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Abstract. We point out a general relationship between the planar coloring
problem with Q colors and the Temperley-Lieb algebra with parameter ΫQ. This
allows us to give a complete algebraic reformulation of the four color result, and
to give algebraic interpretations of various other aspects of planar colorings.

Introduction

The purpose of this paper is to delineate the relationship of the Temperley-Lieb
algebra [TL] with planar graph coloring problems. The main result is a complete
algebraic reformulation of the four color theorem [AH]. This reformulation is a
special case of a simply stated and more general conjecture about the Temperley-
Lieb algebra.

The paper is organized as follows. In the first section we recall the definition of
the chromatic polynomial, the dichromatic polynomial, and of the Potts model. In
the second section we recall the definition of the Temperley-Lieb algebra and of
the Potts model representation. In Sect. Three we prove our first non-trivial result
(Proposition 3.1). It states that the Potts model partition function (hence in
particular the chromatic polynomial) for any planar graph can be written as the
trace of a "transfer matrix" (Definition 3.2), a well defined product of elementary
edge operators (Definition 2.3) in the Temperley-Lieb algebra. Such a result was
known so far for regular lattices only. In Sect. Four we discuss some properties of
the transfer matrices. We show in particular the reciprocal of Proposition 3.1
(Proposition 4.1), namely that an arbitrary product of edge operators can be
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considered as the transfer matrix for the Potts model on some planar graph.
Restricting to the coloring problem we therefore have found that chromatic
polynomials of planar graphs occur as traces of fully characterized products of
operators in the Potts model representation of the Temperley-Lieb algebra, and
conversely the trace of any such product is the chromatic polynomial of some
planar graph. The situation compares favorably to the still open problem of
characterization of chromatic polynomials [ST]. We also establish some connec-
tion between the existence of a transfer matrix that is a product of local edge
operators and planarity (Proposition 4.2). Finally, we show how the non-
colorability of a graph is expressed by the vanishing of the corresponding transfer
matrix. In Sect. Five we consider the algebraic aspects of the planar coloring
problem when the number of colors is smaller than four. We show in particular
that the non-colorability of a set of simple graphs translates into the vanishing of
symmetrizers [Jo, We] in the Potts model representation of the Temperley-Lieb
algebra (Proposition 5.3). Section Six deals with the algebraic reformulation of the
planar coloring problem. Since the Temperley-Lieb algebra becomes simple for a
number of colors greater or equal to four, the approach becomes independent of the
Potts model representation and the four color result can be reformulated in a
purely algebraic way (Theorem 6.4). In Sect. Seven we present an alternate
formulation of these results in terms of the diagrammatic form of the Temperley-
Lieb algebra [Ka 1] and a reformulation of the Potts model in terms of link
diagrams. This gives alternate proofs for a number of our results, and provides an
efficient language for translating between algebra and graph theory. The link
diagrammatic approach opens the possibility of using knot theory in the study of
these problems. Section Eight contains some speculations about the general
properties of real zeroes of chromatic polynomials and the Beraha conjecture [Ba]
from the point of view of the Temperley-Lieb algebra. The appendix discusses
other (algebraic) reformulations of the four color problem in relation to this work.

While it has sometimes been said [D] that the four color problem is an isolated
problem in mathematics, we have found that just the opposite is the case. The four
color problem and the generalization discussed here is central to the intersection of
algebra, topology and statistical mechanics. We hope that the work presented in
this paper will stimulate more investigations of this fascinating structure.

We end this introduction with a brief statement of the Temperley-Lieb algebra,
and our general conjecture. The reader will find this material repeated in the text,
with appropriate context.

The Temperley-Lieb algebra (TL)W is an associative, non-commutative algebra
of finite rank over the ring ^ = Q[rf], where d is an algebraic variable commuting
with all elements of (TL)Π. We shall often specialize d to be a specific real or
complex number. (Q denotes the rational numbers.) The multiplicative generators
of (TL)Π are denoted 1, el9 e2, ..., eπ-i, and they satisfy the relations

(a) ef = dei9 i = l , . . . , n - l ,

(b) e.e.+1 e. = e.? i = l , . . . , n - 2 ,

(c) ete~efii9 if \i-

Thus, a typical element of (TL)3 is of the form a + bei-[-ce2-\-deίe2-\-fe2e1. For
example, (e1e2)(e1e2) = (e1e2e1)e2 = e1e2 while (e1e2)(e2eι) = (e1e2e2)e1=deίe2e1
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=deί. It is not hard to see that the rank of (TL)M over & is equal to the Catalan

number Cn= \ I/(n +1), where
\bj al(a-b)V

Our conjecture takes the following form. Let d = 2, thus ef = 2ei for all i. Let

= 1 — ̂  and R~ — - +et. Now note the following identities:

= ei±l ί * i - 2

Thus we have that

Λ A = e Λ = 0 Vi, e , ± 1 Λ Λ ± 1 = 0 Vi.

Conjecture. Consider a product ω of the elements in Temperley-Lieb algebra (TL)n

(d = 2): Ri9 Rp ek. ω is equal to zero in (TL)M if and only if ω is exterior equivalent to
a product containing R& or ei± iΛfβf ± x. (Exterior equivalence is generated by the
multiplicative relations in Temperley-Lieb plus the relations eiRj = Rjei, efij
= Rjei9 RiR^RjRi for Ji-j|^2 or \i-j\ = 0.)

This conjecture implies the four color theorem. The four color theorem is itself
equivalent to a specialization of this conjecture (see Theorem 6.4). The interested
reader may enjoy exploring this conjecture on the purely algebraic grounds
indicated here.

I. The Potts Model and the Chromatic Polynomial

A graph G is a set of vertices, and edges joining pairs of vertices. We suppose
without loss of generality that G has no loop nor multiple edges. A vertex will be
denoted va9 and an edge <α/?> if its extremities are va and vβ. Two vertices that are
extremities of the same edge are called neighbours.

A color σ is an integer in the set {1,2,..., Q}, where Q is the number of colors. A
Q-configuration of colors on G is a mapping from the set of vertices to the above set
of colors, the vertex va having color σα. A (proper) Q-coloring of G is a
configuration such that neighbours have different colors. We recall the [SK].

Proposition 1.1. Introduce PG(Q) the number of Q colorings of G. Then PG is a monic
polynomial in Q with integer coefficients and of degree VG, the number of vertices of
G. PG is called the chromatic polynomial of G.

The Q-state Potts model is a model of interacting spins in statistical mechanics
[Ba], In this model a weight (ε^)3^^ is associated with every edge for a given
β-confϊguration, where δ is the Kronecker symbol, δσσ, = 1 if σ = σ\ 0 if σ + σ', and
εaβ is an edge dependent real number 0 ̂  εaβ < oo called coupling. We define
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Definition 1.2. The partition function of the g-state Potts model on a graph G with
coupling εaβ for the edge <α/?> is the sum

ZG(Q,{ε*β})= Σ Π ifijf-*'.
Q configurations edges <α/?>

It involves QVG terms.

Proposition 1.3. ZG(β, {εaβ}) can be computed recursively by the two formulas

1) ZG = ZG,χβ + (εaβ-l)ZG,,β9

2) z . u G = ρ z G ,
Z.=Q.

In the first formula the triple (G, G'aβ, G^) (see Fig. 1) denotes a graph G, a graph
G^ obtained from G by deleting the edge <αβ> (but retaining the end points of the
edge) and a graph G^ obtained from G by collapsing the same edge. In Eq. (2), the
point denotes a graph with one vertex and no edges. The symbol u denotes disjoint
union.

In the case of a uniform set of couplings εaβ = ε V<α/?>, ZG(Q,ε) equals the
dichromatic polynomial of G. If εaβ = 0, only Q configurations with σaφσβ

contribute to the partition function. Hence

Proposition 1.4. PG(Q) = ZG(β, εaβ = 0 V < aβ >).

The chromatic polynomial is thus a particular case of the g-state Potts model
partition function when all couplings are set equal to zero. (This is called the zero
temperature antiferromagnetic limit in physics [Ba].)

If εaβ = 1, the partition function is the same as the one of the graph with edge
<α/?> removed.

Finally, we shall need in the following a regularized definition of the partition
function when some of the couplings are infinite.

Definition 1.5. We set

ZG(β, εaβ = oo, 0 ^ εyδ < oo otherwise)

= lim ε " 1ZG(Q, εaβ = ε, 0 ̂  εvδ < oo otherwise).

(The existence of the limit is obvious from the above definitions.)
The Definition 1.5 can be iterated to several infinite couplings. With this

definition, only Q configurations with σα = σβ contribute to the partition function
when εaβ = Gθ.

In the following, rather than involve infinite couplings through a limit process,
we shall simply define certain cases of infinite coupling by direct form. Thus we
take εaβ in [0, oo).

-> <r

G α β
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II. Temperley-Lieb Algebra

Define r = (DQ the linear span of colors σ of a vertex v. In the vector space R = r®1 a
natural basis is provided by vectors σ = (σ l 5σ2, ...,σi), where σt belongs to the
color-set {l,2,...,β}.

Definition 2.1. In R = r®1 we define 21 — 1 square matrices of dimension Q1 x Q1

by their matrix elements

(e2i-iU' = <Γ1/2 Π < W
. 7 = 1

7 = 1

with i = 1, ...,I. As is well known one has [TL, Ba].

Proposition 2.2. The matrices et satisfy the relations [GHJ]

= 0 for | i-j

The abstract algebra generated by the identity and et% i = l,...,n—l obeying
the relations of Proposition 2.2 is called the Temperley-Lieb algebra (TL)M. The
matrices in Definition 2.1 provide a particular representation called the Potts
model representation. We now introduce edge operators, where 1 is the identity
in R.

Definition 2.3. We set

i = l, ...,I and call X's edge operators.
Notice that X2i-i(l) = Qί/2e2i.1, X2i(l) = l.

III. The Transfer Matrices of Planar Graphs

We now restrict to G a planar graph. Edge operators can then be used to compute
ZG as follows:

Proposition 3.1. Consider an arbitrary planar graph (which we suppose without loss
of generality to have no loop nor multiple edges), drawn in the plane, all edges being
straight lines [F]. For any direction ά in the plane (which we call time axisj, there is a
canonical matrix τ [ G j k ] called transfer matrix such that
- the partition function of the Q state Potts model on G with couplings βα/? writes
Z G = tr(Bτ [ G f j f c ] ),
- τ[G λ ] is a fixed (independent of Q and the couplings) product of edge operators
X^β), X{0)9 X£co)9 i = l , ...,21-1 for some I,

- B is the product Qίf2 f\ e2i.1.
i l
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This result was proven in the physics literature for G a piece of regular lattice.
We extend it here to the arbitrary case.

Proof. We draw G in generic position with respect to the horizontal axis x.
For each vertex va of G, draw through va a line parallel to the time axis. This line

intersects some edges of G. At each intersection, introduce a new vertex called a
projection of va. In a given graph, if an edge is equipped with a designated interior
point, then there is a unique way to obtain a new graph, identical to the old one
except at the site of this edge. The edge is subdivided into two edges and the
interior point becomes a common end point for the two new edges. In this way the
set of projection vertices subdivides the original graph to a second graph. Augment
this second graph further by introducing edges between successive projections of a
given vertex. This gives a new graph [G,ά].

Associate a coupling ε = 1 to edges between successive projections of the same
vertex (represented by a dotted line on figures). If <αβ> was an edge of G, and if by
the above process some projected vertices γl9..., yκ are inserted in <α/J>, then all the
edges of [G,x] <αy1><y1y2> ... (yκβ} are set to carry an infinite coupling (in the
sense of Definition 1.5) except one that still carries εaβ (which one does not matter).
Infinite couplings are represented by heavy bonds on figures (see examples in Figs.
2 and 3).

These additional couplings clearly ensure Z [ G λ ] = ZG.
A horizontal line of edges joining vertices of [G, x] is called a row. Horizontal

edges are called equal space edges.
For G in generic position, there are VG such rows. In practical situations it is

useful to reduce this number by deformation of the graph that conserves its
connectivities (see some examples in Fig. 3).

We set the final number of rows equal to I. On each row there are some vertices
of [G, £]. Call t the maximum number of such vertices. We then number vertices on
each row from left to right, the left-most having label one, the next label two while
the right-most have several labels... t — 1, t if the number of vertices on the
considered row is less than t. These labels are called time coordinates.

[G,x]

(a)

[G,x]

Fig. 2 (b)
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(a)

Fig. 3 (b)

A broken line of edges joining vertices of [G, x] with the same time coordinate
is called a column. Edges joining vertices with the same time coordinate are called
equal time edges. An edge that is neither equal space or equal time has its
extremities belonging to successive rows and columns and is called a diagonal edge.

To each row we associate a copy of the space r. In the product r®\ spaces from
left to right are associated with rows from top to bottom.

Definition 3.2. The transfer matrix of the Potts model on G with couplings εaβ for
the edges <α/?> and a choice Jt of time axis is the matrix with entries

(%?,*]W = Σ Π (fiy/^S
Q configurations edges <y<5>

where the sum is taken over Q configurations such that vertices on the first column
of [G, J£] have fixed color σι...σι and on the ίth column σ\... σj, the product over
edges of [G, £], and the couplings are equal to some εaβ if the corresponding edge
belonged to G, one or infinity if the corresponding edge has been added in the
above construction.

τ[G, ic] c a n be built as a product of edge operators in the following way. With each
column we associate the product

I
τJ= Π Xlfaγδ)*

i= 1

where sγδ is the coupling associated with the edge (yδ} on the j t h column,
extremities belonging to the ίth and ί + l t h row. With each pair of successive
columns j\ j ' + l we associate a matrix τjtj+ι. To build τ } j+1 consider first all
vertices of the j t h column that are not extremities of a diagonal edge between j t h

and (j + l) t h columns. They are therefore connected to the (j + l) t h column by an
equal space edge <y<>> only, situated along the ϊth row. Form the product of X2i-ι
operators for each of these edges. Then consider vertices υγ of the j t h column that
are extremities of a diagonal edge between j t h and (j' + l) t h columns. Such an edge
<y(5> has extremities vγ belonging to the z'th row, v̂  to the (i + l) t h row. Form the
product of X2i operators for each of these edges. Finally, vertices of the j t h column
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that are an extremity of a diagonal edge between j t h and (j + l) t h columns may be
also an extremity of an equal space edge between these. Form the product of X2i _ x

operators for these edges (Fig. 4). Hence the form of τjtj+1 is

It is then easy to check that

τ[G,x] — τίτl,2τ2τ2,3 ••• τt-lτt-l,t

The partition function of the Potts model itself is by definition

^G = Σ ( τ [G, Jc]Λτ,.σ'
Π.O.'

Using the formulas in Definition 2.3 this reads

J. •
Example. The graph of Fig. 2 a is in generic position, with 1 = 3. If all edges of G
carry a coupling ε we get

τG = X2(ε)X^)X
3x2 + x3Q1/2)e2e4r + x(e2e4e3 + e4e3e2)~\.

For the graph in the position of Fig. 3 a, I is reduced to 2 and

τG = X2(ε)X3(ε)X2(ε) = Q"2\x + (3x2 + x3Qlf2)e2 + e3 + x(e2e3 + e3e2) ],

where x = (ε — l)/β1 / 2. Hence in the first case we get the following expression for the
partition function:

Z = Q2tvl(l+2xQ-1/2

and in the second case

Traces of products of Temperley-Lieb matrices in the Potts model representation
can be computed according to the following rules that define, for an arbitrary
representation, the Jones trace [GHJ], denoted in general by Tr in the following

Fig. 4
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Fig. 5

Proposition 3.3.

where w is any word on \,eu...,ei_1 and t r l = d imr = β I .

Example. In the first case we get

Z = Q2Q3(Q ~ 2 + 3 x β " 5 / 2 + 3x2Q ~3 + x3Q ~5/2)

= β 3 + 3(ε-l)β 2 + 3(ε-l) 2 β + ( ε - l ) 3 β ,

and in the second case

Z = β 3 / 2 β 2 (β " 1 / 2 + 3xβ - ' + 3x2β " 3 / 2 + x 3 β " ' )

that coincides with the above.

Remarks, (i) It is clear that several extended graphs [G, x] can be associated to G
depending on the way it is drawn and the time axis that is chosen. One can also
choose to suppress the edges that carry an ε = 1 coupling as they do not modify the
partition function. They are, however, useful in the construction of the transfer
matrix τ.
(ii) As a consequence of (i), several transfer matrices can be associated to the graph
G. The question of their relations is open. But as we shall see later, this multiplicity
does not cause a problem for our purposes.
(iii) Instead of [G, x] one can, by repeating the projection process along a chosen
space axis j>, introduce a graph [G, x, j>] which is a piece of square lattice with some
diagonals, such that Z[G> Atί>] = ZG. Edges of [G, x, j>], as for [G, ά], carry a coupling
εφ 1, oo, each εaβ appearing once (see an example in Fig. 5).

IV. Some Properties of the Transfer Matrices

Proposition 4.1. Consider any product τ of operators Xi(εaβ), where the labels i take
values 1,..., 21 — 1 for some I, the couplings εaβ are a set of arbitrary numbers. Then
there is a planar graph G with as many edges as there are edge operators in τ and a
time direction x for which τ is a transfer matrix τ [ G λ ] of the β state Potts model on G
with coupling εaβ for every edge <α/J>.

Proof. Draw I vertices and choose the time direction to be horizontal. Then read τ
from left to right. Every time a X2i_1{εΛβ) operator is met, draw a new vertex
further on the right on the ith row, and connect it to the preceding one with an edge
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that carries coupling εaβ. Every time a X2i{z^) operator is met, simply add an edge
carrying coupling εaβ between the right-most vertices on ith and (i + l) t h row. There
is no obstruction to drawing the graph on the plane when an X 2 ί -i operator is
met, since the rule is to extend the graph in a so far unoccupied region. To make
sure there is no such obstruction with X2i operators, notice that by definition edges
have extremities that belong to equal or successive rows and equal or successive
columns. Hence the only possible obstruction could be

zth row

- - (ι + l) t hrow.
But once the edge

has been drawn, corresponding to some X2i{εaβ) operator in the product, any other
X2i operator met later in the τ product has extremities coinciding with, or on the
right of va, vβ, so that the above obstruction is impossible. •

Remarks, (i) In general the graph G so obtained has multiple edges and loops. A
loop ε o contributes by a global factor ε to the Potts model partition function. A
multiple edge

contributes as the single edge

G can thus be simplified to have neither loop nor multiple edges and still the same
partition function (maybe up to a global scale factor).
(ii) If an infinite coupling appears in τ, the corresponding edge can be retracted, if a
coupling ε = 1 appears, the corresponding edge can be erased, without changing
the partition function.

Example. Loops can appear due to products X 2i(ε)X 2i(ao\

Proposition 4 2. Consider an arbitrary graph &. Suppose there is an I and a product
τφ of edge operators X^) (each edge of & appearing once). X;(l), ^-(oo),
i = l,...,21 — 1 such that for any Q and edge couplings εaβ the partition func-
tion of the Potts model on & with couplings εaβ can be written as

9 = Ίΐ\ τ#Q1/2 Π e 2ΐ-i Then & is planar.
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Proof. We can suppose without loss of generality that ^ has no loop nor multiple
edges. Using Proposition 4.1 we can associate τ% to a planar graph G and a time
direction such that % is the transfer matrix of the Potts model with couplings
εaβ, 1, oo on G'. We can erase the edges carrying a coupling ε = 1, contract the edges
carrying ε = oo to get another planar graph G, satisfying

^(&{εα/?}) = ZG(β,{εα/?}). (1)

It is easy to see that G has no loop nor multiple edges. Letting all εaβ equal and
go to zero, or all εaβ equal and go to oo shows that the number of edges (vertices) of
0 and G are equal

Suppose now 0 was non-planar. Then it contains a subgraph homeomorphic to
Γ 5 orΓ 3 , 3 [SK]:

First suppose it contains Γ5. Then choose the couplings εaβ to be zero except for
the edges of Γ5. From (1) one deduces there is a planar subgraph g of G such that

and as before

and 3Vg — 6 = 9, while a necessary condition for planarity (g having no multiple
edges) is 3Vg — 6^Eg [SK]. Hence this is impossible.

Suppose then ̂  contains a subgraph homeomorphic to Γ3 3. Again we can find
a planar subgraph g of G such that

Zr3.ϊ(Q,{e«*}) = Zβ(β» {*«.})• (2)

We can expand these partition functions using Proposition 3.1. For Jtif an
arbitrary graph onto which a Q state Potts model with coupling ε for every edge is
defined one finds easily

where Jff are subgraphs of ^f made of a subset of Ef of its edges and all its vertices
grouped in C connected components. Using Euler's relation

where L is the number of independent circuits in Jf, and setting ε — 1 = ocQ we get

Q is now a formal variable that we let go to zero

β - κ - % r = ^ Σ «£'+ Σ «E' + 0(Q), β-*0; (3)
V£ no circuit Jtf" with one circuit
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by applying this to both sides of (2) we get

where γ is the girth, length of the shortest circuit, that can be identified as the
smallest α degree in the constant term of (3). Hence

y9

 = yr3,3 = 4, Eg = EΓ33 = 5, Vg=VΓ3ι3 = 69

and — 9 — (Vg — 2) = 8, while a necessary condition for planarity [SK] (g being

Γ Ί
obviously not a tree) is ^9 \(Vg-2)^Eg.

We have again reached a contradiction. Therefore, <§ is planar. Π

Proposition 4.3. A \>\anar graph G is not Q-colorable if and only if the transfer
matrix of the Q state Potts model on G with coupling εα/? = 0 for every edge <α/J> is
zero for some time axis. It then vanishes for any choice of time axis.

Proof It follows from Definition 3.2. •

V. Algebraic Aspects of the Planar Coloring Problem for Q<4

A transfer matrix of a graph G that is non-ζ)-colorable can vanish via two
mechanisms. The first is that τG can be zero in the Temperley-Lieb algebra itself.
An example is the graph

The second is that τG can be nonzero in the algebra, but vanish when evaluated
in the Potts representation. An example is the graph

that is not 6 = 1 colorable and has τG = 1 — — ^ Hence e2(Q = 1) = Q1/2 = 1 as can

be checked using formulae in Definition 2.1. In this case, an extra relation among
the Potts model Temperley-Lieb generators has to be satisfied in addition to those
of Proposition 2.2.

We now recall

Definition 5.1. The symmetrizers [Jo, We] of order n in the Temperley-Lieb
algebra are defined recursively by

w h e r e S1 = l,tn= - ^ , ί x = 0 and obey

S2

n=Sn, Snej=ejSn = 0,

1 [ ]means integer part
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One has

Proposition 5.2. For Q = 1,2 (resp. 3) the symmetrizers S2,S3 (resp. S5) vanish in
the Potts model representation of the Temperley-Lieb algebra.

Notice that due to Definition 5.1, if Sn = 0 then Sn, = 0, ri ̂  n. Hence for Q = 1 for
instance Sn = 0, n^2.

Proof. This is easily checked by direct computation. One can also use the results
of [SB] to decompose the Potts model representation onto the irreducible
representations of the Temperley-Lieb algebra provided by interacting around
face models and appeal to the results of [Jo, We]. •

We now point out how the corresponding extra relations among Potts model
Temperley-Lieb generators for Q = 1,2,3 have a coloring interpretation.

Proposition 5.3. For g = l,2,3 the non-color ability of the graphs

is expressed algebraically by the vanishing of S2,S3,S5 in the Potts model
representation.

Proof. The case Q = 1 was considered above. For Q = 2 and the graph

we have

τ = X2(0)X3(0)X2(0)=-l
—

By considering other orientations of G we get

which coincides with S3{ehei+ί) = 0.
For β = 3 and the graph

one has

τ =

- e2e3 - e3e2

It is a long but straightforward exercise to check this coincides with S5(e2, e3, e4, e5)
= 0forβ = 3. •

The vanishing of τ in the algebra itself can occur in less trivial cases than the
loop. An example is
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Proposition 5.4. For Q = 1,2 the non-color ability of the graph

is expressed by the vanishing of S2, S3 in the Potts representation. But for Q = 3 its
transfer matrix is identically zero in the algebra itself.

Proof. One has

τ = X2(0)X4(oo)X3(l)X2(0)X4(0)X5(0)X4(0)Z3(l)X2(0)X4(α))

3 — 0 I
^•^ I s~». Λ Λ /~Λ 112* s* s% Λ s* \ s* SΛ s* s* s% i s% s* s* s* s* I I I

1/2
e 4 - QΪJ2 e2e4-Qίl2e4e3e5e4 + e2e4e3e5e4 + e^e3e5e4e2 .

Q

VI. Algebraic Reformulation of the Planar Coloring Problem for β = 4

In this algebraic setting Q = 4 appears as a peculiar value: it is the first integer for
which the Jones trace (Proposition 3.3) is faithful. More precisely, one has

Proposition 6.1 [GHJ]. For Q Φ 4cos2 π - with gcd(p, n) = l,n^2Jf X is some non-

zero operator in the Temperley-Lieb algebra, there exists another non-zero operator

Y in the Temperley-Lieb algebra such that TrXYφO, where Tr is the Jones trace

computed according to the rules in (Proposition 3.3).

Suppose for Q integer ^ 4 that a transfer matrix of some graph was not zero in
the algebra but zero in the Potts representation. Then for any Y in the Potts
representation, τG Y=0, which implies trτG Y=0. Now for the Potts representation
the usual trace satisfies the Jones properties. Hence TrτG Y= 0 and from the above
proposition we reach a contradiction. Thus

Proposition 6.2. For Q integer <t4a planar graph G is non-Q-colorable if and only if
its transfer matrices τG vanish in the Temperley-Lieb algebra.

For β = 4, the edge operators that contribute to τG are 1, e2i, e2;-i>

Λ2i_1 = - - + β 2 i . 1 , Λ 2 i = l - ^ ί . We define

Definition 6.3. Two word products of eb Rp Rk, are exterior equivalent if they can
be identified using relations

e} = 2ei9 e Λ ± !*, = *,, [X ί ? ^ ] = 0, \i-j\^2 or i=j

(but we do not use the explicit expressions of R, R). In the last relation X, Y SLTQ

any of e,R,R.

We can therefore reformulate the four color theorem [AH] as

Theorem 6.4. For any integer n, the only products of 1, e,- (j=l, ...,2n),

R2i-1 = — - +e2i-l9 #2i = l — ψ (i = l,...9n) that vanish in the Temperley-Lieb

algebra (TL) 2 ϊ I + 1 ,
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are the ones that contain up to exterior equivalences as in Definition 6.3 one of the
products {e2jR2pe2jR2j±1e2j) for s o m e j-

We can reformulate the Temperley-Lieb relations for Q = 4 by setting ti = l — ei.
The ti satisfy then

[f „*,] = (>, \i-mi.

Of course, these relations are a quotient of the Weyl group relations. This is no
surprise since for Q = 4 the Temperley-Lieb algebra [which is associated to Uqsl(2)
for β generic, Q1/2 = q + q~ί] is the commutant of s/(2) in the tensor product of
fundamental representations. The definition of equivalence (Definition 6.2)
immediately extends when using the ίf's. Alternatively, we can thus reformulate
Theorem 6.4.

Corollary 6.5. Introduce in (C2)®n the transposition operators tt. For integer n, the
only products of l,l-tj(j=l,...,2nXR2i-ί=^-t2i-ί,R2i = l + t2i(i=l,...,n)
that vanish are the ones containing one of {(l — t2j)R2p (l — t2j)R2j±ί(l — t2j)} for
some j up to exterior equivalence.

From an algebraic point of view, the result without odd-even requirements for
the R indices looks as likely and leads to

Conjecture 1. For any integer n, the only products of 1, ej (/=1, ...,n), Ri9 Rt

(i = l,...,«) that vanish in the Temperley-Lieb algebra (TL)M + 1 contain up to
exterior equivalence one of {ejRj,ejRj+1ej} for some .

Of course, this conjecture implies Theorem 6.4.

VII. A Geometric Approach

We now describe the reformulation of the dichromatic polynomial as a bracket
polynomial on link diagrams. The bracket polynomial, [K], in three variables A,
B, and d is defined as follows on a link diagram K: [K] = X [K/S]d"s". Here S runs

over all bracket states of the diagram K, [K/S] is the product of the vertex weights
of iS and ||S|| is the number of circuits in the state S. A bracket state S is obtained
from the link diagram K by replacing each crossing in the diagram by non-crossing
segments in one of the two possible ways shown below:
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In this diagram, we have labelled pairs of regions at the crossing by the letters
A and B so that the region to the left of an undercrossing line (as the observer
faces the crossing) is always labelled A. The two splices then acquire the labels
A or B according to the names of the regions joined by the splice. These labels
are the vertex weights for the state. For example, if K is the diagram

then the state S shown below

has vertex weights A,A,B and only one circuit. Thus [K/S]=A2B and ||S|| =d.
For a simple example of a complete calculation of a bracket polynomial,

let K denote the diagram O ^ O . Then there are two states for K:

O B ( 9 * Hence [K\ = Ad + Bd2. It is easy to see from the

definition of the bracket polynomial that the following formulas are valid (note
that A, B, and d commute with one another):

2)

3) ]

Here the small diagrams stand for parts of otherwise identical larger diagrams.
These formulas are analogs of the formulas we have already articulated for the
dichromatic polynomial. Note that without further specialization of the variables
A, B, d the bracket is not a topological invariant of the link diagram. (See [Ka 1, 2]
for a discussion of specializations that yield the Jones polynomial.)

In [Ka 2] it is shown how the dichromatic polynomial for a planar graph can be
written as a bracket evaluation. In order to recall this result, we need the notion of
the alternating medial diagram K(G) associated with a plane graph G. The
alternating medial diagram K(G) is obtained from G by first placing a crossing on
each edge of G as shown below:

That is, the edge of G goes through the ̂ 4-regions of the crossing. The ends of these
crossings are then connected to each other by the procedure illustrated below:

connect
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In other words, a free end at a crossing is connected to the nearest free end in the
neighborhood of the vertex of that edge. For example:

K(G).

With this concept of alternating medial diagram in hand, we can state the

Theorem 7.1 [ K a 2 ] . Let Gbea plane graph, let K(G) be the alternating medial for G.
Let {K} denote the bracket polynomial with B = l,A = x (x = ( ε - l ) / β 1 / 2 ) , d = Q1/2.
That is,

so that

Then the dichromatic polynomial for G is given by the formula

G:

K(G): C O

where VG denotes the number of vertices of G.

Example. {co} = {00} + x{O} = Q + xQί/2

and

For our purposes, the main point about this reformulation of the dichromatic
polynomial is that it enables us to express ZG in terms of the Temperley-Lieb
algebra for any plane graph G. This follows at once from a few remarks about the
3-variable bracket. Let K be any link diagram. Then we can arrange K with respect
to a height function so that it is a plat closure of an element in the braid monoid Bn

(for some even integer ή) where Bn is generated by the usual braiding generators

X l - I , •••, 11 I X : *,,-,*..,
XI I , •••, 11 i x •• *.,•••,*-.

and the Temperley-Lieb generators

, Γ\ Λ
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We have denoted the braiding generators by Ri9 Rt rather than the usual notation
(σb σf~

ι) since we are not, at the diagrammatic level, assuming any further relations
among them. Elements of the monoid Bn are multiplied just like braids, but
diagrams are equivalent only up to graphical isotopy (where the crossings are
regarded as 4-valent vertices with special structure). Natural relations ensue
among the e/s with the closed loop 0 having value d:

ί\

.f|i-jl>2 Of] fl

The e/s represent paired maxima and minima. A typical plat closure has the form

= Ψ(R2R1R3e2RίR3R2)

= Ψ(ω).

The word ω = R2RίR3e2RίR3R2 belongs to the braid monoid B4. Ψ(ω) denotes
the plat closure of ω that is obtained by attaching maxima at the top and minima at
the bottom of the tangle that represents ω.
Note that if ω e B2n, then

in the sense shown below
1/

= P(ω)e1e3

Λ Λ

With this much formalism in mind, we can illustrate the important fact that any
link diagram can be rearranged via planar isotopy so that it is a plat closure of a
word in Bn. What we do to obtain this form is make sure that all maxima and
minima internal to the diagram are paired in the form ^ . Thus if a maximum is not
paired to a minimum and there is no arc of the link diagram above it, then this
maxima will be one of the top maxima in the plat. If the maximum has an arc
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above it, then we bend this arc to create a minimum to pair with the given
maximum:

Such a bend may create further maxima. Repeat the procedure for these and do the
analog for the minima. The result is a link diagram in plat form, with all internal
maxima and minima paired.

Example.

f Λ [V\
= Ψ(e2R1e2).

We can now calculate the bracket polynomial for any plat by the procedure of
substitution:

Multiply the words formally to obtain an element in the Temperley-Lieb algebra.
To calculate the bracket, replace each product of e s by its plat trace obtained by
closing the product with the plat maxima and minima and taking d raised to the
number of loops (this amounts to the Jones trace definition in Proposition 3.3):

The product of Ri9 Ri9 et with this substitution will still be denoted by ω.
We can now specialize the discussion to the case of the 4-color problem. With

β = 4 we have β 1 / 2 = 2, and with ε = 0 (for proper colorings) we obtain

Λ=~\, B=l, d = Q1'2 = 2.

Thus

K< = l - f > Ri=--+ei9 ef = 2et.

As we have discussed in Sect. 6 (see also the proof of Theorem 6.4 in the present
section), the faithfulness of the trace allows us to conclude that a plane graph G is
4-colorable if and only if the word ω = ω[K(G)] (obtained by the plat procedure
and the above situations) is non-zero in the Temperley-Lieb algebra.

At this point, we need to characterize the sorts of words that arise from a plane
graph. The following lemma is the first ingredient:

Lemma 7.2. Let Gbea plane graph, and ω = ω[K(G)~] a word in the eb Rj, Rh defined
by the plat procedure, then all the indices i for Ri appearing in ω have the same parity,
and all occurrences of Rj have the opposite parity.
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Proof. The lemma follows easily from the fact that the link diagram K(G) is
alternating. Using this fact we can trace the connection between the local diagram
for Rt and the nearest local diagram for Rj to which it is connected. See the figure
below:

This diagram illustrates schematically the case of a sub word of the form RtWRp
where W is a product of ek's. For example, R1e3e2R4. is shown below:

Because the connecting line from Rt to Rj proceeds from strand to strand, and
because there must be an even number of intervening strands, we conclude that ί
and j have opposite parity.

There are other cases to check in completing the proof of this lemma. We will
leave these to the reader. They are: 1) the case RiWRp where there is no direct
connecting arc between R( and Rj. 2) The case where the truncated link diagram
has separated components. The same analysis suffices for these cases, keeping in
mind that the graph G corresponds to a checkerboard shading of the link diagram.
This completes the proof of the lemma. •

Remark. Here is an example that illustrates the omitted cases in the lemma.

P(ω)

Here R1 is not directly connected to R2, but in the plat closure they are connected
and the diagram is alternating.

With these examples in mind, recall that the four color theorem asserts that a
plane graph G is colorable with four colors (proper vertex coloration) if and only if
G has no loops. Thus, we must examine the algebraic version of a loop via the
medial graph translation. The corresponding link diagram is shown below.

loop
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This alternating medial loop configures as a plat in two basic forms:

• 0 0 -
• ω = R 2 e 2

=> ω = e 2 R 1 e 2 .

Thus in general, the elements R^i, efti, and ei±1Riei±ί correspond to loops in the
graph G. Each of these products is zero in the Temperley-Lieb algebra:

e?

ef
+1

= ei+ί-ei+1=0.

Therefore, say that a word ω in eb Rp Rk is loop-free if up to exterior equivalence
(Definition 6.3) there is no appearance of an element of the set {etRb e^ ± ^ J as a
subword of ω.

Call a word ω graphic if all indices among the Rt have the same parity, and all
indices among the Rj have the opposite parity.

With this terminology, we recover the two results of Sect. 6:

Theorem 6.4. Let ω be loop-free and graphic (in the Temperley-Lieb algebra with
loop value 2 as described above), and let G be any plane graph such that ω = ω(G).
ThenωφO in the Temperley-Lieb algebra if and only if G is 4-colorable. Hence, by
the four-color theorem it follows that ω φ 0.

Conjecture 1. If ω is loop-free then ω=t=0.
Theorem 6.4 is equivalent to the four-color theorem. Conjecture 1 is a

generalization of the four-color theorem. From our algebraic stance, both appear
equally likely.

Proof of Theorem 6.4. By Lemma 7.2 and the hypothesis that ω is loop-free and
graphic, it follows that there is a plane graph G such that ω = ω(G) and that G is
loop-free as a planar graph. We have established that the number of proper
4-colorings of G is given by the bracket evaluation 2K(G){P(ω)}, where P denotes
the plat closure of ω, and VG is the number of vertices in the graph G. Note that
Ψ(ω) = ω*eίe3 ...e2k_ί for some k a positive integer, where a * b denotes the result
of attaching top to top and bottom to bottom the tangles associated with the
Temperley-Lieb elements a and b. If τ is any other word in eu ...9e2k-ι (even
indices included) then ω * τ is the medial link diagram of a graph obtained from G
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by identifying some of its vertices with each other. Thus if G is an uncolorable
graph, then it follows that {ω*τ} = 0 for all τ in the Temperley-Lieb algebra.
Faithfulness of the Jones-trace is equivalent to the statement that {ω * τ} = 0 for all
τ implies that ω = 0. Thus, we conclude that if G is uncolorable, then ω = 0.
Therefore, G is uncolorable if and only if ω = 0. Therefore, G is 4-colorable if and
only if ωφO. This completes the proof of Theorem 6.4.

VIII. The Beraha Conjecture

For Q ̂  4 it is known that the Jones trace (Proposition 3.3) is faithful. We can thus
reformulate the 4 color result and the results of Sect. 5 in the following
observation.

Fact 8.1. Q being an integer
- if the Jones trace on the corresponding Temperley-Lieb algebra is faithful then
all planar graphs (without loops) are Q colorable;
- if the Jones trace is not faithful, there are planar graphs (without loops) that are
not Q colorable. For one of them, the transfer matrix coincides with the
symmetrizer that acquires a vanishing Jones trace for this value of Q.

For Q not an integer, one can still consider the properties of the chromatic
polynomials, which can be calculated through Proposition 1.3. Of special interest
are the real zeroes of PG(Q). Fact 8.1 suggests they might have something to do
with the faithfulness of the Jones trace. Let us discuss this question.

TCΌ

The Jones trace is not faithful for Q = 4cos2 — with gcd(/?, n) = 1, n ̂  2. A special

subset of these values is given by Q = Bn where

Definition 8.2. The Beraha numbers [Be] are £ n = 4cos 2-, n^2.
n

One has B2 = 0, B3 = 1, BA = 2. Except for these values, it seems the Bn's cannot
be zeroes of chromatic polynomials for finite graphs. However, numerical evidence
suggests there are zeroes in an asymptotic sense. More precisely, one has the
Beraha conjecture [Be, Ba].
Conjecture 2. Consider a family of planar graphs Gt (without loops) with VGi-> oo
as ί->oo. Then the only possible limit points of real zeroes of the chromatic
polynomials PGi(Q) are the Beraha numbers.

Notice it may well be that the real zeroes of the chromatic polynomials PGi{Q)
have no limits as i-^ oo. The conjecture just states that if they do, then these limits
belong to the Beraha numbers.

The "numerical" coincidence between the appearance of the Beraha numbers in
this conjecture and in the non-faithfulness of the Jones trace is striking, and goes in
the direction of Fact 8.1. A heuristic explanation of the Beraha conjecture has
actually been given in [Sa] using the transfer matrix approach and properties of
the Temperley-Lieb algebra. The work [Sa] is based on physical ideas, and its
results do not have a rigorous status yet. It suggests, however, that Conjecture 2
is right, and that both the 4 color theorem and the Beraha conjecture have the
same algebraic origin.
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Appendix on Reformulations of the Four Color Problem

The purpose of this appendix is to recall some facts, history, and other points of
view about reformulations of the four color problem.

The original form of the problem was coloring the regions of a plane map so
that no two regions have the same color. Kempe [Ke] observed that it was
sufficient to color maps such that exactly three countries meet at a given vertex. His
observation depends upon the addition of a new country at any non-trivalent
vertex, as shown below:

old

In the new map, every vertex is trivalent, and any coloring of the new map gives a
coloring of the old map by simply collapsing the new country to a point.

Tait [Ta] showed that coloring the map with four colors on its faces is
equivalent to coloring the edges with three colors - so that three distinct colors
meet at each vertex. (The map is now assumed to be trivalent.) This reformulation
is accomplished by regarding the four colors as elements of the group Έ2 x Έ2 with
generators (say) R, B, P (red, blue, purple), and W (white) the identity element. Thus
RB = BR = P, R2 = B2 = P 2 = W and colors commute. Then, given a coloring of the
map, we color each edge with the product of the colors on its adjoining faces. This
gives the desired 3-coloring of the trivalent edge graph.

Tait's reformulation in terms of the edge coloring was quite significant for a
number of reasons. First of all, it led to a further reformulation by Heawood [He]
in terms of signs (+1) attached to the vertices of the map. Assign to each vertex of a
tricolored trivalent graph in the plane +1 or — 1 according to the scheme below:

That is, we choose the clockwise cyclic order (RBP) as + and the anticlockwise
cyclic order (RPB) as —. Heawood then discovered that with this assignment of
+1 to each vertex, the sum of the signs around any face of the map is congruent to
zero modulo 3. For example,

This led Heawood to his famous near-algebraic reformulation obtained by writing
down the system of equations associated with a given map. One variable is
assigned to each vertex, one equation to each face [the sum of the vertices around
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each face is set equal to zero (mod 3)]. Any solution to this algebra problem gives a
coloring of the original plane map. Heawood's reformulation is not quite a
complete translation into algebra since the set of equations must be retrieved from
the drawing of a given plane map.

Many other reformulations of the four-color theorem could be mentioned here.
There are two more modern ones that we will indicate since they are related to Lie
algebras, statistical mechanics and Heawood's original ideas. First, the statistical
mechanics: In [Pe], Penrose gives the following prescription for finding the
number of edge tricolorings of a plane trivalent map: assign to each vertex of a
given tricoloring + j / — 1, where the sign +1 is the Heawood sign of the vertex. If σ
is a coloring of G, let ||σ|| denote the product of these + ]/--ϊ and — j/^-ϊ over the
vertices of the coloring.

If G is not embedded in the plane, it may be immersed with singular edges as in

(That is, the singularities of the embedding consist of transversal intersections of
edges of the graph at interior points of the edges.) We can still consider colorings of
G, and since each vertex receives three colors in a cyclic order determined by the
planar embedding of that vertex, we can still assign + ]/^-T to each vertex. Define
|| σ|| as before.

Now for G an immersed trivalent plane graph, let ||G|| = £ ||σ||, where σ runs
G

over all edge three-colorings of G with three colors incident to each vertex.
Penrose observes that this partition function, ||G||, is equal to the number of

colorings of G when G is embedded in the plane, and that ||G|| satisfies the
recursion formulas:

IIX
II o = 3

For example,

φ = (ID - oo

The Penrose formula shows how the coloring problem is related to another sort of
statistical sum, this time related to spin networks and the theory of angular
momentum.

Finally, we mention the algebraic reformulation of the four color theorem that
is proved in [Ka3]. Let V denote the vector cross product algebra on three-
dimensional space. That is, V= {aί + bj + ck}, where a, b, c are real numbers, {i, j , k}
is the usual vector basis for R 3 , and ί2 =j2 = k2 = O; ij = k, jί = —k; jk = ί, kj = — i;
ki=j, ik=—j. The algebra V is non-associative - for example (iί)j = 0 while
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Consider the following problem: Let if and 01 denote two associations of the
product XιX2X$ ...Xn. [An association is an assignment of parentheses to the
product so that it is seen as a sequence of binary products. Thus (X1X2)(X3X4)
and Xί(X2(X3X4)) are two associations of XγX2X^A-^

Cross Product Problem. Solve the equation if = 01 by assigning to each X a value
equal to i or j or k so that ££ = 01 Φ 0. [For example, (ki)(jί) = k(ί(jί)) and both sides
equal (-j)φθ.]

In [Ka 3] it is shown that the four color theorem is equivalent to the solvability
of the Cross Product Problem for every n > 1 and every choice of parenthesiza-
tions if and 0ί. As explained in [Ka 3], this problem has common roots with the
Penrose recursion. Hence, the four color theorem is seen as a subtle property of
the Lie algebra of SO(3) (i.e. the vector cross product algebra).

The vector cross product reformulation and the Temperley-Lieb reformulation
are the two known fully algebraic reformulations of the four color problem. One
intriguing line for further research is to better understand the relationship between
these two points of view.
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