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Abstract. The quotient ζ(s — 1) /ζ(s) of Riemann zeta functions is shown to be the
partition function of a ferromagnetic spin chain for inverse temperature s.
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1. Introduction

The aim of this article is to relate ideas and concepts from statistical mechanics to
the Riemann zeta function.

The quotient Z(s) = ζ(s — l)/ζ(s) is interpreted as the partition function of an
infinite ferromagnetic spin chain.

The existence of a connection between number theory and statistical mechanics
has been conjectured by Kac (see his Comments in Pόlya [4], pp. 424-426),
Newman [3], Ruelle [5] and others.

One motivation for that conjecture has been the Lee-Yang circle theorem of
statistical mechanics. In its basic form it states that all zeroes of the partition
function of a ferromagnetic Ising model in the complex activity plane have unit
modulus.
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Here we are interested in the zeroes of Z(s) in the complex 5 plane, s being the
inverse temperature. There exist variants of the Lee-Yang circle theorem which
predict zero-free half-planes of the inverse temperature for certain ferromagnets,
see, e.g., Ruelle [7]. Unfortunately, these theorems do not apply to our situation
since our spin chain includes many-body interactions.

We begin in Sect. 2 by approximating Z(s) by the partition functions Zk of
chains of k (classical) spins. This approximation is uniform for Re(s) > 2 4- ε, ε > 0.

In Sect. 3 we introduce some notation. We decompose the canonical energy
function Hξ(σu . . ., σk), σie{0, 1}, in the form

t,e{O,l}

Proposition 3.2 states a necessary and sufficient condition for the preservation of
the ferromagnetic property j%(t) ^ 0 under nonlinear transformations of the values
of an energy function.

In order to obtain bounds on the canonical interaction coefficients^(ί), it turns
out to be convenient to consider the grand canonical ensemble, too. This is done in
Sect. 4.

There are no couplings to an external field. More general, the grand canonical
interaction coefficients j%(t) between an odd number of spins vanish (Proposition
4.3). Furthermore, we have the mirror symmetry

(Proposition 4.9).
In Sect. 5 we show that the canonical and grand canonical ensembles are

(weakly) ferromagnetic in the sense

jϊ{t) ^ 0 a n d ; f ( ί ) ^ 0 for ί * 0.

More precisely, we obtain inequalities between the interaction coefficients for
spin chains of length k and of length k + 1. The proof uses interpolation techniques
and Proposition 3.2.

In Sect. 6 upper bounds for the canonical interaction coefficients j£(£) are obtained.
The interaction coefficients are not translation invariant, but their variation

under translations is small as long as no spins near the edges of the chain are
involved. In Sect. 7 we prove this property of asymptotic translation invariance.

A thermodynamic limit can only exist if the interaction coefficients decay fast
enough. On the other hand, it is known that one-dimensional spin chains have no
phase transitions at positive (real) temperatures if the interaction is of finite range or
decays too fast. In Sect. 8 we give estimates for the decay properties of our model.

In the Appendix we show the result of a numerical calculation of H£(σ) and of
the interaction coefficients.

2. The Zeta Function and the Spin Chain

Riemann's zeta function ζ(s) is defined for Re(s) > 1 by

ζ(s):= Σ n~s (1)
H = l
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and for arbitrary s e C by analytic continuation.
Instead of ζ(s) we study the quotient

We denote by φ: N -> IN the Euler totient function. So φ(n) is defined to be the
number of positive integers not exceeding n which are relatively prime w.r.t. n.
Then

Z(s)= £ φ ( n ) - n - s , (3)
« = i

as follows from the multiplication theorem for Dirichlet series (see, e.g., Apostol
[1], p. 229).

We shall approximate Z by a sequence Zk of functions, with k ε N O . These
functions have the form

Z*(s):= Σ ψM) n'\ (4)

where the φk: N -* N o are approximants of φ.
For fceN0 we define inductively the coefficients h%: Gk —• N on the cyclic

groups Gfc := Z2k = Z/(2k Z) of order 2k. Whenever needed, we represent the group
Gk using the complete residue system {0, . . ., 2k — 1}. The coefficients h% are then
given by setting /ZQ(0) := 1 and for aeGk

hc

k + 1(2a) := hc

k{a\ hc

k+1(2a + 1) := /zfc

c(α) + hc

k(a + 1), (5)

the map
{0,. . ., 2* - 1} - {0, 2* + 1 - 1}, a^2a,

inducing the monomorphism Gk -» Gk+1 used in (5).
As an example, we have for k = 3 the values /ι£(0) = 1, hϊ( ± 1 ) = 4, /ι^( + 2)

= 3, hc

k{ ± 3) = 5 and hc

k(4) = 2.

The index C of /z£ symbolizes the canonical ensemble. Later on we will
introduce the grand canonical ensemble. The objects connected with that ensemble
will then carry a superscript G.

Then the φk are given by

φk(n):= Φ{aeGk\hc

k{a) = n) (6)

(so φ3(l) = φ3(2) = 1, φ3(3) = φ3(4) = <fc(5) = 2, and <p3(fc) = 0 for k ^ 6).
We start by collecting some elementary properties of the φk. We call the base

two logarithm

Lk(a):= log2(Ord(α)) (7)

of the order of a group element ae Gk its L-order. Note that Lk(a) e {0, . . ., k) since
the order of an element (i.e., the order of the cyclic subgroup generated by that
element) divides the order of the group.

Furthermore, we denote by ¥{k) the fc-th Fibonacci number, that is,

F(l) = F(2) = 1, F(/c + 2) = F(fc) + F(fc + 1) .
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Lemma 2.1. For fceN0 and aeGk

hc

k( -a) = hc

k(a), (8)

and

Lk(a) + 1 ύ hc

k(a) ^ F(Lk(a) + 2) . (9)

For fceN adjacent coefficients are relatively prime:

gcd(Λί(α),ΛJ?(α+l))=l. (10)

Moreover, for every relatively prime pair (q, p), 1 ^ q < p ^ fc + 1, ί/zere is exactly
one I ̂  /c and aeG^ wiί/z

(ί,p) = (f t f(a),Λf(a+l)) . (11)

Proo/ The symmetry property (8) follows immediately from definition (5).
For fc = 0 the inequalities (9) state that ho(0) = 1. We assume that they are true

for k. Then all elements aeGk+1 with L-order Lk + 1(a) ^ k are of the form a = 2b
with beGfc. For these α we have

Lfe + 1(α) + 1 = Lk(b) + 1 ^ /ιfc
c(fo) - /zfc

c

+1(α) .

If Lk+ί(a) = k + l, then Lk + 1(a) + 1 = fc + 2 <Ξ Λfc+ί(α), since then Λ£ + i(α) is
a sum of k + 2 integers.

We perform the inductive step for the second inequality in (9) by assuming
hk(b) ^ F(Lk(b) + 2) for all beGk. Then either asGk+1 is of the form α = 2/?, or a is
of maximal order, i.e. Lk + 1(a) = k + 1. In the first case we have

hk+i(a) = hc

k(b) ^ F(Lk(b) + 2) = F(L k + 1 (α) + 2) .

If LΛ + 1(α) = k + 1, then for some

and either Lfc(£>) = fc, Lfe(fo + 1) < k or conversely Lfc(fo + 1) = k, Lfc(b) < fc, since
only every second element in Gfc has L-order fc. Then

f 2) + F(Lk(b + 1) + 2) ^ F(fc + 2) + F(fc + 1)

Adjacent elements are relatively prime if fc = 1, since then

gcd(/ιfc

c(α),/ιfc

c(α+l)) = gcd(l,2) = 1 .

We assume (10) to hold for fceN. Then for aeGk+1 of the form a = 2b

gcd(hc

k+1(a),hc

k+1(a +1)) = gcd(hc

k(blhc

k(b) + hc

k(b + 1))

and similarly for a = 2b + 1.
For fc = 1 the last assertion of the lemma holds since

(1, 2) = (Λf(α), Λf(α + 1))

exactly if / = fc = 1 and a = 0.
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Assume that we have shown that assertion up to order feeN. Then if p ^ k 4- 1
and hk+1(a) = p, then by the first inequality in (9) Lk + ί(a) ^ k so that we already
treated that case. So we assume p = k + 2. All relatively prime pairs (qθ9 p0) with
Qo + Po = P = k + 2 appear in the form (hf(b\ hf(b + 1)) with / ̂  k. Then

and

(hf+1( — 2(b + 1)), /ίf+i( — 2b — 1)) = (p0, p)

So we find in our list all relatively prime pairs (g, p), lf^q<p = k + 2 exactly
once. D

With the help of Lemma 2.1 we can describe how the φk approximate Euler's
totient:

Proposition 2.2. For k e N o we have

S φ , (12)

ί^p^k+ί. (13)

For p > k + 1, φk(p) < φ{p). For k ^ 2 one /ιαs φk(F(k + 2)) = 2 and

φk(p) = 0 forp>F(k + 2). (14)

Proof. The inequality φfc ^ φk + i in (12) follows immediately from the definitions
(5) and (6). The second inequality is then a consequence of the first one and of
assertion (13).

φ o ( l) = 1 = <p(l), and φo{p) = 0 < φ(p) for p > 1, proving (13) for k = 0.
To prove (13) for fceN, we fix pe{l, . . ., k + 1} and choose an arbitrary q < p

with gcd(g, p) = 1. We know from the last statement of Lemma 2.1 that
there is exactly one / <* fc and beGt with (q9p) = (hf{b - 1), hf(b)). But
hf(b) = hf+1(2b) = hk(2k~ιb) so that hk(a) = p for α = 2k~ιb. Moreover, for
qλ Φ q2 the corresponding aua2eGk are different from each other (since the
coefficient hc

m{2m~ιb - 1) adjacent to hc

m{2m~ιb) is smaller than hc

m{2m~ιb) only if

Thus we have established a one-to-one correspondence between the aeGk with
hk(a) = p and the numbers q < p relatively prime to p, proving (13).

Now we show that φk(p) < φ{p) for p ^ k + 2. We have for leN

Ίf( ± 1) = ftf_i(0) + Λf-i( + 1) = 1 + Λfc_χ( ± 1)

and h\{ ± 1) = 2 so that hf ( ± 1) = / + 1. But this implies that φp-2(p)
< (pp-iip)' O n t h e o t h e r h a n d

5 by (12) ψp-iip) ύ φ{p), proving φp-2(p) < φ(p)
and φk(p) < φ(p) for p ^ /c + 2.

Equation (14) follows from inequality (9) in Lemma 2.1.
To show that for k ^ 2 one has φk(F(k + 2)) = 2, we notice that for k = 2 there

are exactly two aeG2 with hc

2{a) — F(2 + 2) = 3, namely a = 1 and α = — 1
= 3 (mod 4). Notice that for both a exactly one of the neighbours a ± 1 has

/z 2-value F(2 + 1) - 2.
But if for k there are exactly two aeGk with hk(a) = F(fc + 2), both α having

exactly one neighbour a + 1 with /Zfe(α + 1) = F(fe + 1), then a similar statement
holds for k + 1. D
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Corollary 2.3. For all ε > 0 the sequence {Zfc}fceNo of functions converges uniformly
to Z in the half plane {se<L\ Re(s) > 2 + ε}.

Proof For Re(s) > 2 + ε,

\Z(s)-Zk(s)\£ Σ

g Σ

since φ(n) ^ n. D

Clearly, one could equally well approximate Z(s) in its half plane Re(s) > 2 of
convergence just by truncating φ(n) after the fc-th term. However the chosen form
of the approximation exhibits an asymptotic (as k -» oo) self-similarity which will
be useful for the study of Z(s) in the whole complex plane.

3. General Framework

We interpret the binary expansion σ = (σ1? . . ., σk)eGk := (Z2)
k of an element

aeGk as a configuration of a spin chain with k spins OieTL2 = 7L/2Έ, the zth spin
being in a downward (resp. upward) position for σt = 0 (resp. 1). More precisely,
using the complete residue systems {0, . . . , 2 k - l } for Gk and {0,1} for Έ2,
respectively, we represent aeGk uniquely in the form

This prescription defines for /ceN0 set theoretical bijections

Idk\Gk-+Gk, α κ ( σ 1 } . . . 5 σ k ) . (15)

We will use the functions

hk'^hkoldk1 and H ^ f l f o l d ^ 1

on Gfc, with Hk := lnhk.

Lemma 3.1. For aeGk let σ = (σu . . ., σk) := lάk(a). Then

I d t ( - ( a + l ) ) = ( l - σ i , . . . , l - σ k ) .

Proof. Modulo 2k we have

- a - 1 = - Σ σ ^ - ' - ( V - £ 2 * " ' ) = Σ ( ί - σ i ) 2 " - i . •
ί = l \ i = l / ί = l

Thus it follows from the definition (5) of hk that the functions h£: Gk -> N are given
by h£ = 1,

h fc

c

+1(σ,0) = h£(σ) and h,c

+ 1(σ, 1) = hc

k(σ) + h,c(l - σ) ,

sinceby(8)hfc(l - σ ) = ftfc(-(α+ 1)) = hk{a 4- l)forσ = ( σ 1 ? . . . , σk) = lάk(a)
and 1 - σ : = ( l - σ 1 ? . . ., 1 - σk).
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The group G* of characters on Gk is isomorphic to Gk, and for t = (ί l 9 . . ., tk)
eG*, fceN, we write χt' Gk -> { + 1, — 1} for the character function given by

(16)

For k = 0 we set χ 0 := + 1.
The set

j*k:= {f: Gk-* ΈL}

of real-valued observables, together with addition and multiplication, forms an
algebra. We denote by s/k: = {/: G* -• R} the algebra over the dual group.

Fourier transformation

is defined by

f(t):=2~k Σ Λσ)χt(σ)9 ίeGj? .
σeGk

Its inverse #V x : J / * -^ ̂ Λ? g^'Q/^ then given by

#(σ)= Σ 9(t)χt(σ), σeGk .

(2 if t = t
Σ lΛσ)χAσ) = \ (17)

IU II t =+= t

The multiplicative factor 2k = Ord(Gfc) appears in the orthogonality relation

(2k if t1 = tπ

σeGk IU II t =+= t

for the characters ί7, ί / 7 eG*.
The most important observables are the canonical energy functions Hke <$/k,

o, since

Zk(s)= f % ( " ) • * " ' = Σ (h*(σ)

exp(-s Hί(σ)).
σeGk

We call the values

jc

k(t):= -^k(Hc

k)(t\ teGΐ , (18)

the canonical interaction coefficients.
An observable /e j/ k is called strictly ferromagnetic if/^ 0 and (weakly) ferro-

magnetic if/(ί) ^ 0 for ίeGJ\{0}. Clearly — Hfc cannot be strictly ferromagnetic
for keN since its mean value jk{0) < 0.

The strictly ferromagnetic observables form a multiplicative cone ^k c j3/k, that
is, for fge^k and λ g; 0

λ/e« f o / + ^ 6 * k and / # e ^ ,

see Ginibre [2]. The last statement holds true since Fourier transformation
changes ordinary product into convolution product.
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The following observation will turn out to be helpful:

Proposition 3.2. For yeIR+ u {00} let geC^d — y, y\ 1R) be a function whose
expansion

00

g(x) = X CfX1'
ί = 0

is absolutely convergent on the interval ( — y, y). Consider the set

of observables.
Then the maps &k: Yk -• sίk,f\-+ g°f preserve strict ferromagnetism, i.e.

n ) c « k VfeeN0,

if and only if ct ^ 0/or all Ϊ G N 0 .

Proof We assume that c{ ^ 0 for all ieTtϊo,fe<#k n Yk and set h := &k(f). Then

Σ ^(/(σ
<τeGk \ i = 0

In order to show that h ^ 0, by linearity of the Fourier transformation it is
sufficient to show strict ferromagnetism for the functions/', Ϊ G N 0 . But by assump-
tion fe Ήfo and ^k is a multiplicative cone.

Conversely, assume that there is a ί e N 0 with cx < 0. Then set k := / and for
ε > Olet the Fourier transform/ e J / * of/ be given by/(ί) := s if #{ί e {1, . . ., fe} |
t. = 1} = 1 and/( ί ) := 0 otherwise. Then for t:= (1, . . ., 1) G Gf

»*(/β)(ί)= Σ c*f Σ ( Σ /βίίΊχr '^
ι = 0 XσeGjc Vί 'eG^

i = 0

= 2kckε
kkl + Θ(εk + 2) < 0 for ε > 0 small. D

Using this proposition we will show in Sect. 5 that — H£ is weakly ferromagnetic.
In Sect. 6 we will derive upper bounds for the canonical interaction coefficients

jfc(ί). It will turn out, roughly speaking, that jk(t) is typically small if #k(t) is odd,

#k(t) = # { i ε { l , . . . , f e } | ί i = l } forίeG,*

denoting the counting function on the group G* of characters.
For £eG*\{0} we introduce the size

Sk(t) := Pi(t) - P[{t) + 1

oft, where

Pί( ί ) :=max{ ie { l , . . . ,Λ} | ί l = l}

and

P'k(t):=mm{ίe{ί,...,k}\ti = l}.

For #k(t) even, jf(t) is small only if the size of ί is large.
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In Sect. 7 we begin the study of the thermodynamic limit k -• oo by relating spin
chains for different lengths fc. To do this, we introduce some notation. The
concatenation (σ7, σn)eGk + ι of two spin configurations σ1 = (σ[, . . ., σ[)eGk

and σ11 = (σ7/, ..., σ f / )eG z is given by

and we omit brackets if appropriate.
For σ = (σi, . . ., σk)eGk we write 1 — σ = 1 + σ := (1 — σί9 . . ., 1 — σk)

e Gk for the group element of the inverted spin configuration.
We introduce similar notations for the elements of the dual group G* and

observe that the character functions are multiplicative w.r.t. concatenation, that is,
for σ 7 eG k , σIIeGι and £7eGfe*, tneGf

σ") =χtI(σI) -%tπ{σπ) . (19)

4. The Grand Canonical Ensemble

In this section we begin the study of the interaction coefficients.

Lemma 4.1. For /ceN0 and teGk one has

£+i(ί,0)+7£+1(u )=;•&), (20)

and if #u(t) is odd, then

JCk + i(t,O)=jc

k + 1(tA) = \jCΛt). (21)

Proof By (19),

JC

k + i(t,O)+jϊ+1(t, 1) = - 2 ~ ( f c + 1 ) X Σ H f c + i ( σ ^ ) X ί (
σ ) (Xo(τ) + χ i (τ) ;

σeGk

σeGk

proving (20).
To derive (21), we note that for # f c(ί) odd, χt(l — σ) = — χt(σ) so that

σeGk

σeGk

= - 2~k Σ (ϋc

k(σ)χt(σ) - H,c(l - σ) χ t(l - σ)) = 0 ,
σeGk

(22)
proving the first equation in (21).

The second equality in (21) follows from the first one and from (20). D
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If #k(t) is even, then we will see that j k + 1(t, 0) ή=jk + i(t9 1), and the difference
between the two coefficients will be interpreted as the interaction coefficient jG(ί) of
a grand canonical ensemble. In the language of statistical mechanics this is an
ensemble with a varying number of particles. Here the L-order of an element,
introduced in (7), plays the role of a particle number.

For s, ze(C with Re(s) > 2 and \z\ ^ 1 the grand canonical ensemble

S(s,z):=l + £ zk Σ expC-s H ^ σ ) ) (23)

with

h G : G f c - > N , h G ( σ ) : = h , c

+ 1 ( σ , l ) and H G : = l n ( h G ) (24)

for /CGN0 is well-defined, and

Z(s) = 2 ( s , l ) .

Exactly those elements beGk + 1 which are of the form ldk+1(b) = (σ, 1) have
L-order k + 1.

Similar to the above treatment of the canonical ensemble we define for /ceN0

the grand canonical interaction coefficients

Thus

teG*

The grand canonical and the canonical interaction coefficients are related as
follows.

Lemma 4.2. For /CGN0 and ί eG

t, 0) -jc

k(t) = - 2jk

Σ (H,c

+
σeGk

σeGk

= -2-kΣHG(σ)χ ί(σ)=ΛG(ί)
σeGk

The second equation follows from (20). D

The grand canonical interaction coefficients have two symmetries which are not
shared by their canonical counterparts.
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Proposition 4.3. // #k(t) is odd for ίeG*, thenjk(t) = 0.

Proof. We have

Hf(l - σ) = Hfc

c

+1(l - σ, 1) = Hfc

c(l - σ) + H,c(<τ) = Hfc

c

+1(σ, 1) = Hf(σ).

On the other hand, for φk(t) odd

χ ί ( l - σ ) = ( - l ) # * ( " χ ί ( σ ) = - χ t ( σ ) .

Thus

"*= _ 2

= + 2 " " X Hf(l - σ) χr(l - σ) = -;f(ί) ,
σeGk

proving the proposition. D

The second symmetry property of the grand canonical interaction coefficients is
a bit more subtle.

In order to gain more flexibility, we introduce for fceN and s0, sίelK the
auxiliary functions rfc(s0, s^: Gk -> 1R by setting

Γiίso, 5χ) (0) : = s 0, Γi(s0? Si) (1) •'= «i

and for σeG f c

r* + i(sOJSi)(σ,0) :=r k(s0,Si) (σ)

and

Γk + i(so,S!) (σ, 1) :=r f c (s 0 , sx)(σ) + rk(s0,Si)(l - σ) .

In particular we have hk = rk(l, 2) for fceN.

Lemma 4.4. For /CGN and s0, 5X e R we /zai e

rk(5o,si) = s o r k(l,0) + s1 rk(0, 1) . (25)

Proof For fc = 1, r^^o, Si)(σ) = sσ. Assuming (25) for fceN, we have

Γfc + i(so, si )(σ, 0) = rk(s0, Si )(σ) = s0 rk(l, 0)(σ) + sx rk(0, 1) (σ)

= so r*+i(l, 0)((7, 0) + S l r f c + 1(0, l)(σ, 0)

and

)(σ) + rfc(s0, Si)(l - σ)

l, 0)(σ) + S lr,(0, l)(σ) + sor,(l, 0)(l - σ)

l, 0)(σ, 1) + S l τ k + 1 ( 0 , 1) (σ, 1) . D

Lemma 4.5. For /ceN, sθ9 5X e lR αnrf (σ 1 ? . . ., σ k ) e G f e we tez e

ifcCsi, 5 o) (^i, σ 2, . . ., σ k) = rk(s0, 5X)(1 - σ l 9 σ 2, . . . , σk) . (26)
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Proof. For k = 1, r ^ , s o )(σ) = Sχ-σ = r 1 (s 0 , Si)(l — σ). Assuming (26) for fceN,
we have

,σk, 0 ) =

= r k ( s 0 , s 1 ) ( l - σ 1 ? σ 2, . . ., σk)

= rfe + 1 ( 5 θ J 5 i ) ( l - <Ti,σ2, . ,σ k , 0)

and

= rk(s l 9 so)(σl9 . . ., σk) + rk(su so)(ί - σu . . ., 1 - σk)

(l - σl9σ2, . . , σ * )

i )(σ l 5 1 - σ 2 , . . ., 1 - σk)

= r k + 1 ( s o , S i ) ( l - σ l 5 σ 2 ? . . .,σ f e, 1 ) . D

Lemma 4.6. For fceN, σ e G k , / e N 0 , T G G J αnrf s0, S t e R

ffc + / (s0, 5i)(σ, τ) = r, + 1 (rk (s0, s1) (σ), rk (s0, 5X)(1 - σ)) (0, τ) (27)

Proo/ The relation is shown by induction in / e N 0 .
For / = 0 (σ, τ) = σ so that

,τ) = r f c(s0,

since r^xb, Xi)(0) = λb
Setting x o : = rk(5b, 5x)(σ) and xx := rfc(sb, 5^(1 - σ), we assume that

0, τ) .

Then

rk + ι + 1(so, sx)(σ, τ, 0) = rk + ι(s0, Si)(σ,τ)

= rI + 1(x0, Xi)(0, τ) = r/ + 2(x0, Xi)(0,τ, 0)

and

= tk + ι(s0, Si)(σ,τ) + rk + I(s0, SiX1 - σ, 1 - τ)

= r I + 1 ( x 0 , Xi)(0,τ) + rl+1{xuxo){0, 1 - τ)

= rι+1(x0, Xi)(0, τ) + r / + !(x0, Xi)(l, 1 - τ)

using (26). D

By Lemma 4.4 and Lemma 4.5

Γfc(so> S!){σl9 σ2? . . ., σk) = 5iΓk(σ!, σ2, . . ., σk) + sork(l - σ1? σ2, . . ., σk)

with

r k : G k ^ N 0 , r k : = r k ( 0 , l ) .

These auxiliary coefficients meet the following relation:
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Lemma 4.7. For ZceN and (σ1? . . ., σ k ) e G k

r * ( σ i , , σ k ) = τ k + 1 { σ u σu..., σ k ) (28)

and

r k (σ l 9 . . ., σk) = r k (σ l 9 σk + σ 1 ? . . ., σ2 + σx) . (29)

Proof. For fc = 1 we have r2(σ,σ) = rx(σ) = σ. Thus by (26)

, σi, . . ., σk) = r k ( r 2 ( σ ! , σ^, r 2 ( l - σί9 1 - σ!))(0,σ2, . . ., σk)

= rk(σl9 1 - σ 1 ) ( 0 , σ 2 , . . ., σk)

= Γfc(l - σ ^ σ i K ^ σ a , . . ., σk)

= rk(0, l)(σ l 9 σ 2, . . ., σk) = rk(σu σ2, . ., σk) ,

using (26) for the third equation. This proves (28).
Equation (29) is automatically met if fc = 1.
We assume that for all (σu . . ., σ k )eG k

rk(σ l9 . . ., σk) = τk(σl9 σk + σ1? . . ., σ2 + σλ

Then for σk + 1 = 0

*k+i(σu J σ k 5 0) = r f c(σ l 5 . . ., σ k )

+ σ l 9 . . ., σ2 + σx)

0 + σ 1 ? σk + σl9 . . . 9σ2

u s i n g (28).
F o r c r£ + 1 = 1

i, . . ., σ k, 1) = r f c(σ1 ? . . ., σfe) + r k ( l - σ 1 ? . . ., 1 -

r k ( l - σί9 σk + σί9. . , 9 σ 2 + a j

σl9 σk + σί9 . . ., σ2 + σx

+ σ1? σfe + σ1? . . ., σ2 +

For the third equation we used the relation

Γι + i(σi,τ) + rz + 1(l - σί9 τ) = τι + 2(σl9 1 - σl9 τ) ,

which is valid for σ^Gi and TGGJ since by (27), (25) and (26)

τι + 2{σl91 - σ1? τ) = τι + 1(τ2{σu 1 - σ j , r 2(l - σ1?

This proves (29). D

Equation (29) implies the following symmetry of the grand canonical energy
function:
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Lemma 4.8. For (σl5 . . ., σk)eGk

H f c

G ( σ k , . . . , σ 1 ) = H f c

G ( σ 1 , . . . ? σ f c ) . (30)

Proof. By definition,

H G ( σ 1 ? . . ., σk) = Uk + x{σu . . ., σk9 1) = ln(h£ + x(au . . ., σfc, 1)) .

So we must show that

hfc + i(σi, . . ., σfc, 1) = hk + 1(σk, . . . , σ 1 ? 1) . (31)

The functions rfc: G fc -• N o are related to the functions hk by

hk(σu . . ., σk) = rfc + 2(σ, 1 - σ, σ 1 ? . . ., σk) (32)

for σ = 0 or 1, since

h S = l = r 2 ( 0 , l ) =

and by induction in k.

(29) implies (31), since by (32)

hfc + i(σi, . . ., σfc, 1) = rfc + 3(0,1, σ1? . . ., σk9 1) = rfc + 3(0,1, σfc, . . ., σ1? 1)

= hk + 1(σ f c, . . ., σ1? 1) . •
Lemma (4.8) implies the following mirror symmetry of the grand canonical interac-
tion coefficients:

Proposition 4.9. Let (tu . . ., ίk)eGk*. Then

Proof. This follows immediately from (30), since

jk(tn , h) = - 2~k Σ H G (σ l 5 . . ., σk) χt(σu . . ., σk)
( σ l 5 ... , σ k ) e G k

= -2~k Σ H ? ( σ i , . . . , σ 1 ) χ ( t l , . . . . t k ) ( σ 1 , . .
( σ l 5 . . . , σ k ) e G k

= -2~k Σ H f ^ , . . . , ^ ) ^ , , , ^(σjt,..
(<?!, ... , σ k ) e G k

= J*(ίk fi) •

5. Ferromagnetism

In this section we will show that the canonical and grand canonical interaction is
ferromagnetic in the weak sense that for all feeN

jc

k(t)^O and ΛG(ί)^0 forίeGΛ{0}.

That property will be a consequence of inequalities between the interaction
coefficients for spin chains of length k and length k + 1. These inequalities are
derived by interpolation techniques.
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We begin with the canonical ensemble. For fceN, σ = (σu . . . , σk)eGk and
0 S u ^ 1 let

hk(u;σ):= uhk(σ) + (1 - w) h£_x(σ2 . . . , σk)

andHfc(κ;σ):=ln(h£(κ;σ)).
For the interpolating canonical interaction coefficients

fk(u;t) := - Fk{Έίc

k{u)){t\ t = (tl9 . . . , *

we have

ft ft n Γ ί (33)

and

Λ c(i;0=Λ c(0. (34)

d r
We will show that — n (u; (s, 1)) ̂  0 for seG*_ x and 0 ^ u ^ 1. The canonical

an
interaction coefficients jk(t) for ίeG* of the form t = (s, 0) will be discussed later.

For k = 1 we have

^-jϊ(u; 1) = ™ l n ( 2 u + 1 - M) = i ( l + w)"1 > 0 .
du 2du 2

We show

^ c s , l ) ) ^ 0 , ue[0,l] (35)

for seG*, assuming that —jk(u; (s\ 1)) ̂  0 for all S 'GG*_I.

For #fc(s) odd we have

σeGk

σeGk

since H ^ + 1 ( M ; 1 - σ, 1) = Hk+I(u;σ, 1) and χ s(l - σ) = - χ s(σ), showing (35) for
#k(s)odd.

Therefore we assume φk(s) to be even.
We write

jc

k+ί(u;(s,l))= -2-<k + ̂ Σ ln(yk(u;σ))χs(σ) (36)
σeGk

with \k(u;σ) defined for /ceN0, we[0,1] and σeGk by

fc+1(u;(σ?0))
. (37)

k + 1(M;(σ, 1))
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We have

yk(u;l-σ) =l-γk(u;σ)9 (38)

since hk+1(u; (σ, 1)) = hk(u; σ) + h^(w; 1 — σ).
Moreover, vk(u) meets the recursion relations

and vfc + 1(a; (σ, 1)) = / -, (39)
1 + \(u; 1 σ)

vfc + i(κ;(σ,0)) ^ and vfc + 1(a; (σ, 1)) /
1 + \k(u;σ) 1 + \k(u; 1 - σ)

since

-i(";(σ,O)) = - — -

and by (38). We derive (36) and get with sΊ = (s1 ; . . . , st_

-7-;t+i(«;(s, 1))

(u;(l - σ, 1)))]

The second equation follows from the relation

which is valid since # k (s) is even.
Therefore

τ-7fc + i(w, (s, 1))

that is, the left hand side is half the Fourier transform of the product of two
functions in sίk-^

d c
By our assumption — j k (u; (s\ 1)) ̂  0 the second function is strictly ferromag-

du
netic. So in order to prove (35) for # k (s) even, we may prove that the first function
is strictly ferromagnetic, too.
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Lemma 5.1. For /cεN 0 and we[0,1]

1 + v»(κ; )

Proof

1 -

1 +
\k(u;σ)

\k{u;σ)

hk(u;

u; (σ,

u; (σ,

σ) +

*;( i -

i ) ) -

i)) +

- σ, Γ

i(«;(c

i(«;(c

σ ) -

',0))

'.0))

hfc (w; σ)

(u;(σ,0))

hk(u; 1 - σ)

^ + 2 (u; (σ,0 , l ) )

uhk(l — σ) + (1 — w)hfc_!(l — σ2, . . . , 1 — σk)

urk + 2(0,1, 1 - σ) + (1 - tι)r k + 1(0,1, 1 - σ2, . . . , 1 - σk)

,1, σ, 0, 1) + (1 - w)rfc + 3 ( 0 , 1, σ 2 , . . . , σfc, 0 , 1 )

, 1 - σk9 . . . , 1 - σu 1) + (1 - M)rfc + 1(Q ? 1 - σk9 . . . , 1 - σ 2 ?

, 1, 0, σ k, . . . , σ 1 ? 1) + (1 - w)rfe + 3 ( 0 , 1, 0, σk9 . . . , σ 2 ,

fc, . . . , σί9 ! ) + ( ! - M ) r f c + 1 ( l , σk9 . . . , σ 2 ; 1)

, 1 , 0, (I*, . . . , σ1? 1) + (1 - M)rk + 3(0, 1, 0, σk, . . . , σ2?

Wk(u; I 0)(σ)

=

Wfc(u; r 3(0,1, 0), r 3(l, 0, l))(σ) Wfc(u; 1, 2)(σ)
with

σfe, . . . , σu 1)

+ (1 - u)rk + ί(so,Si)(0, σk9 . . . ,σ 2 ? 1)

for ue[0,1], sθ9 SXGR and σ = (σ1? . . . , σfc)eGfe.

To derive the first equation in this long train of derivations, we used the
definition (37) of \k{u).

Equation 5 follows from the relations (32) between h£ and the auxiliary
coefficients rk.

For Eqs. 6 and 7 we used Lemma 4.7 and the relation

r k + 1 (τ, 1) = r k + 1 ( l - τ , 1),

valid for all τeGk.
The second-to-last equality is obtained using Lemma 4.6.
Now we will consider general expressions of the form



94 A. Knauf

For fixed arguments, numerator and denominator of (40) may be considered to be
ordinate and abscissa of a vector in R 2 . Then (40) is the tangent of its angle with the
abscissa.

By applying linear transformations in R 2 and using Proposition 3.2, we show
now that for fceN, n0, dθ9 ί ^ e R * and we[0, 1]

(«; «o. 0)
if d0 < d1 , (41)

that is, the function is strictly ferromagnetic.

with # 0 := -Jd\ — do and λ := no/no > 0, so that the first quotient is strictly ferro-
magnetic if the second is.

With ri := and d! := +

since

and

u;n', - n')

Wk(u;d\d')

(Wt(«; 1 ,0)- Wt(u; 0, 1))

(W t(u;l,0) + W t(κ;0,l))

; 1, 0) = Wfc(a; Jd\ - dl 0)

; n', - n')

2

x +d0

= d0Wk(u; 1,0) + d,Wk(u; 0,1) = Wt(M;d0,
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Furthermore,

Wt(n;w0,0) y/dj. + d0Wk(u; ri, - ri)

95

- d0Wk(u;d\ d')

- Jdί - d0Wk(u; ri, - ri)

V/k(u; ri, - ri)'
g y l Vfk(u;d',d')

with gz: ( - 1/z, 1/z) -• IR defined for z e R + by

x + z

(42)

for j ; := yjd\ — d%j{dι + d0) = nQj(άι + d0) < 1. Now the n-th derivatives of gz,
are positive at zero,

dn

 t x
—^ gz(x)|x=o = 0? π e N 0 ,

since both numerator and the inverse denominator of gz have positive x-derivat-
ives. Moreover, gz is real-analytic for arguments of norm |x| < 1/z, so that we can
apply Proposition 3.2. Thus the l.h.s. of (42) is a strictly ferromagnetic observable in
d?k if the argument of gz has the same property.
But for c e R

Wt(«; c, ± c) (1 - σ) = ± W»(M; C, ± c) (σ),

since

iu c, ± c)(ί -σ) = c(Wk(u; 1, 0)(l - σ) ± Wt(«; 0, 1)(1 - σ))

(43)

+ (1 - M) ( r t + 1 ( 0 , 1)(1,1 - σk, . . . , 1 - σ 2 ,1)

± r k + 1 ( O , l ) ( O , l - σ b . . . , l - σ 2 > 1))]

= c[ ι ι ( r i + 2(0, l)(0, σ b . . . , σ 1 ; 1) + rk + 2 (0,1) (1, σ b u 1))

± r k + 1 ( O , l ) ( l , σ b . . . ,σ 2 , 1))]

= + Wk(u; c, ± c) (σ) .

Thus for φk{t) even

since the quotient is odd w.r.t. inversion of all spins.
Therefore we consider the case of an odd # f c(ί). If fc = 1, then

wί/
-^0 f o r U e [ 0 , l ]
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If k> 1, then for #k(t) odd

«; n', - H') V ^ ^_k ^ Λ Wt(«; n', - ri){σ, 0)

j ( t ) 2 J ^ Wk(u;<r,<f)(σ,0) * « — > ( σ )

. . . , ^ , . (44)

The first equation of (44) is a consequence of (43). The second equation is derived as
follows.

Wk(w; ri9 - ri)(σ9 0) = uτk + 2(ri, - w')(0, 0, σk-ί9 . . . , σ l 5 1)

+ (1 - tt)rfc + i(n', - ri) (0, 0, σfe_l5 . . . , σ2, 1)

= urk+1(τ2(ri9 - n') (0, 0), r2(n\ - ή) (1,1)) (0, σfc_1? . . . , σ1? 1)

+ (1 - u) rk(τ2(ri, - n') (0, 0), r2(n\ - ή) (1, 1)) (0, σh-u . . . , σ2, 1)

σί9 1) + (1 - u)rk{n\ 0)(0, σk-l9 . . . ,σ 2 , 1)

using (27).
Similarly, '

Wfc(u; d', d')(σ, 0) = urk + 1(r2(d\ d')(09 0), r2(d', d')(l,

+ (ί-u) rk(r2(d\ d')(0, 0), r2(d', d')(l, l))(0, σk_1 ? . . . , σ2,

= urk+1(d\2d')(O,σk-u...,σu 1)

The argument of the Fourier transform in (44) is of the form of (40), with Z := fc — 1,
rc0 := w', nί := 0, d0 := d' and rf! := 2d'. In particular nθ9 d0, d1EW.+ and d0 < dx so
that we have proven the recursive step k — 1 -+k. Thus Eq. (41) holds true. D

Now we know that for /ceN and seG*_!

Together with the formulae (33) for f (O ί) and (34) f o r ^ ( l ί) this implies

Corollary 5.2. For /ceN and t = (tl9 . . . , ί k )eG*

c ί 0, ίi = 1
Λ + l ( U ) - / ^ t n t - o ( 4 5 )

We know from Lemma 4.2 that

Thus the canonical ensemble is weakly ferromagnetic if the grand canonical
ensemble is weakly ferromagnetic, a property which we will show now.
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For /ceNo, σeGk and we[0,1] we set

hG(W; σ) := ιΛG

+ ^0, σ) + (1 - u) hG(σ) (46)

and

H G ( W ; σ ) : = l n ( h G ( u ; σ ) ) . (47)

For the interpolating grand canonical coefficients

7G(w; ί) := - J^(H G ( W ))(0, ίeG? ,

we have for t = (ί1? . . . , ίfc)

ΛG(ί) =Λ c (0;0 (48)

and

jk +1(*o, ί) = Jk(U t\ t0 := #fc(ί) (mod2) , (49)

since

Λ G

+ 1 (ίo,0= - 2 " ( k + 1 ) Σ H*G

+ I(σ)χ ( ί o, t )(σ)

τeGk

= - 2 " f c Σ HG

+ 1(O,τ)χ ί(τ)=ΛG(l;τ) ?

τeGk

using H?(l - σ) = Uf(σ) .
One notices that #/c + i(ίo> 0 is always even, so that we can obtain information

on the complement of those grand canonical coefficients which vanish by Proposi-
tion 4.3.

Lemma 5.3. For /ceN 0 and σ = (σ1 ? . . . , σ fe)eG fc

αu 1 + u Vfc(l; τ)

wίί/i τ : = ( σ t o . . . , σ^.

Proof. By definition (47) of HG(M; σ), (46) of hG(M; σ) and (24) of hG(σ) we have

d v G . . d i n . c , u hG

+ 1(O,σ)-hG(σ)
H ( u σ) = -—ln(hfc(u;σ)) =

du
Ht(u σ) ln(hfc(u;σ)) ? ^

du du hG(σ) + u(hG

+ 1(0,σ)-hG(σ))

hG

+ 1(τ,0)-hG(τ)

hG(τ) + u(hG

+1(τ,O)-hG(τ))

h,c

+1(τ, 1) + u(h£+2(τ, 0,1) - hί + 1 (τ, 1))

hg+1(τ,O) _ v t(l;τ)

hί + 1 (τ, l) + Mh^+1(τ,0) 1 + « v t(l;τ)



98 A. Knauf

As the following two lemmata show, — d/du Hk(u) is weakly ferromagnetic for

u = 0.

Lemma 5.4. For fceN0, teGk and #k(t) even

.G( Λ |
-Ί- jk(u;t)\u=0 = <

du I 0, otherwise.
Proof. Setting 5 := (tk, . . . , ί2)eG?_1,

d

du σeG

k(u;t)\u^o= -2 kΣ yk(ί;σk9 . . . ,σx) χt(σ)

l ; σ l 9 . . . , σ k ) χ ( f k > . . . f f l ) ( σ )

= - 2 ~ k Σ
τeGk-i

= - 2 ~ k X
τeG fc-i

by (38) and (17). But if φk(t) is even, then s = 0 if and only if ί = 0. •

Lemma 5.5. For fceN, ίeG* αnί/ #k(ί)

Proof. With the same notation as in the proof of the last lemma,

•fj?(u;t)\u = o= -2~k Σ ( v / c ( l ; ( τ , 0 ) ) - v k ( l ; ( l - τ , l )

using (39) and Lemma 5.1. •

Lemma 5.6. For fceN and ίeG*\{0}

~j-jk(u;t) ^ 0 , ue[0, 1] .

Proof. Lemma 5.4 and Lemma 5.5 show that the assertion holds true for u = 0.

We define vk: Gk -• R by yk := \ ~ vk(l) Then for ίeG?\{0}

yk is strictly ferromagnetic, and for arbitrary ue[0, 1]

TJΪiu t) = + ̂ (gΛvfcttfa, . . ., ί j , teGΐ\{0} ,
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with

g«: - y x -> R, gB(x) := -j - ^ + x

\ 2 2J 1 - M(X - i) 2

gu(0) = ̂  U - γ - ^ J ^ 0, and for

Moreover, gM is real-analytic on the interval ( — 1/2,1/2) for ue[0, 1].
Thus by Proposition 3.2, gu(vfc) is strictly ferromagnetic, so that the lemma

follows from (50). D

Now we have proven the ferromagnetic property for both the grand canonical and
the canonical ensemble:

Proposition 5.7. For fceN and t = (tl9 . . . , ίfe)eG*\{0} with #k(t) even,

0, ίi = 1

-i(ί2, . . , y , ί i = 0 .

Both the canonical and the grand canonical ensembles are weakly ferromagnetic, i.e.,

fk(t) ^ 0 andjG

k{t) ^ 0 for all teG?\{0} .

Furthermore, for teG*\{0},

Hit) Z fk+χ(t, 0) ^ l-fk{t) ^ fk+x(ί, 1 ) ^ 0 . (52)

Proof. (51) follows, since by (48) and (49)

jk(t) =jk-i(t2, • • • , h) + j -rit-M,t) du
o a u

^ Λ G - i ( ί 2 , . . . , ί * ) ,
using Lemma 5.6.

Observe that ;f(ί) =jk-i(t2, . , h) + J^ £j%-i(u;t)du even if tγ = 1, since
then7"f_1(ί2, . . . ,tk) = 0 by Proposition 4.3.

Observe further that we may assume k > 1 since there does not exist a
ίeGί\{0} with #k(t) even. Thus we can apply Lemma 5.6.

The grand canonical ensemble is weakly ferromagnetic as a consequence of (51),
and of the vanishing of they'J^ί) for #k(t) odd (Proposition 4.3).

The canonical ensemble is weakly ferromagnetic by Corollary 5.2, and since

by Lemma 4.2. By Lemma 4.1

so that (52) follows. D
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6. Upper Bounds for the Interaction Coefficients

In this section we derive bounds for jk(t) depending on the form of feGjf.
The principal character t = (0, . . . , 0) plays a special role, for it is obvious that

jk{0) < 0 and l i m ^ ^ jk{0) = — oo since jk(0) is minus the mean value of the
function Hk.

In Proposition 5.7 we proved that jk(t) ̂  0 for the non-principal characters
ίeGjf\{0}. Here we shall derive upper bounds for these canonical interaction
coefficients.

One quantity which regulates the size of \jk(t)\ is the value of the counting
function #k{t) on the group G* of characters. It will turn out that, roughly
speaking, jk(t) is typically small if #k(t) is odd.

For # k ( ί ) even, \jk(t)\is small only if the size Sk(t) = Pr

k(t) - P[{t) + 1 of
ίeG*\{0} is large.

Although the coefficients hk(a) are invariant under the reflection α π - α (see
, χt( — a) + itίβ) i n general for the functions yt := χt o Idfc on Gk. Thus there arey

many cancellations in the defining relation of jk(t) .

Definition 6.1. Let ίeG*. Then aeGk is called positive (negative) i£χt(a) + χt{ — a)
= 2 ( — 2). Otherwise a is called vanishing.

ί e G * is called interlaced if the ordered list of the non-vanishing elements of
Gk is alternating between positive and negative elements.

To calculate χt( — a), we must relate Idk( - a) to ldk(a).

Lemma 6.2. Let t = (tί9 . . . , ίk)eGif with tk = 1. Then t is interlaced.

Proof. Let α, beGk be non-vanishing in the sense of Definition 6.1, a < b w.r.t. the
order on Gk induced by the complete residue system {0, . . . , 2k — 1}, and let a -f i
be vanishing for 0 < i < b — a.

Then by Lemma 3.1

X t ( f l ) ( ) χ t ( f l )

Xt(b) = χt(-b)=(-l)#^χt(b-l)

and

M + 0 = - Xt( - (a + i)) = ( " l ) # k ( t ) + 1Zr(* + i ~ 1)

so that

χ ί ( b ) = ( - l ) ( f e - Λ ) ( ^ ( ί ) + 1) + 1

χ ί ( α ) . (54)

If #k(t) is odd, then the exponent in (54) is odd.
If #k(t) is even, then by (53) χt(a) = χt(a - 1) and χt(b) = χt{b - 1). This

implies that both a and b9 considered as elements of the residue system, are even
numbers, since for ceGk odd

Idfc(c) = (σl9 . . . , σk-u 1) and ldk{c - 1) = (σ l 5 . . . , σk-u 0)

so that χt(c) = ( — l)tkχt(c — 1). Again, the exponent in (54) is odd.
Thus in both cases χt(b) = — χt(a) proving the interlacing property. D
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For ίeGjf we define the auxiliary coefficients Jk(t) by

Λ(ί):= -2-kΣHc

k(2a)χt(a). (55)
aeGk

Lemma 6.3. For t = (ί l 5 . . . , ί f c)eG?

Λ + i(0,ί) = j ί ( ί ) (56)

Λ(ί) = 0 i/ί1 = l . (57)

/ / ί f c = 1, then

\ju(t) - Jk(t) | ^ 2 " k . l n 2 . (58)

Proof. (56) follows readily from the definitions (5), (16) and (55):

Similarly, Jχ(l) = 0 and for k ^ 2 and t1 = 1

Λ(ί) = - 2" fc Σ H,c(σ2, . . . , σk, 0) ( ̂  1) ^ . ( - 1)Σ;.,< * = 0 (59)
σeGk

by summation over a1#

With regard to (58), we have

~2~kΣ (Hc

k(a) - Hc

k(2a))χt(a)
aeGjc

= 2-k(Hc

k(2k-1)χt(2k-1)-u)

with

u:= Σ
αe{0, . . . ^

Now by Lemma 6.2 the character t is interlaced since tk = 1.
Moreover, # £ (Λ) - Hk(2a\ or equivalently hk(a)/hk(2a), is strictly increasing

for 0 ^ α ̂  2*"1, as we show now. We start with the trivial relation

hc

k(0)
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between the end points. Then we use the inductive definition (5) of the h% to prove
the general statement, observing that

Πι n1 + n2 n2

άγ άγ + d2 d2

for ni9 n2, du d2 > 0 if n1/d1 < n2/d2.
So u is represented by an alternating sum whose terms are strictly increasing in

absolute value. This implies that u is bounded by the terms for a = 0 resp. for
k 1

proving (58). D

Proposition 6.4. For ί e G * with #k(t) odd

0 ^ 7 f e ( ί ) ^ ( 2 " ( k " ° - 2 " k ) l n 2 (60)

with l:=P[(t).

Proof. Let r := Pr

k(t) and s := Sk(t) = r - I + 1. We define the character t'eG*
by

H = (ίi, . . . , Q := (th . . . , tr) .

From Lemma 4.1 we deduce that

with t" := (0, ί')eG*. Moreover,

Jrc(ί") ^ Λίί7) + Σ ljf(O, O - J,(0, ί')l

= 0 + X 2 - i l n 2 = ( 2 " s + 1 - 2 " 0 l n 2 .

by (56) and (58).

So fk{t) ^ 2-
(k-r)(2-s+1 - 2- r )- ln2, proving the estimate. D

Proposition 6.5. For ίeG?\{0} with φk(t) even

0 Sjkit) S (2's+2 - 2'r+1 - 2-(k~l) + 2~k) In 2 (61)

with I := P[{t) , r := Pr

k(t) and s := Sk(t) = r - I + 1.

Proof. Again, we define t'eGf by

f = (ίΊ, . . . , f,) := (ίb . . . , ίr)

and ί" := (0, ί ')eG*. Using (20),

jk(t)=jf(t") ~ Σ if(ί", 0, . . . , 0, 1) .
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Now #i(ί", 0, . . . , 0, 1) = #k(t) + 1 which is odd so that by Proposition 6.4

k

But by Lemma 6.3

Jr(Π SΣ | j f ( 0 , ί ' ) - ^ ( 0 , ί / ) l ^ ( 2 - s + 1 - 2 - ' ) l n 2 5

so that (61) follows. D

Remark 6.6. Notice that the estimates in Propositions 6.4 and 6.5 are sharp for
f = (1, 0, . . . , 0)eGfc* and ί = (1, 0, . . . , 0, 1) eGfe*, respectively.

7. Asymptotic Translation Invariance

We know from Sect. 6 that the interaction coefficients jk(t)are small in absolute
value unless the size Sk(t) is small.

In this section we show that the interaction coefficients are asymptotically
invariant with respect to translations (up to edge effects).

Lemma 7.1. For αe{0, . . . , 2k — 1} the function

is monotone increasing, and 0 < Hk+1(a) — HG(a) < In 2.

Proof. By definition (24) of Hk(a) = Hf °Idk(α)

Hk + 1{a) — Hk(a) = Hk + 2(2a + 1) — Hk + ί(2a + 1) .

So the assertion follows from the estimates for Hk(a) given in the proof of
Lemma 6.3. D

Lemma 7.2. Let £eG;f+1\{0} with #k + ί(t) even and r := Pk+1(t). Then

L/?+i(ίi, , ί*+i) -Jkiti, . . . , tk+1) I < 2 1 "Mn2.

Proof Ry Lemma 3.1 we have χt( - a — 1) = χt{a) since #k + 1(t) is even. More-
over, fff+1( - a - 1) = H^+1(a) . Thus

1 — Jk\ι2> - - ,h+i)

α e { 0 , ... , 2 k -
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We split that sum by writing

(62)

H G

+ 1 (0, σ2,..., σr-l9 0, σ , + 1 , . . . ,

2, . . . , σv-i, 0, σ r + 1 , . . . , σk

+ H k + 1 (0, σ2, . . . , crr_!, 1, σ r + 1 , . . . , σ k + 1 )

— H k (σ 2 , . . . , σ r_i, 1, σ r + 1 ) . . . , σk + ί) .

By the monotonicity result of Lemma 7.1 both the sum over the even and the sum
over the odd terms in (62) is positive and smaller than In 2. So their difference is
smaller than In 2 in absolute value.

Due to the summation over (σ r + 1 , . . . 9σk + ί) there are 2k + 1~r such terms in
(62), leading to our estimate. G

Proposition 7.3. Let £eG*\{0} with φk(t) even. Then

with I := P{(t) and r := Pr

k{t).

Proof. We denote by t' := (ίk, . . . , ί x) the inverse of t := (tu . . . , tk). Then

|jG

+ 1(0, t) - jG

+ i(£,0) | < |7G

+1(0, t) -jk{t)\ + \jk(t) -jk{tf)\

We know from Prop. 4.9 that./G(O = jG(ί) and; G

+ 1 (0, ί') = ;G(ί, 0). So we get from
Lemma 7.2 that

IΛG

+i(0, ί) -7 G

+ i ( ί , 0)| S l7G

+i(0, ί) -ΛG(ί)l + L/f(O -ΛG

+i(0, ί')l

since Pr

k + 1(0, ί) = P k(ί) + 1 and P k + 1 (0 , t') = Pk(ί') + 1 = fe + 2 - Pk(ί). •

8. Decay Properties of the Potential

Up to now, only finite spin chains of length /CENQ were treated. The thermodyn-
amic limit k -• oo can exist only if the positions of spins σh σr far apart within the
chain (that is, \r - /| large) are not too dependent of each other.
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More precisely, the probability measure on the group Gfc = (Έ2)
k for inverse

temperature 5 given by the distribution

_ e x p ( - s H £ ) : G* - [0,1]
(s)

should not deviate too much from a product measure on Gk.
The negative Fourier transform j% = — ̂ ( H ^ ) of the canonical energy func-

tion plays the role of a potential. In Sect. 7 it was shown that this potential is
asymptotically translation invariant. It is well-known (see Ruelle [6], Chap. 2) that
the thermodynamic limit exists if the potential decays fast enough.

In this section we will prove such decay properties for the canonical and the
grand canonical ensembles.

For /, r, IceN with 1 ̂  / < r ̂  k let

AΪ(l,r):= Σ 7*(0/-i , l ,U,0 k _ r ),
teG?-i-i

0 seG s denoting the identity element of the group.
Similarly, we define

for the grand canonical ensemble.
All terms in these sums are positive, as follows from the weak ferromagnetic

properties shown in Sect. 5.
We shall show that the potential decays in the sense that, independent of fc,

A%(19 r) and A%(19 r) are small if r — I is large.
We begin with the canonical ensemble.

A%r)= -2~k Σ Σ H,c(σ)χs(σ)

for s := (0i_!, 1, ί, 1,0fe_r)eGk*. Thus using H£ =

Ac

k(hr)= - 2 - * Σ Σ Σ Σ
σ'eGi-i σ"eGk-r τ/,τ/IeGi peGr-ι-ι

ίeG?-ι-i

= - 2 - * + - ' - 1 Σ Σ
σ'eGz-i σπsGk-r

Γh^ ;,o,or+!-1;oy/)
a Lhfo1, 0,0,+,-i, 1, σ") J "" Lhfc(l - σ7,1, (),._,_!, 1, σ7 /).

1

4 2

(63)

y y , Γτf-1,t-r((l-fff,l,0Γ-,-1);ff")1

sk,-ισ»h.- I vr-1.4-r((σ/,0,0,_ί_1);σ") J
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where for /c, ZeN0, σeG f e and τeGi

/c,/ (σ; τ) := r r
(σ, 1, τ)

Lemma 8.1. For k, / G N 0 , σeG f t and τeGi

l, 0)(0, τ) vfc(l; σ) + r, + 1(0, l)(0, τ)
V k ' K < 7 ? T j rI + 1(l, l)(0, τ) - r i + 1(0, l)(0, τ) vfc(l; σ) '

with tι(sθ9 s-i) and yk{u; σ) defined in Sect. 4 and Sect. 5, respectively.

Proof. For u = 1, the interpolating coefficients \k(u; σ) equal

. h fc

c

+1(σ50)
)

We use the relation

h£(p) = rm + 2(O,l)(O,l,p), peGm, (64)

which is valid for arbitrary me]N0 since for m = 0

r 2(0,l)(0,l) = r2(0, 1)(1, 0) = 1 = hS ,

and by induction in m. Thus with the abbreviation rm(p) = rm(0,1) (p),

£ σ , 0, τ) _ rfc + ί + 3 (0, l)(0, 1, σ, 0, τ)

τί+ι(rk+3(0,1, σ, 0), r t + 3 ( l , 0,1 - σ, l))(0, τ)

, 1, σ, 1), r t + 3(l, 0,1 - σ, 0))(0, τ)

r f c + 3 (0,

Γ fc + 3 (U,

Γ fc + 3 (U ?

hfc+i(σ,

l ,σ

1, c

1, σ

1, σ

0).

,0) '

,0)

Ti + i(l,

T(+i(l,

0)(0,τ) + r t + 3 ( l ; l

,0)(0,τ) + r t + 3(0,

, l ) r i + 1(l,O)(O,τ) + rk + 3(O,

ri+1(l,O)(O,τ) + h£ + 1 ( l -σ ,

i(ff,

i(l,0)(<

0) r ί + i^oxα^ + h^,

0, 1 - σ, 1)

l , l - σ , l )

U - σ , 0 )

l) r ί + 1(O,l

r ί + 1 (O,l)

r ί + 1 (O,l)

r l + 1(P,l)

)(0,τ)

1(σ,l) rI + 1ί0>l)(P,τ)

(ϋ,τ)
)(0, t)

(0,τ)

(0,τ)

- σ,0) - hf+ 1(σ, l))r ί + 1(0, l)(0, τ)

The third equation follows from Lemma 4.6, the fourth from Lemma 4.4. For the
fifth equation we used the relation r m + 2 ( 0 , 1 , σ) = r m + 2 ( l , 0, σ) which holds since
for τ = 0 or 1

+ 2

(τ, 1 - τ , σ) = rm + 1(r2(τ, 1 - τ), r 2 (l -τ,τ))(0, σ)
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Again, in the second-to last equation we used Lemma 4.4, and the relations

h£+ 1(σ, 1) = h£ + 1 ( l - σ, 1) = h£+ 1(σ,0) + h£ + 1 (l - σ,0) . Π

By Lemma 8.1 the argument of the logarithm in (63) is a quotient of terms of the
form

τk-r+1(l 0)(0, σ11) vr_ i(l ;(cr, τ ' , Q ^ - Q ) + r k _ r + 1 (C, . ; v , ^ ,
Γ77ΓT / i . / ~ r ^ ^ ( 6 5 )

with (σ, τθ = (σ1, 0) or (1 - σ7, 1).
But for meN, σeG m , π e N 0 and the identity element 0 n e G n

ym+n(u;(σ,0n))= *m(μ'σ\ for u e [ 0 , 1 ] , (66)
1 + ϊl Vm(U, G )

since (66) holds for π = 0, and since by Eq. (39)

\m+n + 1(u; (σ, 0n, 0)) = i+^'^fo Q ^

vm(w; σ)

\m(u;σ)

Applying (66) to our situation, we obtain

and

.. „.„ _, < f t . v̂ l d-σM))

where we used the identity v((u; (1 — σ, 1)) = (1 + V - ^ M ; σ ) ) " 1

Inserting (67) resp. (68) in (65), we get

- r + 1 (l ,0)(0, σ")•¥,_!(!; σ1) + r f c_ r + 1(0, l)(0, σπ) (l + (r -

(68)
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and

= r t- f+1(1,0)(0, σ") + rfc_r+1(0, l)(0, σ") (r - I + y.-^l; σ1))

, σ") (r - I + v.-^l; σ1)) - r t_Γ + 1(0,

For σ" = 0 we have r*_,+1(l, 0)(0, σ") = r t _ r + 1 ( l , l)(0, σ") = 1 and
r t_ r + 1(0, l)(0, d") = 0 so that the argument of the logarithm in (63) acquires the
form

T r - 1 , t - r ( ( l - f f M , 0 f - l - 1 ) ; 0 )

r — I

with

(70)

For σ"eG t. r\{0} we may divide through rk_ r + 1(0, l)(0, σπ)>0 so that with
n := k - r + 1 and σ" := (0, σ/J)

τr_1>lk_r((σ ί,0,0r_ ι_1);σ//)

_ rn(l, 0)(σn) + r»(0, ί)(σπ)-(r - / + ^ ( 1 ; σ1))

rπ(l, 0)(σ") + rπ(0, l)(σ") (r - / + vfΛfl; σ7))

r.(l, l)(g") (r - f + TfΛCl; σf)) - rn(0, l)(σJ/)

'rn(l, ί)(σ") (r - I + γ,-dU σ1)) ~ r«(

rn(0,l)(σ")
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rn(l, 0)(σ") , tH(0,ί)(δ")
+

with

Λ2(σ'; σ") =

rn(0,l)(σ")

r-lj V rn(ί,l)(σπ) ' " " ' ' rn(0,

+ , , , - < >* ' ., . M . A . rJ$> ° ) ( f f " i

(72)

since by Lemma 4.4 rπ(0, l)(σ") = rn(l, l)(σ") - rn(l, 0)(σ").
Now we are ready to estimate Af(l, r) from above.
We observe that 0 < Ri{σ') < 1, since 0 < v,_ t(l; σ^ < 1 so that the denomin-

ator in (70) is larger than the numerator.
On the other hand, i?2(σJ; σ") > 1, since trivially

and since the other terms in (72) have positive sign.
Furthermore, R2(σI; σ/J) divides a positive term in (71).
Therefore, by (69),

Γv r- l ι i t- r((l-ff /,l,0 r_,- 1);0)1

L v^u-^ί f f ' .αOM-i l O) J

= lnΓl + ̂ ( v f Λ ί l ; σ1) - v.-iίl; σ'))l + ln^^σO]

< ^ ( v f Λ ( l ; σO - vt-i(l; σ1)), (73)

using the inequality ln(l + x) ^ x valid for x > — 1.
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Similarly, for σ/JeGfc_Λ{0} by (71)

In r- 1, f e_ r((l-σM,0 f_ ί_ 1);σ f /)Ί
vr_1,t_r((σ/,0,0,_l-1);σ//) J

(vΓ-\(l; σ1) - ¥,_!( ! ; a1))

By substitution of (73) and (74) in (63) we obtain

*2 + ̂ ~ r ) (75)

with

Bi._2-(i-i) ^ (vfΛίl σO-Vi-iίl σ7)) (76)
σ7eG/-i

and

fc-r+1(l;0)(0;σ
JJ) r fc_r+1(0 ; l)(0; σπ)\

)(0σ 7 / ) r (l 1) (0σ / 7 )/ ( j

Lemma 8.2.

Bi = 2 - 2 " ' .

Proof. For 1=1 we have vo(l; 0) = 1/2 so that B1 = f. For Z > 1 the second term
in (76) gives

Σ W l ; σ ) = Σ (Vι-i(l;(^0))+v I-1(l;((τ
σ e Gi-i σ'e G t - 2

by Eq. (39).
The first term is evaluated by recursion.

Σ τ π = Σ (vΓΛ(l;(σ',0)) +vΓΛ(l;(

= X (l+v,_2(l;σ')) (vΓΛ(l;σ')+l)

= 2 2'-2+ X (Tĵ ίl σO + vΓΛίl σ')
σ'eG,_2

σ ' e G ι _ 2

= 2 + (21 - 2) + ( V 2 - i J = 5.2 1 " 2 - i . (78)
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ThusBi =2- ( '- 1 ) (2 i -i). D

Lemma 8.3.

B2 = 2-(4 +k-r) 2"<'<+1-' ) .

Proof. For r = k one has B2 = 0. Thus we assume r <k.

r t- r + 1(0,l)(0>ff)_ * γ rt-f+1(O,l)(O,g>

>l,Q|fc-f->)

= * r s

r. . r s + 1 ( l , l )(O,σ' , l )

But by Lemmas 4.4, 4.5 and 4.7

y rs+1(O,σ,l)

= Σ

r s + 1 (O, σ, 1) +

r ί + 1 ( O , l , σ , - i , . . . , '

rt r s + 1(0,1, σ s_1 ; ...,ff!) + r s + 1 ( l , 0,1 - σs_!, . . . , 1 - σ t)

hf-^τ) „ hf(τ, 0)

, i , hs

c_ i(τ) + hs

c_ x(l - τ) ^ t ; . , hs

c(τ, 1)

= Σ vs_1(l;τ) = 2'-2 (79)
τ e G s _ !

as in Lemma 8.2. Thus

rt-,+1(o,i)(o,ff) = y = _ i

β 6 G t Λ W r t _ r + 1 ( l , l ) ( 0 , σ ) ^ 2"

Now we evaluate the first term in (77).

; \ ( ; ) ) V ( - i - 2s

s=l τeG s-!

(80)
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using the same transformations as in (79) for the third equation. The fourth
equation follows from (78). Thus

finishing the proof of Lemma 8.3. D

Now we can evaluate the decay rates of the potentials for the canonical and the
grand canonical ensemble:

Proposition 8.4. For /, r, /ceN with 1 ̂  / < r ̂  k

i \2

Λ r-l

and

r —

Proof. The estimate for the canonical ensemble follows directly from (75), using
Lemmas 8.2 and 8.3.

We follow the above lines to prove the estimate for the grand canonical
ensemble. Setting 5 := (0z_ l 9 1 , ί, 1, Ofc_r)eGfc*,

ΛG

k{l,r)= Σ n(s)=-2-k Σ Σ H?(σ)χs(σ)

: -2~k Σ Σ Hk

c

+1(σ,l)χs(σ)
ίεG,!,-! σeGr

1 _ 1 } .

4
r ) y y j Γyr-i,k-r+i((l-σI

9lΛ-ι-iYΛσII

9l))~]

ff'eG,-! ff"εGt.r L yr-l,k-r+l\\O^^r-l-l)Λσ ^)) J

r t _ Γ + 2 ( l , 0)(0, σ/7, 1) r,_r + 2(0, l)(0, σ",
2 ( < 7 ( < 7

, I 2 - ( * - o _ ? L _ V Λ*-r+2(l, 0)(0, g", 1) , r t- f + 2(0, l)(0, σ", 1)

using (71), Lemma 8.2, and Eqs. (79) and (80) in Lemma 8.3. D

A. Numerical Calculations

Figure 1 shows the canonical energy function #£(α) depending on 0 fg a < 2k for
k= 10.
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Fig. 1. The graph of the canonical energy function Hk for k = 10

The basic symmetry is the invariance under the map αi—>210 — a.
The fractal (that is, roughly self-similar) structure of the picture is due to the

smallness of the difference between Hk(a) and H^(2a) for 0 ^ a < 2k~1.
In fact, as shown in Lemma 6.3, H^(a) — Ή%(2a)is strictly increasing in a. That

function is shown in Fig. 2.
The canonical interaction coefficients j£(ί) are larger than zero for ίΦO, but as

analysed in Propositions 6.4 and 6.5, their absolute values are typically small if
# k (ί)isodd.

In Fig. 3 we show the function j%(t) in a double logarithmic scale.

256 384 512 640 76Θ 896 1024

Fig. 2. The function Hc

k(a) - Hc

k{2a) for k = 11
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Fig. 3. The logarithms log10(/£(£)) (for ίeG*\{0}) of the canonical interaction coefficients for
k = 14 and a) #k(t) even, b) #Λ(ί) odd

More precisely, we show the graph oϊ j k oldk with Idfc: {0, . . . , 2k — 1} -> Gjf
defined similarly to (15). In other words, the abscissa gives the value of

log2(Σί=i and the ordinate equals log10θf(ί)) ;

For #k(t) even (shown in 3a)) the leading coefficients with values of about
Iog10(jfc(ί)) ~ — 0-9 are the interaction coefficients for adjacent pairs of spins.

The grand canonical interaction coefficients jk(ή are shown in Fig. 4. Only the
coefficients with # k(t) even are taken into account, since the others are zero, as
shown in Proposition 4.3.

The symmetryj%(tl9 . . . , tk) =jk(h, . . . , ί j shown in Proposition 4.9 is visible
in the picture.

Again, the leading coefficients with values of about Iog10(7^(ί)) ^ — 0.9 are the
interaction coefficients for adjacent pairs of spins.

-1

-2

-3

-4

-5

-6

1 2 3 4 5 6

- - - - - -

3 7 8 9 10 11 12 13 14 §

Fig. 4. The logarithms log100'^(ί))(for ίeG*\{0}) of the grand canonical interaction coefficients
for k = 14 and #fc(ί) even
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That is, (th . . . , tr) = (1,1) for / := P{(t) and r := Pr

k(ή.

The next row with log l o(jf(0) ~ ~ 1-2 corresponds to second-nearest neigh-

bour interactions, i.e. (th . . . , tr) = (1,0,1).

For (th . . . , tr) = (1,0, 0, 1) we have Iog 1 0 (jf (ί))« — 1-5, that row being

followed by the coefficients with (tb . . . , tr) = (1,0,0, 0,1) and those with

(tb . . . , t r ) = ( U , U ) .
As one can see by comparing Fig. 3a) and Fig. 4, boundary effects are less

pronounced for the grand canonical ensemble than for the canonical ensemble.
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