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Abstract. The quotient {(s — 1) /{(s) of Riemann zeta functions is shown to be the
partition function of a ferromagnetic spin chain for inverse temperature s.
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1. Introduction

The aim of this article is to relate ideas and concepts from statistical mechanics to
the Riemann zeta function.

The quotient Z(s) = {(s — 1)/{(s) is interpreted as the partition function of an
infinite ferromagnetic spin chain.

The existence of a connection between number theory and statistical mechanics
has been conjectured by Kac (see his Comments in Poélya [4], pp. 424-426),
Newman [3], Ruelle [5] and others.

One motivation for that conjecture has been the Lee—Yang circle theorem of
statistical mechanics. In its basic form it states that all zeroes of the partition
function of a ferromagnetic Ising model in the complex activity plane have unit
modulus.
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Here we are interested in the zeroes of Z(s) in the complex s plane, s being the
inverse temperature. There exist variants of the Lee—Yang circle theorem which
predict zero-free half-planes of the inverse temperature for certain ferromagnets,
see, €.g., Ruelle [7]. Unfortunately, these theorems do not apply to our situation
since our spin chain includes many-body interactions.

We begin in Sect. 2 by approximating Z(s) by the partition functions Z; of
chains of k (classical) spins. This approximation is uniform for Re(s) > 2 + ¢,¢ > 0.

In Sect. 3 we introduce some notation. We decompose the canonical energy
function H{ (y, . . ., 03) , 0,€{0, 1}, in the form

Hi@)= — Y Jjilts, ... t)-(=17".
t, {0, 1}
Proposition 3.2 states a necessary and sufficient condition for the preservation of
the ferromagnetic property j£(f) = 0 under nonlinear transformations of the values
of an energy function.

In order to obtain bounds on the canonical interaction coefficients j (¢), it turns
out to be convenient to consider the grand canonical ensemble, too. This is done in
Sect. 4.

There are no couplings to an external field. More general, the grand canonical
interaction coefficients j(f) between an odd number of spins vanish (Proposition
4.3). Furthermore, we have the mirror symmetry

Jelts, t) =it .. 1)

(Proposition 4.9).
In Sect. 5 we show that the canonical and grand canonical ensembles are
(weakly) ferromagnetic in the sense

jS@®) 20and jS@) =0 fort=+0.

More precisely, we obtain inequalities between the interaction coefficients for
spin chains of length k and of length k + 1. The proof uses interpolation techniques
and Proposition 3.2.

In Sect. 6 upper bounds for the canonical interaction coefficients j¢ (¢) are obtained.

The interaction coefficients are not translation invariant, but their variation
under translations is small as long as no spins near the edges of the chain are
involved. In Sect. 7 we prove this property of asymptotic translation invariance.

A thermodynamic limit can only exist if the interaction coefficients decay fast
enough. On the other hand, it is known that one-dimensional spin chains have no
phase transitions at positive (real) temperatures if the interaction is of finite range or
decays too fast. In Sect. 8 we give estimates for the decay properties of our model.

In the Appendix we show the result of a numerical calculation of H{(c) and of
the interaction coefficients.

2. The Zeta Function and the Spin Chain

Riemann’s zeta function {(s) is defined for Re(s) > 1 by

(=3 n 1)
n=1
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and for arbitrary se C by analytic continuation.
Instead of {(s) we study the quotient

{s—=1)
{s) -
We denote by ¢: N — IN the Euler totient function. So ¢(n) is defined to be the

number of positive integers not exceeding n which are relatively prime w.r.t. n.
Then

Z(s):= @)

26= 3 ot n™, ®)

as follows from the multiplication theorem for Dirichlet series (see, e.g., Apostol
[1], p. 229).

We shall approximate Z by a sequence Z, of functions, with k € N,. These
functions have the form

Zd) =3 onn, @
n=1

where the ¢,; N - IN,, are approximants of ¢.

For kelN, we define inductively the coefficients h: G, —» N on the cyclic
groups Gy:= Z = Z/(2*- Z) of order 2*. Whenever needed, we represent the group
G, using the complete residue system {0, . . ., 2¥ — 1}. The coefficients h¢ are then
given by setting h5(0):= 1 and for ae G,

hicv1(20) 1= hi(a),  his1(a + 1):= hi(@) + he(a + 1), &)

the map
{0,...,2"—1} > {0,..., 2k — 1}, a—2a,

inducing the monomorphism G, — Gy, used in (5).

As an example, we have for k = 3 the values hp(0) = 1,hg(+ 1) =4, hi (£ 2)

=3,h{(+3) =5and h{(4) =2.

The index C of hf symbolizes the canonical ensemble. Later on we will
introduce the grand canonical ensemble. The objects connected with that ensemble
will then carry a superscript G.

Then the ¢, are given by

on) = # {aeGy | hi(a) = n} (6)

(s0 @3(1) = 3(2) = 1, 93(3) = ¢3(4) = 93(5) = 2, and @;(k) = O for k = 6).
We start by collecting some elementary properties of the ¢,. We call the base
two logarithm

Ly(a) := log,(Ord(a)) )

of the order of a group element a € G, its L-order. Note that L,(a)€ {0, . . ., k} since
the order of an element (i.e., the order of the cyclic subgroup generated by that
element) divides the order of the group.

Furthermore, we denote by F(k) the k-th Fibonacci number, that is,

F1)=FQ2)=1, F(k+2) =Fk +Fk+1).
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Lemma 2.1. For keN, and a€ G,
hi(—a) = hi(a), @)
and
Ly(a) + 1 £ hi(a) < F(Ly(a) + 2) . %)
For keN adjacent coefficients are relatively prime:
ged(hi(a), hi(@a+ 1)) =1. (10)

Moreover, for every relatively prime pair (q,p), 1 < q < p < k + 1, there is exactly
one | £ k and aeG, with

(g, p) = (h{(a), hi (a + 1)) (11)

Proof. The symmetry property (8) follows immediately from definition (5).

For k = 0 the inequalities (9) state that h5(0) = 1. We assume that they are true
for k. Then all elements ae G4, with L-order L, (a) < k are of the form a = 2b
with beG,. For these a we have

Ly+1(a) + 1= Li(b) + 1 £ hic(b) = hic+1(a) -

If Li.i(@)=k+1, then Ly, (a)+ 1=k + 2 < hp,(a), since then hi, (a) is
a sum of k + 2 integers.

We perform the inductive step for the second inequality in (9) by assuming
hE(b) < F(Ly(b) + 2) for all beG,. Then either ae G, , is of the form a = 2b, or a is
of maximal order, i.e. L;1(a) =k + 1. In the first case we have

hi+1(a) = hi(b) £ F(Ly(b) + 2) = F(Ly.1(a) + 2) .
If L,;,(a) = k + 1, then for some beG,
hic+1(a) = hi(b) + hi(b + 1),

and either L,(b) =k, L(b + 1) < k or conversely L(b + 1) =k, L;(b) < k, since
only every second element in G, has L-order k. Then

hiy1(a) S F(Lb) +2) + F(L(b + 1) + 2) S F(k + 2) + F(k + 1)
=F(Ly+1(a) +2).
Adjacent elements are relatively prime if k = 1, since then
ged(hy(a), he(a + 1)) = ged(1,2) =1.
We assume (10) to hold for keIN. Then for aeG,,, of the form a = 2b
ged(hics 1 (a), hicv1(a + 1)) = ged(hi (b), hi(b) + hi(b + 1))
= ged(hic(b), hi(b + 1)) =1,

and similarly for a = 2b + 1.
For k = 1 the last assertion of the lemma holds since

(1,2) = (h{(a), hi(a + 1))
exactly ifIl=k=1and a=0.
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Assume that we have shown that assertion up to order keN. Thenifp < k + 1
and hy,,(a) = p, then by the first inequality in (9) Ly ;(a) < k so that we already
treated that case. So we assume p = k + 2. All relatlvely prime pairs (g, po) With
do + po = p = k + 2 appear in the form (h{(b), hf(b + 1)) with | < k. Then

(his12b), ki1 (2b + 1)) = (40, P)
and
(his1(=2(b + 1), hiy (= 2b = 1)) = (po, p) -

So we find in our list all relatively prime pairs (g, p), 1 £ q < p =k + 2 exactly
once. [

With the help of Lemma 2.1 we can describe how the ¢, approximate Euler’s
totient:

Proposition 2.2. For ke N, we have

= Prs1 S0, (12)
and
o(p)=o(p) for1<p=<k+1. (13)
For p >k + 1, oi(p) < ¢(p). For k = 2 one has ¢, (F(k + 2)) =2 and
o(p) =0 forp>Fk+2). (14)

Proof. The inequality ¢, < ¢+, in (12) follows immediately from the definitions
(5) and (6). The second inequality is then a consequence of the first one and of
assertion (13).

@o(1) =1 = ¢(1), and ¢y(p) = 0 < ¢(p) for p > 1, proving (13) for k = 0.

To prove (13) for kelN, we fix pe{1, . .., k + 1} and choose an arbitrary ¢ < p
with gcd(q, p)=1. We know from the last statement of Lemma 2.1 that
there is exactly one <k and beG, with (g, p) = (h(b — 1), hF(b)). But

hE(b) = hS, ((2b) = h(2*"b) so that h(a)=p for a=2*"'b. Moreover, for
q1 * q, the correspondmg a, a,eGy are different from each other (since the
coeﬂicrent hé(2m='b — 1) adjacent to h$(2™'b) is smaller than hS(2™~'b) only if
=1).

Thus we have established a one-to-one correspondence between the ae G, with
h{(a) = p and the numbers q < p relatively prime to p, proving (13).

Now we show that ¢,(p) < ¢(p) for p = k + 2. We have for leN

hE(+ 1) =hi- )+ hi- (£ 1)=1+hi_ (£ 1)

and h§(+1)=2 so that hf(+1)=1+1. But this implies that ®p-2(D)
< ¢,-1(p). On the other hand, by (12) ¢,-1(p) < @(p), proving ¢,-»(p) < ¢(p)
and @i(p) < ¢(p) for p= k + 2.

Equation (14) follows from inequality (9) in Lemma 2.1.

To show that for k = 2 one has @i (F(k + 2)) = 2, we notice that for k = 2 there
are exactly two a662 with hS(a)=FQ2 +2)=3, namely a=1 and a= —1
= 3 (mod 4). Notice that for both a exactly one of the neighbours a &+ 1 has
hS-value F2 + 1) = 2.

But if for k there are exactly two aeG, with h§(a) = F(k + 2), both a having
exactly one neighbour a + 1 with ht(a + 1) = F(k + 1), then a similar statement
holds for k + 1. [



82 A. Knauf

Corollary 2.3. For all ¢ > 0 the sequence {Z}xen, of functions converges uniformly
to Z in the half plane {se C|Re(s) > 2 + &}.

Proof. For Re(s) > 2 + &,

Ms

1Z(s) = Zi(s)] =

1=

o(l)- 172+

2

=
+

A
s

1
7O < (k4 1)7F
2 €

1=
since p(n) <n. O

Clearly, one could equally well approximate Z(s) in its half plane Re(s) > 2 of
convergence just by truncating ¢(n) after the k-th term. However the chosen form
of the approximation exhibits an asymptotic (as k — co0) self-similarity which will
be useful for the study of Z(s) in the whole complex plane.

3. General Framework

We interpret the binary expansion ¢ = (4, . . ., 04)€Gy := (Z,)* of an element
aeG,, as a configuration of a spin chain with k spins ¢,€Z, = Z/27Z, the i® spin
being in a downward (resp. upward) position for ¢; = 0 (resp. 1). More precisely,
using the complete residue systems {0, ...,2* — 1} for G, and {0, 1} for Z,,
respectively, we represent aeG, uniquely in the form

k
a=Y 2% o0,eZ,.

i=1
This prescription defines for ke IN, set theoretical bijections
Ide Gy > Gy, a—(0y,...,0;). (15)

We will use the functions

h{ := hfoId;! and Hjf:= Hf-Id;!
on G, with Hf := Inht.
Lemma 3.1. For aeGylet 0 =(04,...,0;) :=1di(a). Then

Idi(—(@a+1)=(1—-01,...,1 —0y).
Proof. Modulo 2* we have

k k k
—a—1= — Z VARLES <2" ) 2"‘i> = i; (1—o;2". O

i=1

Thuscit follows from the definition (5) of hf that the functions h§: G, — N are given
by ho = 1,

hi.1(0,0) =hg(c) and hi,,(c,1) =h{(e)+hi(l—0),

since by (8)hg(1 — o) =h§(—(a + 1)) =hi(a+ 1)foroc = (o4, . .., 64) = Idu(a)
and 1l —og:=(1—o0y,...,1 —0ay)
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The group G of characters on G, is isomorphic to Gy, and for t = (¢, . . ., t;)
e Gy, ke, we write x,: G, — { + 1, — 1} for the character function given by
2:(6) = (= DI 70 geGy . (16)
For k =0 we set yo:= + 1.
The set

A= {f: G, - R}

of real-valued observables, together with addition and multiplication, forms an
algebra. We denote by .o} := {f: G > R} the algebra over the dual group.
Fourier transformation

T s Y, [ f
is defined by

f@)y:=27%Y flo)ul), teG¥.

ceGy

Its inverse #; ' oA — o), g— ¢, is then given by

gl)= ). 9(O)x(o), 0eGy.

*
te Gy

The multiplicative factor 2% = Ord(G,) appears in the orthogonality relation
{2" if tf=1¢"

17
0 if ¢f ¢ 17)

Z Y (@) xe (o) =

0eGy

for the characters t, t"7e GF.
The most important observables are the canonical energy functions Hye o,
kelN,, since

Z6)= Y o) n = T (hE(0)

oeGxk

= ¥ exp(—s-H{(0)).

ceGx
We call the values
Jr(t)i= — Z(H{)(t), teGF, (18)

the canonical interaction coefficients. R

An observable fe.oZ, is called strictly ferromagnetic if f =z 0 and (weakly) ferro-
magnetic if f(t) = 0 for te G}\ {0}. Clearly — Hj cannot be strictly ferromagnetic
for keN since its mean value j €0)<o.

The strictly ferromagnetic observables form a multiplicative cone ) < .7, that
is, for f,ge €, and 1 =2 0

Af€6, [f+ge%, and f:ge%,,

see Ginibre [2]. The last statement holds true since Fourier transformation
changes ordinary product into convolution product.
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The following observation will turn out to be helpful:

Proposition 3.2. For yeR* U {00} let geC™(— y,y), R) be a function whose
expansion

gx)= ) ex’
i=0
is absolutely convergent on the interval ( — y, y). Consider the set

Y= {fedi|f(Gy) = (=)}

of observables.
Then the maps %;. Y, — <y, [+ g of, preserve strict ferromagnetism, i.e.

gk((gk N Yk) c (gk VkENO )
if and only if ¢; 2 0 for all ie N,,.
Proof. We assume that ¢; = 0 for all ie Ny, fe %, n Y}, and set h:= %, (f). Then

h(e)=27%% g(f@)rlo)=27"} (Z ci(f(o-))l>Xt(o-)‘
aeGyk geGk \i=0

In order to show that & >0, by linearity of the Fourier transformation it is
sufficient to show strict ferromagnetism for the functions /%, ieN,. But by assump-
tion fe %y, and %, is a multiplicative cone.

Conversely, assume that there is a [eIN, with ¢; < 0. Then set k := [ and for
¢ > 0let the Fourier transform f, € o/ of f, be given byfa( ):=¢if #{ze {1,.. ., k}|
t; =1} = 1 and £,(t) := 0 otherwise. Then for t:=(1,...,1) € Gf

G f)(t) = {2 Ci( > < PIPACOY® (6)> Xz(0)>

i=0 ceGr \t'eG}

= 0k

I8

ci< Yo ft)e -ﬁ(n-))

ty, -, 1i€G}
t1+ - th=t

1

=2 ek k! + O(e**2) <0 fore>0small O

Using this proposition we will show in Sect. 5 that — H{ is weakly ferromagnetic.
In Sect. 6 we will derive upper bounds for the canonical interaction coefficients
je(t). Tt will turn out, roughly speaking, that j£(¢) is typically small if #(¢) is odd,

#it) = #{ie{l, ..., k}|t;=1} for teGf

denoting the counting function on the group Gy of characters.
For te G\ {0} we introduce the size

Sut) := Pi(t) — Pi(t) + 1
of t, where
W) :=max{ie{l,... k}t;=1}
and
PL(t) ;= min{ie{1, ..., k}|t; = 1}.

For #,(t) even, ji(t) is small only if the size of ¢ is large.
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In Sect. 7 we begin the study of the thermodynamic limit k — co by relating spin
chains for different lengths k. To do this, we introduce some notation. The

concatenation (¢!, 6")e G, of two spin configurations ¢! = (¢, ..., 6l)eG,
and o' = (¢, ..., 6/')eG, is given by
I IIy . I I II II
(,¢"):=(01...,001,...,07),
and we omit brackets if appropriate.
For 6 =(01,...,0,)€G, we write 1l —o =140 :=1—0y,...,1 —0y)

€ G, for the group element of the inverted spin configuration.

We introduce similar notations for the elements of the dual group G and
observe that the character functions are multiplicative w.r.t. concatenation, that is,
for 61eG,, 6''eG, and t'e G}, t'1eGff

X(t’,t“)(o'l’ GH) = th(o.l) 'Xt”(o'”) . (19)
4. The Grand Canonical Ensemble

In this section we begin the study of the interaction coefficients.
Lemma 4.1. For keIN, and te G} one has

Jie1(6,0) +jie (1) = ji(@), (20)
and if #(t) is odd, then

1
Jie(t,0) = jisas(t, 1) = Ejf(t). (21)
Proof. By (19),

Jer160) + i (6 1) = =275 5 S HE L 4(0,7) %4(0)* (%o(T) + %1(7))

0ceGy 1€G
= — 27k Z Hf“(a, O) Xt(o-)
ceGy
= —27% ¥ Hi(0) xu(0) =ji(1) ,
oeGy
proving (20).
To derive (21), we note that for #,(t) odd, %,(1 — o) = — (o) so that
Jier(60) = jiei(t, 1) = = 27*D 5 N HEL (0, 7) %:(0)* (%o(r) — %1(2))
aeGy, 1eGy
= = 27" ¥ Hii(o, 1) x(0)
ceGy
= —27* Y (H{(o) + H{(1 — 0)) %:(0)
oeGy
= —27% ¥ (H{(o)p(0) —HL(1 —0) 1,1 — 0)) = 0,
oceGy

(22)
proving the first equation in (21).
The second equality in (21) follows from the first one and from (20). [
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If #,(¢) is even, then we will see that j§,(z,0) % jc.1(t, 1), and the difference
between the two coefficients will be interpreted as the interaction coefficient j&(t) of
a grand canonical ensemble. In the language of statistical mechanics this is an
ensemble with a varying number of particles. Here the L-order of an element,
introduced in (7), plays the role of a particle number.

For s, zeC with Re(s) > 2 and |z| £ 1 the grand canonical ensemble

0

E(s,z):=14 )Y z¢ Y exp(—s-Hf{_ (o)) (23)
k=1 eG4
with
hé:G, >N, hf(o):=h{,,(0,1) and HE:=In(hf) (24)

for keN, is well-defined, and
Z(s) =E(s,1).

Exactly those elements beG,,; which are of the form Id,.,(b) =(o,1) have

L-order k + 1.
Similar to the above treatment of the canonical ensemble we define for ke N,

the grand canonical interaction coefficients

iSt) = — F(HE)(t) for teGyf .
Thus
Hi(o)= — Y ji(t) 1(0), 0€G,.
teG¥

The grand canonical and the canonical interaction coefficients are related as
follows.

Lemma 4.2. For keN, and teG}
JE0) = 2jk1(6,0) = ji (1) = = 2jkes (6 1) + ji() -

Proof.

2j5:1(6,0) —ji(t)= —27% Y (H{+1(0,0) + Hi1 (0, 1) — Hi(0)) 1:(0)

oceGy

= — Dk Z Hf+1(0', 1) XI(G)

oeGy

—27% ¥ HE(0) %(0) = j£(0)

ceGy

Il

The second equation follows from (20). [

The grand canonical interaction coefficients have two symmetries which are not
shared by their canonical counterparts.
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Proposition 4.3. If #,(t) is odd for te GF, then jZ(t) = 0.
Proof. We have
H{(1 — o) =H{, (1 — 0, 1) = H{(1 — 0) + Hf(0) = H{. (0, 1) = H{(0) .
On the other hand, for #(t) odd
Xl —0)=(—= 1)y (o) = — (o).
Thus
Jit)= —27% ) H{(o)(o)

ceGy

= +27 Y H{(l— o) gl —0)= — i),

oeGy
proving the proposition. [J

The second symmetry property of the grand canonical interaction coeflicients is
a bit more subtle.

In order to gain more flexibility, we introduce for k€N and so, s;€R the
auxiliary functions ry(so, s;): G — R by setting

ri(So, 1) (0) :=s0, ri(s0,1)(1):=s,
and for ceG,
T+ 1(50, $1)(0, 0) :=13(s0, S1) (0)
and
T+ 1(S0, 51) (0, 1) 1= ¥i(S0, 51)(0) + (50, 51)(1 — ) .
In particular we have hy = r,(1, 2) for keN.
Lemma 4.4. For keN and s,, s; € R we have
IS0, S1) = S0 1x(1,0) + 5 -1(0, 1) . (25)
Proof. For k =1, ry(so, s;)(0) = s,. Assuming (25) for keN, we have
T+ 1(S0, 51)(0, 0) = 1i(s0, $1)(0) = 5011, 0)(0) + 51 -1:(0, 1) ()
= 50T +1(1,0)(0,0) + sy 1 +1(0, 1)(a, 0)
and
T+ 1(80, $1)(0, 1) = (0, 51)(0) + ¥ils0, 51)(1 — 0)
= 5ol (1,0)(0) + s11:(0, 1)(g) + Sori(1,0)(1 — o)
+ 511(0, 1)1 — o)
=50 T+1(L,0)(o, 1)+ 8;°144(0, 1) (0, 1) . O
Lemma 4.5. For ke, sq, s;€R and (04, . . ., o) € G, we have

(51, 50) (01,02, . . ., 0%) = TS0, S )(1 — 01,04, ..., Ok) - (26)
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Proof. For k = 1,r,(sq, 50)(6) = S1 -4 = I1(So, $1)(1 — &). Assuming (26) for ke,
we have

T+ 181, 80)(01 « « + 504 0) =151, S0)(01, - - - 5 O%)
=180, 51)(1 — 04,02, ...,0%)
=Tr+1(50,51)(1 — 01,05, . ..,04,0)
and
Tt 1051, S0)(01 « - o, 0% 1) = 14081, 50)(015 - « -5 O%) + 151, So)(1 — 04, ..., 1 —0y)
=14(S0, 51 )(1 — 04,02, ..., 0%)
+ 1S, S1 )01, 1 — 09, ..., 1 —0y)
=Tp+1(80s $1)(1 — 01,05, ...,0,1). O
Lemma 4.6. For keN, 6 G,, [eIN,, 1€ G, and s4, s;€R
410505 51)(0,7) = Frv 1 (1 (S0, $1) (0), (S0, 51)(1 — 0)) (0, 7) 27

Proof. The relation is shown by induction in /e N,,.
For [ = 0 (6,7) = 0 so that

I +1(50, 51)(0,7) = (S0, 51)(0)
= 11(r(S0, 51)(0), 1i (S0, 51)(1 — 0)) (0),

since 11(xo, X1)(0) = Xo.
Setting x¢:= 1, (S, $1)(0) and x{ := r,(sy, 51)(1 — o), we assume that

T +1(S0, $1)(0,7) = 14 1(X0, X1)(0, 7) .
Then
Tie+14+1(5, 81)(0, 7, 0) = Ty 480, 51)(0,7)
=T41(%0, X1)(0, T) = 114 2(X0, X1)(0, 7, 0)
and
Tiv1+1(50, 51)(0, T, 1) = Tt i(S0, 51)(0,7) + Teri(S0, s1)(1 — 0,1 — 1)

=111 (X5 X1)(0,7) + 1141 (x4, X0)0, 1 — 7)
=TI+ 1(X0, X1)(0,7) + 174 1(x0, X1)(1,1 — 1)
= 174 2(x0, X1)(0,7, 1) ,

using (26). O

By Lemma 4.4 and Lemma 4.5

(S0, 81)(01, 0, . « ., 0%) = S114(01, 025 - . ., O%) + Solk (1 — 01,04, . . ., O%)

with
Iy Gk - No, I = rk(O, 1) .

These auxiliary coefficients meet the following relation:
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Lemma 4.7. For keN and (a4, . . ., 01)€ Gy
(01, .. 5 0%) = T4 1(01, 04, .. ., 0%) (28)

and
l'k(O'l,...,O'k)=l'k(0'1,0'k+0'1,...,O'2+O'1). (29)

Proof. For k =1 we have r,(0,0) = ry(6) = . Thus by (26)
141001, 04, . ., 00) =1 (X2(04, 01), 12(1 — 0y, 1 — 0 ))(0,0,, . .., 04
=r1,(0y,1 —01)(0,04,...,0)
=1l — 01,0,)(1,02,...,0%)
=10, 1)(01, G4, . . ., 0%) =14(0y, G2, - . ., 0%)

using (26) for the third equation. This proves (28).
Equation (29) is automatically met if k = 1.
We assume that for all (ay, . . ., 0,) € Gy

oy, ...,0)=rfo, 0+ 0y, ...,0,+ 0.
Then for o1 =0
0+1001, .. ., 00,0 =10y, . . ., 0h)
=10y, 0, + 04, ...,0, + 09)
=144+1(0,0+ 01,00+ 0y,...,0, +09),

using (28).
For Or+1 =1
l'k+1(0'1, ooy Opy 1) = rk(O'l, . .,Jk) + l'k(l 01y 0 v vy 1-— O'k)

=r1y01, 00 + 01, ...,0, + 09)
+r{l —o,0,+04,...,0, +0y)
=rtg1(o, 1 + 0,00+ 04, ...,0, +09)
=Tk41(0y, Ox+1 + 01,0, + 01, ..., 0, +0y).
For the third equation we used the relation
141001, 7) + (1 — 01, 7) =Ti4g(o, 1 — 04, 7)
which is valid for ¢,€G; and teG;, since by (27), (25) and (26)
142001, 1 — 01, 7) = 1144(0(0y, 1 — 04), 12(1 — 0y, 61))(0,7)
=11+1(1, 1)(0,7) = r;41(0,1)(0,7) + r,4.4(1,0)(0,7)
=1,41(0,1)(0,7) + 1r,41(0,1)(1,7)
=14+10,7) + 1,4+ (1,7) .
This proves (29). [

Equation (29) implies the following symmetry of the grand canonical energy
function:



90 A. Knauf

Lemma 4.8. For (0, ...,0)eGy
Hi (o ...,00)=H{(oy,...,00. (30)
Proof. By definition,
Hoy, ...,00) =Ht 1(0, .. ., 00 1) =In(he,1(o1, . . ., 0% 1) .

So we must show that

hisi(o1, - . s 0 ) =hiy(o, ... 00, 1) (31)

The functions r,: G, — N, are related to the functions hy by

by, . . ., 00) = Tesa(o, 1 — 0,04, .. ., 0%) (32)

for ¢ = 0 or 1, since
h§ = 1 =1,(0,1) = r5(1,0)

and by induction in k.
(29) implies (31), since by (32)

h£+1(0'1, oy Opy 1) = rk+3(0,1, 01, ..., 0 1) = rk+3(0,1, Oy« ++501, 1)
=hg+1(0'k,...,0'1, 1) O

Lemma (4.8) implies the following mirror symmetry of the grand canonical interac-
tion coefficients:

Proposition 4.9. Let (¢, . . ., t,) € Gf. Then
JRs - t) = R )
Proof. This follows immediately from (30), since

jg(tl, ey tk) = — 2_k Z HE(O'I, ey O'k) Xt(al, e ,O'k)

(61, ...,0,)eGy

= _2_k Z Hl?(o-ka- . '901)X(t1,m,tk)(61"~ -,O.k)

(@15 ...,01)eG

= —27F z chG(ok:~'-sgl)X(zk,...,tl)(aks-'-,01)

(@1, ...,0K)€Gy

=jiltey .- ty). O

5. Ferromagnetism
In this section we will show that the canonical and grand canonical interaction is
ferromagnetic in the weak sense that for all keIN

js()=0 and jf(r)=0 for teG,\{0}.

That property will be a consequence of inequalities between the interaction
coefficients for spin chains of length k and length k + 1. These inequalities are
derived by interpolation techniques.
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We begin with the canonical ensemble. For keN, ¢ = (64, . . . , 03)€eG; and
0Zu<sllet

hi(u;0):=uhf(6)+ (1 —u)hi_i(0s ..., 04)

and Hf (u;0) = In (h§ (u;0)).
For the interpolating canonical interaction coefficients

Jrwst) = — Z(HL)(t), t=(ts,...,t)eG},
we have
.C Os tl = 1
0:t)="< . 33
Je(:1) {Jg—l(tz,w-,tk)’ t; =0 (33)
and
Jr(e) =jie) . (34)

d
We will show that Ejg(u; (s, 1)) 2 0for seGj_; and 0 < u < 1. The canonical

interaction coefficients jg(¢) for teG{ of the form ¢ = (s, 0) will be discussed later.
For k = 1 we have

d ¢

—ji(u1) (1+u)t>0.

N[ =

1d
Tu =§Eln(2u+1—u)=

We show

e (5, 1) 20, uel0, 1] (35)
du

d
for se Gy, assuming that Ejf(u; (s,1)) =0 for all SeGj_;.

For #,(s) odd we have

Jer1 @ (s, 1) = = 274D ¥ (Hiy (45 (0, 0)) — Hiy 1 (45 (0, 1)) x4(0)

oceGy
= —27® "D ¥ Hi, (4 (0, 0)) x4(0)
oceGy
1
= =270 ¥ Hi(w;0) 1d0) = 57k (55)
oceGy
since H, { (u;1 — 0, 1) = HE, (30, 1) and 5 (1 — 0) = — y4(0), showing (35) for
#1(s) odd.
Therefore we assume #,(s) to be even.
We write
Jeri((s, 1) = = 27*D 5 In(v(150))x4(0) (36)
aeGy

with v, (u; o) defined for keIN,, ue[0, 1] and ceG, by
hic+ 1 (4;(0, 0))

. 37
hic+ 1 (5(0, 1)) 4D

vi(u;0) =
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We have
vi(u;1 —0) =1—wl(u;0), (38)

since h .1 (u; (0, 1)) = hi(u; ) + h{(;1 — o).
Moreover, v, (u) meets the recursion relations

NE9) g v 0, 1) = (39)

Vir 1(15 (0, 0)) = 1+ vo(; 0) 1+ v(u; 1 — o)

since
hi+1(u; (0, 0))
h s 1(u; (0,0)) + his 1 (u; (1 — 0, 1))
_ hS. 1(u5 (6, 0))
his 15 (0, 0)) + by 1 (u3 (0, 1))
and by (38). We derive (36) and get with s: = (s;, ..., Sx—1)

Vie+1(; (0,0)) =

d
T e (505, 1))
u

= =270y %[ln(vk(u; (0,0)) + (= D)*In(vi(u; (o, 1)) 1%5(0)

0eGy-1

=-27D Y %[ln(vk(u; (0,0))) + In(vi(u;(1 — 0, 1)))] %+(9)

0eGy-1

= —2 kD ¥ %ln[w]xs'(d)

€G- 1 (1 + Vk—1(u;0'))2
- 1 —v—(u;0) d
= -2 — L IV (5 wlo).
aegz:(-l 1+ vi_y(us0) du (V-1 (13 0)) 1 (o)
The second equation follows from the relation

Lisyyvsiey A —0) =(—=1) %4, . se)(0)

which is valid since #(s) is even.
Therefore

d .
J';Jl(c:+l(u; (s, 1))

1 1—Vk—1(u§'). _i ..
_Ejk_l[——l—i-vk_l(u;-) < duhl("k—1(”, ))>:|(51,'--,Sk—1),

that is, the left hand side is half the Fourier transform of the product of two
functions in <7, _ .

. d L
By our assumption T jE(u;(s', 1)) = 0 the second function is strictly ferromag-

netic. So in order to prove (35) for #,(s) even, we may prove that the first function
is strictly ferromagnetic, too.
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Lemma 5.1. For ke Ny and ue[0, 1]

1 — v +)
vl =)
Proof.
1 — v(u; 0)
1+ vi(u;0)
_ b0, 1) — by 1450, 0))
hic+1; (0, 1) + his 1 (3 (0, 0))
_ hi@w; o)+ hi@w1—0) —hi@wo)  hiwl—o)
hi, (; (1 —0,1)) + hi, (u;(6,0) hi,,(;(0,0,1))
Cuhi(l— o)+ (1 —whi_ (1 —05 ..., 1 —0)
uhi12(0,0,1) + (1 — w)hi41 (02, . . ., 03 0, 1)
_ urk+2(0> la 1- 0-) + (1 — u)rk+1(0, 15 1-— G2 -« - 1- Jk)
- urk+4(0’ 1’ a, 0’ 1) + (1 - u)rk+3(0’ 1: G2« v oy Op,y 0, 1)
_urk+2(0,1—0k>"'al—01a1)+ I =wre 10,1 =0y, ...,1—0,1)
h urk+4(0a 13 05 Oy« « 5071, 1) + (1 - u)rk+3(0’ 19 0, Ok, « -+ 502, 1)
_ urgio(l, o . oo, 0, )+ (L —wre 1 (Log, ..., 05, 1)
urk+4(03 15 O, Oks -+ - 501, ]-) + (1 - u)rk+3(0’ 1509 Ok - - -, 02, 1)
_ Wi r:(1), r1(0))(0) _ Wi 1,0)(0)
Wk(u; l'3(0, 1’ 0), r3(1’ 0> 1))(0-) Wk(u; 15 2)(0)
with

Wi (; 5o, $1)(0) = ury+2(50, 51)0, 0, . . ., 04, 1)
+ (1 = wres1(50,51)O0, 04, . . ., 05, 1)

for ue[0, 1], so, s;€R and ¢ = (04, . . . , 0%)EGy.

To derive the first equation in this long train of derivations, we used the
definition (37) of v, (u).

Equation 5 follows from the relations (32) between hf and the auxiliary
coeflicients ry.

For Egs. 6 and 7 we used Lemma 4.7 and the relation

L@ ) =n+(1—-11),

valid for all 7eG;.
The second-to-last equality is obtained using Lemma 4.6.
Now we will consider general expressions of the form

W, (u; no, nq)(0)

Wi do, d1)(0) (40)
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For fixed arguments, numerator and denominator of (40) may be considered to be
ordinate and abscissa of a vector in IR2. Then (40) is the tangent of its angle with the

abscissa.
By applying linear transformations in IR? and using Proposition 3.2, we show

now that for kelN, ng, do, d;eR* and ue[0, 1]
Wi(u; no, 0)

€. if dy<d,, 41
Witk dp,d) ¢ 0= “
that is, the function is strictly ferromagnetic.

Wi(u; no,0) 1 Wi (u; 7o, 0)
W, (w5 50, 51) Wi (; 50, 51)

with iy == /d? — d3 and = ngy/ii, > 0, so that the first quotient is strictly ferro-
magnetic if the second is.

With #' == \/d,(d; — do)/2 and d' = /d,(d; + do)/2

diy +d, d, —do
< Wk(u; ﬁo, 0) > 2d1 2d1 <Wk(u, n/a - n,)>

Wi do, dy)) \/dl—do i +dy |\ Wiwd,d)
2d, 2d,

since
d, +d, o, , d, —d, o
2d1 Wk(u’n’ n)+ 2d1 Wk(u9d9d)
= [ (s 1,0) — W 0,1)
1
7 d, —d, ) )
+ 2d1 (Wk(ua 19 0) + Wk(u7 0) 1))
Ja? —d3
=5 2W, (5 1, 0) = Wi(; \/d} — d§, 0)
and
d, — dg o, , dy + dg o
- 2d1 Wk(uana _"n)+ 2d1 Wk(uad,d)
= D W 1,0 - W0, 1)
dy+d
+ =5 (Wil 1, 0) + Welw; 0, 1)

= doWi(w; 1,0) + d; Wi (; 0, 1) = Wy(u; do, dy) .
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Furthermore,

Wi (u; 7ig, 0) Y di + doWis ', —n') + Jdy — dgWiw; d', d')
Wi do, di)  — Jd, — dgWi(u; 7', — ') + Jd; + doW,(u; &', d')

_ wk(u; nla - nl)
= gy( W, d,d) ) “42)

with g,: (— 1/z,1/z) - R defined for zeR ™" by

X+ z

gz(x) =

>

1—zx

for y:= /d? — d3/(d, + dy) = fiy/(d; + dy) < 1. Now the n-th derivatives of g,
are positive at zero,

Ton gz(x)lx=0 g 09 HGNO s
dx

since both numerator and the inverse denominator of g, have positive x-derivat-
ives. Moreover, g, is real-analytic for arguments of norm |x| < 1/z, so that we can
apply Proposition 3.2. Thus the Lh.s. of (42) is a strictly ferromagnetic observable in
o if the argument of g, has the same property.

But for ceR

W.(u;¢c, +c)(1 —0o) = =+ Wiu;¢, +¢)(0), (43)
since
Wilu; e, )1 — o) = c(Wilw; 1,0)(1 — o) = Wi(; 0, 1)(1 — o))
= clu(r+,0,1)(,1 -0, ..., 1 —0a1,1)
+1420,1)0, 1 —0y, ..., 1 —0y, 1))
+ (1 —u) (rg+:0, D)1, 1 —0ay, ..., 1 —0,,1)
+ 1410, D)0, 1 —0p, ..., 1 — 03, 1))]
=clu(r+,0,1)0, 0y, ...,01, 1) £ 14,0, 1) (L, 04, ..., 01, 1))
+ (1 —u)(r+10,1) 0,04, . ..,051)
1410, 1) (1, 04, ..., 0, 1))]
= + W,(;¢c, +¢) (o).
Thus for #,(t) even
Ay Jo=0

since the quotient is odd w.r.t. inversion of all spins.
Therefore we consider the case of an odd #,(t). If k = 1, then

W (u;n', —n') u n
F = - > .
1< W, d.d) )(1) T ad 2 0 for uel0, 1]
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If k > 1, then for #,(t) odd

W, )\ W', = 1)(c,0)
"(wk(u;d',d') >(t)‘2 "L Y W 4 d)6,0)

Xty .“,tk_,)(a)

6eGy—-1

Wi_1(u; 7, 0)
— 9% —
= jk_l(Wk_l(u;d’, 2 (s o oo sti—q) . (44)

The first equation of (44) is a consequence of (43). The second equation is derived as
follows.

W n', —n')(o,0)=ur,, (', —n)0,0,00_1,...,04,1)
+ (1 —wr (0, —n)0,0,00-1,...,051)
=ur (2, —n)0,0),r,(n, —n)(1,1)0,04-1,...,041)
+ (I —u) r(r(m, —n')0,0), 1,00, —n')(1,1)) 0, 00—1,...,0,1)
=ur+1(,0) 0,041, ...,04, 1)+ (1 —w)r,(®,0)0, 64-1,...,05 1)
= W1 (u; 1, 0)(0) ,

using (27).
Similarly,

W w; d', d')(0,0) = ur,i 4 (r2(d, d)0,0), rod, d)(1, ))O, 641, - . .,01, 1)
+ (1 — u) r(r2(d, d')©0,0), r(d, d)(1, 1))0, 04—, . . . , 02, 1)
=ur+1(d,2d)0, 04—, ...,01,1)
+ (1 —ur(d,2d)0, 041, - .., 02 1)
=W d',2d) (o) .

The argument of the Fourier transform in (44) is of the form of (40), with [ .= k — 1,
no:=mn,ny:=0,dy:=d and d, := 2d'. In particular ng, do, d;eR* and d, < d, so
that we have proven the recursive step k — 1 - k. Thus Eq. (41) holds true. [J

'

Now we know that for keN and seG§_,
d
—]f(u; (Sa 1)) ; Oa ue[oa 1] .
du

Together with the formulae (33) for j§(0;¢) and (34) for j§(1;¢) this implies
Corollary 5.2. For keN and t = (t, . . . , ;) Gy
0, t; =1

, 45)
]Ig(tb""tka 1), t1=0.

jf+1(t,1)z{

We know from Lemma 4.2 that
Jie1(t,0) = jiaa(t, 1) +ji(0) -

Thus the canonical ensemble is weakly ferromagnetic if the grand canonical
ensemble is weakly ferromagnetic, a property which we will show now.
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For kelN,, 6eGy and ue[0, 1] we set

and

hi(w; 0) == uhg,1(0,0) + (1 —u) hi(o)

H{ (u; 0) == In(h{(1; 0)) .

For the interpolating grand canonical coefficients

JRwt) = — FH{W)(), teGE,

we have for t = (ty, ..., )

and

since

Jfe) =ji0;1)

Jerilto, t) =j(L; 1), toi= #4(t) (mod2),

j,?+1(t0,t)= — 27+ Z Hg+1(U)X(to,t)(°')

6€Gy 4y

= — 270D N (HE (0, 7) + Hi (1, T — 1) x(7)

1€ Gy

= =275 Y H{n0 9)x) =it 1),

1eGy

using HY(1 — o) = H(0) .
One notices that #,. (o, t) is always even, so that we can obtain information
on the complement of those grand canonical coefficients which vanish by Proposi-

tion 4.3.

Lemma 5.3. For kelNy and 0 = (04, ..., 0,)eGy

L a0 = MY

= WeU 1
du 1+u-v(l;1) uel0, 1]

with 1= (0y, . .., 01).

Proof. By definition (47) of H{(u; 0), (46) of hi(u;0) and (24) of hi(s) we have

d d h{. 10, ) — hi(o)
—Hf(u;0) = —In(hf(u;0)) = > k
T k(u, O') du Il( k(u’a)) hg(a) + u(hf+ 1(0, O') — hg(a))

_ b0 -hiE

h{() + uth, 4z, 0) — hi(x))
_ hg (1,0, 1) — hf, (5, 1)

he 11, 1) + u(hfs oz, 0,1) — b4z, 1))
_ hi. (7, 0) __ wly)
Chfan 1) +uhf (@ 0) L+ uev(lT)

97

(46)

(47)

(48)

(49)
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As the following two lemmata show, — d/du Hg(u) is weakly ferromagnetic for
u=0.
Lemma 5.4. For keN,, teGf and #(t) even

d .G - %> t= O

— e )]0 =

du I Dlu-o { 0, otherwise.

Proof. Setting s := (ty, . . ., t2)eG{_4,

d . _
— R o= =275 Y we(l; 0%, ..., 01) Xu(0)
du

ceGy

—27* Z Vi(l;04, ... »O'k)X(tk,.‘.,tl)(O')

0eGy
= =27 ) (wl(5,0) + v(l;(1 — 7, 1)) xs(0)
tEGkﬁl
L 1
= =2 Z XS(T)':_Eés,O,
1€Gp~1

by (38) and (17). But if # () is even, then s =0 if and only if t =0. O
Lemma 5.5. For keN, teGjf and # (t) odd,

d .
Wﬂu; lu=0 2= 0.

Proof. With the same notation as in the proof of the last lemma,

d
=0 = —27F Y (13 (%, 0)) = vi (15 (1 — 7, 1)) %s(7)

du 1€Gy -1

- 1 — vl 1)

+ 27k —_—

teGZk_l 1 + vk—l(l; T)
using (39) and Lemma 5.1. O

Lemma 5.6. For keN and teG;\ {0}

1s(t) 2 0,

d .
;i;]f(u;t) =20, uel0,1].
Proof. Lemma 5.4 and Lemma 5.5 show that the assertion holds true for u = 0.
We define ¥;: G, = R by ¥, := % — v;(1). Then for te G;"\ {0}
d .
@Jk(u; D=0 = + FiWi)t, . . ., 11), (50
v, is strictly ferromagnetic, and for arbitrary ue[0, 1]

d
a;j,?(u;t)= + Fu@@)) s - - -5 1), teGI\{0},
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with
xX—3

11 1
gu-<_§,§)_’IR> gu(x)--m‘i'i-
0 =1(1 L) 0, and for neN
&) =3 1+u2) = > 2ncionne
n ) | u n—1
=(1 =0.
S Bumo = (1 + u2)” n<1+u/2> 20

Moreover, g, is real-analytic on the interval ( — 1/2, 1/2) for ue[0, 1].
Thus by Proposition 3.2, g,(V) is strictly ferromagnetic, so that the lemma
follows from (50). [

Now we have proven the ferromagnetic property for both the grand canonical and
the canonical ensemble:

Proposition 5.7. For keN and t = (t, . . ., t) € G\ {0} with #(t) even,
HOE { ’ e (51)
Jit) =
‘ Jk 1tz uty), t1=0.

Both the canonical and the grand canonical ensembles are weakly ferromagnetic, i.e.,
jx) = 0and jit) =0 for all teG¥\{0} .
Furthermore, for te G;\ {0},

s s
JiO) 2 51(0,0) 2 50 2 i1 1) 2 0. (52)

Proof. (51) follows, since by (48) and (49)

J@) = ji-ales, . . +J ikt du
Zjl?—1(t2, cos ),
using Lemma 5.6.
Observe that ]k(t) —]k Wtz o5 t) +I I jo(u;t)du even if ¢, = 1, since

then j¢_i(ts, ..., t) =0 by Proposmon 43

Observe further that we may assume k > 1 since there does not exist a
teGT\ {0} with # (¢) even. Thus we can apply Lemma 5.6.

The grand canonical ensemble is weakly ferromagnetic as a consequence of (51),
and of the vanishing of the jk(t) for #(¢) odd (Proposition 4.3).

The canonical ensemble is weakly ferromagnetic by Corollary 5.2, and since

Jiei6,0) =jiaa@ 1) +jie)
by Lemma 4.2. By Lemma 4.1

Jir1t,0) +ji 16, 1) = ji(0)
so that (52) follows. O
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6. Upper Bounds for the Interaction Coefficients

In this section we derive bounds for j(¢) depending on the form of te G

The principal character t = (0, . . . , 0) plays a special role, for it is obvious that
j£0) < 0 and lim,_ ., j£(0) = — oo since j§(0) is minus the mean value of the
function H .

In Proposition 5.7 we proved that js(t) = 0 for the non-principal characters
teG¥\{0}. Here we shall derive upper bounds for these canonical interaction
coefficients.

One quantity which regulates the size of |jy (¢)| is the value of the counting
function #,(¢t) on the group Gj of characters. It will turn out that, roughly
speaking, j; (t) is typically small if # (t) is odd.

For #,(t) even, |j(t)|is small only if the size S,(t) = W) — PL(t) + 1 of
teGy\ {0} is large.

Although the coefficients hf(a) are invariant under the reflection a — — a (see
(8)), x:.( — a) * x.(a) in general for the functions y, := 7, - Id, on G,. Thus there are
many cancellations in the defining relation of j; (¢) .

Definition 6.1. Let te Gy Then aeG, is called positive (negative) if y,(a) + x.( — a)
= 2 (— 2). Otherwise a is called vanishing.

teGy is called interlaced if the ordered list of the non-vanishing elements of
G, is alternating between positive and negative elements.

To calculate y,( — a), we must relate Id,( — a) to Id,(a).
Lemma 6.2. Let t = (tq, . .., t;)e G¥ with t, = 1. Then t is interlaced.

Proof. Let a, beG, be non-vanishing in the sense of Definition 6.1, a < b w.r.t. the
order on Gy induced by the complete residue system {0, . . ., 2¥ — 1}, and let a + i
be vanishing for 0 <i<b — a.

Then by Lemma 3.1

2@) = (= a) = (= )"y (a — 1)

(53)
2:0) = 2= b) = (= DFOy, (b — 1)
and
wa+i)= —xp(=(@+i) =(- D"y a+i-1)
=(—1) "*#O*Dy ()
so that
1u0) = (= D A0y () (54

If #,(t) is odd, then the exponent in (54) is odd.

If #,(¢) is even, then by (53) y,(a) = x.(@a —~ 1) and y,() = x.(b — 1). This
implies that both a and b, considered as elements of the residue system, are even
numbers, since for ce G, odd

Idk(C) = (0'1, N 1) and Idk(c— 1) = (0‘1, ce ey Op—1, 0)

so that y,(c) = (— 1)*y,(c — 1). Again, the exponent in (54) is odd.
Thus in both cases x,(b) = — y.(a) proving the interlacing property. O
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For te G} we define the auxiliary coefficients J;(t) by

Jit):=—27% Y Hi(a)ya) . (55)

aeGy

Lemma 6.3. Fort = (ty, ..., t;)e G¥

Te+100, £) = k() (56)
and
Jt)=0 ift;=1. (57
If t, = 1, then
k@) = Ju(t) |<27%-In 2. (58)

Proof. (56) follows readily from the definitions (5), (16) and (55):

Ji+10, 1) = —27&*D Z Hf+1(2a)X(0,:)(a)

aeGr+1

= =270 ¥ H(0 - 0k, 0)+ (= DES

d€Gr+1

= —2.270D N Hi(oy, ..., 00 - x(0) = jE(2) -

oeGk

Similarly, J;(1) =0andfork>2and ¢, =1

Jt)= —27%Y H{(0g...,00,0) - (=1) - (=Xt =0 (59

0eGr

by summation over o;.
With regard to (58), we have

Ji@) =) = =27 Y (Hi(a) — H5(2a))x.(a)

aeGy
=27FH{QRYY) 221 — )
=27F(=1)%-In2 —u)

with

ui= Y (He@) — Hya)((a) + xd — a)) .

ae{0, ..., 2k 1}

Now by Lemma 6.2 the character ¢ is interlaced since t, = 1.
Morcover, H §(a) — H £ (2a), or equivalently hi(a)/hs(2a) , is strictly increasing
for 0 < a < 2%71 as we show now. We start with the trivial relation

he©) 1 kY 2

hE0) 1 hi@) 1
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between the end points. Then we use the inductive definition (5) of the hf to prove
the general statement, observing that

n, ny+n, np

4,4, +4,°4,

for ny, n,y, dy, dy > 0 if ny/d, < n,/d,.

So u is represented by an alternating sum whose terms are strictly increasing in
absolute value. This implies that u is bounded by the terms for a = 0 resp. for
a=2"%

0s(—1)f-u=g2n2,
proving (58). O
Proposition 6.4. For te G} with #(t) odd
0<ji®) =™ *Y —279n2 (60)
with [:= Pj(t).

Proof. Let r = Pi(t) and s := S;(t) =r — [ + 1. We define the character t'eG¥
by

=0y, ..., t)=y...,1t).
From Lemma 4.1 we deduce that
Jety =274 7@
with t” .= (0, t')eG}. Moreover,

JE@) S 1) + 3 1S, ¢) — 40, )]

i=s

=0+ ) 27" In2=Q2"*"'—-27")-In2.

i=s

by (56) and (58).
So j(t) £ 2~ *~1(27s*1 —27").1n 2, proving the estimate. [J

Proposition 6.5. For te G\ {0} with #,(t) even
0<jr(t)S QT2 —27rtl 2= Gk=D 4 27k |2 (61)
with | == Pi(t) , r == Pi(t) and s == Si(t) =r — | + 1.
Proof. Again, we define t'eG¥ by
t=0tr...,t)==0,...,1)

and t’ = (0, t')e G. Using (20),

k
K@) =jc¢) - Y i@, 0,...,0,1).

i=r+1
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Now #(t",0,...,0,1) = #,(t) + 1 which is odd so that by Proposition 6.4

k
KOS+ Y @74 =272

i=r+1

=[S+ 7 =27 *D 27T 4 27K 2,

But by Lemma 6.3
Jry £ Y S0, ¢) = Ji0,¢) <2 -2 1n 2,

so that (61) follows. [

Remark 6.6. Notice that the estimates in Propositions 6.4 and 6.5 are sharp for
t=(1,0,...,0)eGfand t=(1,0,...,0, 1) eG}, respectively.

7. Asymptotic Translation Invariance

We know from Sect. 6 that the interaction coefficients j¢(t)are small in absolute
value unless the size Si(t) is small.

In this section we show that the interaction coefficients are asymptotically
invariant with respect to translations (up to edge effects).

Lemma 7.1. For ae{0, . ..,2* — 1} the function
Hivy(a) — Hi(a)
is monotone increasing, and 0 < Hy, (a) — Hy(a) < In 2.
Proof. By definition (24) of Hy(a) = HY °1d,(a)
Hy{. (@) — Hila) = HizQa + 1) — Hiya + 1)

So the assertion follows from the estimates for Hy(a) given in the proof of
Lemma 6.3. O

Lemma 7.2. Let te G\ {0} with # ., (t) even and r := Py (t). Then
Jesilte, - s test) =it - tie1) | <217 In 2.

Proof. BGy Lemma 3.1 we have y,(—a — 1) = y(a) since #,+4(t) is even. More-
over, H yi(—a—1)= HY. .(a) . Thus

.G .G
Jiv1le oo s tert) — k(2 - oo st )

= =270 N H{0) xdo) +27% Y H{(0) X, e (0)

6e€Gr+1 ceGx

= -2 ¥ (Hin@ = Hi@) X (@) -

ae{0, ...,2k—1}
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We split that sum by writing

Y (HE @) — HE@) iy, . e (@)

aef0, ..., 2k—1}

= Z — Z A((GZ"'aGr—l)a(o-rf'l;---,Jk+1))
Gr+1s - - ., Ok+1) (@2, ..., ar—1)
Z :2 ait, = even
+ Z A((GZs s or—-l)a (O'r+15 LI ak+1)) (62)
2, ..., or-1)
Z:;z‘ ity = odd
with
G
A((Uz,.‘.,O'r_l),(o'r.‘\.l,...,O'k+1))= —Hk+1(01 0'2,.‘.,0',._1,0, 0',.+1,...,0'k+1)
G,
+H (02, .. .,0,-1,0,0,41, ..., 0k11)
G
+Hk+1(0> 02+« v 5 0r—1, 15 Ortts- - - :Jk+1)
G
—Hi(02 .. ,0-1, 1,041, - ., 0k4+1) -

By the monotonicity result of Lemma 7.1 both the sum over the even and the sum
over the odd terms in (62) is positive and smaller than In 2. So their difference is
smaller than In 2 in absolute value.

Due to the summation over (4,44, . . . , 0x+1) there are 27177 such terms in
(62), leading to our estimate. [

Proposition 7.3. Let te G\ {0} with # (t) even. Then
780100, 0) = i1t 0l < Q7 yi-a1 g
with | := PL(t) and r := Pi(t).
Proof. We denote by t' :=(t;, . . ., t;) the inverse of ¢ := (¢4, . . . , t). Then
7+ 100 £) = j+ 16 0)] £ 1jis 10, 1) — ji(0)| + £ @) — j (@)
+ 1) = jEa 0 O + 110, £) = jia s, 0)]

We know from Prop. 4.9 that j§(t') = j£(t) and j¢, (0, ) = j£(t, 0). So we get from
Lemma 7.2 that

765100, ) = e 16, O) £ 1j¥41(0,8) = jE @) + (') = jii+1(0, )
< 217Fie 100 fp 3 4 21 P10 )
=27 +27 Y2,
since P44(0,t) = Pi(t) + 1 and P}, ,(0,¢') = Py(t') + 1 =k + 2 — Pit). O

8. Decay Properties of the Potential

Up to now, only finite spin chains of length keIN, were treated. The thermodyn-
amic limit kK — oo can exist only if the positions of spins g, o, far apart within the
chain (that is, [r — [| large) are not too dependent of each other.
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More precisely, the probability measure on the group G, = (Z,)* for inverse
temperature s given by the distribution

exp (—sHy): Gy~ [0, 1]

Zi(s)

should not deviate too much from a product measure on G.

The negative Fourier transform j§ = — F(HY) of the canonical energy func-
tion plays the role of a potential. In Sect. 7 it was shown that this potential is
asymptotically translation invariant. It is well-known (see Ruelle [6], Chap. 2) that
the thermodynamic limit exists if the potential decays fast enough.

In this section we will prove such decay properties for the canonical and the

grand canonical ensembles.
For Lr,keNwith1 <l<r=<klet

Ag(lr r) = Z jf(ol—l’ 13 t: 19 Ok—r) )

teGy-1-1

0, G, denoting the identity element of the group.
Similarly, we define

Al?(la r) = Z ]l(c; (01—17 1, t ly Ok—r)

teGy-1-1

for the grand canonical ensemble.

All terms in these sums are positive, as follows from the weak ferromagnetic
properties shown in Sect. 5.

We shall show that the potential decays in the sense that, independent of k,
A, r) and Ag(, r) are small if » — [ is large.

We begin with the canonical ensemble.

A= -2""Y ¥ Hi(o) 1(0)

o’eGk teG:—z—l

for s:=(0,_1, 1,1, 1,0,_,) € G¥. Thus using Hy = In(hy),

AlGn=-27*¥ ¥ ¥ X

d'eGi-1 " e Gk-r ;1" € G1 peGr-i-1

Z HE(O'I, TI’ P T”a O.H) * ( - 1) et Xt(p)

te G-y

— _2—k+r—l—1 Z Z

oleGi-y oM e Gi-r
(111 l:hg(als 09 0r+l—13 Oa OJI) :| —1n |:h)(¢:(1 - O'I, 1, 0,-1_1, 0, O'H) :|>
hlf(al, 09 Or+l—1’ 15 G'II) hf(l - 0'15 19 Or—l—la 1’ O'II)
1 —(k—=r)—(1— Vr— - ((1—0‘1,1,0_,_1)'0'”)
= 4 -2 (k=r)=(-1) 1 r—1,k-r r 3
4 Z Z n[ vr—l,k—r((al’ 0’ Or—l—l); O-II)

dleGi-1 o' e Gik-r

(63)
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where for k, leN,, 6 G, and 1€ G,

h}(c:+l+1(o-7 0; ‘C)

hiyi44(0, 1, 7) .
Lemma 8.1. For k, leN,, 0€G, and 1€G,

I+ 1(13 0)(05 1)'vk(1; O') + I+ I(O: 1)(0’ T)
r41(1, 1)(0, 1) — 1,410, 1)(0, 7) - vi(1; 0)

with (s, S1) and v, (u; o) defined in Sect. 4 and Sect. 5, respectively.

Vi1 (03 7) =

Vii(0; 1) =

Proof. For u = 1, the interpolating coefficients v,(u; o) equal
hi+1(0,0

W(l; o) = eei@0),
hiy1(0,1)

We use the relation
ho(p) = 1120, D)0, 1,p), peG
which is valid for arbitrary melN,, since for m =0
r;0,1)0, 1) =r,0,1)(1,0) = 1 = hg,
and by induction in m. Thus with the abbreviation r,(p) = r,0, 1) (o),
hi+141(0,0,7) _ Teri430, 10O, 1,0,0,7)
hfﬂﬂ(a, L) Tea+30,1)0, 10,1, 7)

_ rl+1(rk+3(0’ 17 g, O), rk+3(l’ 0’ 1— o, 1))(0’ T)
I+ l(rk+3(05 17 g, 1)’ rk+3(19 05 1- g, 0))(09 t)

Vialo; 1) =

A. Knauf

(64)

_ 1430, 1,0,0)-1,41(1, 000, 7) + 1451, 0,1 — 0, 1) 114,40, )0, 7)

- rk+3(09 19 g, 1).rl+ 1(1> 0)(0, T) + rk+3(15 03 1 — 0o, O).rl+ 1(0, 1)(0) T)
_14+30,1,0,0)1141(1,0)0,7) + 1430, 1,1 — 0, 1) 114,(0, 1)(0, 7)

13430, 1,0, 1) 1144(1,0)0, ©) + 14430, 1, 1 = 0,0)-114,0, 1)(0, 7)

_ hfﬂ(o'» 0)'rl+ 1(1, O)(0> 7) + hl(c:+1(1 —0,1)r4 1(0, 1), 7)
his1(, 1) 141(1,0)0, 7) + his (1 — 6,0) 1,410, )0, 7)
hi+1(6,0) 114 4(1,0)0, 7) + hiy1(0, 1) 114,10, 1)(0, 7)

G2, Dries( DO, 1) + 04 (1 — 0,0) — hisy(0, D)r1e10, 1O, 7)

_hit 11,0)0, 1) vi(1;0) + 1,440, 1)©O, 7)
r41(1, )0, 1) — 1,410, 1)©0, 1) - vi(l; )

The third equation follows from Lemma 4.6, the fourth from Lemma 4.4. For the
fifth equation we used the relation r,,;,(0, 1, 6) =r,,,,(1, 0, ) which holds since

fort=0o0r1
l.m+2(‘l:? 11— T, O-) =Tm+ 1(1'2('[, 1- T)a r2(1 -1 T))(Oa 6)

=Ty 1(1, 1)(O> 0) .
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Again, in the second-to last equation we used Lemma 4.4, and the relations
hiy1(0, 1) = hisy(1 — 0, 1) = hii4(0,0) + hiy (1 —0,0). O

By Lemma 8.1 the argument of the logarithm in (63) is a quotient of terms of the
form

vr—l,k—r((&> TI) Or—l—l); GII)

— | 1(1> O)(Oa UII)°vr—l(1 ,(5', TI» Or—l—l)) + | 1(0’ 1)(07 6") (65)
l‘k—r-f-l(ly 1)(O> O-II) Ty 1(09 1)(0> O-II)'vr—l(l; (&a TI) Or—l—l))
with @, t!) = (¢,0) or (1 — ¢?, 1).
But for meN, 6€G,,, nelN, and the identity element 0,€ G,
Vmltt; 0)
. — £
vm+n(u’ (O-’ On)) 1 + n-vm(u; 0_) or ue[05 1] s (66)
since (66) holds for n = 0, and since by Eq. (39)
vm+n(u; (Ga On))
. 0)) =
Vin+n+ l(ua (O', Om )) 1 + Vm+n(u; (O', On))
_ Vmltt; 0)
B (1 + n°vm(u; O')) + vm(ua O')
_ Vu(u; 0)
14+ m+Dvuwo)
Applying (66) to our situation, we obtain
1107
(15(01.0,0,_,_ ) =— =il 67
vo—1(1; (o —1-1)) 1+(r—l)v,_1(l;61) (67)
and
1;(1 —a% 1)
_ 1’ 1— I 1 o — vl( 5 >
\f 1( ( g, 90r 1 1)) 1+(r—l—1)v,(l,(1—al,l))
_ 1
S HviaGe)+e—1-1)
1
(68)

T+ vi_1(L; 6ty

where we used the identity v,(u; (1 —0,1)) = (1 + v,_,(u;0))" 1.
Inserting (67) resp. (68) in (65), we get

vr—-l,k—r((o-la 0, Or—l— 1)9 O-II)

_ T 1(1,0)O, 6™) Vi s (15 67) + 14y 14 0, DO, 6) - (1 + (¢ = Dvi_1 (15 07))
ter1 (L DO, 6M) (U + ¢ = Dimi(1567) = Tempr 10, DO, 67 vy (15 67)
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and
vr—l,k—r((l - O-I: 1’ Or—l—l); GH)
_ re—r+1(1,0)0,0") + 1,10, 1), 0")‘(” —l4+v_(1;0")
tere 1L, DO, 6™ — 14+ v 1(1507) —1,—, 4,0, )0, 6™)
For ¢f=0 we have 1 ,.:1,000,6")=r,_,;:(1,1)0,6")=1 and
rv_,+10, 1), ¢'T) = 0 so that the argument of the logarithm in (63) acquires the
form
vr—l,k—r((l - OJ> 13 Or—l-—l); O)
vr—l,k—r((o-la 0,0,-,-1);0)

1
1 —_1 1: I
14+0¢—=D-v-1(1; 0" _ +r—lvl iL07)

= .1y, Loy
r—=1+v_11;0%)v_1(1;0%) 1+ 1 le—1(1§UI)

1
=[1+ :—l(vz_—11(1§ o) = vi_1(1;6)1- Ry(0) (69)
with
1
1+ —:—l Vl_ll(l; O'I)
Ri(e") = —— s . (70
1+—_Vz 1(10)+< )(1—"1 (13 0h)

l

For 6"eG,_,\{0} we may divide through r,_,,;(0, 1)(0,¢'') > 0 so that with
n=k—r+1and ¢! := 0,0
Voo -1 — 6,1,0,_;-1); 0”)
Vi—1,k~r (GI, 0,0,-;-1); G”)
_r,(1,0)E") + 1,0, 1)E")r — 1+ vi-1(1; 6"))
(L, 0)EM) + 1,0, DE™) - — 1+ vii(1; 07))
(1L, DE™") - — 1 + v (15 67) — 1,0, )E")
r,(L, DE") =1+ v 1(1;0") — 1,0, DE)

1 ) r,(1, 0)@")
B 1 +r—_—l<V;_1(1,O'I) +W>

N 1 r,(1, 0)@E)
”_<V’ W)+ 1)(&”))

i 0, 16"
.1+_<v’ itoh (Ll)(&”))

1 , A0, HE™)
ey (vetso )




On a Ferromagnetic Spin Chain 109

1\ 1 I
=1 +<r——_l) (vi—i(507) —vimy(150%))

r(l, 0G| 10D ooy 1 o0
'<rn(0,1)(&")+r,,(1,1)(au))'Rz @507 (71)

with

Ry(c%;6') =

r(l,0@") .0 1)(5")>
r

1 —1(q. 1 col
=1 +m<vl_1(1,a JEw=a o)+ 6™ nL DE™

LV L 0)@ (L 0@
* (7—_l> <1 “nanen TG T e

A0, DE"

A e nLOGY |, 06
=1 +r—_“l<vl_1(1,0' )+ Vl_l(l,O' )— 1 + l‘n(O’ 1)(6’11) + l'n(l, 1)(6’11)>

1 \2 /1,0, HE™ C o 1a(1,00@")
* ( = l> <rn(1, HEm Vil T e
i 1,0, 1)@E"")
+Vz—1(1,01)°m), (72)

since by Lemma 4.4 r,(0, 1) 6'") = r,(1, 1)(") — r,(1, 0)@").
Now we are ready to estimate A5 (l, r) from above.
We observe that 0 < Ry(6’) < 1, since 0 < v,_(1; ¢¥) < 1 so that the denomin-

ator in (70) is larger than the numerator.
On the other hand, R,(¢”; o'T) > 1, since trivially

At via(ieh) — 1
vl_l(l;o_j)+vl 1(,0') >1>

and since the other terms in (72) have positive sign.
Furthermore, R,(c'; ¢'") divides a positive term in (71).

Therefore, by (69),
lll [vr—l,k—r((l - 0-19 19 Or—l— l)a 0) :|

vr—l,k—r((ala 0’ Or—l—l); 0)

=In [1 + ;i_l(vl_—ll(l; O'I) —v_4(1 0'1))} + ln[R1(UI)]

< 00 — o), 73

using the inequality In(1 + x) < x valid for x > — 1.



110 A. Knauf

Similarly, for ¢"eG,_,\ {0} by (71)
Vr—l,k—r((1 - 019 19 Or—l—l); O-II)
In T i
vr—l,k—r((o- s Oa Or—l—l)a g )
1 g -1 I I
D (vii(l;6%) —vi—1(1507))
Fp—r+ 1(1a O)(Os OJI) | 1(09 1)(09 GJI)
: Ir I ‘ (74)
rk—H-l(Os 1)(0» g ) | 1(1> 1)(0, g )
By substitution of (73) and (74) in (63) we obtain

1 12, 27
Al r) <- B<<_I>Bz+ r—l) (75)
with
B, = 274" Z (Vl_—ll(l;al)’—vl—l(l;al)) (76)
o' eGi-1
and
_ (k—r) l-k—r+1(170) (03 O-II) rk—r+1(09 1)(09 GII)
2 =2 I 7 (77)
o' e Gi-r\{0} | 1(03 1)(0’ o ) Fp—rt 1(15 1)(07 o )
Lemma 8.2.

B1 =2_2_l.

Proof. For I =1 we have vy(1;0) = 1/2 so that B, = 3. For [ > 1 the second term
in (76) gives

Z i)=Y (vi-i(15(67,0)) + V-1 (15 (07, 1)) =272

aeG-y 0'eGys
by Eq. (39).
The first term is evaluated by recursion.
1 1
- = vV, 1, 0.1’0 ) + v—_l 1, O',,l
ae%,_l vi 1(1,0') a’g%,_z( 1 1( ( ) 1 1( ( )))
= z (1 + Vl._z(l; o-/)) .(vl_~12(1; O_/) + 1)
€G-
=222 4 Y (vi—a(Lio') +vih (15 0")

c'eG-,

=2714273 1 Y vih(Lo)
€G-
-1

1 I—s l—5s—2
vo(l 0)+ 2(2 +2 )

1 1
=2+(2’—2)+<2l—2—§>=5-21—2—5. (78)
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Thus B, =2-¢"D2 -4, O
Lemma 8.3.
B,=2—@+k—r)2 Gt
Proof. For r = k one has B, = 0. Thus we assume r < k.

l'k—r+1(0, 1)(0,0')= i rk~,+1(0, 1)(0, O'I, 1, Ok—r—s)
€G-, \{0} Yi—r+ 1(1’ 1)(07 O') s=1 ¢'eG,_, Te—r+ 1(1’ 1)(0, O'/, 17 Ok—r—s)
— i rs+1(09 1)(030/, 1)
s=1¢'eG,_; rs+1(1’ 1)(07 OJ) 1) '

But by Lemmas 4.4, 4.5 and 4.7
r;+1(0,1)(0,0,1)
deG,y [ PRS 1(19 1)(0, g, 1)

rs+10,0,1)
l's+1(07 o, 1) + rs+1(1’ g, 1)

ceG,-y
_ l's+1(07 1705—17"'561)
ceG,y 110, Logoy, .. .,00) +rq(1L,0, 1 —04y,...,1—0y)
hy_.(z) hs(z, 0)

P

e W@+ (11 5 hw 1)

Y va(lin) =22 (79)

1e€G,-y

as in Lemma 8.2. Thus

r—,+100, 1)(0, o) _ kir 9s=2 _ gk-r—1 _1
6 eGr-A\{0} Fi—r+ 1(17 1)(0’ O') s=1

Now we evaluate the first term in (77).
seG 0y Th—r+ 10, 1)(©0, 0)
_ "i’ r,.1(1,0)0, o', 1)
- 1,10, (0,0, 1)

s=1 ¢g'eG,_,

kT l‘s+1(1’ 1)(09 0-/9 1)
L <rs+1(o, 00,0, 1) 1)

s=1¢eG,-,

k—r k—r )
=2 Y vAlo-1n=73 <5-25—2_5 _25—1>

s=1 1eG,_; s=1

=3<2k-r-1—1>—k_’ (80)

2 2
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using the same transformations as in (79) for the third equation. The fourth
equation follows from (78). Thus
B, = 2" (k-0 [gk-re1 _ 4+k—r
2 b
finishing the proof of Lemma 8.3, [

Now we can evaluate the decay rates of the potentials for the canonical and the
grand canonical ensemble:

Proposition 84. For I,r,keN with 1 <l<r <k

2 2—(k—r+1)
Aans(—1) +
r—1 r—1

450, r) < <ri_l>2 .

Proof. The estimate for the canonical ensemble follows directly from (75), using

Lemmas 8.2 and 8.3.
We follow the above lines to prove the estimate for the grand canonical

ensemble. Setting s := (0,_¢, 1, ¢, 1,0,—,) e G,

and

4G =Y jio)= -2 Y Y Hi(o)xlo)

teGii-y teGX,-y 6eGy

= — Z—k Z Z Hlf+1(0', I)XS(U)

teGr,_, ceG,

= 12—(!—1)—(k—r) Z Z 1n|:vr—1,k—r+1((1 —0',1,0,-4-1); (0", 1))]
4 Veot,k-r+1 (¢',0, 0,-1-1); (6", 1))

1

dleG-y a"eGyo,

=Z270me Yy ln[1+(,%l>2(v;ﬁ(l;a’)—v,_1<1;a'))

dleGi-y e eGy.,

. rk—r+2(1a 0)(09 O'Ha 1) l‘k—r+2(0> 1)(03 JH, 1) -1/ 0. (11
(rk_,+z(o, DO, o7, 1) T 1o 0,05 1) ) R @5 1)
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using (71), Lemma 8.2, and Egs. (79) and (80) in Lemma 8.3. O

A. Numerical Calculations

Figure 1 shows the canonical energy function Hy(a) depending on 0 < a < 2* for
k = 10.
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Fig. 1. The graph of the canonical energy function H f for k =10

The basic symmetry is the invariance under the map aws2'° — a.

The fractal (that is, roughly self-similar) structure of the picture is due to the
smallness of the difference between He(a) and HE(2a) for 0 < a < 271,

In fact, as shown in Lemma 6.3, Hy(a) — HE(2a)is strictly increasing in a. That
function is shown in Fig, 2.

The canonical interaction coefficients j¢(t) are larger than zero for ¢ + 0, but as
analysed in Propositions 6.4 and 6.5, their absolute values are typically small if
#i(t) is odd.

In Fig. 3 we show the function j§(f) in a double logarithmic scale.

{ 0.8

oo /

//

04

128 256 384 512 640 768 896 1024
1 I t 1 1 - ! 1 1

Fig. 2. The function Hf(a) — Hf(Za) for k=11
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Fig. 3. The logarithms loglo(j,f(t)) (for teG\{0}) of the canonical interaction coefficients for
k =14 and a) # (t) even, b) #(t) odd

More precisely, we show the graph of j§ o Id, with Id,: {0, . —1} > G
deﬁned similarly to (15). In other words, the absmssa glves the value of
logz(zl 2%*1-1t) and the ordinate equals loglo( e (@)

For #k(t) even (shown in 3a)) the leading coefficients with values of about
logo(js(t)) & — 0.9 are the interaction coeﬂiments for adjacent pairs of spins.

The grand canonical interaction coefficients j¢(t) are shown in Fig. 4. Only the
coefficients with # ,(t) even are taken into account, since the others are zero, as
shown in Proposmon 43.

The symmetry ji(ti, . . ., t) = j&(t - . . , t;) shown in Proposition 4.9 is visible
in the picture.

Again, the leading coefficients with values of about log;o(jF(f)) * — 0.9 are the
interaction coefficients for adjacent pairs of spins.

12 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 4. The logarithms log, ,(jé(t)) (for te G}\{0}) of the grand canonical interaction coefficients
for k = 14 and #,(t) even



On a Ferromagnetic Spin Chain 115

That is, (4, . . ., t,) =(1,1) for [:= Pi(t)and r := Pi(t).
The next row with log;o(j () & — 1.2 corresponds to second-nearest neigh-

bour interactions, i.e. (t,...,t)=(1,0,1).
For (4, ...,t)=(1,0,0,1) we have log;o(j¢ ()~ — 1.5, that row being
followed by the coefficients with (t,...,t)=(1,0,0,0,1) and those with

(tla e >tr) =(1917 17 1) .
As one can see by comparing Fig. 3a) and Fig. 4, boundary effects are less
pronounced for the grand canonical ensemble than for the canonical ensemble.
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