with the situation when we do not know if
liminf^^ oo V(x) > inf V. In this case, (1.3) may or may not have a ground state: in
the trivial case V = constant > 0, (1.3) has infinitely many positive ground states,
while when for some direction, the directional derivative of V is nonnegative but
not identically zero, then it is possible to prove by integration by parts that (1.3)
does not even possess an H ̂ R") solution φ 0 (see the proof of Theorem 3.1 in
Sect. 3). However, we have

Theorem 2.3. Suppose there exists a sequence hk -> 0+ such that (1.3) wiί/i h = hk has
a positive ground state uk and uk has a local maximum point xk which converges to
some point x0 as k -» oo. Then x0 must be a global minimum point of V, xk is the only
local (hence global) maximum point of uk for k large. Moreover, (2.6) and (2.7) hold
true.

Proof. Since the details of this proof are similar to those of the proof of Theorem
2.1, we shall only sketch the main steps. Let wk(x) = uk(hkx 4- xk).

Step 1. Show x0 is a global minimum point of V by arguing as in the proof of Claim
3 in the proof of Theorem 2.1.

Step 2. By using the conclusion in Step 7, show w f c->w0 in /^(R71) as fc-> oo,
where u0 satisfies (2.8).

Step 3. By using the conclusion in Step 2 and the one-sided Harnack inequality,
show wfc decays to zero at x = oo uniformly w.r.t. fc. Then (2.7) follows.

Step 4. Show the uniqueness of xk. #
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In the remaining part of this section, we deal with the case when the potential
Fis radial and is bounded below from zero. Define Er

h and Mr

h to be the subset of Eh

and Mh consisting of radial functions. Define

r

h = inϊlh(v).

It is routine to see c\ > 0. Then

Proposition 2.4. Assume n^2. Then for each h > 0, cr

h is assumed by a minίmizer vh

of Ih over Mr

h.

Remark. As we mentioned in Sect. 1, this follows essentially from a general result in
[DN]. However, in the present case, we can prove this result by showing that
a minimizing sequence converges to some υh e Mr

h by virtue of the standard fact that

Er

h q; Lq compactly with 2 < q < - - —p. An alternative is to apply the Moun-

tain Pass type argument as in [R] and the well-known Radial Lemma of Strauss.
It is easy to see vh is also a (radial) solution of (1.4). As before, we can show that

( r
υh is of one sign and hence we shall always assume that vh > 0. Let uh(r) = vh I -

\h
(r = |χ|). Then uh is a positive radial solution of (1.3) with least energy (1.5) among
all nontrivial radial H 1(RΠ) solutions. Conversely, each such radial ground state of
(1.3) corresponds to a vh in the statement of Proposition 2.4.

Theorem 2.5. Suppose n^2 and V is radial. Let uh be a positive radial ground state
of (1.3) (whose existence is assured by Proposition 2.4). Then uh concentrates at the
origin in the following sense: For small h > 0, uh has only one local (hence global)
maximum point xh, xh -» 0 as h -> 0; moreover (2.6) and (2.7) with x0 = xk = 0, hk = h
and uk = uh hold true.

Remark. If F(0) is not a global minimum of F, by combining Theorem 2.3 and
Theorem 2.5, we see that a ground state, i.e., least energy solution of (1.3), if any,
must not be radial for small h > 0.

Proof of Theorem 2.5. By the proof of Lemma 2.2, cr

h is bounded for 1 ̂  h > 0.
Thus || vh || Hi(R«) is also bounded for 1 ̂  h > 0. Recall the Radial Lemma of Strauss
[S]:

|t/(r)|^CrV||w | |^1 ( I R n ) for r ̂  1 ,

where C depends on n. Using this, we have that vh decays at r = oo uniformly w.r.t.
small h > 0. Now applying the arguments in the proof of Proposition 4.1 in
[GNN] to (1.4), one has

vh(r) ^ Cr~^ exp(- >/F°r) for r ̂  1 , (2.17)

from which (2.7) with the modification follows.
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If xh is a local maximum point of uh, then by the maximum principle,
i

> (F0)^1. This and (2.7) imply xh -»0 as h ->0. To show xh is unique,
observe that since llu/Jlπ^R") is bounded for small h and vh satisfies (1.4), each
sequence of {vh} contains a subsequence {υk} such that ι;k-»some w0 weakly in
H1(Rn) and strongly in Cι2

oc(Rπ), where ΰ0 is a radial solution of

Δu - V(0)u -up = Q, u > 0, u(oo) = 0 . (2.18)

By Kwong [K], w0 is unique. Thus vh^ΰ0 in Cg,c(R") and L°°(1RM) as /z-»0 + .
Now we can show the uniqueness of xh as in the proof of Theorem 2.1. #

Remark. By the proof above, || uh ||L°°(R") -*• II w0 II L°° = w0(0), where w0 is the unique
radial solution of (2.18).

Section 3. Positive Bound States

The purpose of this section is to show that a point at which a sequence of positive
bound states concentrates must be a critical point of V. Recall Floer, Weinstein and
Oh have obtained results converse to this. Recall also by a bound state, we mean an
H1(R") solution of (1.3) with finite energy (1.5). (It is well-known that a (positive)
bound state decays exponentially at oo, as may be proved by the one-sided
Harnack inequality and then using a result of [GNN].)

Theorem 3.1. Assume \ VV(x)\ = O(ea^) at x = oo for some a > 0. Let uk = uhk be
a sequence of positive bound states of (1.3) with h = hk. Suppose uk concentrates at
a point x0 in the following sense: Vε > 0, 3 constants R and K > 0 such that

uk(x)^ε fork^Kand\x-x0\^hkR. (3.1)

Then W(XQ) = 0. Moreover, for large k, uk has only one local maximum point xk,
xk -> x0 as k -» oo, and (2.6)-(2.7) with xk replaced by x0 hold true.

Remark 1. It is possible to check the solutions obtained by Floer, Weinstein and
Oh [FW, OJ satisfy (3.1).

Remark 2. We suspect that the condition | FF(x)| = 0(eα|xl) could be removed.

Proof of Theorem 3.1. We shall break up this proof into 3 steps; In Step 1, we show
II % || L°°(R") is bounded. In Step 2, we show the second part of this theorem; In Step
3, we prove W(x0) = 0.

Step 1. Suppose 3 a sequence hm -> 0 so that the L °° (RM) norm of um = uhm tends to
oo as m-> oo. Let αw = maxwm and βm = α~ ( p~ 1 ) / 2. Define

vm(x) = — um(xm + hmβmx),
αm

where xm is a global maximum point of um. Then

Δvm-βϊ V(xm + hmβmx)vm + vp

m = 0, x e 1R",
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and

M0)=l, 0£vn£l.

Therefore, by the elliptic regularity theory, we have

^m -» ^o is CίLΐlR") as m -> oo ,

where

Aυ0 + t g = 0 in R", ι;0(0) - 1 .

This is impossible according to [CL] or [CGS]. Step 1 is finished.

Step 2. Let w f c(x) = uk(x0 + hkx). Then

+ hkx)wfc + wj? = 0, x e R", (3.2)

and by (3.1), wk decays to zero uniformly w.r.t. k. Now, as before, by the arguments
in the proof of Proposition 4.1 in [GNN],

l-n

w fc(x) ^ C x|^~exp( — ̂ /V°\x\) for |x| ^ 1 . (3.3)

This implies (2.7) with xk there replaced by x0. Observe by the conclusion in Step
1 and the elliptic regularity, for any subsequence of {wfe}, there exists a subsequence
{wfc} of the subsequence such that w^ -> some w0 in C2

OC(R"), where w0 satisfies

= 0, xeR". (3.4)

i
By (3.3) and the fact that local maximum values of wk are larger than ( F0)^^ we
see local maximum points of wfe must stay in a fixed ball for all fc. This and the fact
that wit -» w0 in CfocfR1 1) imply w0 ^ 0 and hence positive by the strong maximum
principle. Now we can show the uniqueness of local maximum point of w^ for
k large as in the proof of Theorem 2.1. From this the uniqueness of xk follows. By
(3.1), x f c ->Xo Equation (2.6) follows from the strong maximum principle. Now
Step 2 is complete.

Step 3. Without loss of any generality, assume wfc -» w0 in Cj^R"). Multiplying
(3.2) by FWfc and integrating on BR(0), we have

0 = ί zlwkFw f e - 1 V(V(x0 + hkx)w2

k)
BR

 2

1 p+l

-hk VV(xQ + hkx)w2

k

-- rτ w fc + lv )*- ί
P + 1 / BR

(3.5)
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where v is the exterior normal field on dBR. We compute the second integral on the
right-hand side as follows (write wfc as w):

Therefore (3.5) becomes

= J
2 BR SBR\2 P + 1

Observe

]\IR\dRz]dR J (|(
0 0 dBR \ ^

=ll((lVwkl2

< + oo for each k ,

by the assumption that uk is a bound state. Thus for each fixed k there exists
a sequence #m -> oo such that /Rm -> 0 as m -> oo. Now letting .R = Rm -> oo in
(3.6), by virtue of (3.3), the growth condition on \ VV\ and the Dominated Conver-
gence Theorem, we have

R"

Now letting hk -> 0 and by the Dominated Convergence Theorem again, we have

J FF(x0)wodx = 0 .
R"

Thus W(XQ) = 0. #

Remark. Equation (3.6) may be deduced from the dilated Pohozaev identity which
appeared in, e.g., [H].

Appendix

We shall prove (1.6) when Fis bounded. Let F(x) = F(foc) - E. For ueH2(RM),
let

/= - Au + V(x)u . (A.I)
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Multiplying (A.I) by u and integrating on R", we have

J \Vu\2+Ϋ(x)u2dx=
IR" IR

Recalling V ̂  δ > 0, we then have

By this and (A.I), we obtain

lL 2 (R")

So
IMlH2(R") = IMlL2(IR")

Choosing 1 in the obvious way, we obtain (1.6). Note the dependence of λ on
II V\\ L°°(R") does not change the validity of the arguments in [FW], [C^] and [O3].
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