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Abstract. By analyzing the extrinsic geometry of two dimensional surfaces chirally
embedded in WPn (the WPn W-surface [1]), we give exact treatments in various
aspects of the classical W-geometry in the conformal gauge: First, the basis of
tangent and normal vectors are defined at regular points of the surface, such that
their infinitesimal displacements are given by connections which coincide with the
vector potentials of the (conformal) An-Toda Lax pair. Since the latter is known to
be intrinsically related with the W symmetries, this gives the geometrical meaning of
the An W-Algebra. Second, W-surfaces are put in one-to-one correspondence with
solutions of the conformally-reduced WZNW model, which is such that the Toda
fields give the Cartan part in the Gauss decomposition of its solutions. Third, the
additional variables of the Toda hierarchy are used as coordinates of WPn. This allows
us to show that W-transformations may be extended as particular diffeomorphisms
of this target-space. Higher-dimensional generalizations of the WZNW equations are
derived and related with the Zakharov-Shabat equations of the Toda hierarchy. Fourth,
singular points are studied from a global viewpoint, using our earlier observation [1]
that W-surfaces may be regarded as instantons. The global indices of the W-geometry,
which are written in terms of the Toda fields, are shown to be the instanton numbers
for associated mappings of W-surfaces into the Grassmannians. The relation with
the singularities of W-surface is derived by combining the Toda equations with the
Gauss-Bonnet theorem.

1. Introduction

The geometry behind W-algebras [2,3] has been an important open problem of
solvable quantum field theories ([4-13]). It is supposed to give generalizations of the
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two-dimensional gravity by including higher-spin gauge fields. It is also important
for understanding the relationship between solvable models in two dimensions and
higher. Two-dimensional gravity in the conformal gauge is notoriously equivalent
to the Liouville theory which is the conformal Toda theory associated with the
Lie algebra Aγ. A step to generalize this situation was made in [2] where it was
shown that the Toda theory associated with any given simple Lie algebra gives two
Noether realizations of the corresponding W-algebra. Thus, if the above A{-Liouville
scheme is repeated for the other Lie algebras, there should exist generalizations
of two-dimensional gravity (called W-gravities) which are invariant by generalized
diffeomorphisms, and coincide with the conformal Toda theories when a particular
local coordinate frame is used.

Until now, however, this conjecture could not be proven. One of the main
difficulties is that for W gravities the Virasoro algebra is replaced by W-algebras
which are non-linear. Many studies start by using a linearized W-symmetry, and
try to include the non-linear effects by perturbation. Although this strategy is quite
popular, it becomes clear that one cannot get the final answer this way in a closed
form. Since those approaches are approximate by nature, they cannot yield the exact
geometrical structure of W algebras. In the same way, as for Einstein's general
relativity, understanding this geometry is certainly the key. Our strategy is to unravel
the geometry behind the Toda theories that include the full non-linearity of W-algebras
from the start.

In this paper, we give the details of our previous proposal [1] that one can regard
the W-geometry as the extrinsic geometry of particular two dimensional surfaces (W-
surface) embedded in higher dimensional Kahler manifolds. (We will restrict ourselves
to the simplest particular situation, i.e. our target space is WPn which corresponds to
the An-type W-geometry.) Instead of introducing higher-spin gauge generators, our
approach makes use of the extrinsic curvatures of the embedded surface, and relates
it with the Toda dynamics mentioned above. The main virtue of our approach is that
it is very simple to begin with. A W surface is characterized by the specific chiral
structure of its embedding which we will call chiral for short. More explicitly, a
Kahler manifold has a natural description by pairs of conjugate coordinates, and a
W surface is such that, basically, the first (resp. second) is an analytic (resp. anti-
analytic) function of the surface parameters. Since the case of real surface coordinates
will be considered simultaneously, we shall use most of the time the words chiral
and anti-chίral instead of holomorphic (analytic) and anti-holomorphic (anti-analytic).
A related fact is that our analytic embedding functions are not necessarily complex
conjugate of the anti-analytic ones. We need to pick this choice in order to make the
analytic and anti-analytic W-algebras independently act on the embedding functions.
Thus we have to deal with two dimensional surfaces and not with curves.

The idea of getting solvable models from the embedding of two dimensional
surfaces into higher dimensional spaces has a long history. For example, it is a
classical fact that the sine-Gordon equation can be obtained from embedding into a
three dimensional flat space. In [14], Saveliev made a general analysis of surface-
embeddings into spaces equipped with Lie algebra structures, and connected them
with Toda theories. However, he considered the embedding of general surfaces, and
thus his picture is much more complicated*. On the other hand, a proposal was already
made by Sotokov and Stanishkov [4], along lines similar to ours. They realize W3-
geometry by using the extrinsic geometry of a two dimensional surface in the three

Thus he could not deal with An as we do here
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dimensional affine space A3. The difference between our work and theirs is that while
they use a light-cone gauge fixing, we choose the equivalent of the conformal gauge.
As usual, this latter gauge choice is more practical than the light-cone approach. In
their work, the restriction of the embedding function is rather complicated and it is
increasingly difficult to generalize it to higher rank cases. On the contrary, in the
conformal gauge, we make use of the intimate relationship [2] between conformal
Toda field theories2 and W-symmetries. The restriction to the embedding functions is
particularly simple, i.e. they should be chiral, and it is presumably universal for any
kind of W-algebras. The simplicity of our gauge choice makes it easy to approach
problems which have been difficult to solve previously.

Another novelty of our approach is that we need to combine the chiral and
antichiral sectors, using a Kahler structure. This feature is in contrast with most
of the current discussions [5-13], apart from [14 and 4] mentioned above. It is
crucial in our opinion, since both chiral and anti-chiral components appear in the
conformal theories we are considering, although they certainly have holomorphic-
antiholomorphic decompositions.

In the first three sections we consider regular points of W surfaces and our
viewpoint is strictly local. We construct a set of orthonormalized tangents and normals,
study their infinitesimal displacements, and construct a well suited local reference
frame of the target space in a neighborhood of the W surface. In the last section
we consider singular points instead. Then it is more significant to discuss global
properties, that is, what are the possible singularities (ramification indices) of a W
surface with a given genus.

Since this article contains many different points developed one after the other, we
present it as a succession of theorems, propositions, and so on, for clarity3 Yet the
language should be familiar to physicists of the field. The body of the paper is divided
into three main sections after the present introduction which is called Sect. 1.

The main section 2 deals with the regular points of a W-surface Σ where the Taylor
expansions of the coordinates of the surface generate linearly independent vectors. The
mere introduction of the extrinsic geometry is not enough to understand W-geometry.
We need to organize them such that we do not have redundant degree of freedoms. This
program is carried out by a string analogue of Frenet-Serret relations. It is shown
that the Lay pair of An Toda theory appears naturally and that their compatibility
condition, that is the Gauss-Codazzi equations [15], is equivalent to Toda equations.
Next, we show that there is a complete equivalence between conformally reduced
WZNW models [17] and W-surfaces in WPn. The generalized Frenet-Serret formula
derived in Sect. 2.2 is connected with the Gauss decomposition of the solution of the
WZNW equations.

The main section 3 deals with the interpretation of W-symmetry as target-space
diffeomorphism. First, the present geometrical interpretation makes a frequent use of
determinants, so that it is natural to introduce fermionic operators. We use this free-
fermion approach [18] to introduce the additional coordinates of the KP hierarchy
in WPn-W-surfaces. They give particular parametrizations of the target-manifold.
(We call them W-parametrizations). They allow us to extend the W-transformations
to the target space, obtaining a special class of diffeomorphisms. We next study
the W-parametrizations from the viewpoint of the Toda hierarchy. The link between
Riemannian geometry and the latter is established by showing that the integrability

2 We only deal with conformal Toda theories, in the present article. They will simply be called Toda
theories
3 Contrary to the equations, they are not numbered by section
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conditions for W-parametrizations coincide with the Zakharov-Shabat equations. Next,
it is noted that W-parametrization gives rise to a higher dimensional analogue of the
solvable WZNW equations for their Christoffel symbols.

Concerning the main section 4, we first reformulate our approach in terms of
the intrinsic geometry of the family of associated surfaces in the Grassmannians
Gn+ι fc+1, k = 1,..., n. This is needed to study singular points and global aspects
of W-surfaces following the general scheme of our letter [1]. The aim is to establish
the generalization of the Gauss-Bonnet theorem to the W-surfaces discussed above.
The instanton number associated with each mapping can be regarded as the global
invariant of W-geometry. We relate them with the singularity indices of the W-surface.

Before beginning our journey through the W-geometrical landscape, we note that
it is quite attractive an idea that it comes out from the geometry of embeddings.
Indeed, 2D conformal systems are notoriously related to string theories, and the present
viewpoint goes in the same direction. It is compatible with the fact that W-strings
[23], if they exist, may come out spontaneously when on looks for the true vacuum
of the much-wanted string-theory of Nature.

2. Local Structure of the Embedding at Regular Points

2.1. The Gauss-Codazzi-Frenet-Serret Equations

In order to get correctly the W-geometry in the conformal gauge, we need to carefully
define the target space and the restriction of the embedding function. Compared to the
lightcone gauge approach [4], our definition of the restriction becomes quite simple
(See Definition 2 in the following.) In this section we only deal with trivial target-
manifolds. This will be used later on to deal with the complex projective spaces.

Definition 1. Wn target manifolds. They will be taken to be Riemannian manifolds
with In real dimensions, noted Wn, whose points represented by boldface letters X,
have components X—, A= 1,. . ., 2n. It is assumed that

1) there exists a preferred class of coordinates XA, XA, 1 < A, A < n, such that
the line-element takes the form ds2 = 2ΣAdXAdXA,
2) there exists a conjugation-operation noted with a star such that:

In

(X^f = J2cixR, (2.1)
B_=\

which leaves the line-element invariant.

This is very close to the standard definition of Wn, but, contrary to the common
practice4, we do not assume that XA and XB are complex coordinates such that
(XA)* = XA. Our past knowledge of string theory shows that one must be more
flexible. For instance, if we think of a string in constant Minkowski-metric, the
components that involve the time-direction, say X° and X°, are real. This will be
shown, on an explicit example at the end of the section. We shall call chiral (resp.
anti-chiral) components, the set {XA, 1 < A < n} (resp. {XA, 1 < A < n}).

Our basic strategy is to study embeddings of two-dimensional surfaces Σ with
chiral parametrizations. This chirality is defined with respect to surface parameters

Thus we use the symbol Wn instead of the usual Cn
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noted z and z. On the surface, we shall make use of a trivial two-dimensional complex
structure of the usual type. However, taking z to be a standard complex variable is
not the only choice. It corresponds to a Euclidean parametrization where the real
coordinates are xx = (z + z)/2, and x2 = (z — z)/2i. Another possibility is to be
working with real surface-parameters. Then, as it is well known, the square-root of —1

is represented by the matrix ί I acting on the two-component vector ί

The "real," and "imaginary parts" are now x0 = (z + z)/2, xι = (z — z)/2. This
parametrization is of the Minkowskί type, where x0 is a time-like parameter.

Next, a function is called chiral if it only depends upon one of the two coordinates
z or z (if z is a complex variable this means of course analytic or anti-analytic). A
basic object of the present W-geometry is specified by

Definition 2. W-Surfaces. A Wn W-surface is a two-dimensional manifold Σ with
a chiral embedding into Wn. A chiral embedding is defined by equations of the form

(2.2)

We shall also use the words chiral surfaces with the same meaning as W surfaces5.
We do not assume any general link between the conjugation in Wn and in the surface-
parameter-space. Thus fA and fA are independent functions. For string applications
this is needed, basically, since the two chiral components may be associated with the
right- and left-moving modes which are independent if the string is closed. We shall
give an example of this fact, at the end of the section, by considering the case of free
bosonic strings.

Our first result is that Toda field-equations naturally arise from the Gauss-Codazzi
equations of the chiral embedding of W-surfaces. These equations are integrability
conditions for derivatives of the tangents and of the normals to the surface. The latter
are introduced by extending Frenet-Serret formulae as follows. At each point of the
surface, one considers the Taylor expansion of fA and fA up to the n-th order, and
introduce the corresponding matrix of inner products:

a — a — V ^ A A -β^ fA(z)β^ fB(?\ λ < i ϊ < n ClVi

AB

d and d are shorthands for d/dz and d/dz respectively. <9(z) stands for (d)\ Later on
we shall exhibit a particular parametrization of Wn, called W-parametrization, where
the vectors d^fA(z), i > 1, and d^fB(z) j > 1 will become tangent vectors, so that
the covariance properties of the present discussion will become more transparent. At
this moment, we are concerned with generic regular points of Σ, where the Taylor
expansions of fA and fA give linearly independent vectors. Then / ( α ) , and / ( α ) ,
a = l , . . . , n , (upper indices in between parenthesis denote derivatives) span the
following

5 The emphasis is on their extrinsic geometry
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Definition 3. Moving Frame. Consider the vectors ea, and eα, a = 1,... ,n, with
components

(2.4)

9a\

9άa-\
f(a)A

Δa is the determinant

9\\ " 9a\

(2.5)

(2.6)

9\a - 9a

Denote by (x, y) the inner product Σ(xAyA + yAxA). One has the
A

Proposition 1. The moving frame defined above is orthonormal, that is

(ea,eb) = (ea,eb) = 0, (ea,eb) = δafi . (2.7)

Proof. These last relations immediately follow from the fact that

(ea, f(b)) = 0 , and (e α , f(b)) = 0 for a > b (2.8)

together with the definition Eq. (2.6) of Δa. Q.E.D.

For the following it is important to note that, according to Eq. (2.8), Eqs. (2.4),
(2.5) take the form

(2.9)

(2.10)

This equation is also valid for a — 1 if we define Δo to be equal to one, as we shall
do. The vectors eγ and ex are tangents to the surface, while the other vectors are
clearly normals. Thus the Gauss-Codazzi equations may be derived by studying their
derivatives along Σ. The main result of the present section is the
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Theorem 1. Generalized Frenet-Serret Formulae, The derivative of the moving
frame is given by

dea=2dλn\ 7Γ~ ) e * + \l M eα+i> a<n-l,

-)&=--

de{ = - -d\n(Δι)eι ,

with similar equations for e.

Proof It is easy to see that these derivatives may be written as

dea = Σ R*beb > 9ea = Σ Sabeb

According to Eq. (2.7), one has

^ 6 + ^ = ^ + 5 ^ = 0. (2.13)

Since df(a) = df{a) = 0, it follows from Eqs. (2.8), (2.9), (2.10) that Sab and Sab

vanish for a < b. Moreover, it is easy to verify that dea and dea may be respectively
expanded in terms of / ( 6 ) and / ( 6 ) with b < a + 1 only. Thus Rab and Rab vanish for
b > α + 1. Combining with Eq. (2.13), one sees that the only non-vanishing elements
are i ^ α + 1 = κa, Raa+{ = Ra, for a < n - 1, and Raa = σa, Raa = σα, for a < n.
Equation (2.12) becomes

dea =κaea+ι + σaea , dea = - σαeα - /^α_1eα_1 , (2.14)

dea =κaea+x + σaea , 9eα = - σαeα - Λ ^ ! ^ ! . (2.15)

Making use of Eqs. (2.8), (2.9), (2.10), one next easily obtains

σα = - ( 5 e α , e α ) = - δ l n ί ^ M (2.16)

«α=(5eo)eo+1) = «o, (2.17)

and the proof is completed by using the fact that the e's and e's form a complete
basis. Q.E.D.

This theorem generalizes, for W-surfaces, the Frenet-Serret formulae which are
standard for curves. Equations (2.11) have a form which is closely related to the
An_ι Toda equations, if we define the Toda-like fields by

f>

φa = -ln(Δa), for α = l , . . . , n . (2.18)
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This may be neatly expressed as follows. As is well known, the Lie algebra An_x may
be explicitly realized with n fermionic operators bi? which satisfy [b-,b+]+ = δtj.
One writes

ht = Kh-K+λ+^ Et = btbι+ι, E_i = Et, i=l,...,n-l, (2.19)

in the Chevalley basis where hi generate the Cartan subalgebra, and E±i are associated
with the standard set of simple roots. The basic difference in our case is that, contrary
to the An__rToda case, φn is not zero, and we need another "Cartan" generator

K = KK (2-20)

which is realized by the fermionic operators but does not belong to An_ι. Altogether,
the generators we have introduced satisfy the commutation relations

[ht,E±J] = ±Kft

{n)E±], [E0,E_k] = δjtkhj , (2.21)

where i goes from 1 to n, while j and k run from 1 to n — 1. Concerning Lie
algebras, we denote by gl(n) the Lie algebra o f n x n matrices (Lie algebra of the
linear group). The matrix K% may be regarded as the n x n Cartan matrix of
gl(n) ~ An_ι φgl(l). For i and j between 1 and n — 1, in coincides with the Cartan
matrix of An_{9 and

The reality conditions are most simply discussed with Minkowski surface parameters
(z and z real). Then one is using the most non-compact real form of the Lie algebras
we encounter. In particular, the Lie group associated with gl(l) is the multiplication
by real positive numbers. This should be understood from now on. Let us go back to
Eq. (2.11). Together with the anti-chiral parts, it takes the form

(2.23)

b b

bIt follows trivially from Eq. (2.7) that ωb

za+ώa

zh = 0 and ^ α + ώ f 6 = 0. The generators
n

(2.19), (2.20) commute with the number operator TV = Σ KK- ^ n e subspace with

N — 1 has dimension n. We identify it with the space span by the ea and write

ωb

za=<0\\>hωz)>t\0>, ^ o = < 0 | b 6 α ; , b + | 0 > , (2.24)

where |0 > is the vacuum state of the oscillators b̂ . Using the formulae just given,
one sees that Eq. (2.11) is equivalent to

4 Σ
2 = 1 2 = 1

Remarkably, one sees that the right member is just the Toda Lax-pair [16]. Toda
equations are equivalent to the zero-curvature condition on ω. Let us remember that,
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in the language of Riemannian geometry [15], the associated second fundamental
form is given by the projection of the derivatives of the tangent vectors onto the
normals. Its non-vanishing components are

-Γ, (2-26)

where aφ\. Similarly, the third fundamental form is given by the projection of the
derivatives of the normals:

(dea,eb)=ωb

za, 0ea,eb) =ωb

ίa,

(dea,eb)=ώb

za, Φea,eb)=ώl, (2.27)

where α, b > 2. Going to the second derivatives, we next derive the

Theorem 2. Gauss-Codazzi Equations. The integrability conditions of the Frenet-
Serret equations Eqs. (2.11) coincide with the Toda equations associated with gl(n):

0 = [d,d]ea = eb,
b

n-\

Fz-Z = £h x d8φ % + £ Kexp
l=\

(2.28)

Proof. Straightforward computations using Eqs. (2.21), (2.22), and (2.24), (2.25).
Q.E.D.

It is instructive to directly compare the above formulae with the explicit solution of
[2]. Equation (2.3) shows that gn = exp(—φλ) has chiral components are χA = f^Λ

and χA = / ( 1 ) Λ . A simple calculation starting from Eqs. (2.6), and (2.18) shows that

e ΎK —

tk

(k-\)i χ(k-l)ik

χd)i.

(2.29)

This exactly coincides with the explicit form of the A n_ΓToda solutions of [2]. The
only difference is that the right member of the above is not equal to one for the
k = n, so that φn does not vanish. However, in the present case, this right member
factorizes into the product of a single function of z times another function of z, so
that φn is a solution of ddφn — 0. These explicit formulae of course confirm our
previous calculations, that is, Eqs. (2.28). The removal of the additional field, might
simply be done by imposing that the Wronskians of the functions χA and of the
functions χA be equal to one. At the present stage, this would be an artificial condition
without geometrical significance, since these functions are the first derivatives of the
embedding functions. We will see that this additional gl(l) factor will be removed
naturally in the WPn case. This will be the subject of the coming section. Beside this
gl{\) factor, the present situation has another unwanted feature. The induced metric
on Σ is gn = exp(—φλ), while for the Liouville theory, say, it is exp(201)! This
disaster will be repaired in Appendix A.I, explicitly, by deriving Proposition 10.

The Example of Free Bosonic String. In this subsection, we show the necessity of
our more general conjugation (see Eq. (2.1)) on a simple stringy example. Let Ya,
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a = 1,..., 2n, be the space-time coordinates of the string which are, of course,
real. As we shall see, it is essential to work with the Minkowski signature, without
performing the Wick rotation. The target-space metric, ήaβ = ± 5 Q ^ is taken to be
constant and diagonal. For the sake of the coming argument, we shall allow for
several time-like directions (this possibility cannot be ruled out a priori for W-strings
[23]). Thus we take the target-space metric to be ήaβ — -δa β, for a = 1,.. ., s,
ήaβ = δa β, for a = s + 1,..., 2n. s is the number of "time" axis. This metric will
become off-diagonal, as required by the definition 1, if one defines

xa =(Ya + γn+ayV2 )
, a = l , . . . ,s ,

{ (2.30)

χa ^ γ a + iγn+ay^/2 ϊ
K a = s+ l , . . . , n .

In this way the inner product is indeed (Xλ, X2) = Σ(XfXA + XAXf). Obviously,
_A

one has (XΛf = XA, for A < s, and (XAf = XΛ, for A > s. This is an example
of Eq. (2.1), which is not the usual conjugation of Wn. For a free string, the surface
swept by the string-positions is given by

Ya = qa + pa ln(z) + pa ln(z) + ij^

where α^ (resp. α") are the right-moving (resp. left-moving) oscillator-modes which
satisfy « ) * = a% (resp. (α^)* = a°Lr). qa (resp. (p α +p α )/2) is the center-of-mass
position (resp. total momentum) of the string which must be real. (pa — pa)/2i is
the winding-number which is an integer. Equation (2.31) will describe a W-surface,
if the embedding functions computed from Eqs. (2.30) satisfy the Cauchy-Riemann
relations dfA = dfA = 0. One gets

P — P •> P — P 5 a

r ~ -r ' -r ~r ' — — ~ ' /o Q^Λ

Clearly, the reality-condition forces us to take fA = fA = 0, for A > s. The number
of components of the W-string-surface is only equal to 2s. This is why the Minkowski
metric was essential for the present example. For A, A = 1,..., s, the embedding
functions are

fA(z) ={(qA + qA+n)/2 + pA ln(z) + ^

r^° (2 33)
fΛ(z) ={(qA - qA+n)/2 + pA ln(z) + z ̂  άAz~r/Γ}Λ/2 .

For Euclidean world-sheet-parametrizations where 2 is a complex number, they satisfy
the conditions (fA(z)f - / Λ ( ^ ) , and (fA(z))* = / A (z) , in contrast with the
conditions of real analyticity which are usually assumed (in particular for algebraic
curves). Physically, this reflects the fact that, for closed strings, left and right modes
are not correlated. On the contrary, if we consider an open string with parameters
running, say, in the upper half-plane, the boundary condition is that {zd—zd}Ya = 0,
for z = z. As a result one has (fA{z))* = fA(z), and one recovers the standard
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mathematical situation of real analytic functions. A similar situation occurs for
Liouville theory with boundaries [25, 26].

22. WPn W-Surface and An Toda Lax Pair

Definition 4. WPn target space. The complex projective space WPn is defined6 to
be the quotient of the space Wn+ι of Definition 1, by the equivalence relation

X ~ y , if XA = YAρ(Y), and XΛ = ΫAρ(γ), (2.34)

where ρ and ρ are arbitrary chiral functions.

It will be convenient to denote the n + 1 homogeneous coordinates by XΛ, XA with
A, A = 0,1,2,... ,n. In our definition of WPn, ρ and ρ are independent, since we
do not impose any general reality condition on XA, and XA. The metric which is
invariant under the rescaling Eq. (2.34) is the Fubini-Study metric [22],

AA (2.35)

whose Kahler potential is given by 3& — In J^ XAXA. We note that the variation

Eq. (2.34) shifts this potential by In ρ + In ρ. The metric is invariant if ρ (resp. £) is
only function of XA (resp. XA), as required by the above definition. This will be
called a local rescaling. At this point, there are two ways to parametrize WPn. On the
one hand, it is customary to use the Fubini-Study metric and to impose the condition
X° — χ° = I. 7 . This procedure is developed in Appendix A.I. It gives an example
of the treatment of the Gauss-Codazzi equations with non-trivial target metric. On the
other hand, and for the present purpose, it is more convenient to proceed as follows.
First, instead of using the curved Fubini-Study metric Eq. (2.35), we use the flat
metric of gPn + 1,

GAA = 6AA, (A Λ = 0,1, ., n). (2.36)

We shall work with the 2(n + 1) homogeneous coordinates, without fixing the local
scale (its choice is to be made only at the end). This is done by keeping the 2(n +1)
embedding-functions, and making our discussion covariant under the gl{\) local-
rescaling symmetry,

fA(z) -> Q{z)f\z), fA(z) -> ρ(z)fA(z). (2.37)

For this, one constructs the moving frame starting from the zeroth order derivative of
the embedding functions / and /. The appropriate choice of the local scale will turn
out to depend upon the W-surface considered.

6 Here again, as for fcfn+1, we use different letters, that is ΫJ Pn instead of CPn, to emphasize that
our definition is somewhat non-standard
7 Clearly, this approach can be only used locally, i.e. as long as the embedding function f° and
/° are nonvanishing. Since we use higher order derivative, our approach is not covariant under the
target space reparametrization except for the special case (W-parametrization) we shall develop later
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Except for theses modifications, the construction of the moving frame is completely
parallel to the one of the previous chapter.

Definition 5. Toda fields. Introduce the matrix of inner products

ηrS = ^ f r ) A ( z ) F ) Λ ( z ) , 0<r,s<n. (2.38)

A=0

The Toda fields Φt, (ί — 1,. . ., n + 1) are given by

ΦAz, z) = - In TΛZ, Z) , TΛZ, Z) =

Define also τ 0 = 1 and Φo = 0.

Definition 6. WPn Moving Frame. The following vectors are orthonormal:

1 1

(2.39)

-Vp,

Vn = υe =

Vio

w-ι ••• Ίΰ-ι
/ ... /<«

(2.40)

(2.41)

In the last equation, which is similar to Eqs. (2.4) and (2.5), the determinants are to be
computed for each components of the last lines, and only non-vanishing components
are written. The vectors v are introduced for later convenience. They satisfy

/7~. =• \ _ τ τ z /o 4o\

Proposition 2. Frenet-Serret Formulae for WPn. The above vectors satisfy (£ runs
from 0 to n, with e_{ = e n + 1 = 0)

de£ =-d{Φί-Φί+ι)ei +

χ (2.43)

Proof. Calculations similar to the ones of the previous section. Q.E.D.

The next important point is the

Theorem 3. Covariance under Local Rescaling. Under the transformation Eq.
(237), the moving frame transforms covariantly:

f -P

Q Q — i In ρ — £ In ρ,

(2.44)

(Q/QΫ/2ee,
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Proof. Trivial computations show that

a ( / \
f(a) _^ V^ J / a\β(a-b; . .^, y Λ p»> Λ =ρ

J Z_^ ] \ ^ ) * ί J Z_^ abJ ? aa ¥ •>

6 = 0 b = 0 (2.45)

Σ \ / rt \ I

< ί 13 { a~b )n \ fb) = V ^ A f(6) Λ = /?
6=0 k V J } 6=0

The transformation of the matrix ηr§ Eq. (2.38) is ηr^ —> ̂ y l r j 77 ̂ ^4^. It follows

that the tau-, v-, and ϊ -functions are multiplied by sub-determinants of A and A. Since
A (resp. 4̂) is lower (resp. upper) triangular, these sub-determinants are equal to the
products of their diagonal elements, and the result follows. Q.E.D.

Thus the above moving frame may be called homogeneous.

Corollary 1. The Frenet-Serret formula Eq. (2.43) are invariant under local rescaling.

Theorem 4. Toda equations. There exists a choice of local rescaling such that the
Gauss-Codazzi equations coincide with the An Toda equations.

Proof The compatibility conditions of the Frenet-Serret equations give

ddΦ( = - exp(2Φ£ -Φg_x- Φ£+1) (I = 1,..., n), (2.46)

ddΦn+] = 0 . (2.47)

The first equation is precisely the An Toda equation. The second equation implies that
τ n + 1 is the product of two chiral functions. For later use we introduce two functions
U0(z), and U0(z), which are such that

τn+i = U0(z)U0(z). (2.48)

Given the 2(n+ 1) embedding functions, we apply the local rescaling Eq. (2.37) with

ρ = (U0(z)Γι/(n+ι\ ρ = (U0(z)Γ{/(n+1\ (2.49)

which precisely puts τ n + 1 = 1, killing the unwanted degree of freedom. Q.E.D.

Finally we get the An Toda equation exactly. By looking at the explicit solution,
similar to Eq. (2.29), one sees that U0(z) (resp. U0(z)) is the Wronskian of the
embedding functions / (resp. / ) . These do not vanish at regular points, so that this
choice of parametrization is really possible. We shall call it the Wronskian scale-
choice. In the forthcoming it is however, more convenient to work in a scale-invariant
way, without making this particular choice.

If one compares with the previous section, one sees that, in the present scheme, the
distinction between intrinsic and extrinsic geometries is not so clear anymore, however
we shall soon show that this separation is not invariant by W transformations.



330 J. L. Gervais and Y. Matsuo

2.3. Connection with the WZNW Model

2.3.1. Preamble. It has been shown [17] that there is a deep connection between Toda
equations and the so-called conformally reduced WZNW equations. In this section
we show how the latter, which contain more degrees of freedom than the former, are
directly related to the present W-geometry. For completeness, we first recall the

Definition 7. Conformally reduced ^4n-WZNW Model. Let z and z be Minkowski
surface-parameters, let θ(z, z) be a (n + 1) x (n + 1) real matrix of determinant one,
and

β = θ~ιdθ, β = φθ)θ~ι. (2.50)

The conformally reduced WZNW equations are

dβ = dβ = 0, (2.51)

tr(βE_a) = μa , tr(βEa) = βa, (2.52)

a runs over a set of positive roots. The parameters μa = μa = — 1 if a is simple8,
and vanish otherwise.

Of course there is a similar definition for complex z obtained by Wick's rotation. We
shall actually need the following generalization:

Definition 8. Conformally reduced gl(n + 1)-WZNW Model Same as above, but
the determinant of θ is arbitrary.

This generalization incorporates an additional gl{\) gauge degree of freedom. As it
is well known the general solution of Eqs. (2.51) is θ = θL(z)θR(z), where ΘL and
ΘR are arbitrary chiral matrices. Then conditions Eqs. (2.52) lead to solutions of the

Definition 8. Drinfeld-Sokolov Equations. They are of the form [20]

&Jrs = 0, for s - r > 1, ^ r r + 1 = 1 .

If t r (^) = 0 this (DS) equation is associated with An. Otherwise it is associated with
gl(n + 1).

It is easy to see that, writing T^ = θR

ι(z)ri, and T^ = θ^ι(z)£r, give In solutions
of the Drinfeld-Sokolov equations just defined.

2.3.2. WZNW Dynamics for ϊfPn-W-surfaces. Our starting point is Eq. (2.38):

), (2.54)

It is quite clear from the start that the above matrix is of the form η = ηR(z)ηL(z),
and thus satisfies equations of the WZNW type. More precisely, we have the

Theorem 5. Conformally reduced WZNW Solutions form W Surfaces. The matrix
θ = η~ι is a solution of the conformally reduced gl(n -f 1) WZNW equations
introduced by Definition 8.

8 There may be arbitrary constants for primitive roots, but the present restricted choice is sufficient
for our purpose
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Proof. The currents are given by

They obviously satisfy

Moreover, since by construction, df^)A =
according to Eq. (2.54), j ^ = —δji+ι, and
completes the derivation. Q.E.D.

Concerning J?nj, it is well known that the n + 1 functions
solutions of the differential equation (A = 0, . . . , ή)

/° ... r fA

(2-55)

(2.56)

and df^)A = f(ι+VA

9 one has,

ί (

which allows us to write

for i < n — 1, and this

are automatically

= 0, (2.57)

(2.58)Ak)A

k=0 k=0

since Uo, which is equal to the Wronskian of the n + 1 functions fA, does not vanish

at regular generic points. Thus one sees that ^ n j — \ , and βjn = λ J ? where λ̂  is

related to the differential equation satisfied by the functions /. ^ and β are finally
given by

(2.59)

(2.60)

= -- /
•o

1

o
 

o

"0

0

0

.0

- λ
0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0"

0

0

0_

λ0 "

\

n.

λ =

I -
0

0

0
0

0

0

- λ ,
1

0

0

0

0

1

0

0

0

0

0"

0

1

0_

5

o -
0

-λ0 λj Λ• π - l

.(2.61)

The current β' and β> may be expressed in terms of the generators introduced in

Sect. 2.1 [see Eqs. (2.19), (2.20)] except that, here, ί runs from zero to n, and we are

dealing with gl(n + 1). In this section we are always in the sector TV = = 1,
ί=0

that is, in the defining representation, where hi and E±- are (n+1) x (n+1) matrices.
We keep the same notation as in Sect. 2.1, for the generators since there may be no
confusion.

Corollary 2. Embedding Functions as Solutions of DS Equations. For given A
and A, the set of derivatives of the embedding functions {f^Λ,j = 0, . . . , n}, and
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{f^)A,3 — 0,.. . ,n}, are solutions of the gl(n + 1) DS equations introduced in
Definition 9.

Proof. It immediately follows from Eqs. (2.55), and (2.56) that we have

df(j)Λ + J- βjkf
k)A = 0, dpA + Σ Άjfik)A = 0 (2.62)

k k

which coincides with the Drinfeld-Sokolov equations associated with gl(n+ 1) gauge
introduced by Definition 9. Q.E.D.

One should note, however, that the currents associated with the embedding
functions are of a more restricted type, since there are many more vanishing matrix
elements in Eqs. (2.60), and (2.61) than required by Definition 9. In this connection,
Eq. (2.57), and its anti-chiral counterpart show that Uί and Uί should be regarded
as W-potentials. The fact that Uo and Uo are not constant, of course, reflects the
existence of the additional gl(\) degree of freedom. Accordingly, the current satisfy
the gl(n + 1 ) DS equations, and not the one related with An.

Next we give the geometrical interpretation of the degrees of freedom that appear
in the conformally reduced WZNW dynamics, and not in the Toda equation. This
results from the

Theorem 6. Gauss Decomposition from Moving Frame. The moving-frame equa-
tions

ΣP^ with C α α = l , (2.63)

b a χ with Aaa = \ (2.64)
b<a V T + 1

are such that the matrix Θ = η~x has the Gauss decomposition

raabbs (2-65)
α=0 6=0

Denote by JΫ+ fresp. Λ'i) the sub-groups generated by the step operators associated
with positive (resp. negative) roots, and by &0 the group generated by the Car tan
generators including hn. Then

Aejς, B e %, C G JC (2.66)

Proof Equations (2.63), and (2.64) are slight modifications of Eqs. (2.9) and (2.10).
Denote by φ± the set of positive (resp. negative) roots of An. The matrices Cab (resp.
Aab) vanish unless a > b (resp. a < b), and their diagonal matrix elements are equal
to 1. Thus we may write

C = exp ( Σ yaE-a) . A = exp ( £ xaEa\ . (2.67)
\aeφ+

Equations (2.63), (2.64) give
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Inserting this into Eq. 2.54, one indeed verifies the decomposition Eq. (2.65), if one
lets

Bab = - ^ = e Φ α + μ H b (2.69)
T α+1

This completes the proof. Q.E.D.

In terms of the Cartan generators, B may be written as

( φ t + 1 Λ t ) . (2.70)

In the Toda theory, the only remaining degrees of freedom are the Toda fields Φv

Thus we see that the geometrical interpretation of the matrices A and C is that they
specify the embedding.

Corollary 3. Geometrical Interpretation of the WZNW Equations. The WZNW
equations for A, B, and C [17], that is

0C)C~l = -B~ιΪB , A~ιdA = -BIB~\ (2.71)

are direct consequences of the chirality conditions of the W surface (Cauchy-Riemann
equations): dfΛ = dfA = 0.

Proof Consider the last equation as an example. Equation (2.68) gives

0- α 7 2 )

b v v >b

It follows from Eqs. (2.43) that

3

and the previous equations gives — φC)C~{ = Σ E-j e x P ( Σ ^ ' - u ^
j=l i

is indeed equal to B~XIB, according to Eqs. (2.21). Treating similarly, the equation
for /, we get

φC)C~ι = -B~ιlB , A~ιdA = -BIB~\ (2.74)

which coincide [17] with the WZNW equations for A, B and C. Q.E.D.

Our next topic is concerned with the additional field Φ n + 1 , and the associated gl(l)
gauge invariance. We shall prove the

Proposition 3. gl(l) Invariance of the gl(n + 1) WZNW equations. Given two
arbitrary functions ρ(z) and ρ(z), the gl(n+ 1) WZNW equations are invariant under
the transformation

A-^ρΛ~ιA, C -> ρCA~\ B^B/ρρ, (2.75)

where A and A are given by Eq. (2.45), that is

4α=ί?V°- 6 ) ί>. (2.76)
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Proof. Clearly (dC)C~ι and A~ιdA are invariant. This is also trivially true for the
right-hand sides. Q.E.D. As a consequence we have the

Proposition 4. WZNW Gauge Equivalence. The solutions of the gl(n + 1)-WZNW
equations are gauge-equivalent to the ones of the τ4n-WZNW equations.

Proof. Since θ is a solution of the WZNW equations its determinant is a product of
chiral functions. Thus it may be set equal to one by a gl{\) transformation of the type
introduced by Proposition 3. Q.E.D.

Concerning the DS equations, the following is useful

Lemma 1. Basic Properties of the Transformations A.
1) For an infinitesimal transformation ρ = 1 + ε, A = 1 + s. One has

0 , if b<n(
/ n + Λ n + 1 _ α ^ .f b ^ n (2.77)

a

2) The form (Eqs. (2.59), (2.60), (2.61); of the current β is gauge invariant.

Proof. 1) The derivation uses easy calculations bases on the standard recursion
{b+\\ ( b

relation for binomial coefficients: — . .
V a J \a-lj \a;

2) It is sufficient to work with infinitesimal transformations. Then

β->β + δβ = β + ds + [s,I] + [s,X\. (2.78)

In the terms of the fermionic modes \>J9 we may write λ = Σ b+b6λ6, and

b

n—\

[s, λ] = - Σ b+bα ]Γ () \9h~aε. (2.79)
α=0 b>a ^ ^

n-1 Γ / n + 1 \ /j\ Ί

δβ = Σ\>nba ί )dn+ι~aε- Σ ( )Λ6<95~~αε . (2.80)
α=0 LV α / 6 > α \ α / J

Thus the form of β is indeed preserved with

dn+l-aε_γ^ίb\χbdb-aε ( 2 g l )

b>a ^ ^

This completes the proof. Q.E.D.

This lemma leads to the

Proposition 5. DS Gauge Equivalence. The solutions of the gl(n+ 1)-DS equations
are gauge equivalent to those of the An-ΌS equations.

Proof. This must be true since the corresponding WZNW are gauge equivalent. Indeed
it has been shown in [20] that a general DS current & of Definition 9 is gauge
equivalent to a current β of the form Eq. (2.59), (2.60), (2.61). According to the
last lemma, one may thus perform a gl(\) transformation such that \ n —• 0, and hn

decouples. Q.E.D.

The gl{\) invariance is directly connected with the rescaling of WPn W surfaces
as shown by the
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Proposition 6. Reseating. The gl(l) gauge transformations Eqs. (2.75) corresponds
to the rescalίng Eq. (2.37) of the embedding functions

f\z) -> ρ(z)fΛ(z), fΛ(z) -+ ρ(z)fΛ(z). (2.82)

Proof Combining Eqs. (2.44) with (2.68), one verifies Eqs. (2.75) for A and C.
n

Substituting Eqs. (2.44) into Eq. (2.70), gives B -> £exp(-ln(££) Σ ( i + 1)^).
i=0

Making use of the explicit expressions Eqs. (2.19), (2.20), one verifies that

is equal to the identity operator, and this completes the proof. Q.E.D. Of course
the additional generator hn is instrumental in the proof. Finally we arrive at the

Theorem 7. Equivalence between WZNW Solutions and WPn W-Surfaces. There
exists a one-to-one correspondence between the solutions of the conformally reduced
An WZNW and the W-surfaces in WPn.

Proof. 1) First it is clear from the previous discussions that there exists a unique
solution of the conformally reduced WZNW equations associated with a given W-
surface in WPn. Indeed a W surface in WPn is described by the homogeneous
formalism displayed in Sect. 2.2, and there is a one-to-one correspondence between
the local rescaling of the homogeneous description of WPn and the g/(l)-gauge of
the gl(n + 1) WZNW and DS equations.
2) The proof of the converse goes as follows. Let θ be a solution of the ^4n-_WZNW-
model: dθ = ΘK, dθ = Kθ, such that, for a e φ+, - tr(KE__J, and - tr(KEa) are
equal to 1, if a is simple, and 0 otherwise. For the solution

θ - θL(z)θR(z), K = θ~ιdθR , K = φθL)θl\ (2.83)

the conditions on K and K are left invariant by the gauge transformations ΘL —>
aLθL, and ΘR —> θRaR such that aL (resp. aR) belong to subgroups JV^ (resp.
yVΣ) One may verify [20] that there exist gauge transformations such that the gauge
transformed current β — ot^daR + a^ιKaR, and β = ( δ α L ) α ^ 1 + aLKa^1,
take the form Eqs. (2.59), (2.60), (2.61). Of course, since K and K belong to the Lie
algebra An, Xn and λ n are found to vanish. Letting η = θ~ι, one sees that we have

V = VR(Z)VL(Z) w i t n

n- l

^riRki=riRk+ιι^ for fc < n — 1, dηRnl = /

b=° (2.84)
n—1

dVRki —VRki+i > for Z < n — 1 , dηRkn = ̂  \VRkb ?

as consequences of the Drinfeld-Sokolov equations. Thus we let

ΊRQA ~ I ' ΊLA0~J {Δ.δJ)

Equations (2.84) are satisfied iff

n- l n- l

6=0 6=0
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which means the Wronskians of /, and of / are constant. These conditions are easily
removed by performing the rescalings / —>• / = ρf9 f —• ρf, which are such that the
new Wronskians are equal to ρn+ι, and ρn+λ, respectively. The / and / are coordinates
of a W-surface with local rescaling invariance. Writing the Gauss decomposition
η = C~ιB~λA~x gives back the Frenet-Serret formula, and this establishes the
complete correspondence between £fPn-W-surfaces and the conformally reduced
An-WZNW-dynamics. Q.E.D.

3. KP Coordinates and W-Geometry

3.1. Free-fermion description of chiral embedding

In the construction of the moving frame, we have seen that the determinants of the
embedding functions play a central role. This fact leads us to suspect that some kind
of fermionic structure underlies the geometry of W-surfaces. In the description of the
Toda theory, it is known [18] that the free-fermions neatly describe their solution-
space as they do for the KP hierarchy. In our situation, the embedding is connected to
the An Toda theory, and the corresponding fermion theory becomes non-relativistic
in contrast with the KP case. The present free fermions are identical to those which
appear in the matrix-model. Although the present main section is devoted to the case
of regular points, this subsections deals with the more general situation which we will
encounter in the next main section.

Let us summarize our free-fermion conventions following9 [18].

h W m ] + = <Wn> (n,m = 0,l,. . .) (3.1)

ψn\9)=0 < 0 | ^ = O Vn. (3.2)

We use the semi-infinite indices n = 0,1,2,.. ., oc for the fermion-operators. The
vacuum states |0) and (0| correspond to the no-particle states. The n-particle ground
state is created from them in the standard way:

The current operators,

s=0 s=0

will be taken as Hamiltonians as one does for the KP hierarchy [24]. (W-parameters)
already mentioned in Sect. 2.1. The role of these fermions may be understood as
follows. Take the case where z is a complex variable. Then the embedding functions
fΛ are analytic, and each of them is entirely determined by its Taylor expansion
around a single point of its analyticity domain. Its behaviour at any other point of
its Riemann surface is fixed by analytic continuation. The following free-fermion
formalism realizes this continuation automatically. Consider the Taylor expansions at
the point z:

s=0 S' s=0

We actually make a slight modifications by interchanging ψ and ψ+ to follow the usual convention
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To these developments, we associate the free-fermion operators,

oo

*> = Σ /(β oo

Φ}Λ(i) = Σ P
s=0 s=0

The basic property of these operators are

Proposition 7. Fermionic Representation of Chiral Functions. 1) Any change of
the Taylor-expansion point z, z can be absorbed by the action of the Hamiltonians Jx,
and Jx. In particular, one has

ΦJΛ(Z) = e-^ψfAφ)e
J>*, ψ+A(g) = eJ**ψ+

μme-Jι*. (3.7)

2) The embedding functions are represented by the fermion expectation-values

fA(z) = (0 |^ o ) e
J ' ^ °> | l } , fA(z) = {\\eJ^-^ψfA(sJb). (3.8)

S

Proof 1) is a consequence of the identities, e~JχZΊpse
JχZ = J2 ztψs_t/tl and of

their anti-chiral counterparts.
2) comes from the relations φ\φsJl\9) = δs,t- Q E.D.

Due to 1), it is equivalent to work with ΦfA^z y and ψ+A at any fixed z0 and z0.

Hence we put z0 = z0 = 0 in the following and write ΨfA^ and ψtΛ as ψ^A and

ψtA for simplicity. 2) implies that we can translate the chiral embedding into WPn

in the free fermion language. The basic object of this approach is the

Definition 10. Embedding Operator. It is an operator in the fermionic Fock space
defined by

π+l

s Σ Σ
α=0 0<Aι< <Aa<n

It clearly follows from Eq. (3.7) that

&(z,z) = e J l*S?(0,0)e J l*. (3.10)

S^ is a sort of density matrix of the embedding functions. It has a natural restriction
to the Fock space generated by the operators ψjA and ψ~tA acting on the no-particle

state, where it becomes a finite matrix. Thus a may be regarded as specifying a
representation of gl(n) (note that ^ = 0 i f α > n + l ) . This is the analogue of
the gl(oo) matrix which appears in the Toda hierarchy. The main difference between
these two is that the rank of 5P in Eq. (3.9) is finite (= n + 1), i.e. it is degenerate.
If we take the limit n —> oo, it coincides with the matrix of the Toda hierarchy.

The readers might be curious about the relationship between these fermions and
the operators \)- introduced in Sect. 2.1. They obviously act on different indices of
f(s)A^ b-fermions act on A and ^-fermions act on s. There is a complicated relation
between the two, which is connected with the uniformization of the Drinfeld-Sokolov
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equation. We shall give explicit forms of these transformations in the proof of the
Hirota equation, for example, see Eqs. (3.19), (3.20). This connection is simple in the
limit when n —>• oo since, then, we can choose the basis, f^A (x δΛ s.

In order to get the relationship between 5^ and the embedding considered in Sect.
2, we need the following

Theorem 8. Tau-functions. One has

τa = (a\S?(z,z)\a), (3.11)

that is, the tau-functions associated with & coincide with the functions τa defined by
Eq. (2.39).

Proof. It is easy to verify that, from Eq. (3.8),

^ + | 0 } . (3 i2)

The theorem follows by computing the determinants of Eq. (2.39), by means of Wick's
theorem. Q.E.D.

These are non-chiral versions of the tau-functions of the KP hierarchy.
Next the basic tool of the fermionic approach is the

Theorem 9. Hirota Equation. The embedding operator & satisfies

oo oo

s=0 s=0

Proof The Hirota equations have been discussed in many places. Usually (see, e.g.
[27]), however, they only give a proof of the Hirota equations of the KP hierarchy,

s=0

which is a little different from ours. We believe that it would be pedagogically useful
to give the proof for the Toda hierarchy here.10

First we remark that z and z can be set equal to zero in order to prove this theorem.
Indeed, the explicit form of the embedding operator S? Eqs. (3.9), and (3.10) implies
that the z and z dependence can be eliminated by a suitable re-definition of the Taylor-
expansion point. Since our proof is valid for any φj and φ^, and is carried out at
a level of formal series, it automatically includes this modification, even if we deal
with 2^(0,0) as we shall do. The derivative is carried out step by step. The simplest
situation is studied first, before being gradually generalized.

Situation 1. Assume that the embedding functions are given by (A, A = 0, . . . , n),

(3.14)

1 0 The rest of this subsection is solely devoted to the proof of this theorem. Those who do not bother
about its proof may simple skip it
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Proof. In this case ψjA = ψ^ a n d ψ*A = ψ^ By a direct computation, we can easily

confirm that
oo oo

nO,0)o (g)ψsS?(O,0)b = X ] S?(0,0)α+1</>+ (g) S?(0,0) b _,^ (3.15)
s=0 s=0

Q.E.D.

We recall that, in this simplest case, the first n + 1 fermion-operators ψjA and

φ+-A coincide with the b fermions, as already mentioned.

Situation 2. The case when the fermionic representation of the embedding functions
have the following form,

oo oo

ΨfA=ψA+ Σ f(S)ΛΨs, Ψ+μ=Ψ+A+ Σ / ( 5 ) ^ + ' ^3 1 7 )
s=n+l s—n-\-ί

This is the canonical form of the embedding functions at the regular points.

Proof The idea is to make a Bogoliubov transformation of the free-fermion basis
such that the problem reduces to Situation 1. In doing so, we need to keep the
orthonormality properties of the free-fermion basis. We give the explicit form of such
transformation. Introduce11

oo

Σ £Ψs =Φft : * = 0,1,... ,n

: i> n
(3.18)

ί 0 l

/(0) _
- < s=n+l

s=0

oo

>n
(3.19)

— 0 , 1 , . . . ,n

s=0

We remark that we need separate the Bogoliubov transformations for the chiral and
anti-chiral embedding functions. They are distinguished by (0) and (oo). These new
fermion-basis satisfy the standard anti-commutation relations,

- hv » \*t. , «v ] + - o, [Ψf , Ψ£, ] + - o, ( 3 ^ o )

1 ] Here, * does not mean the complex conjugation
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Furthermore, they keep the bilinear combinations

oo oo oo

Σ ^ <8w .+ = Σ ^(0) ® * Γ = Σ ^
2=0 2=0 i=0

Due to these identities, the LHS and RHS of the Hirota equation can be rewritten as

oo
v—>
^ ,0)α 0 ψi no, 0)b = Σ ^ ^(0,0)α 0 Φι

(oo) S?(0,0)6,
2=0 2=0

(3.22)
oo

Σ
2=0 2=0

In terms of the new basis, the 5^(0,0) matrix of Eq. (3.9) becomes

It is now clear that the problem reduces to Situation 1. Q.E.D.

Situation 3. Define the following sets of non-negative integers,

Ξo = {0,1 + βi, 2 + βι + β2,..., .n + β{ + ... + βj ,

Ξ {0l+β2 + P+β + β+ + β}

where βi and βτ (i = 1, 2 , . . . , n) are two sets of non-negative integers. Define also
Ξ^ and Ξ^ as the set of non-negative integers that do not belong to Ξo and Ξ^,
respectively. We also introduce two mappings σ and σ from the set {0, 1, 2, . . . , n} to
Ξo and Ξ^, respectively:

σ(0) = σ(0) = 0, σ(e) = e + Σβj> ^ ) = ^ + Σ ^ ' ( 3 " 2 5 )

3=1 J = l

for i — 1,. . ., n. With these notations, we define the embedding functions n in this
situation by,

(A) ()A ?σ{A) f(s)A
+ Σ '*• ^

1 2 We remark that, in this case, the embedding becomes singular at z = 0. The geometrical property
of such embeddings will be the main topics of Sect. 4. The integers β, β are called ramification
indices
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Proof. This problem reduces to Situation 2 by the mappings σ and σ. More explicitly,
we modify the definition of the Bogoliubov-transformed fermions by,

/ v / Ψs— Ψfσ-ht) ^ G " 0

(3.27)
ψ+ £ <E Ξ

φM* = ) n

\- _ι V j(8)σ-\t) ι+ _ /+ p rz 77
1 "T" 2_^ J Ψs — ΨfσHi) l ^ ^oo

G ^°° (3.28)

/_^ J ^σ(s) oo

These fermions are orthonormal, and the embedding operator is given by

In terms of this basis, both sides of the Hirota equation produce the following term,

(3.30)

0<i<n

Q.E.D.

Situation 4. The proof of the Theorem, i.e. the general situation.

Proof. By means of (n + 1) x (n + 1) constant matrices, 5 ( 0 ) and S^ fΛ =

(S{0)-ι)ifB and fA = (S(oo)-ι)jfB, we can return to the previous normal form

Eqs. (3.26) (more about this in Sect. 4.3). Denote by Ψ and Ψ* the fermion basis

in terms of the normal form. Introduce Ψ and Ψ* which correspond to the original

embedding functions by1 3

Σt'(S-\,t. (3.31)
£'=0 £f=0

for ί e Ξ and Φe = Ψe, Ψ* = Ψf for i e Ξ(~\ It is easy to check that the new Ψ- and
Ψ*-basis have exactly the same properties as the normal basis which we introduced
in the previous situation. Q.E.D.

1 3 We omit the superscripts (0) and (oo) because there are discussed in complete parallel
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3.2 W-Parametrization from KP Coordinates

Definition 11. W-Transformations. A general infinitesimal W-transformation is a
change of embedding functions which takes the form

n n

δwf
A(z) = Σw3{z)d{j)fA{z), δwf

Λ(z) = Y^w^{z)d^fA{z), (3.32)
3=0 j=0

where wJ(z), and wj(z) are arbitrary functions of one variable.

This is standard definition. The purpose of this section is to introduce a special class
of parametrizations for the target-manifold which is such that these W-transformations
of Σ may be extended as special types of diffeomorphisms of WPn.

Definition 12. W-Parametrizations of Wn+λ. Given a W-surface embedded into a
Wn+λ, the associated W-parameters of the target space are n -f 1 variables z^\

ZW = z, z(2\ . . . , z(n\ noted [z], and z{0\z(l) = z,z{2) = z(n\ noted [z]. The

change of coordinates from XA, XA to [z]9 [z] is defined by

XA = fA(ίz]), XA = fA([z]), (3.33)

where fA([z]), and fA([z]), are the solutions of the equations

/ A ( W ) / Λ ( W ) f Λ ( ί z ] ) = -^ fΛ(lz]) (3.34)Qz(£) J V L J y ~ Qz£
 J u J / '

with the initial conditions fA([z]) = fA(z) for z{0\ z(2\ . . . , £ ( n ) = 0, and fΛ([z]) =
ϊA/~\ for =(0) ~(2) =(n) n
J v̂ / 1 U 1 Z , z , . . . , z — U.

These coordinates coincide with the higher variables of the KP hierarchy. Indeed,
their definition is most natural in the free-fermion language, where it is easy to see
that

f Λ ( [ z ] ) = ( φ \ ψ f A e ° JsZ | 1 ^ , f Λ ( [ z ] ) = (l\e°JtZ ^ | 0 ) . (3.35)

The dependence in [z] and [z] is dictated by the action of the higher currents J,

J, defined by Eq. (3.4), that is, Jλz ^ ΣJiz(i)> 3λz -* f j ^ ( i ) in Eq. (2.39).
ι=0 ί=0

Thus we shall call them KF^coordinates. Equations (3.34) are propagation equations.
They define the z(k) and z(h) variables as long as no singularity develops, that is, in a
neighborhood of the W-surface in WPn. In agreement with the above, the embedding
operator, and tau-functions are re-defined by modification of the Hamiltonian in Eqs.
(3.8), and (3.10), that is:

Definition 13. Generalized tau-functions, and embedding operator.

, (3.36)

, [z])\ί). (3.37)
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From the physicist's viewpoint, it is illuminating to realize that these tau-functions
play the role of partition functions since the relevant fermionic matrix elements are
obtained by taking derivatives of them with respect to [z] and [z]. This is contained
in the so-called bosonization rules which may be derived, using a method which is an
adaptation of the proof of the relativistic fermion [24] to the present non-relativistic
ones:

Theorem 10. Bosonization Rules.

(£ + \\&{[z\Λz\)ψΐ+a\ί) =χS

s

ch([d])τM([zl[z]),

(3.38)
(i + MΨtsn[z], izW) = xT(ίd])re([z], [z]),

(t\ψι+s3?([z], [z])\ί + 1) = Xf
 h(-ί8])τe([z], [z]),

where the differential operators are given by Schur's polynomials,

For example, one has

χlch(W]) = 1, χf° \[d]) =

(3.40)

Going back to our main line, we note that Eqs. (3.35) give the extension to
of the η matrix (2.54):

9 " 8 (3.41)
Λ=0

Now, only first-order derivatives appear. As a matter of fact this expression coincides
with the true Riemannian metric with_ respect to the KP coordinates. We call the
corresponding frame, span by dsf, dsf, the W-frame. In terms of the W-frame and
modified 77, the moving frame14 is given by,

1 4 In this context the name "moving frame" is somehow misleading. They are actually the local
Lorenz frame of the target space
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Definition 14. Moving Frame with the KP Coordinates. The following set of vectors
is orthonormal (η is given by Eq. (3.41))

e,([zMzl)=-
1

Voΰ

dof([z]) . . .
Ήte-i

(3.42)

Ί Γ J fT Ί
L [z])τ£+ι([z],

Ψit-x

dof([z])

Each W-parametrization depends upon the W-surface considered. The latter is
obviously recovered by letting z(k) = z(k) = 0, for k = 2, . . . , n. This link between
the target-space parametrization and the W-surface allows us to relate its intrinsic and
extrinsic geometries. This is a key step in this whole scheme.

Next we show that the W-transformations may be extended to £fn+1 by requiring
that the differential equations Eq. (3.34) be left invariant. This will give a special calls
of diffeomorphisms of Wn+ι. We shall only consider the holomorphic sector explicitly.
The calculation in the anti-holomorphic sector is completely analogous. First we
consider the limit n —» oo. It is known that the W-transformations become linear
(so-called wx+oo transformations) and the coordinate transformations are simplified.
We work at the level of formal series, without considering convergence problems.
The desired result follows from the

Lemma 2. Invariance of the Differential Equations. Given an arbitrary function
ε(z), define the functions ε^s\[z]), 5 = 0 , . . . , oo, from the generating function

OO

s=0

H ( ζ [ z ] ) = (3.43)
s=0

1) To first order, and for any given positive integer ί, the differential Eq. (3.34) are
left invariant by the change of*Wr-parameters

= o, r< (3.44)

2) Conversely, any first-order reparametrization of[z] that leaves the differential Eqs.
(3.44) invariant is a linear combination of the above.

Proof. 1) One makes use of the inverse Laplace transform. Write

α+zoo

fA(z)= / dCe^/Λ(C), (3.45)
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where a is to the right of the singularities of fA. It follows from Definition 12 that
(ff(C, [z]) is defined in Eq. (3.43)

fΛ(ίz]) = JdζeH«M)fA(Q. (3.46)

Making us of Eqs. (3.43), (3.45), one may rewrite the variation of fA([z]) under the
form

a+ioo

δff{z)= j dζeH(<'lz])ε(-dζ)(ζef(ζ)), (3.47)

which is indeed a solution on the differential equations (3.34).
2) Conversely, consider a variation δz^ = ρ^r\[z]).

If the variation of fΛ is a solution, one should be able to write

r=0 9=0

where Pq(d^) is a differential operator with constant coefficients. To each P , and
making use of the generation function Eq. (3.43), we associate a family of functions
PqS\[z]) by the equations

CO

— H(ζ,[z]) T) if) \~H(ζ,[z]) \ ^ /-S ΊD(S)/Γ -ι\ /Q /\Q\

^qy°Oe ~~ 2-^^ Q ^ZV-> p.4δj
5=0

and we obtain

q s

δz" = Σ φ ) = Σ ^ r" ς )(w) (3'49)

q q<r

This completes the proof. Q.E.D.

Next, if follows from Eq. (3.43) that Eq. (3.44) gives

OO r, OO

δ(

ε

e)fΛ([z]) = Σ ^(S)(M) QJjϊΓ) /Λ(W) = Σ ε(β)<lzW+β)fΛ(lz]) • (3-50)
5=0

It is easy to see that, on the W surface (that is for £ ( 1 ) = z, z^ = z ( 2 ) = = z^ =
0), Eq. (3.43) gives ε ( s ) = 0, for s f 0 and ε{0\z) = ε(z). Thus the function ε(z)
specifies the variation of the embedding functions themselves:

δffA{z) = ε{z)d^fA{z). (3.51)

Clearly the W-transformations introduced by Definition 11 are linear transformations
of such variations. Lemma 2 thus leads to the
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Theorem 11. W-Diffeomorphisms. Each W-transformation has a unique local ex-
tension to ^ n + 1 that leaves the differential equations Eqs. (3.34) invariant.

The above discussion moreover shows that we have

r

Σr~s(s)- (3-52)
r s=0

The functions Wr should be regarded as the components of the tangent vector
associated with the W-transformation considered.

The Lie algebra of W-transformations coincides with the bracket algebra of the
associated tangent vectors. The corresponding change of coordinates is δwz^ = Wr,
and one sees that the WΓ-surface is moved by the W'-transformations. For a W-surface,
there is no covariant separation between intrinsic and extrinsic geometries.

Our next topic is the local rescaling introduced in Eq. (2.37), that is, the
transformation fA(z) —>- ρ(z)fA(z). Infinitesimal transformations of this type may
be regarded as special cases of Definition 11, where w^ = 0, for j φ 0. Moreover,
one may check that the covariance properties Theorem 3 of the moving frame are
extended away from the W-surface by the definition of the W-parametrization. The
above discussion thus gives the

Corollary 4. Local reseating. The infinitesimal rescaling δfΛ(z) = σ(z)fA(z) is
equivalent to the following change of Wr-parameters:

δz{s) = σ(s)([z]), e-H(^{z»σ(dζ)eH^[z]) = ̂  ζsσis\[z]). (3.53)
5=0

The generalized moving frame introduced by Definition 14 is covariant under these
transformations.

The fact that the rescaling is equivalent to a change of W-coordinates is understood
by noting that eH^^z^ is of the form exp(z(0^) times a factor that does not depend
upon this variable. Thus z ( 0 ) is really the scaling factor of the W-coordinates.

Next we deal with the case where the dimension of the target-space is finite and
equal to n. We prove that the modification is given by

Theorem 12. W-Diffeomorphism for finite n. For finite n, the W-reparametrizations
Eq. (3.52) become

n

δwf
A([z]) = V f(Wr + V Wn + sλ^([z]Λ drf

A([z]). (3.54)

r=0 \ s>0

Similarly, the reparametrization Eq. (3.44) is to be rewritten as

oo
is) _ Λs-£)ίf^Λ , V^ Jn-ί+t)

t=\

{[z]) + J- ε<n-i+t\[z])\<*\[z]), (s = 0 , . . . , n ) , (3.55)

where, according to Eq. (3.44), ε ( r ) is defined to be zero for r < 0. The notations of
this theorem are explained in the proof.
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Proof. In this case there are relations between the embedding functions. They are
derived from the equations (A = 0, . . . , n)

f°(z) Γ(z) fA(z)

f(n)n{z) f(n)A(z)

= fuo(z)d^+s) - γU{

t

s\z)d«λfA{z) = 0.
^ t=0 '

(3.56)

Uo which is the Wronskian of the functions /°,..., / n , does not vanish at regular
points of Σ. Thus we may eliminate the higher derivatives by the relation

t=0

(3.57)

When the W-parametrizations are defined according to Definition 12, it is easy to see
that this last condition is extended by construction. Indeed, one has

dof°([z]) dof
n([z]) fΛ([z])

djn([z]) dnf
A([z))

dn+βf
n([z]) dn+sf

A([z])dn+sf°(ίzl)

= \uo([Z])dn+s - Σu^azvdλf^iz]) = o
t=o

(3.58)

and the W-parameters automatically satisfy the conditions

= U(

t

s\[z])/U0([z]). (3.59)dn+sf
A([z]) = ^\f>([z])dJA([z]),

t=0

By this, we can eliminate all dependence in the higher coordinates z^k\ with k > n.
Q.E.D.

The reparametrization is an explicit function of /. This reflects the fact that the W
parametrization depends upon the W-surface considered. This is why the embedding
functions fA transform nonlinearly.

Finally, it is clear that, since we have worked in a way which is covariant under
the local rescaling defined by Corollary 4, we have the

Corollary 5. W-parametrization of WPn. The W-parameters of Definition 12 give
a parametrization of WPn if one identifies any two points which are connected by a
transformation of the form Eq. (3.53) introduced in Corollary 4.
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3.3. Extended Frenet-Serret Formula and Toda Hierarchy

In this section, we study the generalization of the Frenet-Serret equations Eqs. (2.11),
that include the KP coordinates introduced above to define W-parametrizations. As
expected, such study leads us to the Lax pair for the Toda hierarchy. We shall deal
with the Ϋ?Pn W-surface, by working in Wn+ι with the generalized homogeneous
coordinates introduced in the previous section (Corollary 5). Our result is expressed
by the 1 5

Theorem 13. Frenet-Serret Formulae for KP Coordinates. Consider the chiral
vectors

1 = 1 =
uί — —ϋjβ, uί — vί , (tig, ύjβ/) = δu, , (3.60)

r i ri+\

where ϋβ and v£ are given by Eqs. (3.42). It follows from the differential equations
Eqs. (3.34) that they obey the differential equations

t+P

t-\

where Fp and Gp, which are the p t n power of matrices Fι = F and Gι = G,
respectively, are given by

re're'+i s = ι

Λ oo

Tt'Tt'+\ s = 0

(3-65)

Using a matrix-notation which is self-explanatory, one may view the general
structure of the above equations as follows,

dpu = iffι (Fp)+Hι u, dpu= -H2(GT ff2-' ϋ,

Hι, (3.66)

The Lax operators which appear in Eqs. (3.61)-(3.64) are exactly those of the An-
type Toda hierarchy. The integrability conditions for them, therefore, quite naturally
give the famous Zakharov-Shabat equations. Thus we have the

From now on, we omit the arguments [z], [z] unless they are explicitly needed
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Corollary 6. Solutions of Zakharov-Shabat Equations. The integrability conditions
of the generalized Frenet-S erret formulae of Theorem 13 are

[dp - H-\FV)+HX, Bq + H2(GqΓHϊι] = 0,

8q - H-'iF^+H,] = 0,

dp + H2{Gp)H^, dq + fT2(G«)H2

which coincide with the Zakharov-Shabat equations.

[dp + H2{Gp)-H^1, dq + fT2(G«)-H2~
ι] = 0, (3.67)

This is the most explicit proof of the relation between the extrinsic geometry of the
W-surfaces and the Toda hierarchy.

According to the general scheme, of Sect. 3.1., F and G are given by derivatives
of tau-functions. Equations (3.38)-(3.40) give

Proposition 8.

t-l'+p

β f (3.68)
e-e'+P

= ^ — Σ (xSΛld])τel+1)(χf}el+p_s(-[d])τe).

The first few terms are very simple,

Fa+i = —> Fu = d\WTί+ιlτdi Fu-i = —%Tt "•- (3-69)
τ£+l τί+\

The rest of this section is devoted to the detailed proof of Theorem 13. In Sub-
sect. 3.3.1, and since we need to treat the higher KP coordinates systematically, we
first translate the moving-frame equations into the free-fermion language. In Sub-
sect. 3.3.2, explicit formulae for the Lax operators F, G are given. In Subsect. 3.3.3,
we finally spell out the actual derivation of the generalized Frenet-Serret equations.

3.3.1. Free-Fermion Representation of the Moving Frame. In order to automatically
solve the differential equations Eqs. (3.34), we re-write all expressions of the moving-
frame equations, in the free-fermion operator-formalism. The basic point is that the
Hirota equation (3.13) remains valid when the higher coordinates are included. Indeed,
using the same argument as in Sect. 3.1, we can again reduce the derivation to the
point z^k) = z^k) = 0, Vfc. Thus the full power of the fermionic method is still on.
From Eqs. (3.42), it is straightforward to derive the following neat expressions for ϋ£

and ϋff9

5=0

t
V^ f^/£ + I\ψ+S?([z], [z])\ί). (3.70)
s=0
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Instead of working with the vectors ve and ϋ£, it is more useful to introduce the
ket- and bra-fermionic-states which correspond to them:

?+i) = K),
s=0

_ ^ J t z ~(v£\. (3.71)

These states satisfy

( ^ | ^ ( [ 0 ] , [0])|^/) = vfvp^AA ~ T£T£+l^££/ * (3.72)

It is easy to derive the equations of ϋ, v from those of (v£\ and \v£).

3.3.2. Definition of the Lax operator. Using the free-fermion representation of the

moving frame, we first justify the introduction of the Lax operators F, G. Since one

has dpeΣo J*z s — JpeΣo J*z s , we first study the action of the J p ' s on the states

(vz\ and | ^ ) . Define F and G by

£+\ £+\

£'=0 £'=0

Since \υ£) and (ϋg\ are one-particle states, we can easily derive the following lemma,

£+p £+p

£'=Q £'=0

We can calculate the explicit formulae for F and G by using the Hirota equation
(Theorem 9). For example,

TμTμ + γ

1 oo oo

Similarly,

~ h i ) . (3.76)

The summations in Eqs. (3.75)-(3.76) can be taken from ί' — 1 to £ since the other
terms vanish. Due to the lemma (3.74), the powers of F, G have similar forms,

τe>τe>+ι s = 0
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3.3.3. Proof of the Theorem. We give a proof of (3.61)-(3.65) by direct computations.
Before that, it is useful to observe that, by differentiation of Eq. (3.72),

, [0])\ve (3.78)

The first term on the RHS vanishes if ί' > i. Hence the second term should also
vanish in this case. By the orthogonality of (ϋ\, and \υ), we can conclude that dp\ve/)
is the linear combination of \v&f+p), \vef+p_ι),
computation gives

y ) . On the other hand, a direct

dp\vt
= Jp\υ

£'=0

s = 0

+ Σ Σ ° n J t z it) i>t\ms?jni>s\t+ (3-79)

We remark that the second term is a linear combination of |t>0), , \v£). From these
two arguments, we can conclude that the second term cancels with (Fp)u,\υ£,) for
d = 0,1, , ί— 1. This fact can be confirmed from the following explicit calculations.
By using the Hirota equation (Theorem 9), one obtains

s=0

q=0

The ί — m term can be alternatively written as

oo

•Σ(
q=0

(£<m)

τtdpτt+ι.

(3.80)

(3.81)

By combining, Eqs. (3.77) with Eqs. (3.79)-(3.81), we get the desired result,

l+P

t'=ι+\

(3.82)

'=£

If we combine this with Eq. (3.78), we get another formula,

-i + Φp\nτe)(ϋ£

£-1

Σ
P' = P — i

(3.83)
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Equations (3.61) and (3.64) can be obtained from these formulae by scaling the moving
frame appropriately s.t. we remove the diagonal terms. The proof of Eqs. (3.62), (3.63)
is exactly parallel. This completes our proof of the Frenet-Serret formula including
the higher coordinates. Q.E.D.

3.4. Generalized WZNW Equations and Riemannian Geometry

In the present section we show that the W-parametrization of the target-spaces
Wn+X and WPn, which were defined in Sect. 3.2 (Definition 12), are such that the
correspondence between W-surfaces and conform ally reduced WZNW has a natural
multi-dimensional extension away from the W-surface Σ. This will also lead to an
extension of the Drinfeld-Sokolov equations. These extensions show the intimate
connection between these equations and the Riemannian geometry of the target-space.
First we have the

Theorem 14. Chrίstoffel Connection for W-parametrization. With the W-parame-
trization, the Christoffel symbols are chiral and given by

( 3 8 4 )

where λ, λ are defined in Eqs. (3.56) and (3.57).

Proof. With the W-parameters, the metric tensors is given by Eq. (3.41), that is,

Vij = Σ ^ A B ^ / A ( M ) ^ j / β ( M ) The Christoffel symbols are such that its covariant
A,B

derivatives vanish. Since this metric tensor is factorized into a product of two chiral
matrices, we immediately get

3 k

where the Christoffel symbols 7 and 7 are such that

%Φtf) = <nP)ίΦef), dp0J) = ΦtJ)(%)eί . (3.86)
Making use of Eqs. (3.50) together with its anti-chiral counterpart, one easily deduces
the explicit expressions Eqs. (3.84). Clearly the Christoffel connection satisfies

dg(%i = dq(%)^ = 0. (3.87)

It is thus chiral, and this completes the proof. Q.E.D.

Next it is clear that Eqs. (3.86) may be considered as multi-variable extensions of
the Drinfeld-Sokolov equation (2.62). Thus we introduce the

Definition 15. Generalized Drinfeld-Sokolov Equations. They are defined as a set
of n partial-differential equations of the form

= 0, ^ p = dp- 9^\[z]), (3.88)
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where T is a column-vector {T ,̂ 0 < ί < n}, and where the (n+1) x (n+1) matrices
( ) are such that

{9^% = 0, if p + j > k , ( 9 ^ ) ^ - 1, if p + j = k . (3.89)

Next it seems appropriate to generalize the link between WZNW and Drinfeld-
Sokolov equations as well. Thus we introduce the

Definition 16. Generalized WZNW Equations. They are partial-differential equa-
tions of the form

dp(θ-\[z], [z])dqθ([zl [z])) = dq((dpθ([zl [z]))θ-\[z], [z])) = 0, (3.90)

where θ is a (n+1) x (n+1) matrix which is real for Minkowski z and z coordinates.

Of course, in the same way as in Sect. 2.3, the present definition includes the gl{\)
factor, so that we do not assume that the determinant of θ is equal to one. The W-
parametrizations of ^ n + 1 automatically give solutions of these equations, and one
easily verifies the

Theorem 15. WZNW from Christoffel Connection. The matrix θ = η~ι, where η
is the metric tensor of the Wτ-coordinates, is a solution of the generalized WZNW
equations, satisfying the following constraints:

= — 1, 0 < j < n — p,
(3.91)

= - 1 , 0 < j < n-p,

and Tr(θ~ι dpΘE_J = 0 fresp. Ύr(φpθ)θ-ιEa) = 0) for all other positive roots (the
step operator Ejk is defined by (Ejk)

b

a = δaJδkb).

It seems appropriate to call this last system the conformally reduced WZNW equation,
since they are the direct generalizations of the standard notion. Finally it is tempted
to give the following

Conjecture 1. Equivalences. There is a one-to-one correspondence between the W-
parametrizations of Wn+λ fresp. WPn) and the generalized WZNW and Drinfeld-
Sokolov equations (Definitions 16 and 15) for gl(n + 1) fresp. for An).

As we have observed in Sect. 2.3, the Frenet-Serret formulae give the geometrical
interpretation of the Gauss decomposition of the metric ηjk(z, z) = C~^B~^A~,ι

k on
the W-surface. The triangular matrices C and A give the relation between the vectors
eα, l α , and the W-frame / ( α ) and / ( α ) [see Eqs. (2.63) and (2.64)]. Making use of
the method developed in Sect. 3.2, one immediately sees that the argument may be
extended to the target-space, where the Gauss decomposition of the matrix θ([z], [z])
gives the general relationship between the moving frame (=vielbein) span by the
vectors ea([z], [z]), ea([z], [z])9 and the W-frame span by / ( α )(M), and f(a\[z]). In
terms of the vectors u and ΰ defined by Eqs. (3.60), and Eqs. (3.42) one has

(3.92)
], [z])Ub([z], [z]).
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In the previous section, we have derived the generalized Frenet-Serret equations,

dpύ£ = (ωp)££,ί

d

P^£ = u£,(ωp\

djlp — (ωS)nnlUn, , ^Jlp = {UJ^nnlUnl ,
p I p'W £ > p I p'ZZ I .^ ^ .

The matrices ω, ώ take the form

ωp = {nλ t'HO , ωp = -VΛ _ ( 3 9 4 )

where i?^, (z = 1,2) is the diagonal matrices F££l, and G£/£ vanish if ί > £' + 1.
Conversely, if a local lorentz frame of any kind satisfies this type of equations,

their integrability condition is equivalent to the Zakharov-Shabat equation. The general
argument of the Toda theory [19] tells us that there exists a tau-function such that the
coefficients of the Zakharov-Shabat equation are given in the form Eq. (3.66). Since
the tau-function is defined by the embedding operator Ss this argument shows that
the local lorentz frame can be identified with the moving frame of a W-surface and
their coordinates can be identified with the higher coordinates. Actually, what we are
doing in this paper is a reversal procedure of the whole scheme of the Toda equation,
i.e. we start from the geometry of the explicit solution (W-surface) to get the equation
of motion (Zakharov-Shabat equation). Thus we reach an important conclusion that

Theorem 16. Characterization ofW-Parametrizations. The reparametrization of the
KP coordinates can be identified with those coming from the W-transformations if and
only if they do not change the form of Frenet-Serret equation.

Combining the above formulae, one sees that C~ι and (AB)~ι which appear in
the Gauss decomposition give the transformation between the Lax operator of the
Toda hierarchy Eqs. (3.93), (3.90), and the generalized Drinfeld-Sokolov equations
Eqs. (3.87), (3.88). Indeed one finds that

ί (3.95)

(AB)-\dp - ηp) = (dp - ώp)(ABΓι.

This equation without the higher coordinates was discussed previously in [17]. Clearly
the integrability conditions of the Frenet-Serret and Drinfeld-Sokolov equations are
equivalent.

4. Global Structure of the Embedding

4.1. Associated Mappings

In this last part we deal with singular points of W-surfaces. We shall mostly be
interested in the global aspects. They will be described by n topological numbers
which will be related to the ramification indices of the singularities by a global
Plϋcker equation that generalizes the Gauss-Bonnet formula. Our guideline is the
beautiful discussion of [22]. For these purposes, we need to change the viewpoint
which we took until now. So far, we have discussed the extrinsic geometry of the
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W-surfaces using the moving frame. We derived the Toda field equations from the
Frenet-Serret formulae and Gauss-Codazzi equations. In defining the global indices,
this method is not so convenient at present, since we do not yet know how to make
use of higher topological invariants of the target space.

The way to replace the extrinsic geometry by the intrinsic one is to introduce the

Definition 17. Associated Mappings. Consider the family of osculating hyperplanes
with contact of order k denoted @k (k = 1,. . ., n) to the original W-surface. With
WPn as the target space, this family defines an embedding into the Grassmannian
Gn+ι fe+1, which we call the kth associated mappings to the original W-surface.

This formulation looks different, but is equivalent to the construction of the moving
frame and only uses the intrinsic geometries of the induced metrics for k = 1,. . ., n.
In practice, what this means is that, instead of forming moving-frame vectors
ek out of / , . . . , / ( / c ) (k = 1,.. ., n), we consider the nested osculating planes
(9λ C (92 C C (9n. It is obvious that those two have the same information.
The rest of this section is devoted to the explicit form of these mappings.

For pedagogical purpose, we recall the well-known Grassmannian aspect of the
hyperplanes in WPn. The Grassmannian manifold G n + 1 k is the set of (n + 1) x k
matrices . ^ with the equivalence relation i ^ ~ α^J, where a is a k x k matrix. In our
case, it is natural to consider another set of (n + 1) x k matrices ,ίf simultaneously,
in order to deal with each chiral component independently. For arbitrarily given
3?k and j ξ , we can uniquely define hyperplanes in WPn by equations of the form
χ\t) = Σ fj>Atj9 XΛ(t) = £ PΛly where tj and I- are arbitrary parameters. fi>A

3 3

and fj>Λ are the matrix elements of i ^ and J^. The equivalence relation Ψ' ~ a^ and
&* ~ aJF simply expresses the fact that the geometrical hypeφlane does not change
if we replace tj and tj by linear combinations. Thus the Grassmannian Gn+ι^k is the
space of /c-dimensional hyperplanes in WPn. Following [28], it is natural to base
its Kahler structure on the potential 3&k = ln(det i^J^ τ ) which coincides with the
Kahler potential of WPn for k = 1.

Consider an embedding of 2D surface into Gn+lk with chiral parametrization -
this time, however, we do not introduce its extrinsic geometry. It is defined by its
chiral components 3%(z) and J^(z) which are respectively given by

The difference with the usual situation is that, for us, / M is not assumed to be the
complex conjugate of / 2 ) J . It is immediate that the metric induced on this surface is
derivable from the potential ,96^ which is such that

Σ
f,n{z) ... f,ik{z)

• (4.2)
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The construction of @k_λ at each point z, z goes as follows. One lets

fs,l _ β(s)fl(7\
J-sl -{s)-ι_ , fors = 0 , . . . , f c - 1 , Z = 0 , . . . , n . (4.3)

For a fixed fc, the /c-planes generate a surface in Gn+ι k+ι called the kth associated
surface. In technical terms: from the embedding Σ —* WPn, we have canonically
constructed the kth associated embedding Σ —> G n + 1 fe+1 ^ P(^4 f c + 1 ^ n ) .

Next, according to Eq. (4.2), the induced metric on the /cth associated surface in
Gn+i,fe+i i s simply,

g(9 = ddInτk+ι(z, z), g™ = gf]

2 = 0 , (4.4)

so that the Toda field Φk+ί = -\n(rk+1) appears naturally. Thus — Φk+1 is equal to
the Kahler potential of the kth associated surface. At this point, it is very clear that by
considering the associated surfaces, we can restrict ourselves to intrinsic geometries.

In the discussion of the main section 2, the Toda equation came out from the
Gauss-Codazzi equation. Here it is equivalent to the local Plucker formula as we
shall see.

4.2. The Instanton-Ήumbers of a W -Surface

A key point in the coming discussion is to use topological quantities that are instanton-
numbers. As a preparation, we recall the fact, pointed out in [1], that W-surfaces are
instantons of the associated non-linear σ-model. The general situation is as follows.
W-surfaces are characterized by their chiral parametrizations which thus satisfy the
Cauchy-Riemann relations. These are self-duality equations so that the coordinates of
a W-surface define fields that are solutions of the associated non-linear σ-model, with
an action equal to the topological instanton number. For a general Kahler manifold M
with coordinates ξμ and <p, and metric h p, the action associated with 2D manifolds
of M with equations ξμ = φμ(z, z), and ξμ = φβ(z, z) is

(4.5)

In this short digression we let z = xx + ix2, and d — d/dXj. The instanton-number
is defined by

Q = έ / Sx e>k h

μ β β

For W-surfaces and their associated surfaces, dφμ = dφμ = 0, and one has S = πQ.
Q is proportional to the integral of the determinant of the induced metric. Applying
the last formula to the kth associated surface, we get
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Definition 18. Higher Instanton-Numbers of the ^-Surface. The kth instanton
number of the W-surface Q^+i is defined by,

= ^ I'dzdzg*"<*>, fc=l,...,n-l. (4.7)

Its topological nature is obvious from Eq. (4.4) which shows that the integrand is
indeed a total derivative. The collection of the (/cth) instanton-numbers together with
the original one Q = Q{ gives a set of topological quantities which characterize the
global properties of the original W-surface.

4.3. Singular Points of Embeddings

In the main section 2, we have constructed the moving frames at the point where
the tau-functions are regular. When those functions become irregular, we meet
an obstruction to derive the moving frames. In the WZNW language, this signals
that there appears a global obstruction to the Gauss decomposition. Toda equations
should be modified at these points. In the following, we study the structure of such
singularities and the behavior of the tau-functions.

Let us discuss the WPn case, where the structure of such singularity was already
studied in detail in mathematics [22]. As always, we use the notation fA(z) (resp.
fA(z)) to describe the chiral (resp. anti-chiral) part of the embedding. In the following,
we only discuss the chiral components explicitly. Consider a point z0 which is a
singular point of the embedding. We assume, as one does in mathematics [22], that
we may reduce the problem to the case where there is no branch point around z0. (If
there was, for instance, a non-trivial monodromy-matrix acting on the / A ' s around
z0 to begin with, one would assume that this matrix is diagonalizable and that its
eigenvalues are rational. In this way, by taking a finite-covering, one would be reduced
for the case we are discussing.) Now we remark first that if some fA's blow up at
z0, we can remove that singularity by applying a local rescaling fA(z) —> ρ(z)fA(z),
with Q(ZQ) = 0. The idea is that one divides by the most singular behavior so that
every f (z) has a finite limit at z = z0. Now the study of the singularity structure is
replaced by the study of the zeros of /, and of its derivatives at z0. By appropriate
reshuffling,

f\z) -+ fA(z) = Σ SBfB(z), (4-8)
B

with a suitable constant matrix 5, we can get the following normal form for / at

/°(*) = O(1),

p(z) = O((z -
fn(Z) = O((Z -
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We define

Definition 19. Ramification Indices. The non-negative integers β£(z0) (ί = 1,..., n)
which appear in Eq. (4.9) describe the local behavior of the embedding function at
2; = 2;0. We call these numbers ramification indices following the terminology of the
mathematical literature [22]. We introduce similar indices β to describe the behavior
of the anti-chiral embedding functions. We define here also the total ramification
index β£, βί as follows,

$>*<*>' βe = Σβe(z), (4.10)

where z and z run over all the singular points of Σ.

The /3's are integer since we assumed that there were no branch points. Regular points
of the embedding are characterized by the vanishing of all ramification indices.

From this explicit form of the local behavior of the embedding functions, it is easy
to calculate the behavior of the tau-functions at z = z0, which is explicitly obtained

by,

Theorem 17. Behavior of the Tau-Functions.

Ύp — y^yyyZ Zr\) \Z ^o) ) * V /

Proof. The explicit computations of the first few ones look as follows,

r i ^ /o/o + m8ner order terms

1 (z ~ %
0 (*)(*-.

1 (z-

0 (*)(z -φ + (4.12)

O((z - zofi(z - zofi)

1 (z - zo)
ι+βι (z - .

0 (*)(2 - Z0)^ (*)(Z -

0 (*)(Z-Zo)h-1 (*)(Z-Z

1 (z - zo)
[+^ (z -

0 (*)(z - z0)^

0 {*)(z-z^-χ

Here we omit (z0) in the /3's and (*)'s are some non-vanishing numerical constants.
Obviously, this type of computation can be performed for every tau-function. Q.E.D.

Special combinations of r-functions appear in the Toda equations. They behave as

= O((z - (4.13)

In Eqs. (2.40), we need to divide vectors by tau-functions. Unless all ramification
index vanish, we get divergence in those formulae. In the WZW language, it shows
that the Gauss decomposed matrices A and C become singular at these points. In
terms of the Toda equation, it leads to
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Theorem 18. Modified Toda Equation. At the singular point, the Toda equations
have an extra δ-function source-term given by

zo,zo(ΞΣ t=l

Proof. The behavior at the singularity can be evaluated directly through the behavior
Eq. (4.11) of the tau-functions, and the well-known formula

dd\n(z - z0) = dd\n(z - z0) = πδ(2\z - z0). (4.15)

Q.E.D.

4.4. Ramification Indices and DS Operator

In the following, we study the relation between the ramification-indices and the
singularity of the Drinfeld-Sokolov operator (DS operator). This will be important
since it is known that the phase-space of the classical W-algebra is described by the
gauge equivalence class of the DS operator. For regular points, this indeed results
from the discussion of Sect. 2.3. Ultimately, we should clarify the relation between
this phase-space and the space of W-surfaces. A related motivation is to give a direct
bridge with the generalization to the quantum situation. In the previous section (4.3),
we saw that the local rescaling symmetry is essential to eliminate the singularity so
that is should not be fixed globally. In the same way, we have to start from the
DS operator of the Sect. 2.3 with additional hn generator. Let us recall it from the
Sect. 2.3,

i f = d - / - λ , (4.16)

where / is given in Eq. (2.60) and λ is the lower triangle matrix, (Borel subalgebra).
The gauge symmetry of S$ is generated by the strictly lower-triangular matrices. It
follows from Sect. 2.3 that the chiral component of the metric ηR is a solution of the
Drinfeld Sokolov equation (DS equation),

&ηR = 0, (4.17)

with λ given in Eq. (2.61). For our purpose, it will be better to switch to the diagonal
gauge where only nonvanishing elements of λ are the diagonal elements. We call T
the gauge transformed of ηR.

Inspired by the instanton-solutions of WPλ non-linear σ-model, we shall study the
solution of the DS equation where the singular part of the DS potential λ has the
following form,

λ =

/dψo 0 0
0 dφλ 0

0
\ 0

— ai+\

dΨn-\

0

•0(1),

0 \

0

0

an = n+l Ξ O .

(4.18)

(4.19)
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This as is the reflection of the fact that gl{\) local-scale is not yet fixed. We will
calculate the singular behavior of the solution of DS equation 5%Ύ = 0 at z = 0 and
find the relation between a and the ramification index.

Let us start from the simplest situation, i.e. the n = 2 case. Then, the singular part
of the DS equation is simply,

a'/Z \ )({°) , (4.20)

where (fk)i = z~asTki. In the following, we suppress the index k. This equation
reduces to the second order scalar differential equation,

(d2 + u(z))f0 = 0, u(z) = -i(α? + α,) (4.21)

This is a well-known example of the differential equation with regular holonomy. The

behavior of its solution / = (f° J at z = 0 is determined by

(4.22)

(4.23)

Converting to X's, we can choose the overall scaling factor as in order to remove
the singularities. If we use this solution as the embedding into WPX, we can get the
relation between a{ and ramification index βx. We find that

βx = 2aλ (a{ > 0), βx = 2\a{ + 1| (α, < - 1 ) . (4.24)

Some of its features should be noticed,

1. For each ramification index, there are two possible values for ax.
2. When aι = - 1 , although the DS operator has apparent singularity at z = 0,
corresponding solution is perfectly regular.
3. When ax = -1/2, the monodromy matrix is not diagonalizable, and this case is
not covered by the present analysis. This is the so-called parabolic case.

As for the first point, we have met this situation elsewhere. In the free-field approach
to CFT, we represent primary fields by means of vertex operators exp(aλφ). Its
conformal dimension is then given by aι(aι + 1). Hence for each conformal
dimension, we have two vertex operators which have the dimension with a{ and
— l—ai. Since our φ fields will be replaced by free boson operator, the two situations
have actually same origin. The second point of our remark can be understood similarly.
In CFT, we have non-trivial operators with vanishing weight apart from the trivial
operator 1. Our DS operator with false singularity is apparently similar. In any case,
we can show that these two situations are actually gauge equivalent, which is clear
from the fact that they have same potential u(z) in (4.21). In the quantum case,
rational theories will indeed lead to rational values for ax. In the classical case these
cuts may be removed by switching to the covering space whenever we meet cuts.
This is why we only consider the situations where the α's are integers.
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Let us generalize our discussion to the gl(n + 1 ) DS operator. In this case, the
singular part of the differential equation which generalizes Eq. (4.20) is given by,

( 4 2 5 )

The behavior of the solutions of this equation is given by / 0 ~ za where a satisfies
following characteristic equation,

(a + ax)(a - 1 + a2 - ax) (a - n + 1 + an - an_x)(a -n- an) = 0 (4.26)

If any two solution of this equation are equal, we meet the logarithmic singularities,
which do not fit in the present analysis. Otherwise, the behavior of the embedding
function is found to be

f2 = O(z2+ai~ai), ..., fn = O(zn+a"). ( 4 ' 2 7 )

There are n! different sets of a which produce the same ramification index. Since they
are all gauge equivalent, we can restrict our analysis to one of them. To specify the
choice, we can postulate that fj fί+ι is regular at z = 0 for every i. The ramification
index in this situation is simply given by

$n^> ( 4 2 8 )

where K^n is the Cartan matrix of An. In this way, we can get a clear group-
theoretical correspondence between the ramification-indices of the DS operator. This
result should be considered as the local version of the Plϋcker formula we will
encounter in the coming section.

4.5. Plϋcker Formulae

The method will be to exhibit relations between the curvatures R^ and metric tensors
of the associated embeddings. There are two versions of these formulae. First, as a
direct consequence of the Toda equation, we obtain the

Theorem 19. Infinitesimal Plϋcker Formulae, At the regular points of the embed-
ding one has

S ^ Ϊfl) 2ff^ " 9%~l) • (4-29)

Proof. This is derived by computing the curvature

^ = ~dd\n (T-ψA . (4.30)
τkk+\

The first equality is a simple consequence of the general form Eq. (4.2) of the Kahler
potential. The second is a consequence of the specific mapping of Σ in Gn+ι k+ι

[Eq. (4.3)] which is such that the Toda equation is verified automatically. Making use
of Eq. (4.4) one easily completes the proof. Q.E.D.
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These infinitesimal Plϋcker formulae give us the following global relations:

Theorem 20. Global Plϋcker Formulae, The genus of a W -surface is related to its
instanton-numbers and ramification-indices by the relations

= 2Qk-Qk+1-Qk_i,
k = 1,... ,n

(4.31)

Proof First we apply the Gauss-Bonnet theorem for each of the kth associated surfaces

by computing / R^yg^- The integral is first computed over Σε where small

neighborhoods of singularities are removed. The ramification indices at singularity
was previously defined so that at a singular point the induced metric of the kth

associated surface behaves as

(z - zof^\z - φ™g<*> , (4.32)

where g^ is regular at z0, z0. Since we do not assume that f(z) = f(z), βk(z0)
and βk(z0) may be different. By letting ε —> 0, one sees that the contribution of the
singularities to the Gauss-Bonnet formula is proportional to the kth ramification index

(zo,zo)(ΞΣ

The contribution of the regular part does not depend upon k, since changing k there,
is equivalent to using a different complex structure, while the result is equal to the
Euler characteristic that does not depend upon it. The Gauss-Bonnet theorem for the
kth associated surface finally gives

... Γ~7~

--2-2g + βk. (4.34)

Combining these last relations with Eqs. (4.7), completes the derivation. Q.E.D.

Using these formulae, we find that there are n independent topological numbers
(Q1 ? , Qn), which characterize the global topology of W-surfaces. A direct con-
sequence of this observation is that Wn+1-string have n coupling constants which
play the same role as the genus for the usual string theories. Equation (2.9) may be
understood as the index theorem for W-surfaces.

4.6. Relation with Self-Intersection Numbers

A few years ago, Polyakov [21] introduced a modified Goto-Nambu action, with
a topological term involving the extrinsic geometry of the string-manifold. In this
section, we connect his discussion with the one carried out in the present article.

The Goto-Nambu action, is proportional to J dz dzy/— det(§). g is the induced
metric which takes the Kahler form. This gives

SGN (xi I dzdzgz-z = i I dzdz^dfAdfΛ , (4.35)
J J A
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which is indeed a topological integral, since gzz = ddγ^fAfA. As expected it
A

coincides with the instanton-number Q of Eq. (4.6) associated with g. Since the target
space is topologically trivial, Q actually vanishes for any ^n-W-surfaces, contrary
to the situation of WPn-W-surface.

In [21], an additional topological term was defined from the second fundamental
form. Let denote by D = d-d(\n Δx) and D = d—<9(ln Δλ), the covariant derivatives
on the W-surface (with the notations of the previous sections gzz = Δx). It follows
from Eq. (2.26) that

J2^ea, (4-36)
a=2 a=2

where, according to Eqs. (2.4), and (2.5),

df=^Δ[ex df=^Δ~xex. (4.37)

The self-intersection number of [21] is

It was originally defined in the case when the target space is W1, where a W-surface
intersects with itself at several isolated points. The index vx counts the number of
these isolated points with suitable signs determined by their mutual orientations at
intersection points. This explains the original terminology, "self-intersection number."

From our viewpoint, it is clear that there is a close analogy between vx and Qx in
Eq. (4.7). The only difference between them is that we need to replace Δa by the τ α .
This analogy suggests a re-interpretation of vx as the generalized instanton-number of
a certain associated mapping. It enables us to obtain a generalization of that index for
the W-surface in higher Wn target spaces where there seems to be no interpretation
of "self-intersection."

This time, for each W-surface in Wn, we define the kth associated mapping as
being from Σ into Gnk (k = 1, , n — 1). Each point z e Σ, is mapped into
an osculating frame spanned by / ( 1 ) , ,/ ( / c ) at z which defines a point in Gn k.
Although the original Wn-W-surface has only vanishing instanton-number, these
associated mappings give nontrivial indices, which obviously are analogous to those
of the WPn W-surfaces and of their 1 associated surfaces. The only difference is that
in WPn case we constructed an osculating frame out of /(0^ = /,•••, f^k~λ\ Since
Δa can be obtained from τ α by replacing / ( α - 1 ) by / ( α ) , we obtain,

Definition 20. Generalized 'Intersection Numbers.' They are defined by the instan-
ton number vk of the kth associated mapping of Wn-W-surface,

= ΐ-Jdzdzg™ = ̂ JdzdzddΔk = £Jdzdz Δk+£k~l . (4.39)

These n — 1 integrals have exactly the same topological meanings as those of higher
instanton numbers in CPn~ι-W-surface. Polyakov's index corresponds to the first
index, i.e. the instanton number of the associated mapping into CPn~ι.
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It is easy to express our new indices out of the third fundamental forms. Rewrite
Eq. (2.27), with a φ 1 as

- ^ Σ <̂ ] (^α) = ̂ AVi , (4-40)

Since one has La = yg^> it follows that the numbers va are such that

va = l~ Idzdzlλ. (4.41)

5. Outlook

This article has gone quite a way towards describing W-geometries. Yet, many
problems remain untouched, many more aspects deserve our attention. Let us mention
a few of them.

Concerning the An case itself, it will be interesting to consider the Poisson-bracket
structure and its relation with the Lie-brackets of tangent vectors to WPn. This should
be straightforward. Another point is to derive the light-cone formulation of W-gravity
in the present frame-work. It should correspond to a particular parametrization of

Clearly the next problem is to derive the other Toda dynamics and WZNW theories
from W-geometries.

A much more difficult task is of course to consider quantum W-geometries. It is
our expectation that the quantum group structure already exhibited [29, 30] for W
gravity will emerge. Indeed, in the present classical discussion, the algebra gl(n + 1)
plays a crucial role. In the same way as for Toda theories [30], it is likely that quantum
effects will lead to its associated mathematical "quantum" deformation.

The similarity between WPn W-geometry and matrix-models, shows that the
method just discussed is very general and may be a unifying framework for all the
problems related to conformal theories and strings. In particular it may be convenient
in the search for the true string-ground-state.

We may forsee interesting progress in the future.
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A. Appendix

A.I. Frenet-Serret Equations for WPn

In Sect. 2.2, we wrote down the Frenet-Serret formulae for WPn through the
approach which is covariant by local rescaling. We have seen that the additional
Toda field in Wn+ι W-surface can be cancelled using this covariance. However, in
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order to accomplish it, we had to include the zeroth derivative term of the embedding
functions to define the moving frame. The correspondence with the second and third
fundamental forms became not so direct due to this strategy. Moreover, this method
seems to be very specific to the An Toda theories, and it is useful to apply the general
strategy we put forward in our letter [1].

The standard description of WPn makes use of the Fubini-Study metric Eq. (2.35),
denoted GAB, together with the so-called inhomogeneous coordinate system, which
satisfy

X° = X° = 15. (A.I)

Thus the embedding functions are supposed to obey the conditions f°(z) = 1, and
f°(z) = 1. This is clearly not always possible since, starting from any parametrization,
one goes to the present one by dividing the coordinates by X° or X°. This scale
choice may be made only if /° and /° have no zero. Let us assume that this is true,
in the present section, in order to proceed. We define an analogue of the metric tensor
Eq. (2.3)

Si5 = Σ GABd^fA(z)d^P(z) (A.2)
A, B

The apparent drawback to use the strategy of Sect. 2.1 for the curved space is that the
higher order derivatives of the embedding functions do not transform covariantly under
the target space reparametrizations. Hence formulae like Eq. (A.2) make sense only
when we work with a particular coordinate system similar to the W-parametrization
of Sect. 3.2. The interesting point is that every argument in Sect. 2.1 is valid with
only minor modifications to this situation, which is to be treated following our earlier
general scheme [1]. In the present case, the moving frame case is given by Eqs. (2.4),
(2.5) after replacing gτ5 by giy We define A and φ as in Eqs. (2.6) and (2.18) by using
the same replacement. A minor modification is needed in definition of the derivatives
de and Be. They should be consistently replaced by the covariant derivative,

e> ZJ B C

throughout the discussion. This modification is needed in order to keep the condition
Eq. (2.13) where the metricity is used. The Christoffel symbols take simple forms for
the Fubini-Study metric,

ΓA _ δACX + δABX
c

 A δACX*Λ-δA
iBC~ n 1 J 1 BC ~ n 1 \ >

Σ xDxD Σ xDxD

D=0 D=0

The use of covariant derivatives in Eqs. (A.3) ensures the validity of the discussion
that leads to Eqs. (2.14). The Gauss-Codazzi equations become, in agreement with
[1]

[V,δ]eα = ^ F i α e 6 , (A.5)
b

([V,5]ea)
A = J2f(l)BfWS(lVβ,dBlea)

A = Σί^^KsA (A 6)
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with

Fzl = Σ h.ddφ, + £ ht exp ( Σ K?«n+\) . (A.7)

As we see here, due to the contribution of the target-space curvature, we do not
directly get the exact form of the Toda equations. However, WPn is known to possess
a constant sectional-curvature, that is to say, the curvature tensor satisfies16

(α, J8φ, c)d) = (α, d)(c, 6) - (α, 6)(c, d). (A.8)

Writing

Fi = ddψt +exp(j2 K$n+%) . (i = 1, , n - 1),

Equation (A.6) is more explicitly rewritten as

Ft ~ Ft-\ = (eέ,Mdf,df)e£) = Ax, I = 2 , . . . , n ,

Fι=Δι. (A. 10)

Solving these equations, we get

Ft = iAx. (A.ll)

The relation between the present discussion and the one of Sect. 2.2 is clarified
by establishing the following

Proposition 9. The relation between the tau-functions and Δ-functions is given by

Λ = W r ί + 1 (A 12)

Proof. First, we observe that the inner product in Eq. (A.2) is given by the free-
fermion inner product (here & stands for &(z, z))

_ — (rj- /Q /) T" c) Ί~ ί~) τ~ ^ IT
4 . ^ 1 1 1 1 ^ / 1

r\

(A.13)

In the last line, we applied Wick's theorem. Further use of this theorem gives the
proof of the proposition,

Δa = r'2a ^tjl\ψ^ψ:\l) = rfα-1(α

Q.E.D.

This leads us to replace the Toda-like field φ£ by the true Toda field Φί — —
It is such that

1 6 The notation b,d (a,c) represents tangent vectors which only have chiral (anti-chiral) nonvan-
ishing components
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In terms of this Toda field, Eqs. (A. 10) and (A. 11) become,

ddΦn+ι = (n + l)(ddΦι + exp(2Φ2 - Φx)),

ddΦe + exp(2Φ, - Φ m - Φ£_χ) = ^ f t ^ + exp(2Φ2 - Φx)), (A.16)

This result becomes closer to the well-known An Toda equation. However, the
coincidence is still not exact. Clearly the above equations are consequences of Toda
equations, that is ddΦ{ + exp(2Φ2 -Φχ)) = 0, ddΦί + exp(2Φ^ - Φ£+ι - Φ^γ) = 0,
2 < ί < n, ddΦn+ι = 0. However we missed the first and the last. On the other
hand, Proposition 9 can be used to complete the derivation. Indeed, it was shown in
[2] that, apart from the last one, the above Toda equations are automatically true if

the £ Toda field is equal to τt Combining this last observation with Eqs. (A. 16),
one gets the desired result. Finally, we make use of Proposition 9 to derive the

Proposition 10. Liouville Solutions. The induced metric of* W-surfaces embedded in
WPX satisfies Liouville's equation.

Proof. The induced metric is gn [see Eq. (A.2)]. According to Proposition 9, and Eq.
(2.48), one may write

r2 U0(z)U0(z)

With the present choice of coordinates Eq. (A.I), f°(z) = f°(z) = 1, and the
Wronskians U0(z), and O0(z) are respectively equal to / ( 1 ) 1 (^) . One gets

011 = /

which takes the form of Liouville's general solution. Q.E.D.

This solves the mystery pointed out in Sect. 2.1.
Although the approach of this appendix has drawbacks, it certainly has the merit

of being applicable to arbitrary Kahler target-manifolds. Moreover, in this approach
the relationship with extrinsic geometry is manifest.
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